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Abstract

When fine-tuning zero-shot models like CLIP, our desideratum is for the fine-tuned
model to excel in both in-distribution (ID) and out-of-distribution (OOD). Recently,
ensemble-based models (ESM) have been shown to offer significant robustness
improvement, while preserving high ID accuracy. However, our study finds that
ESMs do not solve the ID-OOD trade-offs: they achieve peak performance for
ID and OOD accuracy at different mixing coefficients. When optimized for OOD
accuracy, the ensemble model exhibits a noticeable decline in ID accuracy, and
vice versa. In contrast, we propose a sample-wise ensembling technique that
can simultaneously attain the best ID and OOD accuracy without the trade-offs.
Specifically, we construct a Zero-Shot Failure (ZSF) set containing training samples
incorrectly predicted by the zero-shot model. For each test sample, we calculate
its distance to the ZSF set and assign a higher weight to the fine-tuned model in
the ensemble if the distance is small. We term our method Variance Reduction
Fine-tuning (VRF), as it effectively reduces the variance in ensemble predictions,
thereby decreasing residual error. On ImageNet and five derived distribution shifts,
our VRF further improves the OOD accuracy by 1.5 - 2.0 pp over the ensemble
baselines while maintaining or increasing ID accuracy. VRF achieves similar large
robustness gains (0.9 - 3.1 pp) on other distribution shifts benchmarks. Codes are
available in https://github.com/BeierZhu/VRF.

1 Introduction

To ensure the reliability of machine learning systems, it is essential to develop models that can
generalize to unseen, out-of-distribution environments. Large pre-trained models such as CLIP [20]
and ALIGN [10] have recently shown remarkable robustness against challenging distribution shifts.
However, it is widely acknowledged that these improvements in robustness are most pronounced in
the zero-shot setting, while conventional fine-tuning on these models often compromises robustness
when compared to zero-shot performance [28, 15, 14]. This phenomenon is known as the ID-OOD
trade-offs, i.e., improving performance on in-distribution (ID) data can sometimes lead to decreased
performance on out-of-distribution (OOD) data [12, 25].

In recent years, ensemble-based models (ESMs) have demonstrated significant success in addressing
the ID-OOD dilemma [17, 28, 14, 31]. Specifically, denote the input as x, the zero-shot model
as P̂(y|x; θzs) and the fine-tuned model as P̂(y|x; θft), existing ESMs typically employ the output-
space ensemble (OSE) [14, 31], which outputs P̂(y|x; θose) = αP̂(y|x; θft) + (1 − α)P̂(y|x; θzs),
and the weight-space ensemble (WSE) [28, 17], which outputs P̂(y|x; θwse) = P̂(y|x;αθft + (1−
α)θzs), where α ∈ [0, 1]. Compared to fine-tuned models, ESMs offer significant accuracy enhance-
ments under distribution shift, while maintaining high ID accuracy.

However, ESM cannot fully address the ID-OOD trade-offs. In Figure 1 (a), by varying the mixing
coefficient α, we plot the ID-OOD frontier curves (pink line) for the CLIP ViT-B/16 model on
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Figure 1: (a) ID-OOD frontier curves for the CLIP ViT-B/16 model on the ID (ImageNet) and
OOD (IN-{V2, R, A, Sketch} and ObjectNet) datasets by varying the mixing coefficient α. The
ensemble model achieves its best ID and OOD performance at different α values. Our method
VRF simultaneously attains the best ID and OOD accuracy, outperforming the ensemble by 3.6%
on OOD and 1.6% on ID at its optimal performance points.(b) Relationship between the ratio of
fine-tuned accuracy to zero-shot accuracy ( Accft

Acczs
) and the distance to the zero-shot failure set (d(x)).

Accft
Acczs

demonstrates a monotonic decrease as d(x) increases.

ImageNet [3] (ID) and five derived distribution-shifted datasets (OOD): ImageNet-V2 [21], ImageNet-
R [7], ImageNet-A [9], ImageNet-Sketch [27] and ObjectNet [1]. We find that the ensemble model
achieves its optimal ID and OOD performance at different α values: the best ID accuracy is achieved
at α = 0.5 and the best OOD accuracy is obtained at α = 0.3. When the ensemble model reaches
its optimal value for OOD, the performance on ID decreases by 3.6% relative to its peak. Similarly,
when the ensemble model is optimized for ID, the performance on OOD decreases by 1.6% relative
to its best value – the ID-OOD trade-offs still persist for ESMs. This raises a natural question:

Can ensemble-based models simultaneously attain the best ID and OOD accuracy?

In this paper, we affirmatively answer this question by proposing a sample-wise ensembling technique,
dubbed variance reduction fine-tuning (VRF). This method is motivated by an empirical finding
illustrated in Fig 1 (b). For each sample in the training dataset, if the fine-tuned model correctly
predicts the label while the zero-shot model fails, we collect its features representation in the fine-
tuned model as the zero-shot failure (ZSF) set. We then measure the distance d(x) of each test sample
x to the ZSF set. Based on this distance, test samples are grouped into bins, and we compute the
ratio of fine-tuned accuracy to zero-shot accuracy: Accft

Acczs
for each bin (implementation details are in

Section C.7). Interestingly, we observe that the ratio Accft
Acczs

monotonically decreases as d(x) increases.
Intuitively, the closer a sample is to the ZSF set, the more likely it is that the zero-shot model makes
incorrect predictions, whereas the fine-tuned model is more likely to be accurate, leading to a higher
Accft
Acczs

ratio. Therefore, we use the distance to assign weights to the models: a smaller d(x) results in a
higher weight for the fine-tuned model, and vice versa.

As depicted by the orange diamond in Fig. 1 (a), by leveraging the sample-wise weights, our VRF
simultaneously attains the best ID and OOD accuracy. In Section 5, we show that on a variety of
different models and tasks, our VRF approach consistently outperforms the existing fine-tuning
and ensembling methods, including linear probing, end-to-end fine-tuning, LP-FT [15], OSE and
WSE [28]. In specific, on ImageNet and five derived distribution shifts, our VRF further improves
the OOD accuracy by 1.5 - 2.0 pp over the ensemble baselines while maintaining or increasing ID
accuracy. Furthermore, in Section 4, we justify our approach by demonstrating that it effectively
minimizes the variance of the ensemble models, resulting in reduced residual error.
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2 Related Work

Mitigating ID-OOD trade-offs. Improving performance on in-distribution data can sometimes lead
to a decrease in performance on out-of-distribution data, and vice versa. This phenomenon is known
as the ID-OOD trade-offs. Xie et al. [29] leverage auxiliary information as outputs of auxiliary tasks
to pre-train a model to reduce OOD error. Khani and Liang [12] show that self-training on large
amounts of unlabeled data can mitigate such trade-offs by removing spurious features. Tripuraneni et
al. [25] tackle this problem by learning representations that are robust across diverse tasks. However,
these methods usually necessitate additional unlabeled data or auxiliary information. In contrast, our
VRF is a straightforward variation of fine-tuning that does not require any extra data.

Robust fine-tuning of zero-shot models. Vision-language models like CLIP [20] have demonstrated
outstanding improvements in robustness. It is commonly acknowledged that conventional fine-
tuning methods often compromise robustness when compared to zero-shot performance. Therefore,
enhancing downstream robustness has been the focus of subsequent works [15, 28, 5, 19, 6, 30].
Kumar et al. [15] show that a two-process of linear probing followed by full fine-tuning can alleviate
feature distortion, leading to stronger OOD performance without sacrificing ID accuracy. Wortsman
et al. [28] propose a method of weight interpolation between the zero-shot and the fine-tuned models
to improve both ID and OOD accuracy. Goyal et al. [5] demonstrate that mimicking the contrastive
pre-training objectives to fine-tune the zero-shot models outperforms tuning via the traditional
supervised cross-entropy loss. However, the ID-OOD trade-offs are still observed with these methods.
In contrast, our method VRF can simultaneously achieve the best ID and OOD accuracy.

3 Methods

3.1 Set Up

Task: Consider a classification setting where the goal is to map an instance x ∈ X to a label y ∈
Y = [K]. We are provided with a zero-shot model f(·; θzs), a downstream dataset D = {xi, yi}Ni=1,
and a fine-tuned model f(·; θft) which is trained on D. Below, we outline the implementation of the
zero-shot and fine-tuned models:

• Zero-shot models (ZS): We investigate CLIP models [20] as our zero-shot models. CLIP
models are pre-trained using image-text pairs {(x1, t1), ..., (xB , tB)} from the Internet. The
objective of the CLIP models is to train a visual encoder Φv and a text encoder Φt such that
the cosine similarity < Φv(xi),Φt(ti) > is maximized relative to unmatched pairs. CLIP
models perform zero-shot inference for K classes by matching x with potential class names
{c1, ..., cK}. Concretely, by extending the class name {ck} to a prompt “tk =a photo of a {ck}”,
the zero-shot model outputs the score (logit) for class k as f(x; θzs)k =< Φv(x),Φt(tk) >.
The predicted probabilities can be calculated using the softmax function, i.e., P̂(y|x; θzs) =
softmax(f(x; θzs))y . The model outputs the label as pred(f(x; θzs)) = argmaxi f(x; θzs)i

• Linear classifiers (LC): We learn a linear classifier on top of the visual embedding Φv(x)
while freezing the visual encoder Φv. The parameters of the linear classifier are optimized to
minimize the cross-entropy loss on D.

• End-to-end fine-tuning (E2E-FT): We update both the linear classifier and the visual encoder
by minimizing the cross-entropy loss on D.

• Linear probing then full fine-tuning [15] (LP-FT): We employ a two-phase fine-tuning
approach: initially training a linear classifier, followed by full fine-tuning starting from the
solution derived from training the linear classifier.

• Output-space ensemble (OSE): We perform linear interpolation of the outputs between a
zero-shot model and a fine-tuned model (e.g., E2E-FT or LP-FT):

P̂(y|x; θose) = αP̂(y|x; θft) + (1− α)P̂(y|x; θzs), where α ∈ [0, 1] (1)

• Weight-space ensemble [28] (WSE). We combine the weights through linear interpolation
between a zero-shot model and a fine-tuned model:

P̂(y|x; θwse) = P̂(y|x;αθft + (1− α)θzs), where α ∈ [0, 1] (2)
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Algorithm 1 Variation Reduction Fine-tuning

1: Given: Training dataset D, a zero-shot model fzs and a fine-tuned model fft.
2: Build zero-shot failure set V using Eq. (3). ▷ Step 1: Identification
3: Inference Stage:
4: Given a test sample x, compute its feature representation v, zero-shot prediction P̂zs(y|x) and

fine-tuned model prediction P̂ft(y|x).
5: Compute the k-NN distance to V as d(x) using Eq. (4). ▷ Step 2: Distance Calculation
6: Compute the weight ω(x) using Eq. (6).
7: Return P̂vrf(y|x) using Eq. (5) ▷ Step 3: Sample-Wise Ensembling

3.2 Variance Reduction Fine-tuning

We now present our proposed method, VRF, which consists of three steps. First, before the inference
stage, we collect the Zero-Shot Failure (ZSF) set. Second, for a given test sample, we calculate its
distance to the ZSF set. Third, we assign weights to combine predictions from the zero-shot and
fine-tuned models based on this distance.

Step 1 (Identification). For each xi in the training dataset D, if the fine-tuned model correctly
predicts the label while the zero-shot model fails, we collect its feature representation vi = Φv(xi; θft)
from the fine-tuned model to form the zero-shot failure set V . Specifically, V is defined as:

V = {vi s.t. yi = pred(fft(xi)) and yi ̸= pred(fzs(xi))}. (3)

Here, fzs(·) and fft(·) are used to denote f(·; θzs) and f(·; θft), respectively, for simplicity.

Step 2 (Distance Calculation). The key empirical observation underpinning VRF is that in the
vicinity of the ZSF set, a test sample typically exhibits lower zero-shot accuracy (Acczs) and higher
fine-tuned accuracy (Accft). Consequently, the Accft

Acczs
ratio demonstrates a monotonic decrease as the

distance from the sample to the ZSF set increases. In this paper, we adopt non-parametric density
estimation using nearest neighbors [24] to measure the distance of a test sample to the dataset V .
Specifically, during inference, we derive the feature representation v of a test sample x, and compute
the ℓ2 distances ∥v − vi∥2 w.r.t. vi ∈ V . We reorder V according to the increasing ℓ2 distance and
denote the ordered set in sequence as V ′ = (v(1),v(2), ...,v(|V|)). The distance of x to V is defined
as the ℓ2 distance to the k-th nearest neighbor (k-NN), i.e.,

d(x;V, k) = ∥v − v(k)∥2. (4)

If there is no ambiguity, we use d(x) to denote d(x;V, k) for readability. Since the features in CLIP
models are ℓ2 normalized, d(x) are bounded between [0, 2].
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Figure 2: Relationship between Accft
Acczs

and
the weight ω(x).

Step 3 (Sample-Wise Ensembling). We implement
sample-wise out-space ensembling in the form:

P̂vrf(y|x) = ω(x) · P̂ft(y|x)+ (1−ω(x)) · P̂zs(y|x), (5)

where ω(x) ∈ (0, 1). We use the distance to ZSF set d(x)
to determine the weight ω. As shown by the blue line in
Fig 2, a smaller value of d(x) corresponds to a larger Accft

Acczs
ratio, and vice versa. Therefore, we set the weight ω to be
inversely proportional to d(x). Given that ω is bounded
between 0 and 1, we employ a sigmoid function σ(·) as:

ω(x) = σ(−(d(x)− a)/b), (6)

where a, b > 0 are two hyper-parameters sweeped using
accuracy on ID validation set. We visualize the weight curve in green on Fig 2, setting a = 1.5 and
b = 0.6. We summarize the whole process in Algorithm 1.

4 Justification

We now prove that our VRF can effectively reduce the variance of the combined model, resulting in
lower errors compared to ensembling using a constant mixing coefficient.
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4.1 Background

The outputs of a well trained classifier are expected to approximate the a posterior class distribution.
Apart from the irreducible error (Bayes error), the residual error of a classifier can be broken down
into bias and variance components. In specific, for a test sample x, the probability output of a
classifier parameterized by θ can be expressed as:

P̂(y|x; θ) = P(y|x) + βy + ηy(x)︸ ︷︷ ︸
residual error for x

, (7)

where P(y|x) denotes the true a posterior distribution, βy is the label bias of P̂(y|x; θ) which is
independent to the input x, and ηy(x) is related to the given input x. In this study, we primarily
attribute the residual error to the variance term (i.e., βy = 0), as the label bias problem in foundation
models has been effectively addressed by Zhu et al. [31]. Tumer et al. [26] have proven that the
expected residual error E is given by:

E =
V[ηy(x)]

s
, (8)

where s is a constant factor related to the derivative of the true a posterior distribution and is
independent of the trained model, and V[ηy(x)] is the variance.

4.2 Variance Reduction Fine-tuning Leads to Lower Residual Error

Let us shift our focus to the effects of combining the zero-shot and fine-tuned models. Let gzs(·) and
gft(·) be two functions that produce weights for ensembling the models. Subject to the constraint that
gzs(x) + gft(x) = 1, the residual error of the combined classifier is obtained by:

P̂vrf(y|x) = gzs(x)P̂zs(y|x) + gft(x)P̂ft(y|x) = P(y|x) + gzs(x) · ηzs(x) + gft(x) · ηft(x)︸ ︷︷ ︸
ηvrf(x)

, (9)

where we omit the subscript y of η for readability. The variance of ηvrf(x) can be expressed as:

V[ηvrf(x)] = gzs(x)
2 · V[ηzs(x)] + gft(x)

2 · V[ηft(x)]. (10)

Here, we assume the residual errors are independent following the assumption of the previous studies
of CLIP fine-tuning [14, 31]. We further explore the case of correlated residual errors in Section B.
According to Eq. (8), the reduction in variance can be readily translated into a reduction in error
rates. To obtain the smallest variance V[ηvrf(x)], we minimize Eq. (10) using Lagrange multiplier to
enforce the constraint that gzs(x) + gft(x) = 1, and obtain the optimal weight function gft as:

gft(x) =
V[ηzs(x)]

V[ηzs(x)] + V[ηft(x)]
=

Ezs

Ezs + Eft
= (1 +

Eft

Ezs
)−1 ∝ Accft

Acczs
(11)

Since Accft
Acczs

∝ d(x)−1 (a smaller distance d(x) is associated with a larger Accft
Acczs

as shown in Fig. 2),
we design the weighting function gft(x) = ω(x) ∝ d(x)−1 as in Eq. (6).

5 Experiments

5.1 Experimental Setup

Datasets with distribution shifts. We provide the results for ImageNet [3] and its five derived
distribution shifts: (1) ImageNet-V2 (IN-V2) [21]: Test images sampled after a decade of the original
ImageNet. (2) ImageNet-R (IN-R) [7]: Contains renditions (e.g., art, cartoons, graffiti). (3) ImageNet
Sketch (IN-Sketch) [27]: Consists of sketches rather than natural photos. (4) ImageNet-A (IN-A) [9]:
Collects real-world images that are misclassified by ResNet models. (5) ObjectNet [1], a test set
featuring objects with diverse backgrounds, rotations, and imaging viewpoints. We extend our
analysis to include a standard distribution shift benchmark [15, 14, 4]: CIFAR-10 → STL-10, where
the ID is CIFAR-10 [13], and the OOD is STL-10 [2]. We removed the “monkey” class from STL-10,
as it does not exist in CIFAR-10. In addition, we also consider subpopulation shifts, where the ID
data contains a few sub-categories, and the OOD data comprises different sub-categories within the
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Table 1: Accuracy of various methods on ImageNet and derived distribution shifts for CLIP ViT-B/32.

Method IN Distribution shifts Avg
IN-V2 IN-Sketch IN-A IN-R ObjectNet shifts

Zero-shot [20] 63.3 55.9 42.3 31.5 69.3 43.5 48.5
Linear classifier [20] 75.4 63.4 38.8 26.1 58.7 41.5 45.7

E2E-FT [28] 76.2 64.2 38.7 21.0 57.1 40.1 44.2
+ Weight-space ensemble [28] 77.9 67.2 45.1 28.8 66.4 45.1 50.5
+ Output-space ensemble 77.3 66.0 44.2 27.1 68.4 44.4 50.0
+ VRF (ours) 77.6 66.7 47.0 29.2 70.9 46.3 52.0
∆ +0.3 +0.7 +2.8 +2.1 +2.5 +1.9 +2.0

LP-FT [15] 76.9 64.8 39.9 25.7 69.9 42.6 48.6
+ Weight-space Ensemble [28] 78.0 67.0 44.8 31.2 65.8 46.1 51.0
+ Output-space Ensemble 77.8 66.3 44.0 29.5 66.2 45.5 50.3
+ VRF (ours) 77.8 66.7 46.1 31.0 70.0 46.3 51.8
∆ +0.0 +0.4 +2.1 +1.5 +3.8 +0.8 +1.5

Table 2: Accuracy of various methods on ImageNet and derived distribution shifts for CLIP ViT-B/16.

Method IN Distribution shifts Avg
IN-V2 IN-Sketch IN-A IN-R ObjectNet shifts

Zero-shot [20] 68.3 61.9 48.3 50.1 77.6 54.2 58.4
Linear classifier [20] 79.3 69.1 44.8 44.3 66.7 51.1 55.2

E2E-FT [28] 81.3 70.6 45.1 36.6 65.6 50.5 53.7
+ Weight-space ensemble [28] 82.5 73.1 51.6 47.6 75.1 55.7 60.6
+ Output-space ensemble 82.2 72.0 50.6 46.8 76.7 54.9 60.2
+ VRF (ours) 82.3 72.1 52.9 48.4 78.7 56.4 61.8
∆ +0.1 +0.1 +2.3 +1.6 +2.0 +1.5 +1.6

LP-FT [15] 81.5 70.7 46.7 41.4 66.4 52.4 55.5
+ Weight-space ensemble [28] 82.4 73.0 51.5 50.6 74.2 56.6 61.2
+ Output-space ensemble 82.1 72.3 50.9 50.9 74.9 55.7 60.9
+ VRF (ours) 82.1 72.3 52.9 51.2 78.8 57.2 62.4
∆ +0.0 +0.0 +2.0 +0.3 +3.9 +1.5 +1.5

same parent category. Following [15, 14], we adopt Entity30 dataset [23], which aims to categorize
images into one of 30 entity categories, such as “vehicle” and “insect”.

Baselines. We adopt two models: CLIP ViT-B/32 and a larger ViT-B/16 from OpenAI [20]. The
default model used in ablation studies is the CLIP ViT-B/16. In addition to the zero-shot models,
we compare our approach against five standard methods for adapting pre-trained models: (1) linear
classifier [20], (2) E2E-FT, (3) LP-FT [15], (4) OSE, and (5) WSE [28]. The descriptions of these
methods have been included in Section 3.1.

Implementation details. When fine-tuning E2E-FT models, we adhere to Wortsman et al. [28],
employing the default PyTorch AdamW optimizer for 10 epochs with weight decay of 0.1 and a
cosine-annealing learning rate schedule with 500 warm-up steps. Unless specified, we use a learning
rate of 3× 10−5, gradient clipping at norm 1. When fine-tuning LP-FT, we first adopt the settings
of Wortsman et al. [28] to train the linear classifier, then full fine-tune the models at a learning
rate of 1 × 10−5. For efficiently performing k-NN search, we use Faiss library [11]. Denote the
size of the ZSF set is |V|, we scale the k according to a percentage p% of the sample set, where
k = floor(p% · |V|). In this paper, p is set to 0.1%, a value consistent with the default setting proposed
by Sun et al. [24]. Note that all the hyperparameters, e.g., α, a, b, are searched using the accuracy on
the in-distribution (ID) validation set. Derived distribution shift datasets are only for evaluation and
not for hyperparameter sweeps. See Appendix C.1 for the details of experimental details.
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Table 3: Accuracy of various methods on CIFAR-10 → STL-10 and Entity-30.

Method CIFAR → STL Entity-30
ID OOD ID OOD

Zero-shot [20] 88.3 97.1 65.2 66.5
Linear classifier 95.0 96.6 93.3 68.1

E2E-FT [28] 97.9 93.5 94.4 65.1
+ WSE [28] 98.2 95.7 94.6 68.8
+ OSE 97.9 95.9 94.4 66.4
+ VRF (ours) 97.8 97.3 94.5 69.5
∆ -0.1 +1.4 +0.1 +3.1

LP-FT [15] 97.9 95.0 94.6 67.7
+ WSE [28] 98.1 96.4 94.8 68.8
+ OSE 98.1 96.4 94.7 68.5
+ VRF (ours) 98.1 97.5 94.8 70.1
∆ +0.0 +1.1 +0.1 +1.6

(a) CLIP ViT-B/32

Method CIFAR → STL Entity-30
ID OOD ID OOD

Zero-shot [20] 90.1 98.4 68.3 68.2
Linear classifier 95.8 97.7 95.3 69.6

E2E-FT [28] 98.6 96.1 96.9 68.2
+ WSE [28] 98.7 97.8 97.2 71.9
+ OSE 98.6 96.6 97.0 71.5
+ VRF (ours) 98.6 98.4 97.0 72.7
∆ +0.0 +1.8 +0.0 +1.2

LP-FT [15] 98.5 96.3 96.9 68.8
+ WSE [28] 98.7 97.9 97.3 72.1
+ OSE 98.6 97.7 97.2 71.8
+ VRF (ours) 98.6 98.6 97.4 72.9
∆ +0.0 +0.9 +0.2 +1.1

(b) CLIP ViT-B/16

CIFAR-10 STL-10→

(b.1)(a.1)

 Entity-30

(a.2) (b.2)

Figure 3: ID-OOD frontier curves by varying the mixing coefficient α and Accft
Acczs

curves for the CLIP
ViT-B/16 . (a) CIFAR-10 (ID) and STL-10 (OOD) results. (b) Entity-30 results.

5.2 Results

ImageNet and its five shifted distribution results. In Table 1 and 2, we report the ID-OOD
accuracies of fine-tuning baselines for CLIP ViT-32 and CLIP ViT-16 models, respectively. For OSE
and WSE, we choose the mixing coefficient α with the highest ID validation accuracy. To enhance
clarity in the results, we denote the improvement over OSE as ∆ in Tables 1 and 2. We observe
that our VRF boosts the accuracy of fine-tuned models, including ensembling baseline models,
across five ImageNet distribution shifted datasets, while maintaining or improving the ImageNet
in-distribution performance. For instance, in Table 1, when ensembling with the E2E-FT model, our
VRF outperforms the OSE model by 2.0% on distribution shifts while increasing the ID accuracy
by 0.3%. Compared to WSE models, our VRF achieves a delta of 1.2% on distribution shifts, while
maintaining ID performance within 0.2%, as shown in E2E-FT part of Table 2.

CIFAR-10 → STL-10 and Entity-30 results. We report the accuracy of various methods in Table 3
(a,b). We note that fine-tuning baselines can enhance the accuracy on CIFAR-10 compared to the
zero-shot models. However, this improvement comes at the expense of reduced accuracy on STL-10.
For instance, E2E-FT leads to a decrease of approximately 3.6% in STL-10 accuracy, as shown in
Table 3(a). Previous ensemble methods can mitigate the degradation to some extent, but the STL-10
performance still lags behind the zero-shot performance, e.g., In Table 3(b), the accuracy of E2E-FT
+ WSE is 97.8% whereas the zero-shot performance is 98.4%. In contrast, our VRF simultaneously
improves accuracy on both CIFAR-10 and STL-10. Similarly, for Entity-30, our VRF can further
improvement the OOD performance when compared to WSE and OSE methods.

In addition, we plot the ID-OOD frontier curves in Figure 3 (a.1&b.1), respectively. Similar to the
results on ImageNet (Figure 1(a)), the ensemble model achieves its best ID and OOD performances
at different α values. For instance, on the CIFAR-10 benchmark, when the ensemble model attains
its optimal ID value at α = 0.7, the OOD performance decreases by 2.0% relative to its peak.
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Table 4: Results of VRF for linear-probed models using CLIP ViT-B/16 models.

Method ImageNet CIFAR-10 Entity-30
ID OOD ID OOD ID OOD

Zero-shot classifier [20] 68.3 58.4 90.1 98.4 68.3 68.2
Linear classifier 79.3 55.2 95.8 97.7 95.3 69.6

WSE/OSE 79.9 57.8 95.8 97.7 95.5 70.5
VRF (ours) 79.8 58.5 95.8 98.4 95.4 71.4

Conversely, when the optimal OOD value is reached at α = 0.3, the performance on ID diminishes
by 2.7% from its best. In contrast, our VRF simultaneously attains the ID and OOD performance.

We also analyze the relation between the ratio Accft
Acczs

and d(x) in Figure 3 (a.2&b.2). Consistent with
the findings from ImageNet (Figure 1 (b)), we observe that the ratio decreases as d(x) increases,
which further supports our design of assigning a higher weight to fine-tuned models if d(x) is smaller.

5.3 Further Analysis and Ablation Studies

VRF for linear-probed models. A drawback of the proposed method is its doubled inference and
storage cost compared to WSE and other single-model robust fine-tuning methods. To address
concerns regarding space-time complexity, we apply our VRF method to linear-probed models and
present the results in Table 4. We also compare with output-space ensembling, since the model is
linear, it is equivalent to weight-space ensembling. We also compare it with output-space ensembling,
which, given the linear nature of the model, is equivalent to weight-space ensembling. Consistent
with the conclusions drawn from fully fine-tuned models, our VRF method further improves OOD
performance while maintaining comparable ID performance to OSE/WSE ensembling.

Acc. ID OOD
All data 82.2 61.0
ZSF 82.3 61.8

Distance to different datasets .d(x)

FT
 A

cc
ur

ac
y 

/ Z
S 

Ac
cu

ra
cy

Figure 4: ZSF set V vs. all data D

Using ZSF set V or entire training set D? In Step 1 of
our VRF, we define the zero-shot failure set V and use it
to compute distances. We aim to find out whether using
the entire training set D offers comparable performance.
In Figure 4, we plot the Accft

Acczs
curves and report both ID

and OOD accuracy using the two sets. We observe that
the ratio curve using D does not exhibit a monotonic trend
with d(x): it initially increases and then decreases as d(x)
increases. Furthermore, the ratio Accft

Acczs
using D is less

informative when d(x) is smaller than 1.2, as the curve
relatively remains flat. As the zero-shot models can accu-
rately predict a large proportion of the ID data (recall that
the zero-shot accuracy is 68.3%), a smaller distance to entire training set D does not reliably indicate
whether the fine-tuned model can make more accurate predictions. In comparison, our ZSF set
contains only the samples where zero-shot models fail but fine-tuned models succeed. When a sample
is close to V , it is more likely that the accuracy ratio will be high. Consequently, the performances
using D are clearly outperformed by those using V .

Table 5: Selective prediction
using OOD detector.

Method ID OOD

MSP [8] 81.5 57.3
Energy [18] 81.0 57.6
MD [16] 81.0 57.7
kNN [24] 80.8 58.4
RMD [22] 81.1 58.4

VRF (ours) 82.3 61.8

Comparison with selective prediction using OOD detector. A sim-
ple approach to address the ID-OOD trade-offs is to use an OOD de-
tector for selective prediction. The OOD detector is a binary classifier
Gλ(·) to decide whether a sample is ID or OOD based on a threshold
λ. For a test sample, predictions are made with the fine-tuned model
if classified as ID, and with the zero-shot model otherwise:

fsp(x) =

{
fft(x) if Gλ(x) = ID
fzs(x) if Gλ(x) = OOD,

(12)

Gλ(x) =

{
ID if S(x) ≥ λ

OOD if S(x) < λ,
, (13)
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(b)(a) (c)
p

Figure 5: (a) Averaged weight Ex[ω(x)] on different datasets. (b) VRF based on logit-space
ensembling. (c) Comparison with the effect of different k in the k-NN distance.

(a) (b) (c)

Figure 6: (a) Effect of a and b on ImageNet ID accuracy. (b) Effect of a and b on ImageNet OOD
accuracy. (c) Other designs of ω(x), hyper-parameters are searched on validation set.

where instances with higher scores S(x) are classified as ID and vice versa. λ is typically chosen
to achieve achieve a 95% true positive rate for ID samples. We report the results of several im-
plementations of S(x) in Table 5 (Details are in Section C.6). We note that selective prediction
achieves comparable ID performance to E2E-FT models and similar OOD performance to zero-shot
models. However, its accuracy still falls significantly short of our VRF. This is because traditional
OOD detectors are designed for scenarios where the OOD data have a completely disjoint label
space from the ID data, i.e., YOOD ∩ YID = ∅. However, in our setup, the zero-shot models show
predictive power on ID data, and the fine-tuned models are effective on OOD data. Making binary
selections may overlook the complementary knowledge from the other model. Instead, our weight
function ω(x) intelligently selects the contribution of each model based on the distance to the ZSF
set. Another reason why our method outperforms selective prediction is the effective use of the ZSF
set, as illustrated in Figure 4. Directly using all ID data as traditional OOD detectors (e.g., kNN and
MD) leads to a weak correlation between the accuracy ratio and the distance d(x) (or score S(x))

Examination of the averaged weight for ID and OOD test sets. Figure 5(a) shows the average
weight (Ex[ω(x)]) of the E2E-FT model in ensembling for both ID and OOD test sets. As expected,
higher average weights are observed in the ID test set, as the fine-tuned models excel in such domain.

Logits-based ensembling. In this paper, we implement OSE by linearly interpolating the probabilities
of the two models. Another common strategy for ensembling, known as Logits-Space Ensembling
(LSE), involves interpolating in the logits space: f(x; θlse) = αf(x; θft) + (1− α)f(x; θzs). We aim
to investigate whether our VRF can enhance the robustness of LSE without compromising the ID
accuracy. The results depicted in Figure 5(b) confirm that our VRF can indeed generalize to LSE.

Effect of k in k-NN distance. In Figure 5(c), to compute k = floor(p · |V|), we vary p across the
range {0.0001%, 0.01%, 0.05%, 0.1%, 10%, 50%}. We note two observations: (1) Varying k slightly
affect the ID performance: the fluctuations are less than 0.1%. (2) The OOD accuracy declines as
p increases, but the degradation is very slight for relative small values of p (e.g., when p < 0.01%,
the decline is smaller than 0.2%). In our implementation, we use the k-th nearest sample instead of
the nearest one to reduce the potential impact of label noise. If the nearest sample is mislabeled, the
distance may be unreliable. The k-th sample, being in a higher-density region, offers more stable
distance estimates with lower variance, as it lies between the (k− 1)-th and (k+ 1)-th samples. This
makes the measure more robust to outliers. Additionally, prior research [24] shows that using the
k-th nearest distance improves density estimation, which we adopt here.
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Table 6: Accuracy of designs
of ω on ImageNet.

Design of ω ID OOD

Binary 81.3 58.4
Linear 82.3 61.7
Sigmoid 82.3 61.8

Smallest  d(x) Largest   d(x)

Figure 7: Visualization the samples with the smallest/largest d(x).
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Figure 8: Inference speed (per-
image) using different k.

Inference speed of computing k-nearest neighbor distance.
Thanks to the Faiss library [11], the k-NN search can be ef-
ficiently implemented. When evaluated on ImageNet bench-
marks using CLIP ViT/B-16 features, the inference speed is
approximately 1.8 milliseconds per-image, which does not sig-
nificantly improve the inference time. In Figure 8, we further
present the per-image inference speed of the k-nearest neighbor
distance computation for various k values. The inference speed
is less than 2 ms when k < 512.

Effect of a and b in ω. We demonstrate the effect of a and b in
Figure 6 (a&b). We highlight three trends: (1) ID performance
peaks at b ≈ 0.6 across different values of a. (2) OOD performance often improves as b increases
across different values of a. (3) When b is sufficiently large, e.g., b > 10 for ID and b > 2 for OOD,
a has marginal effect on the performance of ID and OOD. In Appendix C.2, we further plot the
trade-offs when tuning a and b.

Other designs of ω(x). We further explore alternative designs of ω(x) beyond the sigmoid format in
Eq. (6):

• Binary weight: ωbinary(x) = 1[d(x) < a], where a ∈ [0, 2] and 1[·] is the indicator function.
• Linear weight: ωlinear(x) = clamp[0,1](−b · (d(x) − a)), where a ∈ [0, 2], b > 0 and

clamp[0,1](·) rectifies the weight within [0, 1].

We report the results on ImageNet in Table 6 and plot the weight curves with the value of hyper-
parameters in Figure 6(c). We find that the Linear and the Sigmoid weights show comparable
performance and assign similar values of ω around d = 1.5.

Visualization of samples x according to d(x). In Figure 7, we randomly sample testing images with
the top-100 smallest d(x) values in the range [0.40, 0.62] and the top-100 largest d(x) values in the
range ∈ [1.59, 1.63]. Interesting, we observe that: (1) Samples with the smallest d(x) predominantly
consist of fine-grained species, e.g., “Triturus vulgaris”, “eft” and “lycaenid”, where the fine-tuned
models possess domain-specific knowledge, which is often lacking in the zero-shot models. (2)
Images with the largest d(x) exhibit styles different from those of the fine-tuning samples, including
tattoos, cartoons, and sketches, contrasting with the photos typically seen in fine-tuning. Zero-shot
models are more skilled in non-real photo styles compared to fine-tuned models.

6 Impact, limitations and conclusion

Impact. Zero-shot models inherit the weaknesses from pre-training data to downstream tasks, such
as noisy and malicious samples. Our VRF might propagate the negative impact.

Limitations. Our approach is built on the premise that zero-shot models posses predictive capabilities
for downstream tasks. However, if the pre-training knowledge significantly differs from the down-
stream tasks, our algorithm might fail, which is also an open problem in transfer learning. In addition,
the proposed method doubles inference cost compared to WSE and other fine-tuning methods, as it
runs both the zero-shot and fine-tuned models. However, this overhead can be mitigated by parallel
execution.

Conclusion. Inspired by the ID-OOD trade-offs in ensemble-based fine-tuning, we propose VRF
to simultaneously optimize the best ID and OOD accuracy. By leveraging the distance to the ZSF
set, we assign sample-wise weights to the two models. Despite its simplicity, our VRF demonstrates
strong empirical performance, offering a promising technique for solving ID-OOD trade-offs.
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A Licenses

All the datasets we considered are publicly available, we list their licences and URLs as follows:

• CIFAR-10 [13]: MIT License, https://www.cs.toronto.edu/~kriz/cifar.html.

• STL-10 [2]: Non-commercial, https://cs.stanford.edu/~acoates/stl10/.

• Entity-30 [23]: Non-commercial, https://github.com/MadryLab/BREEDS-Benchmarks.

• ImageNet [3]: Non-commercial, http://image-net.org.

• IN-V2 [21]: MIT License, https://github.com/modestyachts/ImageNetV2.

• IN-R [7]: MIT License, https://github.com/hendrycks/imagenet-r.

• IN-Sketch [27]: MIT License, https://github.com/HaohanWang/ImageNet-Sketch.
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Table 7: Hyper-parameters a and b for different backbones and datasets.

Backbone ImageNet CIFAR-10 Entity-30
a b a b a b

CLIP ViT-B/32 1.5 0.6 0.3 0.3 1.1 0.6
CLIP ViT-B/16 1.5 0.5 0.3 0.3 1.1 0.6

• IN-A [9]: MIT License, https://github.com/hendrycks/natural-adv-examples.

• ObjectNet [1]: Creative Commons Attribution 4.0, https://objectnet.dev.

B Analysis in the Presence of Correlated Errors

Our assumption of independent residual errors is based on the previous studies [28] (Section 5),
where an empirical phenomena is observed: the zero-shot and the fine-tuned models produce diverse
predictions. In general (i.e., the fine-tuned models are initialized from the zero-shot models),
we cannot assume that the errors in the zero-shot and fine-tuned models are totally uncorrelated.
Let C[ηzs(x), ηft(x)] be the covariance between ηzs(x) and ηft(x), the variance of ηvrf(x) can be
expressed as:

V[ηvrf(x)] = gzs(x)
2 · V[ηzs(x)] + gft(x)

2 · V[ηft(x)] + 2 · gzs(x) · gft(x) · C[ηzs(x), ηft(x)]. (14)

Maintaining that gzs(x) + gft(x) = 1, the optimal weight g∗ft(x) to minimize Eq. (14) becomes:

g∗ft(x) = (1 +
V[ηft(x)]− C[ηzs(x), ηft(x)]
V[ηzs(x)]− C[ηzs(x), ηft(x)]

)−1 (15)
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Figure 9: Relationship between gft(x) and d(x).

Recall that we are interested in using the dis-
tance to ZSF set, i.e., d(x), to surrogate g∗ft(x).
To understand the relationship between d(x) and
g∗ft(x), we first group test samples in ImageNet
and its five distribution shifted datasets into bins
based on the value of d(x). We then compute
the averaged g∗ft(x) for each bin and plot the
relationship in Figure 9. In specific, we use
temperature scaling [14] to calibrate the zero-
shot and fine-tuned models over the validation
set. Afterwards, we define the true distribution
P(y|x) as a one-hot vector, where the value of
1 corresponds to the true label for a given input
x. We then calculate ηft(x) = P̂(y|x; θft)− P(y|x) and ηzs(x) = P̂(y|x; θzs)− P(y|x). Finally, we
compute the average g∗ft(x) for each bin as shown in Figure 9. Interestingly, we observe the similar
trend in Figure 1 (b): the weight for fine-tuned models decreases as d(x) increases. This phenomena
indicates that our weighting function ω(x) derived under the assumption of independent errors is
also valid in the presence of correlated errors.

C Additional Experimental Details and Results

C.1 Additional Experimental Details

For CLIP ViT-32 based E2E-FT and LP-FT models, we use a batch size of 512. For CLIP ViT-16
based E2E-FT, we directly download the fine-tuned models from Wortsman et al. [28]1. The batch
size for training CLIP ViT-16 based LP-FT models is set to 384, which is the largest batch size that
fits into 2 A6000 GPUs. When performing linear probing, we use a batch of 512 and the initial
learning rate of 0.1 for all experiments. The mixing coefficient α for OSE and WSE are searched
over [0, 0.1, 0.2, ..., 0.9, 1.0]. The values of a and b for our VRF are reported in Table 7.

1https://drive.google.com/drive/folders/1f56kjpRKPiNSaUxNDtETEDRkbDkZnpCQ
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Table 8: Accuracy of E2E-FT based OSE on ImageNet and derived distribution shifts for various
values of the mixing coefficient α. Results shown for CLIP ViT-B/16.

α IN Distribution shifts Avg
IN-V2 IN-Sketch IN-A IN-R ObjectNet shifts

0.0 68.3 61.9 48.3 50.1 77.6 54.2 58.4
0.1 71.6 64.8 49.9 50.7 78.5 55.5 59.9
0.2 75.4 67.5 51.6 51.2 79.2 56.3 61.1
0.3 78.6 69.7 52.3 50.9 79.3 56.8 61.8
0.4 81.0 71.3 52.0 49.6 78.6 56.6 61.6
0.5 82.2 72.0 50.6 46.8 76.7 54.9 60.2
0.6 82.1 71.6 48.7 42.9 73.8 53.3 58.1
0.7 81.8 71.2 47.3 40.5 71.1 52.2 56.4
0.8 81.6 70.9 46.3 38.5 68.3 51.4 55.1
0.9 81.5 70.7 45.6 37.4 66.6 50.8 54.2
1.0 81.3 70.6 45.1 36.6 65.6 50.5 53.7

C.2 Plotting ID-OOD Trade-Offs of VRF

In Figure 10, we present an ID-OOD scatter plot over a wide range of a and b values on ImageNet
and its five variants using CLIP ViT-B/16. Specifically, a varies from 1.2 to 1.8, while b ranges from
0.5 to 1.0. Our method consistently achieves better ID-OOD trade-offs, as indicated by its points
lying outside the OSE curve (represented by the magenta curve) across different configurations.

C.3 Additional Results for OSE, WSE and VRF with Varying Hyper-Parameters

Results for all mixing coefficient α for OSE and WSE are available in Table 8 and Table 9, respectively.
Results for values of a and b are available in Table 10. In addition, we plot the ID-OOD trade-off
curves for OSE and WSE on the CIFAR-10 and Entity-30 datasets in Figures 11 and 12, respectively.

C.4 Optimal Performance Searched on Test Sets

We have conducted additional experiments where we optimized the hyperparameters for each test set
of the ImageNet benckmarks. The results are summarized in Table 11.

C.5 Combining VRF with Other Robust Fine-Tuning Methods

Our VRF framework is orthogonal and complementary to existing fine-tuned models. To demonstrate
this, we integrated FLYP [5] into our VRF framework. The results in Table 12 show that VRF
improves OSE’s performance under distribution shift by 1.1% without compromising in-distribution
(ID) performance.

C.6 Additional Results for Selective Prediction Using OOD Detectors

We provide the breakdown performance for selective prediction using OOD detectors in Table 13.
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Table 9: Accuracy of E2E-FT based WSE on ImageNet and derived distribution shifts for various
values of the mixing coefficient α. Results shown for CLIP ViT-B/16.

α IN Distribution shifts Avg
IN-V2 IN-Sketch IN-A IN-R ObjectNet shifts

0.0 68.3 61.9 48.3 50.1 77.6 54.2 58.4
0.1 72.9 65.7 50.8 52.5 79.4 55.7 60.8
0.2 76.4 68.7 52.5 54.2 80.1 57.1 62.5
0.3 78.9 70.6 53.6 54.6 80.1 57.5 63.3
0.4 80.5 72.1 54.1 53.8 79.6 57.7 63.5
0.5 81.7 72.8 53.9 52.2 78.7 57.3 63.0
0.6 82.4 72.9 53.4 50.0 77.2 56.2 61.9
0.7 82.5 73.2 52.4 47.4 75.2 55.0 60.6
0.8 82.5 72.8 51.0 44.6 72.7 53.5 58.9
0.9 82.1 72.0 48.9 40.9 69.5 51.7 56.6
1.0 81.3 70.6 45.1 36.6 65.6 50.5 53.7

Table 10: Accuracy of E2E-FT based VRF on ImageNet and derived distribution shifts for various
values of a and b. Results shown for CLIP ViT-B/16.

a b IN Distribution shifts Avg
IN-V2 IN-Sketch IN-A IN-R ObjectNet shifts

1.4 0.5 82.2 72.2 52.7 49.6 79.4 56.7 62.1
1.4 0.6 82.2 72.2 52.7 49.6 79.4 56.7 62.1
1.4 0.7 82.2 72.2 52.7 49.7 79.4 56.8 62.2
1.4 0.8 82.1 72.2 52.7 49.7 79.4 56.8 62.2
1.4 0.9 82.1 72.1 52.7 49.7 79.4 56.8 62.2
1.4 1.0 82.1 72.1 52.7 49.7 79.4 56.8 62.2

1.5 0.5 82.3 72.1 52.3 48.7 79.0 56.2 61.7
1.5 0.6 82.3 72.1 52.4 48.9 79.1 56.4 61.8
1.5 0.7 82.2 72.2 52.4 49.1 79.2 56.5 61.9
1.5 0.8 82.2 72.2 52.5 49.2 79.2 56.6 61.9
1.5 0.9 82.2 72.2 52.5 49.3 79.2 56.6 62.0
1.5 1.0 82.2 72.2 52.6 49.4 79.2 56.6 62.0

1.6 0.5 82.3 71.9 51.9 48.0 78.5 55.7 61.2
1.6 0.6 82.3 72.1 52.1 48.3 78.6 55.9 61.4
1.6 0.7 82.3 72.1 52.2 48.5 78.8 56.0 61.5
1.6 0.8 82.3 72.2 52.3 48.6 78.9 56.1 61.6
1.6 0.9 82.3 72.2 52.3 48.7 79.0 56.2 61.7
1.6 1.0 82.3 72.1 52.4 48.8 79.0 56.3 61.7

C.7 Curves of Accft
Acczs for ImageNet and its Five Distribution Shifted Datasets

In Figure 13, we examine the relationship between Accft
Acczs

and d(x) for ImageNet and its five derived
distribution shifted datasets. Based on the value of d(x), test samples are grouped into bins, and we
compute the ratio of fine-tuned accuracy to zero-shot accuracy for each bin. For example, to compute
the value of Accft

Acczs
at d(x) = 0.8, we first identify the samples with d(x) ∈ [0.7, 0.9], then compute

the averaged accuracy for these samples using zero-shot models and fine-tuned models, and finally

Table 11: Optimal Results search on test set on ImageNet and its five variants for CLIP ViT-B/16.

Method IN Distribution shifts Avg
IN-V2 IN-Sketch IN-A IN-R ObjectNet shifts

E2E-FT 81.3 70.6 45.1 36.6 65.6 50.5 53.7
+ VRF (ours) 82.3 72.1 52.9 48.4 78.7 56.4 61.8
+ VRF (oracle) 82.3 72.2 53.0 51.4 79.7 57.9 62.9
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Table 12: Applying VRF to other robust fine-tuning methods.

Method IN Distribution shifts Avg
IN-V2 IN-Sketch IN-A IN-R ObjectNet shifts

FLYP [5] 82.6 73.0 71.4 48.1 49.6 58.7 60.2
+ WSE 82.9 73.5 76.0 53.0 52.3 60.8 63.1
+ OSE 82.8 73.6 77.0 52.5 51.9 59.9 62.8
+ VRF 82.8 73.6 78.6 52.9 53.0 61.2 64.0

Table 13: Breakdown performance for selective prediction using OOD detector.

OOD Detector IN Distribution shifts Avg
IN-V2 IN-Sketch IN-A IN-R ObjectNet shifts

MSP [8] 81.5 71.1 48.6 42.1 71.6 52.9 57.3
Energy [18] 81.0 70.5 48.1 42.3 73.9 53.0 57.6
MD [16] 81.0 70.4 49.7 41.7 74.1 52.6 57.7
kNN [24] 80.8 70.4 49.5 43.6 74.8 53.6 58.4
RMD [22] 81.1 70.6 49.6 44.4 74.4 53.1 58.4

compute the ratio. Note that the averaged ratio Accft
Acczs

on ImageNet-{A,R} and ObjectNet is undefined
for d(x) = 0.6. This is because in these datasets, the zero-shot accuracy around d(x) = 0.6 is 0.
We observe that the trend of the ratio Accft

Acczs
decreasing as d(x) increasing is stable for all ImageNet

related datasets.

0.6 0.8 1.0 1.2 1.4 1.6
Distance to ZSF set (d(x))

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

Fin
e-

Tu
ne

d 
Ac

c 
/ Z

er
o-

Sh
ot

 A
cc

ImageNet
ImageNetV2
ImageNetSketch
ImageNetA
ImageNetR
ObjectNet

Figure 13: Relationship between Accft
Acczs

and d(x) on ImageNet benchmarks.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We point out that the ID-OOD trade-offs still exist in existing fine-tuning meth-
ods, and propose VRF to simultaneously attain the best ID and OOD accuracy. Experiments
on a variety of different models and tasks validate the effectiveness of our proposed method.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations have been discussed in Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: In Section 4, we prove that our VRF can effectively reduce the variance of the
ensemble model and thus achieve lower errors.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have provided the VRF algorithm in Algorithm 1 with descriptions in
Section 3, and included the implementation details in Section 5 and Section C.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We have uploaded the codes in supplemental material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification:We have provided all the training and testing details in Section 5 and Sec-
tion C.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Given the zero-shot and the fine-tuned models, the process of our post-hoc
method is deterministic. Run multiple times will not introduce randomness.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have provided the GPU type and number to reproduce the results in
Section C.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have discussed the societal impacts in Section 6.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our method aims to improve the robustness when fine-tuning models, which
poses no such risks to the best of our knowledge.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have provided the licences of each dataset in Section A.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We do not involve such experiments.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

23

paperswithcode.com/datasets


• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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