
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

PERTURBATION DISCRIMINATION-ENHANCED GRAPH
CONTRASTIVE LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Self-supervised learning of graph-structured data aims to produce transferable and
robust representations that could be transferred to the downstream tasks. Among
many, graph contrastive learning (GCL) based on data augmentation has emerged
with promising performance in learning graph representation. However, it is ob-
served that some augmentations might change the graph semantics due to the
perturbations in the graph structure such as perturbing some nodes/edges. In such
cases, existing GCL methods may suffer from performance limitations due to the
introduction of noise augmentations. To address this issue, we propose to train a
discriminative model to enhance GCL for graph-structured data, called Perturbation
Discrimination-Enhanced GCL (PerEG). Specifically, for each perturbed graph, the
discriminative model is trained to predict whether each node in the augmentation
was perturbed by the perturbation compared to the original graph or not. Based
on this, the results of perturbation discrimination are exploited to refine the GCL,
enabling its controllable use of augmentation, thereby preferably utilizing augmen-
tation and effectively avoiding the introduction of noise augmentation. Extensive
experiments in unsupervised, semi-supervised, and transfer learning scenarios show
that our PerEG outperforms the state-of-the-art methods on eight datasets.

1 INTRODUCTION

Graph neural networks (GNNs) (Kipf & Welling, 2017; Velickovic et al., 2018; Xu et al., 2019) are
becoming increasingly popular in the realm of learning graph representation for graph-structured data,
where the structural information of graphs could be modeled with a neighborhood aggregation scheme.
By inheriting the power of neural networks, GNNs have reached great progress in learning information
from real-world graphs such as knowledge graphs (Baek et al., 2020), social networks (Fan et al.,
2019), point clouds (Shi & Rajkumar, 2020), and chemical analysis (De Cao & Kipf, 2018). Most
existing GNN-based models are trained in a supervised manner with end-to-end form when solving
graph-based tasks. However, annotating a high volume of fine-annotated data requires time-consuming
laboratory annotations based on professional knowledge (Hu et al., 2020a; Tan et al., 2021).

To alleviate this issue, various self-supervised learning methods are explored on graph-structured
data for learning transferable and robust representations from unlabeled graphs (Hu et al., 2020a;
You et al., 2020). Among them, graph predictive learning and graph contrastive learning (GCL)
have received a lot of attention in learning graph representations. Here graph predictive learning can
learn the contextual relationships between neighboring nodes (Hu et al., 2020a; Kim & Oh, 2021)
or discriminating original graphs from perturbed graphs (Kim et al., 2022), and graph contrastive
learning (GCL) (You et al., 2020; Xu et al., 2021; Xia et al., 2022b) can learn the mutual information
between augmentations by maximizing the similarity between augmented views. While promising
progress is made, existing methods generally attempt to learn the differences or similarities from
the graph augmentations obtained by augmentation strategy link perturbations on nodes or edges.
However, as many studies have pointed out, the perturbation of nodes/edges of the graph might
change the nature of the original graphs (Kim et al., 2022; Yue et al., 2022). In addition, another
study attempts to perturb the encoder to obtain contrastive objectives without any change in the graph
structure, to preserve the graph semantics well (Xia et al., 2022a). However, this work is more like
a general method at the representation level, ignoring the learning of rich structured information
when performing GCL. We thus argue that to explore rich structural information for improving graph
representation, we should use graph augmentation with structural perturbations, but it is necessary to

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

control the application of augmentation to graph contrastive learning by identifying the properties of
perturbations to prevent the introduction of noise.

To reach this goal, we propose a discriminative model to identify the fine-grained perturbation in
a perturbed augmentation compared to the original graph, and then enhance GCL based on the
discriminative results, called Perturbation Discrimination-Enhanced Graph Contrastive Learning
(PerEG). We observe that for an augmentation of an original graph, its structural perturbations should
be effective and tolerable, that is, the augmentation is different from but associated with the original
graph. Therefore, for a qualified augmented graph, the model should be able to identify where it
has been disturbed compared to the original graph. Otherwise, if a perturbed graph is completely
different from the original graph, it probably changes the semantic information of the original graph
and cannot be used as an augmentation of the original graph for learning graph representation.

In light of this, we get inspiration from ELECTRA (Clark et al., 2019) and train a discriminative
model that predicts whether each node in the augmented graph was affected by perturbations or not,
aiming to perceive the fine-grained perturbation of a perturbed augmentation compared to the original
graph. The motivation for this operation comes from the fact that a vertex/node is the fundamental
unit of which graphs are formed, and judging changes in node representation can identify where the
augmentation has been disturbed compared to the original graph. Further, the perturbation of a node
is usually caused by two situations: one is directly perturbing the node, and the other is caused by
the perturbation of the edge. To this end, we devise our discriminative model from two perspectives:
node-oriented discriminator and edge-oriented discriminator. In this way, both node representation
changes caused by node perturbation and by edge perturbation will be taken into account. It should be
noted that if perturbed nodes in an augmentation cannot be accurately identified, their representations
are either very similar to the original ones or have deviated significantly in the latent space. In such
cases, those augmentations cannot be considered as qualified perturbed augmentations and should be
limited in GCL, because they are neither effective nor plausible. Subsequently, the discriminative
accuracy of perturbed nodes is exploited in the GCL, which essentially enables the model to use graph
augmentation in a controlled manner, effectively avoiding the introduction of noise augmentation.
Our main contributions are as follows:

• We propose Perturbation Discrimination-Enhanced Graph Contrastive Learning (PerEG),
the first to enhance GCL by training a discriminative model for perturbation identification,
which enables the model to use graph augmentations for GCL in a controlled manner,
effectively avoiding the introduction of noise augmentation.

• Instead of laboriously entangling about how to prevent the introduction of noise structures
during graph augmentation, this paper aims to find the potential noise augmentations that
might change the graph semantics and limit them in GCL according to the results of
perturbation discrimination.

• Node-oriented and edge-oriented discriminators are designed to identify whether each node
in the perturbed graph is affected by the perturbations or not, empowering our PerEG to
discriminate the effective and plausible augmented graphs for contrastive learning.

• We conduct a series of experiments on eight graph-structured benchmark datasets to eval-
uate the effectiveness of our PerEG in both unsupervised and semi-supervised scenarios.
Experimental results show that our PerEG significantly outperforms baselines.

2 RELATED WORK

2.1 GRAPH NEURAL NETWORKS

Graphs are a kind of prevalent data structure in real-world scenarios, such as molecule graphs, social
networks, and biological graphs (Zhou et al., 2020). Modeling the set of objects (nodes) and their
relationships (edges) of graph-structured data is an appropriate way to learn the representation of the
graph structure (Hamilton et al., 2017; Xu et al., 2019). GNNs are a practical framework for graph
representation learning. Owing to the neighborhood aggregation scheme of GNNs, the representation
vectors of nodes are calculated by recursively aggregating and transforming the representation vectors
of their adjacent nodes (Gilmer et al., 2017). Recently, there has been a surge of interest in obtaining
better graph representations, and various GNN architectures have been proposed for updating and

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

𝒟!𝒟"

…

ℎ
Projection
Head 𝑔(%)

Original Graph 𝓖

…

ℎ#
𝑓$

ℒ"%&! ℒ!&$!

perturb 𝓖# ← 𝓣(𝓖)

𝓏

Embeddings

Projection
Head 𝑔(%)

Maximize
Agreement ℒ'%"

𝓏#

Reweighted
Drop node & edge

Node dropping 𝓖#

Figure 1: Illustration of our PerEG framework. The structure-perturbed graph G′
is an augmentation

of G sampled from an augmentation pool T (G). fg is a GNN encoder. Dn is the node-oriented
discriminator and De is the edge-oriented discriminator. Lcon represents the contrastive loss. Lnode

and Ledge represent the discriminative losses of Dn and De, respectively.

aggregation of graphs. To mention a few, Graph Convolutional Network (GCN) (Kipf & Welling,
2017) utilizes an approximation of spectral graph convolutions to learn representations that encode
both local graph structure and features of nodes.

2.2 SELF-SUPERVISED LEARNING FOR GRAPH REPRESENTATION

Many studies have been devoted to graph representation learning based on self-supervised learn-
ing (Hu et al., 2020a). Recently, some studies have attempted to perform prediction in learning
contextual properties of graph-structured data (Kim & Oh, 2021; Hwang et al., 2020; Hu et al., 2020b;
Rong et al., 2020). Further, D-SLA (Kim et al., 2022) proposes to discriminate the original graphs
from the perturbed graphs. In addition, many recent studies are dedicated to exploring contrastive
learning to achieve better graph representations based on graph augmentations. GraphCL (You et al.,
2020) designs four types of graph augmentations to learn the similarly metrics between augmentations
with contrastive learning. JOAO (You et al., 2021) and AutoGCL (Yin et al., 2022) propose an auto
augmentation strategy to enhance the performance of graph contrastive learning. MVGRL (Hassani &
Khasahmadi, 2020) performs contrastive learning on different structural views of graphs for both node
and graph levels to enrich the feature learning. In addition, some recent studies attempt to alleviate
the issue that some augmentations might change the graph semantics in graph contrastive learning.
SimGRACE (Xia et al., 2022a) generates contrastive objects of graphs for contrast by perturbing
the weights of the model rather than structure perturbations. However, this work overlooks the
exploration of graph structures and thus cannot produce robust graph representations by introducing
richer graph structures. Further, GLA (Yue et al., 2022) utilizes label information to keep the label of
the augmented sample the same as the original graph for contrast. However, this work requires the
introduction of annotations and cannot be used in unsupervised scenarios.

3 METHOD

This section introduces our novel PerEG framework in detail. The architecture of PerEG is illustrated
in Figure 1. We first recount the preliminaries in section 3.1. Then, we introduce the discrimina-
tive model and perturbation discrimination-enhanced graph contrastive learning of our PerEG in
Section 3.2 and Section 3.3, respectively. We finally describe the learning objective in Section 3.4.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

3.1 PRELIMINARIES

Graph Neural Networks Let G = {V, E} denote an undirected graph, where V and E are the sets of
nodes and edges, respectively, Xv ∈ R|V|×dv denote the matrix of node features, and Xe ∈ R|E|×de

denote the matrix of edge features. Here, the representation of a node v can be defined as hv, and
the representation of a graph G can be defined as hG . The goal of graph neural networks (GNNs)
is to update the representation of the given graph G by leveraging its topological structure. For the
representation hv of node v, its propagation of the k-th layer GNN is represented as:

h(k)
v = fg(h

(k−1)
v ; θ) = UPDATE(k)

(
h(k−1)
v ,AGGREGATION(k)

(
h(k−1)
u : ∀u ∈ N (v)

))
(1)

where fg(·; θ) denotes the GNN encoder, θ represents all trainable parameters of GNN encoder.
AGGREGATION(·) denotes a trainable function that aggregates messages from the neighbors of
node v, N (v) represents the set of neighbors. UPDATE(·) denotes a trainable function that updates
the representation of node v with the current representation of v and the aggregated vector. Then,
after K iterations by GNNs, the representation of a graph G can be obtained by pooling the final set
of all node representations from Eq. 1, which is represented as:

hG = POOL
(
{h(K)

v : ∀v ∈ V}
)

(2)

The operation of POOL(·) is flexible, including mean or sum, and other relatively well-designed
methods, such as clustering (Ying et al., 2018; Baek et al., 2021) or node drop-based methods (Gao &
Ji, 2019; Lee et al., 2019).

Data Augmentation for Graphs Following (You et al., 2020), to explore the rich structure of a
graph, we use Node dropping, Edge perturbation, Attribute masking, and Subgraph to generate
augmentations for each graph. Note that, the purpose of our work is to perform node-level perturbation
discrimination. Therefore, we applied four types of perturbations to each graph to alleviate the impact
on the effectiveness of perturbation discrimination that a node only appearing in the perturbed set.

Overall Framework As illustrated in Figure 1, the proposed PerEG framework consists of three
modules: 1) Node-oriented Discriminator, which predicts whether each node in the augmented
graph was perturbed or not by the perturbation acting on nodes; 2) Edge-oriented Discriminator,
which predicts whether each node in the augmented graph was affected by edges’ perturbations;
3) Reweighted Contrastive Learning, which performs graph contrastive learning reweighted by the
perturbation discrimination results.

3.2 THE DISCRIMINATIVE MODEL IN OUR PEREG

4

2
1 3

5

0 0 0 01

ℎ!"ℎ#"ℎ$" ℎ%"ℎ&"

𝑓!

31
2

4 5

Node dropping 𝓖" Node dropping 𝓖"

𝑓!

𝒟#

0 1 1 00

ℎ!"ℎ#"ℎ$" ℎ%"ℎ&"

𝒟$

Figure 2: Illustration of the discriminative
model in our PerEG framework.

Figure 2 shows the architecture of the discriminative
model in our PerEG, which includes a Node-oriented
Discriminator Dn (left) and an Edge-oriented Dis-
criminator De (right). Specifically, the Node-
oriented Discriminator aims to identify whether each
node was perturbed (dropped or masked) in the aug-
mented graph or not. The Edge-oriented Discrimi-
nator aims to identify whether each node is affected
by the edges’ perturbations (adding or dropping) in
the augmentation or not.

As mentioned above, the properties and semantics
of graphs might change even with slight perturba-
tions of nodes/edges (Kim et al., 2022; Yue et al.,
2022). Therefore, different from using contrastive
learning that blindly trains perturbed augmentations
of a graph to be similar, we explore a discrimina-
tive model to perceive the perturbations of the aug-
mented view compared to the original graph, aiming
to control contrastive learning through perturbation
discrimination results. The motivation comes from

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

the fact that suppose a perturbed graph can be used as an augmentation for contrastive learning. In
that case, it must be related to the original graph, that is, the perturbations should be identifiable.

To reach this goal, we propose to discriminate the perturbations based on predicting whether each
node in the augmented graph was affected by perturbations or not. Because node representations
are the sources for producing graph representation, predicting the perturbations at the node level
can lead to a clear understanding of the graph’s transformations. Intuitively, the perturbation of
a node can come from the perturbation of the node itself (direct perturbation) or from the impact
caused by edge perturbations (indirect perturbation). Therefore, we propose to train the discriminate
model from node-oriented and edge-oriented perspectives, devising node-oriented and edge-oriented
discriminators.

Node-oriented Discriminator The goal of the Node-oriented Discriminator Dn is to predict
whether each node is perturbed (dropped or masked) in the augmented graph or not, so as to perceive
which perturbations the original graph has undergone to generate the augmented view. Here, we feed
each node representation h

′

v learned from the augmentation into Dn and employ a cross-entropy loss
to train Dn. The loss of Dn is defined as:

Lnode =
∑
v∈V

(
− 1

(
Pn(v) = 1

)
log

(
Dn(h

′

v; θn)
)
− 1

(
Pn(v) = 0

)
log

(
1−Dn(h

′

v; θn)
))

(3)

where 1(i = j) ∈ {0, 1} is an indicator function evaluating to 1 iff i = j. Pn(v) = 1 denotes node v
is perturbed in the graph, and Pn(v) = 0 is the opposite. θn represents the trainable parameters of
the Node-oriented Discriminator Dn.

Edge-oriented Discriminator Predicting the perturbed nodes can directly discriminate the fine-
grained perturbation of the graph, however, the structure-perturbed augmentation might create isolated
outlier nodes that share similar topological formulas even across different graphs, we thus propose to
predict the neighbors of perturbed nodes/edges from the edge-oriented perspective to identify the
topological perturbation of the augmentation. As illustrated in Figure 2, in addition to the perturbing
node (node 3), the neighbors (nodes 2 and 4) are potentially affected owing to the edges connected to
node 3. Therefore, we propose an Edge-oriented Discriminator De to identify whether each node is
affected by the edges’ perturbations or not. The loss of De is defined as:

Ledge =
∑
v∈V

(
− 1

(
Pe(v) = 1

)
log

(
De(h

′

v; θe)
)
− 1

(
Pe(v) = 0

)
log

(
1−De(h

′

v; θe)
))

(4)

where Pe(v) = 1 denotes node v is affected by the edges’ perturbations, and Pe(v) = 0 is the
opposite. θe represents the trainable parameters of the Edge-oriented Discriminator De.

3.3 REWEIGHTED CONTRASTIVE LEARNING IN OUR PEREG

To relieve the performance degradation caused by noise augmentation in contrastive learning, we then
exploit the discriminative results to reweight the GCL, so as to perform the GCL in a controllable
manner. The reweighted factor ρ is computed as:

ρn =
1

|Vpn|
∑

v∈Vpn

(
1(Dn(v) = 1)

)
, ρe =

1

|Vpe|
∑

v∈Vpe

(
1(De(v) = 1)

)
, ρ = γnρn + γeρe (5)

where Vpn represents the set of nodes directly perturbed by perturbation, Vpe represents the set of
nodes affected by the edges’ perturbations. γn and γe are the coefficients of reweighted factor ρ.
Here, we only consider the discriminative success rate of the disturbed nodes, due to the goal of the
proposed PerEG is to enhance the GCL based on the perturbation discrimination. Further, for those
perturbed nodes that have not been identified, they either learn to be similar to the original node or
have completely deviated from the graph structure. In such cases, these nodes are detrimental to
augmentation. The purpose of augmentation is to explore richer graph structures by performing some
reasonable perturbations on the original graph. Therefore, these augmentations should be different
from the original graph, but not completely unrecognizable.

For contrastive training, we first randomly select Nb graphs {Gi}Nb
i=1 from a given dataset to obtain

a minibatch B. For an anchor graph Gi and the corresponding perturbed augmentation G′

i , two

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

representations zi and z
′

i can be obtained from the GNN encoder fg(·; θ), which are considered as a
positive pair. While the representations of the other Nb − 1 graphs {Gk ∈ B, k ̸= i} in the same
minibatch B are treated as negative representations with respect to the anchor graph Gi as in (Chen
et al., 2017; 2020; You et al., 2020; Xia et al., 2022a). Then, based on the reweighted factor ρ, the
contrastive loss is computed across all positive pairs in a mini-batch B, which is defined as:

Lcon =
1

Nb

∑
Gi∈B

ℓ(Gi), ℓ(Gi) = −log
exp(sim(zi, z

′

i)/τ)∑Nb

k=1,k ̸=i exp(sim(zi, zk)/τ)
× ρ (6)

where ℓ(Gi) denotes the NT-Xent for graph Gi. sim(zi, zk) = zi
⊤zk/∥zi∥∥zk∥ denotes the cosine

similarity function. τ denotes the temperature parameter.

3.4 OVERALL LEARNING OBJECTIVE OF OUR PEREG

The learning objective of our PerEG is to train the framework by jointly minimizing the three losses
derived from Node-oriented Discriminator, Edge-oriented Discriminator, and Reweighted Contrastive
Learning. The overall loss L is defined as:

L = λ1Lcon + λ2Lnode + λ3Ledge (7)

where hyperparameters λ1, λ2 and λ3 are scaling weights to balance the losses.

4 EXPERIMENTS

In this section, we are devoted to the empirical evaluation of the proposed Simple Self-supervised
Learning for Graph Representation (PerEG). We first describe the experimental settings of our
empirical evaluation. Then, we experimentally validate our PerEG on graph classification tasks to
show its effectiveness in producing semantically good graph representations, thus improving the
performance of downstream tasks. Finally, we provide various insightful experiments and extensive
analysis to demonstrate why our PerEG is valid for producing accurate graph representation.

4.1 EXPERIMENTAL SETTINGS
Table 1: Statistics of datasets.

Datasets Category #Graph Avg. #Node Avg. #Edge

NCI1 Biochemical Molecules 4110 29.87 32.30
PROTEINS Biochemical Molecules 1113 39.06 72.82

DD Biochemical Molecules 1178 284.32 715.66
MUTAG Biochemical Molecules 188 17.93 19.79
COLLAB Social Networks 5000 74.49 2457.78

RDT-B Social Networks 2000 429.63 497.75
RDT-M5K Social Networks 5000 508.52 594.87
IMDB-B Social Networks 1000 19.77 96.53

Datasets To evaluate the effectiveness of
our PerEG framework, we conduct experi-
ments on eight publicly available bench-
mark datasets from TUDatasets (Mor-
ris et al., 2020), including four graph
datasets related to biochemical molecules
and proteins (MUTAG (Debnath et al.,
1991), PROTEINS (Borgwardt et al.,
2005), DD (Dobson & Doig, 2003), and
NCI1 (Wale et al., 2008)) and four graph datasets related to social networks (Yanardag & Vish-
wanathan, 2015) (COLLAB, RDT-B, RDT-M5K, and IMDB-B). The statistics of these datasets are
shown in Table 1. Noting that, the datasets are from two categories, and the numbers of graphs in
these datasets range from 188 to 5000, the average node numbers range from 17.93 to 508.52, and
the average edge numbers range from 19.79 to 2457.78, denoting the diversity of these datasets.

Evaluation Protocols Following the same protocols used in existing works for graph self-supervised
representation learning in the unsupervised scenario (You et al., 2020; 2021; Xia et al., 2022a), we
use the whole dataset for pre-training to learn graph embeddings with our PerEG and feed them
into a downstream SVM classifier with 10-fold cross-validation. For the semi-supervised scenario,
following (You et al., 2020; 2021; Xia et al., 2022a), we perform pre-training on all the data and later
do fine-tuning and evaluation with 10% true label supervision on the same dataset. For fine-tuning, the
encoder has an additional linear graph prediction layer on top which is used to map the representations
to the task labels. For the transfer learning scenario, we pre-train the encoder on all the data of
one dataset and fine-tune and evaluate with another dataset which distinct from the former. The
classification accuracy is reported to evaluate the performance.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Table 2: Unsupervised representation learning on TUDataset. Averaged accuracy±std. (%) over 10
runs are reported. "w/o Lnode" denotes without using edge-oriented discriminator in our PerEG. "w/o
Ledge" denotes without using edge-oriented discriminator, "w/o ρ denotes without using factor ρ.
"-" indicates that the label rate is too low for a given dataset size or the baseline did not report the
corresponding results. The best and second-best results are highlighted in red and blue, respectively.
A.R. is short for the average rank.
Methods NCI1 PROTEINS DD MUTAG COLLAB RDT-B RDT-M5K IMDB-B A.R.↓
GL - - - 81.66±2.11 - 77.34±0.18 41.01±0.17 65.87±0.98 16.5
WL 80.01±0.50 72.92±0.56 - 80.72±3.00 - 68.82±0.41 46.06±0.21 72.30±3.44 12.8
DGK 80.31±0.46 73.30±0.82 - 87.44±2.72 - 78.04±0.39 41.27±0.18 66.96±0.56 12.7
node2vec 54.89±1.61 57.49±3.57 - 72.63±10.20 - - - - 17.7
sub2vec 52.84±1.47 53.03±5.55 - 61.05±15.80 - 71.48±0.41 36.68±0.42 55.26±1.54 18.5
graph2vec 73.22±1.81 73.30±2.05 - 83.15±9.25 - 75.78±1.03 47.86±0.26 71.10±0.54 14.2
InfoGraph 76.20±1.06 74.44±0.31 72.85±1.78 89.01±1.13 70.65±1.13 82.50±1.42 53.46±1.03 73.03±0.87 9.9
MVGRL - - - 75.40±7.80 - 82.00±1.10 - 63.60±4.20 16.7
GraphCL 77.87±0.41 74.39±0.45 78.62±0.40 86.80±1.34 71.36±1.15 89.53±0.84 55.99±0.28 71.14±0.44 8.0
JOAO 78.07±0.47 74.55±0.41 77.32±0.54 87.35±1.02 69.50±0.36 85.29±1.35 55.74±0.63 70.21±3.08 10.6
JOAOv2 78.36±0.53 74.07±1.10 77.40±1.15 87.67±0.79 69.33±0.34 86.42±1.45 56.03±0.27 70.83±0.25 9.6
AD-GCL-FIX 69.67±0.51 73.59±0.65 74.49±0.52 89.25±1.45 73.32±0.61 85.52±0.79 53.00±0.82 71.57±1.01 9.9
AD-GCL-OPT 69.67±0.51 73.81±0.46 75.10±0.39 89.70±1.03 73.32±0.61 85.52±0.79 54.93±0.43 72.33±0.56 8.6
SimGRACE 79.12±0.44 75.35±0.09 77.44±1.11 89.01±1.31 71.72±0.82 89.51±0.89 55.91±0.34 71.30±0.77 6.8
AutoGCL 82.00±0.29 75.80±0.36 77.57±0.60 88.64±1.08 70.12±0.68 88.58±1.49 56.75±0.18 73.30±0.40 5.4
GPA 80.42±0.41 75.94±0.25 79.90±0.35 89.68±0.80 76.17±0.10 89.32±0.38 53.70±0.19 74.64±0.35 3.5
PerEG (ours) 79.94±0.24 76.04±0.22 80.02±0.34 90.61±1.50 73.84±0.63 90.57±0.36 56.81±0.24 72.97±0.43 2.0
w/o Lnode 74.56±0.72 75.04±0.50 78.60±1.30 89.57±0.72 71.76±0.71 88.86±0.60 55.80±0.25 71.07±0.32 7.8
w/o Ledge 75.03±0.43 75.43±0.39 75.67±1.96 89.02±0.61 71.93±0.13 89.23±1.15 56.57±0.24 71.33±0.40 7.0
w/o ρ 79.69±0.03 75.78±0.06 78.76±0.57 90.13±0.08 70.68±0.02 90.35±0.01 55.50±0.93 69.59±0.03 6.3

Table 3: Semi-supervised learning performance with 10% labels on TUDataset. Averaged
accuracy±std. (%) over 10 runs are reported. The best results are highlighted in red. A.R. is
short for the average rank.

Methods NCI1 PROTEINS DD COLLAB RDT-B RDT-M5K A.R.↓
No Pre-Train 73.72±0.24 70.40±1.54 73.56±0.41 73.71± 0.27 86.63±0.27 51.33±0.44 9.0
GAE 74.36±0.24 70.51±0.17 74.54±0.68 75.09±0.19 87.69±0.40 53.58±0.13 7.0
InfoGraph 74.86±0.26 72.27±0.40 75.78±0.34 73.76±0.29 88.66±0.95 53.61±0.31 5.3
ContextPred 73.00±0.30 70.23±0.63 74.66±0.51 73.69±0.37 84.76±0.52 51.23±0.84 9.5
GraphCL 74.63±0.25 74.17±0.34 76.17±1.37 74.23±0.21 89.11±0.19 52.55±0.45 5.0
JOAO 74.48±0.27 72.13±0.92 75.69±0.67 75.30±0.32 88.14±0.25 52.83±0.54 6.3
JOAOv2 74.86±0.39 73.31±0.48 75.81±0.73 75.53±0.18 88.79±0.65 52.71±0.28 4.8
AD-GCL-FIX 75.18±0.31 73.96±0.47 77.91±0.73 75.82±0.26 90.10±0.15 53.49±0.28 2.7
GPA 75.50±0.14 74.27±1.11 76.68±0.81 - 89.99±0.32 54.92±0.35 2.0
PerEG (ours) 75.78±0.52 73.82±0.58 77.23±0.51 75.85±0.51 90.12±0.80 54.31±0.17 1.8

Compared Baselines We compare our PerEG with various baseline models, including graph kernel
methods: GL (Shervashidze et al., 2009), WL (Shervashidze et al., 2011), and DGK (Yanardag
& Vishwanathan, 2015), graph self-supervised learning methods: GAE (Kipf & Welling, 2016),
node2vec (Grover & Leskovec, 2016), sub2vec (Adhikari et al., 2018), graph2vec (Narayanan et al.,
2017), and InfoGraph (Sun et al., 2020), predictive learning method: ContextPred (Hu et al., 2020a),
and contrastive learning methods: MVGRL (Hassani & Khasahmadi, 2020), GraphCL (You et al.,
2020), JOAO and JOAOv2 (You et al., 2021), AD-GCL-FIX and AD-GCL-OPT (Suresh et al., 2021),
SimGRACE (Xia et al., 2022a), AutoGCL (Yin et al., 2022) and GPA (Zhang et al., 2024).

Implementation Details Following previous graph self-supervised learning methods (You et al.,
2020), we use the GIN (Xu et al., 2019) as the base network in our PerEG. The augmentation
(dropping, perturbation, masking, and subgraph) ratio is set at 0.2 as implemented in GraphCL (You
et al., 2020). The discriminator Dn and De are implemented by a 3-layers MLP. The scaling weights
of losses are set to λ1 = 1, λ2 = 1, and λ3 = 0.5, which are the optimal hyper-parameters in the
pilot studies.

4.2 PERFORMANCE IN GRAPH CLASSIFICATION

Unsupervised Learning Table 2 shows the results of graph classification under the unsupervised
scenario. It can be seen that our PerEG outperforms other baselines, achieving the best performance

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Table 4: Transfer learning comparison with different manually designed pre-training schemes. ROC-
AUC±std. (%) over 10 runs are reported. The best and second-best results are highlighted in red and
blue, respectively. A.R. denotes average rank.
Pre-Train ZINC-2M PPI-306K
Fine-Tune BBBP Tox21 ToxCast SIDER ClinTox MUV HIV BACE PPI A.R.↓
No Pre-Train 65.8±4.5 74.0±0.8 63.4±0.6 57.3±1.6 58.0±4.4 71.8±2.5 75.3±1.9 70.1±5.4 64.8±1.0 8.4
Infomax 68.8±0.8 75.3±0.5 62.7±0.4 58.4±0.8 69.9±3.0 75.3±2.5 76.0±0.7 75.9±1.6 64.1±1.5 7.0
EdgePred 67.3±2.4 76.0±0.6 64.1±0.6 60.4±0.7 64.1±3.7 74.1±2.1 76.3±1.0 79.9±0.9 65.7±1.3 5.3
AttrMasking 64.3±2.8 76.7±0.4 64.2±0.5 61.0±0.7 71.8±4.1 74.7±1.4 77.2±1.1 79.3±1.6 65.2±1.6 4.3
ContextPred 68.0±2.0 75.7±0.7 63.9±0.6 60.9±0.6 65.9±3.8 75.8±1.7 77.3±1.0 79.6±1.2 64.4±1.3 4.8
GraphCL 69.68±0.67 73.87±0.66 62.40±0.57 60.53±0.88 75.99±2.65 69.80±2.66 78.47±1.22 75.38±1.44 67.88±0.85 6.2
JOAO 70.22±0.98 74.98±0.29 62.94±0.48 59.97±0.79 81.32±2.49 71.66±1.43 76.73±1.23 77.34±0.48 64.43±1.38 6.0
JOAOv2 71.39±0.92 74.27±0.62 63.16±0.45 60.49±0.74 80.97±1.64 73.67±1.00 77.51±1.17 75.49±1.27 63.94±1.59 5.8
SimGRACE 71.25±0.86 75.21±0.93 63.36±0.52 60.59±0.96 75.83±2.63 76.86±1.27 75.21±0.87 74.85±1.32 70.25±1.22 5.2
PerEG (ours) 72.73±0.72 76.24±0.58 64.32±0.47 61.46±1.06 78.33±3.26 77.52±0.63 78.36±0.68 76.25±1.37 71.75±1.17 1.9

in 5 out of 8 datasets. This demonstrates the effectiveness of our PerEG in learning better graph
representation under the unsupervised scenario. In addition, from the ablation study of our PerEG,
we can see that the removal of node-oriented discriminator ("w/o Lnode") and the removal of node-
edge-oriented discriminator ("w/o Ledge") degrade the performance of our PerEG. This indicates
that both node-oriented discriminator and edge-oriented discriminator are important in our PerEG
when performing perturbation discrimination. Meanwhile, the removal of factor ρ ("w/o ρ") slightly
degrades the performance, which implies that our proposed reweighted strategy can improve graph
contrastive learning, and lead to better downstream task performance. Further, "w/o Lnode" performs
slightly worse than "w/o Ledge", which implies that the node-oriented discriminator can achieve
better recognition of node perturbations than the edge-oriented discriminator.

Semi-supervised Learning To evaluate the performance of our PerEG in the semi-supervised
scenario, we follow the settings in (You et al., 2020; Suresh et al., 2021) and report the experimental
results in Table 3. It can be seen that our PerEG performs overall better than the baseline models on
all datasets in the semi-supervised learning scenario. This verifies the effectiveness of our PerEG for
better graph representation. According to the improved results achieved by comparing with existing
models, we can conclude that exploring perturbation discrimination to enhance GCL can make the
model perform GCL in a controlled manner, allowing the model to alleviate the introduction of noise
augmentation and improve the learning of graph representation.

Transfer Learning Following (Hu et al., 2020a; You et al., 2020), we further evaluate the per-
formance of our PerEG in the transfer learning scenario, which pre-trains and finetunes the model
in different datasets to evaluate the transferability of the pre-training scheme. The experimental
results are reported in Table 4. We can see that our PerEG overall outperforms the baseline models,
demonstrating the effectiveness of our PerEG for better graph representation in transfer learning.

4.3 WHY CAN PEREG WORK WELL?

Figure 3: Visualizations of em-
beddings of the original graph
and augmented graphs presented
by t-SNE (van der Maaten &
Hinton, 2008).

How do the discriminators enhance the representation of aug-
mented graphs? To analyze how our proposed discriminators
enhance the representation of augmented graphs, we show the
t-SNE visualization of embeddings of the original graph and the
augmentations in Figure 3. The red point denotes the embed-
ding of the original graph, the blue points denote the embeddings
of augmentations with discriminators, and the green points de-
note the embeddings of augmentations without discriminators. It
can be seen that The representations of augmented graphs can
be normalized around the original graph by means of our pro-
posed discriminators, resulting in better representations for graph
contrastive learning.

Visualizations of Graph Embeddings To qualitatively demon-
strate how our PerEG improves the graph representations in down-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

(a) Original (b) ℒ!"# (c) PerEG

Figure 4: Visualizations of the graph embeddings presented by t-SNE (van der Maaten & Hinton,
2008) on MUTAG dataset. "Original" denotes the representations learned by the original embeddings.

stream tasks, Figure 4 shows the t-SNE visualization of graph embeddings learned by the vanilla
"original" embeddings (a), the variants of our PerEG "Lcon" (b), and our PerEG (c). We can observe
that the embeddings learned by "Original" largely diffuse and overlap between different labels,
which denotes that proposing preferable methods to learn better graph representations is key to
improving downstream task performance. In addition, "Lcon" can produce better graph embeddings
in comparison with "Original". This qualitatively demonstrates that contrastive learning in our PerEG
can achieve better graph representations. Further, the graph embeddings derived by our PerEG can
better separate representations from different labels, which implies that our PerEG can leverage
the merits of perturbation discrimination-enhanced contrastive learning, thus obtaining better graph
representations.

Figure 5: Results of plotting Lalign and
Luniform on MUTAG dataset. We train 20
epochs for every model and visualize the check-
points every 2 epochs. As discussed in (Wang
& Isola, 2020), for both Lalign and Luniform,
models with lower numbers are better.

How PerEG improves the graph representa-
tion? To illustrate why our PerEG works well
in learning graph representations, we conduct ex-
periments by plotting Lalign and Luniform in Fig-
ure 5. We train 20 epochs for every model and
visualize the checkpoints every 2 epochs. We can
see that our PerEG performs significantly better
for both alignment and uniformity. This indicates
that the perturbation discrimination can improve
graph representation in GCL.

5 CONCLUSION

In this paper, we propose a novel method to
improve graph contrastive learning based on
perturbation discrimination, called Perturbation
Discrimination-Enhanced graph contrastive learn-
ing (PerEG). To be specific, we devise a discrim-
inative model to predict whether each node in the
augmented graph was affected by perturbations or
not, so as to identify the fine-grained perturbation
in a perturbed augmentation compared to the orig-
inal graph. Then, the discriminative results are
used to enhance graph contrastive learning by using the perturbed augmentations in a controlled
manner. This essentially enables the model to alleviate the introduction of noise augmentation
when performing graph contrastive learning, thereby improving the learning of graph representation.
Extensive experiments and in-depth analysis in unsupervised, semi-supervised, and transfer learning
scenarios verify that our PerEG achieves state-of-the-art performance in learning generalizability and
robustness graph representations on eight diverse graph-structured datasets.

REFERENCES

Bijaya Adhikari, Yao Zhang, Naren Ramakrishnan, and B Aditya Prakash. Sub2vec: Feature
learning for subgraphs. In Advances in Knowledge Discovery and Data Mining: 22nd Pacific-Asia

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Conference, PAKDD 2018, Melbourne, VIC, Australia, June 3-6, 2018, Proceedings, Part II 22, pp.
170–182. Springer, 2018.

Jinheon Baek, Dong Bok Lee, and Sung Ju Hwang. Learning to extrapolate knowledge: Transductive
few-shot out-of-graph link prediction. Advances in Neural Information Processing Systems, 33:
546–560, 2020.

Jinheon Baek, Minki Kang, and Sung Ju Hwang. Accurate learning of graph representations with
graph multiset pooling. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=JHcqXGaqiGn.

Karsten M Borgwardt, Cheng Soon Ong, Stefan Schönauer, SVN Vishwanathan, Alex J Smola, and
Hans-Peter Kriegel. Protein function prediction via graph kernels. Bioinformatics, 21(suppl_1):
i47–i56, 2005.

Ting Chen, Yizhou Sun, Yue Shi, and Liangjie Hong. On sampling strategies for neural network-based
collaborative filtering. In Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 767–776, 2017.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning, pp.
1597–1607. PMLR, 2020.

Kevin Clark, Minh-Thang Luong, Quoc V Le, and Christopher D Manning. Electra: Pre-training
text encoders as discriminators rather than generators. In International Conference on Learning
Representations, 2019.

Nicola De Cao and Thomas Kipf. Molgan: An implicit generative model for small molecular graphs.
arXiv preprint arXiv:1805.11973, 2018.

Asim Kumar Debnath, Rosa L Lopez de Compadre, Gargi Debnath, Alan J Shusterman, and Corwin
Hansch. Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro compounds.
correlation with molecular orbital energies and hydrophobicity. Journal of medicinal chemistry, 34
(2):786–797, 1991.

Paul D Dobson and Andrew J Doig. Distinguishing enzyme structures from non-enzymes without
alignments. Journal of molecular biology, 330(4):771–783, 2003.

Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin. Graph neural
networks for social recommendation. In The world wide web conference, pp. 417–426, 2019.

Hongyang Gao and Shuiwang Ji. Graph u-nets. In international conference on machine learning, pp.
2083–2092. PMLR, 2019.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pp.
1263–1272. PMLR, 2017.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Proceedings
of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining, pp.
855–864, 2016.

Filippo Guerranti, Zinuo Yi, Anna Starovoit, Rafiq Mazen Kamel, Simon Geisler, and Stephan
Günnemann. On the adversarial robustness of graph contrastive learning methods. In NeurIPS
2023 Workshop: New Frontiers in Graph Learning, 2023.

William L Hamilton, Rex Ying, and Jure Leskovec. Representation learning on graphs: Methods and
applications. arXiv preprint arXiv:1709.05584, 2017.

Kaveh Hassani and Amir Hosein Khasahmadi. Contrastive multi-view representation learning on
graphs. In International conference on machine learning, pp. 4116–4126. PMLR, 2020.

Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure Leskovec.
Strategies for pre-training graph neural networks. In International Conference on Learning
Representations, 2020a. URL https://openreview.net/forum?id=HJlWWJSFDH.

10

https://openreview.net/forum?id=JHcqXGaqiGn
https://openreview.net/forum?id=HJlWWJSFDH

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Ziniu Hu, Yuxiao Dong, Kuansan Wang, Kai-Wei Chang, and Yizhou Sun. Gpt-gnn: Generative
pre-training of graph neural networks. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pp. 1857–1867, 2020b.

Dasol Hwang, Jinyoung Park, Sunyoung Kwon, KyungMin Kim, Jung-Woo Ha, and Hyunwoo J Kim.
Self-supervised auxiliary learning with meta-paths for heterogeneous graphs. Advances in Neural
Information Processing Systems, 33:10294–10305, 2020.

Dongki Kim, Jinheon Baek, and Sung Ju Hwang. Graph self-supervised learning with accurate
discrepancy learning. In 36th Conference on Neural Information Processing Systems, NeurIPS
2022. Neural Information Processing Systems, 2022.

Dongkwan Kim and Alice Oh. How to find your friendly neighborhood: Graph attention design
with self-supervision. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=Wi5KUNlqWty.

Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint arXiv:1611.07308,
2016.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-
26, 2017, Conference Track Proceedings. OpenReview.net, 2017. URL https://openreview.
net/forum?id=SJU4ayYgl.

Junhyun Lee, Inyeop Lee, and Jaewoo Kang. Self-attention graph pooling. In International conference
on machine learning, pp. 3734–3743. PMLR, 2019.

Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. In ICML
2020 Workshop on Graph Representation Learning and Beyond (GRL+ 2020), 2020. URL
www.graphlearning.io.

Annamalai Narayanan, Mahinthan Chandramohan, Rajasekar Venkatesan, Lihui Chen, Yang Liu,
and Shantanu Jaiswal. graph2vec: Learning distributed representations of graphs. arXiv preprint
arXiv:1707.05005, 2017.

Yu Rong, Yatao Bian, Tingyang Xu, Weiyang Xie, Ying Wei, Wenbing Huang, and Junzhou Huang.
Self-supervised graph transformer on large-scale molecular data. Advances in Neural Information
Processing Systems, 33:12559–12571, 2020.

Nino Shervashidze, SVN Vishwanathan, Tobias Petri, Kurt Mehlhorn, and Karsten Borgwardt.
Efficient graphlet kernels for large graph comparison. In Artificial intelligence and statistics, pp.
488–495. PMLR, 2009.

Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt Mehlhorn, and Karsten M
Borgwardt. Weisfeiler-lehman graph kernels. Journal of Machine Learning Research, 12(9), 2011.

Weijing Shi and Raj Rajkumar. Point-gnn: Graph neural network for 3d object detection in a point
cloud. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 1711–1719, 2020.

Fan-Yun Sun, Jordan Hoffman, Vikas Verma, and Jian Tang. Infograph: Unsupervised and semi-
supervised graph-level representation learning via mutual information maximization. In Interna-
tional Conference on Learning Representations, 2020. URL https://openreview.net/
forum?id=r1lfF2NYvH.

Susheel Suresh, Pan Li, Cong Hao, and Jennifer Neville. Adversarial graph augmentation to improve
graph contrastive learning. Advances in Neural Information Processing Systems, 34:15920–15933,
2021.

Cheng Tan, Jun Xia, Lirong Wu, and Stan Z Li. Co-learning: Learning from noisy labels with
self-supervision. In Proceedings of the 29th ACM International Conference on Multimedia, pp.
1405–1413, 2021.

11

https://openreview.net/forum?id=Wi5KUNlqWty
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
www.graphlearning.io
https://openreview.net/forum?id=r1lfF2NYvH
https://openreview.net/forum?id=r1lfF2NYvH

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of Machine
Learning Research, 9(86):2579–2605, 2008.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In 6th International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings.
OpenReview.net, 2018. URL https://openreview.net/forum?id=rJXMpikCZ.

Petar Veličković, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio, and R Devon
Hjelm. Deep graph infomax. In International Conference on Learning Representations, 2019.
URL https://openreview.net/forum?id=rklz9iAcKQ.

Nikil Wale, Ian A Watson, and George Karypis. Comparison of descriptor spaces for chemical
compound retrieval and classification. Knowledge and Information Systems, 14:347–375, 2008.

Tongzhou Wang and Phillip Isola. Understanding contrastive representation learning through align-
ment and uniformity on the hypersphere. In International Conference on Machine Learning, pp.
9929–9939. PMLR, 2020.

Jun Xia, Lirong Wu, Jintao Chen, Bozhen Hu, and Stan Z Li. Simgrace: A simple framework for
graph contrastive learning without data augmentation. In Proceedings of the ACM Web Conference
2022, pp. 1070–1079, 2022a.

Jun Xia, Yanqiao Zhu, Yuanqi Du, and Stan Z Li. A survey of pretraining on graphs: Taxonomy,
methods, and applications. arXiv preprint arXiv:2202.07893, 2022b.

Dongkuan Xu, Wei Cheng, Dongsheng Luo, Haifeng Chen, and Xiang Zhang. Infogcl: Information-
aware graph contrastive learning. Advances in Neural Information Processing Systems, 34:
30414–30425, 2021.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=ryGs6iA5Km.

Pinar Yanardag and SVN Vishwanathan. Deep graph kernels. In Proceedings of the 21th ACM
SIGKDD international conference on knowledge discovery and data mining, pp. 1365–1374, 2015.

Yihang Yin, Qingzhong Wang, Siyu Huang, Haoyi Xiong, and Xiang Zhang. Autogcl: Automated
graph contrastive learning via learnable view generators. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 36, pp. 8892–8900, 2022.

Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure Leskovec. Hier-
archical graph representation learning with differentiable pooling. Advances in neural information
processing systems, 31, 2018.

Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. Graph
contrastive learning with augmentations. Advances in neural information processing systems, 33:
5812–5823, 2020.

Yuning You, Tianlong Chen, Yang Shen, and Zhangyang Wang. Graph contrastive learning automated.
In International Conference on Machine Learning, pp. 12121–12132. PMLR, 2021.

Han Yue, Chunhui Zhang, Chuxu Zhang, and Hongfu Liu. Label-invariant augmentation for
semi-supervised graph classification. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL
https://openreview.net/forum?id=rg_yN3HpCp.

Xin Zhang, Qiaoyu Tan, Xiao Huang, and Bo Li. Graph contrastive learning with personalized
augmentation. IEEE Transactions on Knowledge and Data Engineering, 2024.

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,
Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and applications.
AI open, 1:57–81, 2020.

12

https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rklz9iAcKQ
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=rg_yN3HpCp

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

A NOTATIONS USED IN THIS PAPER

The notations used in this work are listed in Table 5.

Table 5: Notations used in this paper.
Notation Corresponding Meanings

G The original graph
G

′
An augmentation of the original graph G

T (G) An augmentation pool for graph G
fg(·; θ) A GNN encoder with parameters θ
g(·) The Projection Head
V The set of nodes of graph G
E The set of edges of graph G
Xv The matrix of node features
Xe The matrix of edge features
dv The dimensionality of node feature
de The dimensionality of edge feature
hv The representation of a node v
hG The representation of a graph G
h
(k)
v The representation hv in the k-th layer GNN

AGGREGATION(·) A trainable function that aggregates messages from the neighbors of node v
N (v) The set of neighbors of node v
UPDATE(·) A trainable function that updates the representation of node v
POOL(·) The pooling function that generates the representation hG
Dn The Node-oriented Discriminator
De The Edge-oriented Discriminator
Lnode The predictive loss of the Node-oriented Discriminator
Ledge The predictive loss of the Edge-oriented Discriminator
Pn(v) An indicator to determine whether node v is disturbed
Pe(v) An indicator to determine whether node v is affected by the edges’ perturbations
zi The representation of graph Gi after Projection Head g(·)
z′i The positive augmentation representation for zi
B The minibatch
sim(·) The cosine similarity function
ℓ(Gi) The NT-Xent for graph Gi
Lcon The contrastive loss
λ1, λ2, λ3 Scaling weights to balance the losses
ρn, ρe The reweighted factor
γn, γe Scaling weights to balance ρn and ρe

B ALGORITHM OF OUR PEREG

For a dataset containing M graphs: Data {Gm : m ∈ M}, we use our Perturbation Discrimination-
Enhanced Graph Contrastive Learning (PerEG) to train the GNN encoder fg(·; θ) for producing
semantically good graph representation. The procedure of our PerEG is depicted in Algorithm 1.

C BASELINES

We compare and evaluate our PerEG framework with a series of baseline models, which are grouped
by graph kernel methods, graph self-supervised learning methods, predictive learning methods, and
contrastive learning methods. The detailed introduction of the baseline models is as follows:

1) graph kernel methods:

• GL (Shervashidze et al., 2009). A graph kernel method that measures the similarity between
graphs based on counting small subgraphs. It can be used for graph classification and
clustering tasks. The kernel computes a similarity score based on the frequency of graph
occurrences, providing a way to compare the structural characteristics of different graphs.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Algorithm 1: Perturbation Discrimination-Enhanced Graph Contrastive Learning
Initialize :Data {Gm : m ∈M}, GNN encoder fg(·; θ), pooling function POOL(·), projection head g(·),

node-oriented predictor Dn(·; θn), edge-oriented predictor De(·; θe), structure-perturbed
augmentation pool T

1 for sampled minibatch B of data {Gi: i ∈ Nb } do
2 for Gi = {V, E} ∈ B do
3 Sample G′i form T : G′i ← T (Gi) # Structure-perturbed augmentation
4 {hv}|V|

v=1 = fg(Gi; θ)
5 {h′

v}
|V|
v=1 = fg(G′i; θ)

6 zi = g
(
POOL

(
{hv}|V|

v=1

))
7 z′i = g

(
POOL

(
{h′

v}
|V|
v=1

))
8 end
9 Lnode(Gi) =

∑|V|
v=1

(
− 1

(
Pn(v) = 1

)
log

(
Dn(h

′
v; θn)

)
− 1

(
Pn(v) = 0

)
log

(
1−Dn(h

′
v; θn)

))
10 Ledge(Gi) =

∑|V|
v=1

(
− 1

(
Pe(v) = 1

)
log

(
De(h

′
v; θe)

)
− 1

(
Pe(v) = 0

)
log

(
1−De(h

′
v; θe)

))
11 ρn = 1

|Vpn|
∑

v∈Vpn

(
1(Dn(v) = 1)

)
12 ρe = 1

|Vpe|
∑

v∈Vpe

(
1(De(v) = 1)

)
13 ρ = γnρn + γeρe

14 ℓ(Gi) = −log exp(sim(zi,z
′
i)/τ)∑Nb

k=1,k ̸=i
exp(sim(zi,zk)/τ)

× ρ

15 Lnode = 1
Nb

∑
Gi∈B Lnode(Gi) # Loss of Node-oriented Predictor

16 Ledge = 1
Nb

∑
Gi∈B Ledge(Gi) # Loss of Edge-oriented Predictor

17 Lcon = 1
Nb

∑
Gi∈B ℓ(Gi) # Loss of Graph-level Contrastive Learning

18 L = λ1Lcon + λ2Lnode + λ3Ledge

19 Update fg(·; θ), g(·), Dn(·; θn), and De(·; θe) to minimize L
20 end
21 Return: GNN Encoder fg(·; θ)

• WL (Shervashidze et al., 2011). A Weisfeiler-Lehman sub-tree kernel measures the similarity
between graphs by comparing their labeled substructures. It iteratively refines the node labels
by aggregating the labels of neighboring nodes, capturing graph structure, and preserving
information about node attributes.

• DGK (Yanardag & Vishwanathan, 2015). A deep graph kernel method that uses neural
networks to learn representations of subgraphs and combine them to compute a similarity
score, enabling more expressive and flexible graph comparisons for various graph analysis
tasks.

2) graph self-supervised learning methods:

• GAE (Kipf & Welling, 2016). A graph neural network model used for unsupervised learning
on graph-structured data. It aims to learn low-dimensional latent representations of nodes in
a graph by reconstructing the adjacency matrix or node attributes, enabling tasks such as
link prediction and node classification in the graph domain.

• node2vec (Grover & Leskovec, 2016). An algorithm for learning feature representations
or embeddings for nodes in a graph. It combines random walks and the Skip-gram model
to capture structural properties and node relationships. The resulting embeddings enable
various graph analysis tasks such as link prediction, node classification, and clustering.

• sub2vec (Adhikari et al., 2018). An unsupervised algorithm that has a global view of the
learning subgraph and captures the similarities and differences between the properties of the
entire subgraph.

• graph2vec (Narayanan et al., 2017). A graph representation learning algorithm that uses
the Skip-gram model from Word2Vec to learn continuous embeddings for entire graphs.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

By aggregating node embeddings, Graph2Vec captures the structural properties and global
characteristics of graphs, enabling downstream graph analysis tasks.

• InfoGraph (Sun et al., 2020). Obtaining graph representation by maximizing the mutual
information between the graph-level representation and the representation of substructures
at different scales (such as nodes, edges, and triangles).

3) predictive learning methods:

• ContextPred (Hu et al., 2020a). Performing node-level self-supervised pre-training and
graph-level multi-task supervised pre-training. When GNN pretraining is completed, the
pre-trained GNN model is fine-tuned for downstream tasks, specifically adding a linear
classifier to predict downstream graph labels based on graph-level representation.

4) contrastive learning methods:

• MVGRL (Hassani & Khasahmadi, 2020). Performing contrastive learning on different
structural views of graphs for both node and graph levels to enrich feature learning.

• GraphCL (You et al., 2020). Designing four types of graph augmentations to learn the
similarity metrics between augmentations with contrastive learning.

• JOAO and JOAOv2 (You et al., 2021). Utilizing an auto augmentation strategy to select the
best augmentations from the four types of graph augmentations designed by GraphCL.

• AD-GCL-FIX and AD-GCL-OPT (Suresh et al., 2021). Learning graph augmentation
strategies with adversarial methods.

• SimGRACE (Xia et al., 2022a). Generating contrastive objects of graphs for contrast by
perturbing the weights of the model.

• AutoGCL (Yin et al., 2022). Designing a view generation learner for each graph augmenta-
tion method to learn the probability distribution of the augmentation method for specific
graph data.

• GPA (Zhang et al., 2024). Let each graph to select its own suitable data augmentation
operations through a learnable augmentation selector.

D MORE DETAILS OF EXPERIMENTAL IMPLEMENTATION

All experiments are conducted in Intel(R) Xeon(R) Gold 5220R CPU @ 2.20GHz, 4 NVIDIA
V100 GPU with 32 GB of RAM. The detailed settings of hyperparameters in our unsupervised and
semi-supervised learning experiments are shown in Table 6.

E ANALYSIS OF AUGMENTATION STRENGTH

To examine whether the strength of augmentations can affect the performance of our PerEG, we
conduct experiments with different strengths in producing augmentations and show the results in
Figure 6. The structure-perturbed graph augmentation results of Figure 6(a)-(c) show that ratios near
0.5 worsen the performance, denoting that disturbing around half of the nodes in a graph will increase
the uncertainty of the graph structure, thereby increasing the difficulty of prediction. Figure 6(d)
shows that, for edge perturbation, the fluctuation in performance is relatively slight at different
ratios, implying that an edge perturbation affects multiple nodes, and a smaller proportion of edge
perturbations may cause significant structural changes.

Further, Figure 7 shows the comparison results of using different perturbation strategies to produce
perturbed augmentations. Our PerEG achieves better performance than GraphCL in different aug-
mentation strategies. Meanwhile, the improvement of different strategies varies. Therefore, we need
to explore different augmentation strategies to learn richer graph representations.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Table 6: Experimental implementation for unsupervised and semi-supervised learning.

Hyperparameter Description Unsupervised Semi-supervised
Pre-train Fine-tune

- Learning rate 0.005 0.001 0.001
B Batch size 128 128 128
K Number of GNN layers 3 - -
dh Hidden layer dimensionality 32 128 128
λ1 Scaling weight of contrastive loss Lcon 1.0 1.0 -
λ2 Scaling weight of node predictive loss Lnode 1.0 1.0 -
λ3 Scaling weight of edge predictive loss Ledge 0.5 0.5 -
γn Scaling weight of node reweighted factor ρn 0.5 0.5 -
γe Scaling weight of edge reweighted factor ρe 0.5 0.5 -
- Training epochs 20 25 60
ηa Augmentation ratio 0.2 0.2 -
POOL(·) Pooling function ‘sum’ ‘sum’ ‘sum’
- Number of feature transform layers - 1 1
- Number of GCN layers - 3 3
- Number of fully-connect layers - 2 2
- Learning rate of fine-tuning - - 0.001
- Training epochs of fine-tuning - - 20
- Number of k-fold splits in fine-tuning - - 10

Figure 6: Experimental results of performance versus augmentation strength on MUTAG dataset.

Figure 7: Comparison results in different perturbation strategies.

F ROBUSTNESS STUDY

Following Guerranti et al. (2023), we conducted additional experiments of robustness studies for our
model. The results are shown in Table 7. From the results, we can see that our model (PerEG) can
succeed in enhancing adversarial robustness in comparison with GraphCL.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Table 7: Robustness studies for PerEG on TUDataset.
Methods PROTEINS NCI1 DD

GraphCL (Clean) 65.93 73.09 68.85
GraphCL (Attack) 40.29 (↓ 38.89) 32.20 (↓ 55.94) 15.74 (↓ 75.34)
PerEG (Clean) 68.73 74.03 74.83
PerEG (Attack) 48.07 (↓ 32.69) 33.35 (↓ 54.95) 26.20 (↓ 64.99)

G FURTHER STUDIES ON THE PERFORMANCE OF DISCRIMINATORS

In order to further validate the performance of the discriminator we used, we analyze the accuracy
of the two discriminators in PerEG. Here we report the performances of the discriminators in Table
8. We can see that the discriminators perform well on all datasets, the accuracy of all datasets is
above 80%. This proves that the discriminators are effective and capable of identifying most of
the perturbations. Further, those small parts that cannot be recognized, will be considered as noise,
making them ineffective in graph contrastive learning.

Table 8: Accuracy of the discriminators (%)
Discriminator NCI1 PROTEINS DD MUTAG COLLAB RDT-B RDT-M5K IMDB-B

Dn 87.23 85.45 90.32 90.89 86.43 90.20 81.83 88.26
De 87.87 86.02 92.75 91.43 87.27 91.56 85.55 89.34

Additionally, we combine the two discriminators and then retest the performance of the model. As
shown in Table 9, the performance of combining two discriminators is worse than our PerEG.

Table 9: Comparison results of combining two discriminators and our PerEG (%)
Methods NCI1 PROTEINS DD MUTAG COLLAB RDT-B RDT-M5K IMDB-B

Combine 78.64 74.86 79.15 89.35 73.02 89.85 56.30 71.67
PerEG 79.94 76.04 80.02 90.61 73.84 90.57 56.81 72.97

H EXPERIMENTS ON NODE CLASSIFICATION TASK

We also evaluate our PerEG in the unsupervised representation learning in the node classification
scenario following Veličković et al. (2019) and You et al. (2020). We use GCN as the GNN-based
encoder to generate the node embeddings and then feed them into a downstream classifier. The results
in Table10 show that PerEG outperforms both DGI and GraphCL, proving the superiority of our
PerEG.

BROADER IMPACTS

Learning on graph-structured data has a wide range of interests and applications, such as recommen-
dation systems, social media, neural structure search, and drug discovery. Our PerEG contributes
a general framework for processing different kinds of graph augmentations. Further, the proposed
node-level predictive learning can perceive the fine-grained structural differences and identify the
topological information of the graph from node-oriented and edge-oriented perspectives, providing a
new idea for learning graph-structured information.

LIMITATIONS

In order to mitigate the generation of isolated outlier nodes, we produce four perturbed augmentations
for each graph. However, there is still a situation where a node is isolated in different augmentations,
which will hinder the performance of perturbation discrimination in our PerEG. Therefore, in future
work, we will consider trying more reasonable strategies for producing perturbed augmentations to
avoid the generation of isolated nodes, aiming to further improve the performance of our PerEG.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Table 10: Comparing classification accuracy on top of learned node representations. The compared
DGI(Veličković et al., 2019) and GraphCL(You et al., 2020) performance are from the original paper
under the same experiment setting.

Methods Augmentation Cora Citeseer

DGI - 82.30±0.60 71.80±0.70

GraphCL

NodeDrop v.s. NodeDrop 81.76±0.17 73.14±0.15
EdgePert v.s. EdgePert 82.32±0.15 73.11±0.19
AttrMask v.s. AttrMask 81.78±0.17 72.05±0.22
Subgraph v.s. Subgraph 81.71±0.14 73.12±0.17
NodeDrop v.s. Identical 82.41±0.10 72.22±0.18
EdgePert v.s. Identical 82.45±0.11 72.23±0.17
AttrMask v.s. Identical 82.45±0.12 72.31±0.13
Subgraph v.s. Identical 82.49±0.12 72.33±0.18

PerEG (ours)

NodeDrop v.s. NodeDrop 81.90±0.16 73.70±0.20
EdgePert v.s. EdgePert 83.58±0.15 74.11±0.16
AttrMask v.s. AttrMask 82.78±0.21 72.69±0.25
Subgraph v.s. Subgraph 82.26±0.12 73.69±0.20
NodeDrop v.s. Identical 83.16±0.13 73.53±0.26
EdgePert v.s. Identical 83.04±0.18 72.76±0.20
AttrMask v.s. Identical 83.04±0.19 72.72±0.27
Subgraph v.s. Identical 83.06±0.13 72.80±0.20

18

	Introduction
	Related Work
	Graph Neural Networks
	Self-supervised Learning for Graph Representation

	Method
	Preliminaries
	The Discriminative Model in Our PerEG
	Reweighted Contrastive Learning in Our PerEG
	Overall Learning Objective of Our PerEG

	Experiments
	Experimental Settings
	Performance in Graph Classification
	Why Can PerEG Work Well?

	Conclusion
	Notations Used in This Paper
	Algorithm of Our PerEG
	Baselines
	More Details of Experimental Implementation
	Analysis of Augmentation Strength
	Robustness Study
	Further Studies on the Performance of Discriminators
	Experiments on Node Classification Task

