002

004

010 011

012

013

014

015

016

017

018

019

021

023

025

026

Anonymous authors

Paper under double-blind review

CONTRASTIVE LEARNING

ABSTRACT

PERTURBATION DISCRIMINATION-ENHANCED GRAPH

Self-supervised learning of graph-structured data aims to produce transferable and robust representations that could be transferred to the downstream tasks. Among many, graph contrastive learning (GCL) based on data augmentation has emerged with promising performance in learning graph representation. However, it is observed that some augmentations might change the graph semantics due to the perturbations in the graph structure such as perturbing some nodes/edges. In such cases, existing GCL methods may suffer from performance limitations due to the introduction of noise augmentations. To address this issue, we propose to train a discriminative model to enhance GCL for graph-structured data, called Perturbation Discrimination-Enhanced GCL (PerEG). Specifically, for each perturbed graph, the discriminative model is trained to predict whether each node in the augmentation was perturbed by the perturbation compared to the original graph or not. Based on this, the results of perturbation discrimination are exploited to refine the GCL, enabling its controllable use of augmentation, thereby preferably utilizing augmentation and effectively avoiding the introduction of noise augmentation. Extensive experiments in unsupervised, semi-supervised, and transfer learning scenarios show that our PerEG outperforms the state-of-the-art methods on eight datasets.

028 1 INTRODUCTION

Graph neural networks (GNNs) (Kipf & Welling, 2017; Velickovic et al., 2018; Xu et al., 2019) are
becoming increasingly popular in the realm of learning graph representation for graph-structured data,
where the structural information of graphs could be modeled with a neighborhood aggregation scheme.
By inheriting the power of neural networks, GNNs have reached great progress in learning information
from real-world graphs such as knowledge graphs (Baek et al., 2020), social networks (Fan et al.,
2019), point clouds (Shi & Rajkumar, 2020), and chemical analysis (De Cao & Kipf, 2018). Most
existing GNN-based models are trained in a supervised manner with end-to-end form when solving
graph-based tasks. However, annotating a high volume of fine-annotated data requires time-consuming
laboratory annotations based on professional knowledge (Hu et al., 2020a; Tan et al., 2021).

To alleviate this issue, various self-supervised learning methods are explored on graph-structured 040 data for learning transferable and robust representations from unlabeled graphs (Hu et al., 2020a; You et al., 2020). Among them, graph predictive learning and graph contrastive learning (GCL) 041 have received a lot of attention in learning graph representations. Here graph predictive learning can 042 learn the contextual relationships between neighboring nodes (Hu et al., 2020a; Kim & Oh, 2021) 043 or discriminating original graphs from perturbed graphs (Kim et al., 2022), and graph contrastive 044 learning (GCL) (You et al., 2020; Xu et al., 2021; Xia et al., 2022b) can learn the mutual information between augmentations by maximizing the similarity between augmented views. While promising 046 progress is made, existing methods generally attempt to learn the differences or similarities from 047 the graph augmentations obtained by augmentation strategy link perturbations on nodes or edges. 048 However, as many studies have pointed out, the perturbation of nodes/edges of the graph might change the nature of the original graphs (Kim et al., 2022; Yue et al., 2022). In addition, another study attempts to perturb the encoder to obtain contrastive objectives without any change in the graph 051 structure, to preserve the graph semantics well (Xia et al., 2022a). However, this work is more like a general method at the representation level, ignoring the learning of rich structured information 052 when performing GCL. We thus argue that to explore rich structural information for improving graph representation, we should use graph augmentation with structural perturbations, but it is necessary to

control the application of augmentation to graph contrastive learning by identifying the properties of perturbations to prevent the introduction of noise.

To reach this goal, we propose a discriminative model to identify the fine-grained perturbation in a perturbed augmentation compared to the original graph, and then enhance GCL based on the discriminative results, called Perturbation Discrimination-Enhanced Graph Contrastive Learning (PerEG). We observe that for an augmentation of an original graph, its structural perturbations should be effective and tolerable, that is, the augmentation is different from but associated with the original graph. Therefore, for a qualified augmented graph, the model should be able to identify where it has been disturbed compared to the original graph. Otherwise, if a perturbed graph is completely different from the original graph, it probably changes the semantic information of the original graph and cannot be used as an augmentation of the original graph for learning graph representation.

065 In light of this, we get inspiration from ELECTRA (Clark et al., 2019) and train a discriminative 066 model that predicts whether each node in the augmented graph was affected by perturbations or not, 067 aiming to perceive the fine-grained perturbation of a perturbed augmentation compared to the original 068 graph. The motivation for this operation comes from the fact that a vertex/node is the fundamental 069 unit of which graphs are formed, and judging changes in node representation can identify where the augmentation has been disturbed compared to the original graph. Further, the perturbation of a node 071 is usually caused by two situations: one is directly perturbing the node, and the other is caused by the perturbation of the edge. To this end, we devise our discriminative model from two perspectives: 072 node-oriented discriminator and edge-oriented discriminator. In this way, both node representation 073 changes caused by node perturbation and by edge perturbation will be taken into account. It should be 074 noted that if perturbed nodes in an augmentation cannot be accurately identified, their representations 075 are either very similar to the original ones or have deviated significantly in the latent space. In such 076 cases, those augmentations cannot be considered as qualified perturbed augmentations and should be 077 limited in GCL, because they are neither effective nor plausible. Subsequently, the discriminative accuracy of perturbed nodes is exploited in the GCL, which essentially enables the model to use graph 079 augmentation in a controlled manner, effectively avoiding the introduction of noise augmentation. Our main contributions are as follows: 081

- We propose Perturbation Discrimination-Enhanced Graph Contrastive Learning (PerEG), the first to enhance GCL by training a discriminative model for perturbation identification, which enables the model to use graph augmentations for GCL in a controlled manner, effectively avoiding the introduction of noise augmentation.
 - Instead of laboriously entangling about how to prevent the introduction of noise structures during graph augmentation, this paper aims to find the potential noise augmentations that might change the graph semantics and limit them in GCL according to the results of perturbation discrimination.
 - Node-oriented and edge-oriented discriminators are designed to identify whether each node in the perturbed graph is affected by the perturbations or not, empowering our PerEG to discriminate the effective and plausible augmented graphs for contrastive learning.
 - We conduct a series of experiments on eight graph-structured benchmark datasets to evaluate the effectiveness of our PerEG in both unsupervised and semi-supervised scenarios. Experimental results show that our PerEG significantly outperforms baselines.
- 2 RELATED WORK

082

084

085

090

092 093

095

096

098

099 100 2.1 GRAPH NEURAL NETWORKS

Graphs are a kind of prevalent data structure in real-world scenarios, such as molecule graphs, social networks, and biological graphs (Zhou et al., 2020). Modeling the set of objects (nodes) and their relationships (edges) of graph-structured data is an appropriate way to learn the representation of the graph structure (Hamilton et al., 2017; Xu et al., 2019). GNNs are a practical framework for graph representation learning. Owing to the neighborhood aggregation scheme of GNNs, the representation vectors of nodes are calculated by recursively aggregating and transforming the representation vectors of their adjacent nodes (Gilmer et al., 2017). Recently, there has been a surge of interest in obtaining better graph representations, and various GNN architectures have been proposed for updating and

Figure 1: Illustration of our PerEG framework. The structure-perturbed graph \mathcal{G}' is an augmentation of \mathcal{G} sampled from an augmentation pool $\mathcal{T}(\mathcal{G})$. f_g is a GNN encoder. \mathcal{D}_n is the node-oriented discriminator and \mathcal{D}_e is the edge-oriented discriminator. \mathcal{L}_{con} represents the contrastive loss. \mathcal{L}_{node} and \mathcal{L}_{edge} represent the discriminative losses of \mathcal{D}_n and \mathcal{D}_e , respectively.

aggregation of graphs. To mention a few, Graph Convolutional Network (GCN) (Kipf & Welling, 2017) utilizes an approximation of spectral graph convolutions to learn representations that encode both local graph structure and features of nodes.

2.2 Self-supervised Learning for Graph Representation

Many studies have been devoted to graph representation learning based on self-supervised learn-ing (Hu et al., 2020a). Recently, some studies have attempted to perform prediction in learning contextual properties of graph-structured data (Kim & Oh, 2021; Hwang et al., 2020; Hu et al., 2020b; Rong et al., 2020). Further, D-SLA (Kim et al., 2022) proposes to discriminate the original graphs from the perturbed graphs. In addition, many recent studies are dedicated to exploring contrastive learning to achieve better graph representations based on graph augmentations. GraphCL (You et al., 2020) designs four types of graph augmentations to learn the similarly metrics between augmentations with contrastive learning. JOAO (You et al., 2021) and AutoGCL (Yin et al., 2022) propose an auto augmentation strategy to enhance the performance of graph contrastive learning. MVGRL (Hassani & Khasahmadi, 2020) performs contrastive learning on different structural views of graphs for both node and graph levels to enrich the feature learning. In addition, some recent studies attempt to alleviate the issue that some augmentations might change the graph semantics in graph contrastive learning. SimGRACE (Xia et al., 2022a) generates contrastive objects of graphs for contrast by perturbing the weights of the model rather than structure perturbations. However, this work overlooks the exploration of graph structures and thus cannot produce robust graph representations by introducing richer graph structures. Further, GLA (Yue et al., 2022) utilizes label information to keep the label of the augmented sample the same as the original graph for contrast. However, this work requires the introduction of annotations and cannot be used in unsupervised scenarios.

3 Method

This section introduces our novel PerEG framework in detail. The architecture of PerEG is illustrated
in Figure 1. We first recount the preliminaries in section 3.1. Then, we introduce the discriminative model and perturbation discrimination-enhanced graph contrastive learning of our PerEG in
Section 3.2 and Section 3.3, respectively. We finally describe the learning objective in Section 3.4.

162 3.1 PRELIMINARIES

Graph Neural Networks Let $\mathcal{G} = \{\mathcal{V}, \mathcal{E}\}$ denote an undirected graph, where \mathcal{V} and \mathcal{E} are the sets of nodes and edges, respectively, $\mathbf{X}_v \in \mathbb{R}^{|\mathcal{V}| \times d_v}$ denote the matrix of node features, and $\mathbf{X}_e \in \mathbb{R}^{|\mathcal{E}| \times d_e}$ denote the matrix of edge features. Here, the representation of a node v can be defined as h_v , and the representation of a graph \mathcal{G} can be defined as $h_{\mathcal{G}}$. The goal of graph neural networks (GNNs) is to update the representation of the given graph \mathcal{G} by leveraging its topological structure. For the representation h_v of node v, its propagation of the k-th layer GNN is represented as:

$$h_v^{(k)} = f_g(h_v^{(k-1)}; \theta) = \text{UPDATE}^{(k)} \left(h_v^{(k-1)}, \text{AGGREGATION}^{(k)} \left(h_u^{(k-1)} : \forall u \in \mathcal{N}(v) \right) \right)$$
(1)

172 where $f_g(\cdot; \theta)$ denotes the GNN encoder, θ represents all trainable parameters of GNN encoder. 173 AGGREGATION(·) denotes a trainable function that aggregates messages from the neighbors of 174 node v, $\mathcal{N}(v)$ represents the set of neighbors. UPDATE(·) denotes a trainable function that updates 175 the representation of node v with the current representation of v and the aggregated vector. Then, 176 after K iterations by GNNs, the representation of a graph \mathcal{G} can be obtained by pooling the final set 177 of all node representations from Eq. 1, which is represented as:

$$h_{\mathcal{G}} = \text{POOL}\left(\left\{h_v^{(K)} : \forall v \in \mathcal{V}\right\}\right) \tag{2}$$

The operation of $POOL(\cdot)$ is flexible, including mean or sum, and other relatively well-designed methods, such as clustering (Ying et al., 2018; Baek et al., 2021) or node drop-based methods (Gao & Ji, 2019; Lee et al., 2019).

Data Augmentation for Graphs Following (You et al., 2020), to explore the rich structure of a graph, we use Node dropping, Edge perturbation, Attribute masking, and Subgraph to generate augmentations for each graph. Note that, the purpose of our work is to perform node-level perturbation discrimination. Therefore, we applied four types of perturbations to each graph to alleviate the impact on the effectiveness of perturbation discrimination that a node only appearing in the perturbed set.

188 189 190

191

192

193

194 195

197

170 171

178

179

183

Overall Framework As illustrated in Figure 1, the proposed PerEG framework consists of three modules: 1) Node-oriented Discriminator, which predicts whether each node in the augmented graph was perturbed or not by the perturbation acting on nodes; 2) Edge-oriented Discriminator, which predicts whether each node in the augmented graph was affected by edges' perturbations; 3) Reweighted Contrastive Learning, which performs graph contrastive learning reweighted by the perturbation discrimination results.

196 3.2 THE DISCRIMINATIVE MODEL IN OUR PEREG

Figure 2 shows the architecture of the discriminative 198 model in our PerEG, which includes a Node-oriented 199 Discriminator \mathcal{D}_n (left) and an Edge-oriented Dis-200 criminator \mathcal{D}_e (right). Specifically, the Node-201 oriented Discriminator aims to identify whether each 202 node was perturbed (dropped or masked) in the aug-203 mented graph or not. The Edge-oriented Discrimi-204 nator aims to identify whether each node is affected 205 by the edges' perturbations (adding or dropping) in 206 the augmentation or not.

207 As mentioned above, the properties and semantics 208 of graphs might change even with slight perturba-209 tions of nodes/edges (Kim et al., 2022; Yue et al., 210 2022). Therefore, different from using contrastive 211 learning that blindly trains perturbed augmentations 212 of a graph to be similar, we explore a discrimina-213 tive model to perceive the perturbations of the augmented view compared to the original graph, aiming 214 to control contrastive learning through perturbation 215 discrimination results. The motivation comes from

Figure 2: Illustration of the discriminative model in our PerEG framework.

the fact that suppose a perturbed graph can be used as an augmentation for contrastive learning. In
 that case, it must be related to the original graph, that is, the perturbations should be identifiable.

To reach this goal, we propose to discriminate the perturbations based on predicting whether each node in the augmented graph was affected by perturbations or not. Because node representations are the sources for producing graph representation, predicting the perturbations at the node level can lead to a clear understanding of the graph's transformations. Intuitively, the perturbation of a node can come from the perturbation of the node itself (direct perturbation) or from the impact caused by edge perturbations (indirect perturbation). Therefore, we propose to train the discriminate model from node-oriented and edge-oriented perspectives, devising node-oriented and edge-oriented discriminators.

Node-oriented Discriminator The goal of the Node-oriented Discriminator \mathcal{D}_n is to predict whether each node is perturbed (dropped or masked) in the augmented graph or not, so as to perceive which perturbations the original graph has undergone to generate the augmented view. Here, we feed each node representation h'_v learned from the augmentation into \mathcal{D}_n and employ a cross-entropy loss to train \mathcal{D}_n . The loss of \mathcal{D}_n is defined as:

$$\mathcal{L}_{node} = \sum_{v \in \mathcal{V}} \left(-\mathbb{1}\left(\mathcal{P}_n(v) = 1\right) \log\left(\mathcal{D}_n(h'_v; \theta_n)\right) - \mathbb{1}\left(\mathcal{P}_n(v) = 0\right) \log\left(1 - \mathcal{D}_n(h'_v; \theta_n)\right) \right)$$
(3)

where $\mathbb{1}(i = j) \in \{0, 1\}$ is an indicator function evaluating to 1 iff i = j. $\mathcal{P}_n(v) = 1$ denotes node vis perturbed in the graph, and $\mathcal{P}_n(v) = 0$ is the opposite. θ_n represents the trainable parameters of the Node-oriented Discriminator \mathcal{D}_n .

238 Edge-oriented Discriminator Predicting the perturbed nodes can directly discriminate the fine-239 grained perturbation of the graph, however, the structure-perturbed augmentation might create isolated 240 outlier nodes that share similar topological formulas even across different graphs, we thus propose to 241 predict the neighbors of perturbed nodes/edges from the edge-oriented perspective to identify the 242 topological perturbation of the augmentation. As illustrated in Figure 2, in addition to the perturbing 243 node (node 3), the neighbors (nodes 2 and 4) are potentially affected owing to the edges connected to 244 node 3. Therefore, we propose an Edge-oriented Discriminator \mathcal{D}_e to identify whether each node is 245 affected by the edges' perturbations or not. The loss of \mathcal{D}_e is defined as:

$$\mathcal{L}_{edge} = \sum_{v \in \mathcal{V}} \Big(-\mathbb{1}\big(\mathcal{P}_e(v) = 1\big) \log\big(\mathcal{D}_e(h'_v; \theta_e)\big) - \mathbb{1}\big(\mathcal{P}_e(v) = 0\big) \log\big(1 - \mathcal{D}_e(h'_v; \theta_e)\big)\Big)$$
(4)

where $\mathcal{P}_e(v) = 1$ denotes node v is affected by the edges' perturbations, and $\mathcal{P}_e(v) = 0$ is the opposite. θ_e represents the trainable parameters of the Edge-oriented Discriminator \mathcal{D}_e .

3.3 REWEIGHTED CONTRASTIVE LEARNING IN OUR PEREG

To relieve the performance degradation caused by noise augmentation in contrastive learning, we then exploit the discriminative results to reweight the GCL, so as to perform the GCL in a controllable manner. The reweighted factor ρ is computed as:

$$\rho_n = \frac{1}{|\mathcal{V}_{pn}|} \sum_{v \in \mathcal{V}_{pn}} \left(\mathbb{1}(\mathcal{D}_n(v) = 1) \right), \quad \rho_e = \frac{1}{|\mathcal{V}_{pe}|} \sum_{v \in \mathcal{V}_{pe}} \left(\mathbb{1}(\mathcal{D}_e(v) = 1) \right), \quad \rho = \gamma_n \rho_n + \gamma_e \rho_e$$
(5)

where \mathcal{V}_{pn} represents the set of nodes directly perturbed by perturbation, \mathcal{V}_{pe} represents the set of 260 nodes affected by the edges' perturbations. γ_n and γ_e are the coefficients of reweighted factor ρ . 261 Here, we only consider the discriminative success rate of the disturbed nodes, due to the goal of the 262 proposed PerEG is to enhance the GCL based on the perturbation discrimination. Further, for those 263 perturbed nodes that have not been identified, they either learn to be similar to the original node or 264 have completely deviated from the graph structure. In such cases, these nodes are detrimental to 265 augmentation. The purpose of augmentation is to explore richer graph structures by performing some 266 reasonable perturbations on the original graph. Therefore, these augmentations should be different 267 from the original graph, but not completely unrecognizable.

268

226

232 233 234

250

251

253

254

255

For contrastive training, we first randomly select N_b graphs $\{\mathcal{G}_i\}_{i=1}^{N_b}$ from a given dataset to obtain a minibatch \mathcal{B} . For an *anchor* graph \mathcal{G}_i and the corresponding perturbed augmentation \mathcal{G}'_i , two representations z_i and z'_i can be obtained from the GNN encoder $f_g(\cdot; \theta)$, which are considered as a positive pair. While the representations of the other $N_b - 1$ graphs { $\mathcal{G}_k \in \mathcal{B}, k \neq i$ } in the same minibatch \mathcal{B} are treated as *negative* representations with respect to the *anchor* graph \mathcal{G}_i as in (Chen et al., 2017; 2020; You et al., 2020; Xia et al., 2022a). Then, based on the reweighted factor ρ , the contrastive loss is computed across all *positive* pairs in a mini-batch \mathcal{B} , which is defined as:

275 276 277

278

279

280 281

282 283

284

285

286 287 288

289 290 291

292

299

300

$$\mathcal{L}_{con} = \frac{1}{N_b} \sum_{\mathcal{G}_i \in \mathcal{B}} \ell(\mathcal{G}_i), \quad \ell(\mathcal{G}_i) = -\log \frac{\exp(\operatorname{sim}(z_i, z_i)/\tau)}{\sum_{k=1, k \neq i}^{N_b} \exp(\operatorname{sim}(z_i, z_k)/\tau)} \times \rho$$
(6)

where $\ell(\mathcal{G}_i)$ denotes the NT-Xent for graph \mathcal{G}_i . $\sin(z_i, z_k) = z_i^\top z_k / ||z_i|| ||z_k||$ denotes the cosine similarity function. τ denotes the temperature parameter.

3.4 OVERALL LEARNING OBJECTIVE OF OUR PEREG

The learning objective of our PerEG is to train the framework by jointly minimizing the three losses derived from Node-oriented Discriminator, Edge-oriented Discriminator, and Reweighted Contrastive Learning. The overall loss \mathcal{L} is defined as:

$$\mathcal{L} = \lambda_1 \mathcal{L}_{con} + \lambda_2 \mathcal{L}_{node} + \lambda_3 \mathcal{L}_{edge} \tag{7}$$

where hyperparameters λ_1 , λ_2 and λ_3 are scaling weights to balance the losses.

4 EXPERIMENTS

In this section, we are devoted to the empirical evaluation of the proposed Simple Self-supervised Learning for Graph Representation (PerEG). We first describe the experimental settings of our empirical evaluation. Then, we experimentally validate our PerEG on graph classification tasks to show its effectiveness in producing semantically good graph representations, thus improving the performance of downstream tasks. Finally, we provide various insightful experiments and extensive analysis to demonstrate why our PerEG is valid for producing accurate graph representation.

4.1 EXPERIMENTAL SETTINGS

301 **Datasets** To evaluate the effectiveness of 302 our PerEG framework, we conduct experi-303 ments on eight publicly available bench-304 mark datasets from TUDatasets (Mor-305 ris et al., 2020), including four graph 306 datasets related to biochemical molecules 307 and proteins (MUTAG (Debnath et al., 308 1991), PROTEINS (Borgwardt et al., 2005), DD (Dobson & Doig, 2003), and 309

Table	1٠	Statistics	of	datasets
raute	1.	Statistics	UI.	ualascis.

Datasets	Category	#Graph	Avg. #Node	Avg. #Edge
NCI1	Biochemical Molecules	4110	29.87	32.30
PROTEINS	Biochemical Molecules	1113	39.06	72.82
DD	Biochemical Molecules	1178	284.32	715.66
MUTAG	Biochemical Molecules	188	17.93	19.79
COLLAB	Social Networks	5000	74.49	2457.78
RDT-B	Social Networks	2000	429.63	497.75
RDT-M5K	Social Networks	5000	508.52	594.87
IMDB-B	Social Networks	1000	19.77	96.53

NCI1 (Wale et al., 2008)) and four graph datasets related to social networks (Yanardag & Vishwanathan, 2015) (COLLAB, RDT-B, RDT-M5K, and IMDB-B). The statistics of these datasets are shown in Table 1. Noting that, the datasets are from two categories, and the numbers of graphs in these datasets range from 188 to 5000, the average node numbers range from 17.93 to 508.52, and the average edge numbers range from 19.79 to 2457.78, denoting the diversity of these datasets.

314

315 **Evaluation Protocols** Following the same protocols used in existing works for graph self-supervised 316 representation learning in the unsupervised scenario (You et al., 2020; 2021; Xia et al., 2022a), we 317 use the whole dataset for pre-training to learn graph embeddings with our PerEG and feed them 318 into a downstream SVM classifier with 10-fold cross-validation. For the semi-supervised scenario, 319 following (You et al., 2020; 2021; Xia et al., 2022a), we perform pre-training on all the data and later 320 do fine-tuning and evaluation with 10% true label supervision on the same dataset. For fine-tuning, the 321 encoder has an additional linear graph prediction layer on top which is used to map the representations to the task labels. For the transfer learning scenario, we pre-train the encoder on all the data of 322 one dataset and fine-tune and evaluate with another dataset which distinct from the former. The 323 classification accuracy is reported to evaluate the performance.

Table 2: Unsupervised representation learning on TUDataset. Averaged accuracy±std. (%) over 10 runs are reported. "w/o \mathcal{L}_{node} " denotes without using edge-oriented discriminator in our PerEG. "w/o \mathcal{L}_{edge} " denotes without using edge-oriented discriminator, "w/o ρ denotes without using factor ρ . "-" indicates that the label rate is too low for a given dataset size or the baseline did not report the corresponding results. The best and second-best results are highlighted in **red** and **blue**, respectively. A.R. is short for the average rank.

221	Methods	NCI1	PROTEINS	DD	MUTAG	COLLAB	RDT-B	RDT-M5K	IMDB-B	A.R.↓
331	GL	-	-	-	81.66 ± 2.11	-	77.34 ± 0.18	41.01 ± 0.17	65.87 ± 0.98	16.5
332	WL	80.01 ± 0.50	$72.92 {\pm} 0.56$	-	80.72 ± 3.00	-	$68.82 {\pm} 0.41$	$46.06 {\pm} 0.21$	$72.30 {\pm} 3.44$	12.8
333	DGK	80.31 ± 0.46	$73.30 {\pm} 0.82$	-	87.44 ± 2.72	-	$78.04 {\pm} 0.39$	$41.27 {\pm} 0.18$	$66.96 {\pm} 0.56$	12.7
	node2vec	54.89 ± 1.61	57.49 ± 3.57	-	72.63 ± 10.20	-	-	-	-	17.7
334	sub2vec	52.84 ± 1.47	53.03 ± 5.55	-	61.05 ± 15.80	-	$71.48 {\pm} 0.41$	36.68 ± 0.42	55.26 ± 1.54	18.5
335	graph2vec	73.22 ± 1.81	$73.30{\pm}2.05$	-	$83.15 {\pm} 9.25$	-	$75.78 {\pm} 1.03$	$47.86 {\pm} 0.26$	$71.10 {\pm} 0.54$	14.2
	InfoGraph	76.20 ± 1.06	74.44 ± 0.31	72.85 ± 1.78	89.01 ± 1.13	70.65 ± 1.13	82.50 ± 1.42	53.46 ± 1.03	73.03 ±0.87	9.9
336	MVGRL	-	-	-	75.40 ± 7.80	-	82.00 ± 1.10	-	63.60 ± 4.20	16.7
337	GraphCL	77.87 ± 0.41	$74.39 {\pm} 0.45$	$78.62 {\pm} 0.40$	86.80 ± 1.34	$71.36 {\pm} 1.15$	89.53 ±0.84	$55.99 {\pm} 0.28$	$71.14 {\pm} 0.44$	8.0
000	JOAO	78.07 ± 0.47	74.55 ± 0.41	77.32 ± 0.54	87.35 ± 1.02	69.50 ± 0.36	85.29 ± 1.35	55.74 ± 0.63	70.21 ± 3.08	10.6
338	JOAOv2	78.36 ± 0.53	74.07 ± 1.10	77.40 ± 1.15	87.67 ± 0.79	69.33 ± 0.34	86.42 ± 1.45	56.03 ± 0.27	$70.83 {\pm} 0.25$	9.6
339	AD-GCL-FIX	69.67 ± 0.51	73.59 ± 0.65	74.49 ± 0.52	89.25 ± 1.45	73.32 ± 0.61	85.52 ± 0.79	53.00 ± 0.82	71.57 ± 1.01	9.9
0.40	AD-GCL-OPT	69.67 ± 0.51	$73.81 {\pm} 0.46$	75.10 ± 0.39	89.70 ± 1.03	$73.32 {\pm} 0.61$	$85.52 {\pm} 0.79$	54.93 ± 0.43	$72.33 {\pm} 0.56$	8.6
340	SimGRACE	79.12 ± 0.44	75.35 ± 0.09	77.44 ± 1.11	89.01 ± 1.31	71.72 ± 0.82	89.51 ± 0.89	55.91 ± 0.34	71.30 ± 0.77	6.8
341	AutoGCL	82.00±0.29	75.80 ± 0.36	77.57 ± 0.60	88.64 ± 1.08	70.12 ± 0.68	88.58 ± 1.49	56.75 ±0.18	73.30 ±0.40	5.4
0.40	GPA	80.42 ±0.41	75.94 ±0.25	79.90 ±0.35	89.68 ±0.80	76.17 ±0.10	89.32 ± 0.38	53.70 ± 0.19	74.64 ± 0.35	3.5
342	PerEG (ours)	79.94 ± 0.24	76.04 ±0.22	80.02±0.34	90.61±1.50	73.84 ±0.63	90.57 ±0.36	56.81 ±0.24	72.97 ± 0.43	2.0
343	w/o \mathcal{L}_{node}	74.56±0.72	75.04±0.50	78.60 ± 1.30	89.57±0.72	71.76±0.71	88.86±0.60	55.80±0.25	71.07 ± 0.32	7.8
044	w/o \mathcal{L}_{edge}	75.03 ± 0.43	75.43 ± 0.39	75.67 ± 1.96	89.02 ± 0.61	71.93 ± 0.13	89.23 ± 1.15	56.57 ± 0.24	71.33 ± 0.40	7.0
344	w/o ρ	79.69 ± 0.03	75.78 ± 0.06	78.76 ± 0.57	90.13 ± 0.08	70.68 ± 0.02	90.35 ± 0.01	55.50 ± 0.93	69.59 ± 0.03	6.3
345			-	-			-			

Table 3: Semi-supervised learning performance with 10% labels on TUDataset. Averaged accuracy \pm std. (%) over 10 runs are reported. The best results are highlighted in **red**. A.R. is short for the average rank.

Methods	NCI1	PROTEINS	DD	COLLAB	RDT-B	RDT-M5K	A.R.↓
No Pre-Train	73.72±0.24	70.40 ± 1.54	73.56±0.41	73.71 ± 0.27	86.63±0.27	51.33 ± 0.44	9.0
GAE	74.36±0.24	$70.51 {\pm} 0.17$	$74.54 {\pm} 0.68$	75.09 ± 0.19	$87.69 {\pm} 0.40$	$53.58 {\pm} 0.13$	7.0
InfoGraph	74.86 ± 0.26	72.27 ± 0.40	$75.78 {\pm} 0.34$	73.76±0.29	88.66 ± 0.95	53.61 ± 0.31	5.3
ContextPred	73.00 ± 0.30	$70.23 {\pm} 0.63$	$74.66 {\pm} 0.51$	73.69 ± 0.37	$84.76 {\pm} 0.52$	$51.23 {\pm} 0.84$	9.5
GraphCL	74.63 ± 0.25	74.17 ± 0.34	76.17 ± 1.37	74.23 ± 0.21	89.11±0.19	52.55 ± 0.45	5.0
JOAO	74.48 ± 0.27	$72.13 {\pm} 0.92$	$75.69 {\pm} 0.67$	75.30 ± 0.32	$88.14 {\pm} 0.25$	$52.83 {\pm} 0.54$	6.3
JOAOv2	74.86±0.39	73.31 ± 0.48	$75.81 {\pm} 0.73$	75.53 ± 0.18	88.79 ± 0.65	52.71 ± 0.28	4.8
AD-GCL-FIX	75.18 ± 0.31	$73.96 {\pm} 0.47$	77.91±0.73	75.82 ±0.26	90.10±0.15	$53.49 {\pm} 0.28$	2.7
GPA	75.50 ±0.14	74.27±1.11	$76.68 {\pm} 0.81$	-	$89.99 {\pm} 0.32$	54.92 ±0.35	2.0
PerEG (ours)	75.78 ±0.52	73.82±0.58	77.23±0.51	75.85 ±0.51	90.12±0.80	54.31 ±0.17	1.8

361

362

364

365

346 347

348

324

Compared Baselines We compare our PerEG with various baseline models, including graph kernel methods: GL (Shervashidze et al., 2009), WL (Shervashidze et al., 2011), and DGK (Yanardag & Vishwanathan, 2015), graph self-supervised learning methods: GAE (Kipf & Welling, 2016), node2vec (Grover & Leskovec, 2016), sub2vec (Adhikari et al., 2018), graph2vec (Narayanan et al., 2017), and InfoGraph (Sun et al., 2020), predictive learning method: ContextPred (Hu et al., 2020a), and contrastive learning methods: MVGRL (Hassani & Khasahmadi, 2020), GraphCL (You et al., 2020), JOAO and JOAOv2 (You et al., 2021), AD-GCL-FIX and AD-GCL-OPT (Suresh et al., 2021), SimGRACE (Xia et al., 2022a), AutoGCL (Yin et al., 2022) and GPA (Zhang et al., 2024).

366 367

Implementation Details Following previous graph self-supervised learning methods (You et al., 2020), we use the GIN (Xu et al., 2019) as the base network in our PerEG. The augmentation (dropping, perturbation, masking, and subgraph) ratio is set at 0.2 as implemented in GraphCL (You et al., 2020). The discriminator \mathcal{D}_n and \mathcal{D}_e are implemented by a 3-layers MLP. The scaling weights of losses are set to $\lambda_1 = 1$, $\lambda_2 = 1$, and $\lambda_3 = 0.5$, which are the optimal hyper-parameters in the pilot studies.

374 375

376

4.2 PERFORMANCE IN GRAPH CLASSIFICATION

Unsupervised Learning Table 2 shows the results of graph classification under the unsupervised scenario. It can be seen that our PerEG outperforms other baselines, achieving the best performance

Table 4: Transfer learning comparison with different manually designed pre-training schemes. ROC-379 AUC±std. (%) over 10 runs are reported. The best and second-best results are highlighted in red and 380 blue, respectively. A.R. denotes average rank. 381

001	-				-						
382	Pre-Train				ZING	C-2M				PPI-306K	
000	Fine-Tune	BBBP	Tox21	ToxCast	SIDER	ClinTox	MUV	HIV	BACE	PPI	A.R.↓
383	No Pre-Train	65.8±4.5	$74.0 {\pm} 0.8$	$63.4 {\pm} 0.6$	57.3±1.6	58.0 ± 4.4	$71.8 {\pm} 2.5$	75.3±1.9	70.1 ± 5.4	64.8 ± 1.0	8.4
384	Infomax	68.8 ± 0.8	75.3 ± 0.5	62.7 ± 0.4	58.4 ± 0.8	69.9 ± 3.0	75.3 ± 2.5	76.0 ± 0.7	75.9 ± 1.6	64.1 ± 1.5	7.0
385	EdgePred	67.3±2.4	76.0 ± 0.6	64.1 ± 0.6	60.4 ± 0.7	64.1 ± 3.7	74.1 ± 2.1	76.3 ± 1.0	79.9 ±0.9	65.7 ± 1.3	5.3
505	AttrMasking	64.3±2.8	76.7±0.4	64.2±0.5	61.0±0.7	71.8 ± 4.1	74.7 ± 1.4	77.2 ± 1.1	79.3 ± 1.6	65.2 ± 1.6	4.3
386	ContextPred	68.0±2.0	75.7 ± 0.7	$63.9 {\pm} 0.6$	$60.9 {\pm} 0.6$	65.9 ± 3.8	75.8 ± 1.7	77.3 ± 1.0	79.6 ±1.2	64.4 ± 1.3	4.8
387	GraphCL	69.68 ± 0.67	$73.87 {\pm} 0.66$	$62.40 {\pm} 0.57$	$60.53 {\pm} 0.88$	$75.99 {\pm} 2.65$	$69.80 {\pm} 2.66$	78.47±1.22	$75.38{\pm}1.44$	67.88 ± 0.85	6.2
	JOAO	70.22 ± 0.98	$74.98 {\pm} 0.29$	$62.94 {\pm} 0.48$	$59.97 {\pm} 0.79$	81.32±2.49	$71.66 {\pm} 1.43$	$76.73 {\pm} 1.23$	$77.34{\pm}0.48$	64.43 ± 1.38	6.0
388	JOAOv2	71.39±0.92	$74.27 {\pm} 0.62$	$63.16 {\pm} 0.45$	$60.49 {\pm} 0.74$	80.97±1.64	73.67 ± 1.00	77.51 ± 1.17	$75.49 {\pm} 1.27$	63.94 ± 1.59	5.8
389	SimGRACE	71.25 ± 0.86	$75.21 {\pm} 0.93$	$63.36 {\pm} 0.52$	$60.59{\pm}0.96$	$75.83 {\pm} 2.63$	76.86 ±1.27	$75.21 {\pm} 0.87$	$74.85 {\pm} 1.32$	70.25±1.22	5.2
000	PerEG (ours)	72.73±0.72	76.24±0.58	64.32 ±0.47	61.46±1.06	$78.33 {\pm} 3.26$	77.52±0.63	78.36±0.68	$76.25 {\pm} 1.37$	71.75±1.17	1.9
390											

378

392 in 5 out of 8 datasets. This demonstrates the effectiveness of our PerEG in learning better graph 393 representation under the unsupervised scenario. In addition, from the ablation study of our PerEG, we can see that the removal of node-oriented discriminator ("w/o \mathcal{L}_{node} ") and the removal of node-394 395 edge-oriented discriminator ("w/o \mathcal{L}_{edge} ") degrade the performance of our PerEG. This indicates 396 that both node-oriented discriminator and edge-oriented discriminator are important in our PerEG 397 when performing perturbation discrimination. Meanwhile, the removal of factor ρ ("w/o ρ ") slightly degrades the performance, which implies that our proposed reweighted strategy can improve graph 398 contrastive learning, and lead to better downstream task performance. Further, "w/o \mathcal{L}_{node} " performs 399 slightly worse than "w/o \mathcal{L}_{edge} ", which implies that the node-oriented discriminator can achieve 400 better recognition of node perturbations than the edge-oriented discriminator. 401

402

Semi-supervised Learning To evaluate the performance of our PerEG in the semi-supervised 403 scenario, we follow the settings in (You et al., 2020; Suresh et al., 2021) and report the experimental 404 results in Table 3. It can be seen that our PerEG performs overall better than the baseline models on 405 all datasets in the semi-supervised learning scenario. This verifies the effectiveness of our PerEG for 406 better graph representation. According to the improved results achieved by comparing with existing 407 models, we can conclude that exploring perturbation discrimination to enhance GCL can make the 408 model perform GCL in a controlled manner, allowing the model to alleviate the introduction of noise 409 augmentation and improve the learning of graph representation. 410

- 411 **Transfer Learning** Following (Hu et al., 2020a; You et al., 2020), we further evaluate the per-412 formance of our PerEG in the transfer learning scenario, which pre-trains and finetunes the model in different datasets to evaluate the transferability of the pre-training scheme. The experimental 413 results are reported in Table 4. We can see that our PerEG overall outperforms the baseline models, 414 demonstrating the effectiveness of our PerEG for better graph representation in transfer learning. 415
- 416

4.3 WHY CAN PEREG WORK WELL? 417

418 How do the discriminators enhance the representation of aug-419 mented graphs? To analyze how our proposed discriminators 420 enhance the representation of augmented graphs, we show the 421 t-SNE visualization of embeddings of the original graph and the 422 augmentations in Figure 3. The red point denotes the embed-423 ding of the original graph, the blue points denote the embeddings 424 of augmentations with discriminators, and the green points de-425 note the embeddings of augmentations without discriminators. It 426 can be seen that The representations of augmented graphs can be normalized around the original graph by means of our pro-427 posed discriminators, resulting in better representations for graph 428 contrastive learning. 429

- 430
- Visualizations of Graph Embeddings To qualitatively demon-431 strate how our PerEG improves the graph representations in down-

Figure 3: Visualizations of embeddings of the original graph and augmented graphs presented by t-SNE (van der Maaten & Hinton, 2008).

Figure 4: Visualizations of the graph embeddings presented by t-SNE (van der Maaten & Hinton, 2008) on MUTAG dataset. "Original" denotes the representations learned by the original embeddings.

444 stream tasks, Figure 4 shows the t-SNE visualization of graph embeddings learned by the vanilla "original" embeddings (a), the variants of our PerEG " \mathcal{L}_{con} " (b), and our PerEG (c). We can observe 445 that the embeddings learned by "Original" largely diffuse and overlap between different labels, 446 which denotes that proposing preferable methods to learn better graph representations is key to 447 improving downstream task performance. In addition, " \mathcal{L}_{con} " can produce better graph embeddings 448 in comparison with "Original". This qualitatively demonstrates that contrastive learning in our PerEG 449 can achieve better graph representations. Further, the graph embeddings derived by our PerEG can 450 better separate representations from different labels, which implies that our PerEG can leverage 451 the merits of perturbation discrimination-enhanced contrastive learning, thus obtaining better graph 452 representations. 453

454 How PerEG improves the graph representa-455 tion? To illustrate why our PerEG works well 456 in learning graph representations, we conduct ex-457 periments by plotting \mathcal{L}_{align} and $\mathcal{L}_{uniform}$ in Figure 5. We train 20 epochs for every model and 458 visualize the checkpoints every 2 epochs. We can 459 see that our PerEG performs significantly better 460 for both alignment and uniformity. This indicates 461 that the perturbation discrimination can improve 462 graph representation in GCL. 463

466

438 439 440

441

442 443

5 CONCLUSION

467 In this paper, we propose a novel method to improve graph contrastive learning based on 468 perturbation discrimination, called Perturbation 469 Discrimination-Enhanced graph contrastive learn-470 ing (PerEG). To be specific, we devise a discrim-471 inative model to predict whether each node in the 472 augmented graph was affected by perturbations or 473 not, so as to identify the fine-grained perturbation 474 in a perturbed augmentation compared to the orig-475 inal graph. Then, the discriminative results are

Figure 5: Results of plotting \mathcal{L}_{align} and $\mathcal{L}_{uniform}$ on MUTAG dataset. We train 20 epochs for every model and visualize the checkpoints every 2 epochs. As discussed in (Wang & Isola, 2020), for both \mathcal{L}_{align} and $\mathcal{L}_{uniform}$, models with lower numbers are better.

used to enhance graph contrastive learning by using the perturbed augmentations in a controlled
manner. This essentially enables the model to alleviate the introduction of noise augmentation
when performing graph contrastive learning, thereby improving the learning of graph representation.
Extensive experiments and in-depth analysis in unsupervised, semi-supervised, and transfer learning
scenarios verify that our PerEG achieves state-of-the-art performance in learning generalizability and
robustness graph representations on eight diverse graph-structured datasets.

482 483

484

References

485 Bijaya Adhikari, Yao Zhang, Naren Ramakrishnan, and B Aditya Prakash. Sub2vec: Feature learning for subgraphs. In *Advances in Knowledge Discovery and Data Mining: 22nd Pacific-Asia*

486 487	Conference, PAKDD 2018, Melbourne, VIC, Australia, June 3-6, 2018, Proceedings, Part II 22, pp. 170–182, Springer 2018
488	170–162. Springer, 2016.
489	Jinheon Baek, Dong Bok Lee, and Sung Ju Hwang. Learning to extrapolate knowledge: Transductive
490	few-shot out-of-graph link prediction. Advances in Neural Information Processing Systems, 33:
491	546–560, 2020.
492	Jinheon Baek Minki Kang and Sung Ju Hwang Accurate learning of graph representations with
493	graph multiset pooling. In International Conference on Learning Representations, 2021. URL
494	https://openreview.net/forum?id=JHcqXGaqiGn.
495	Key (a) M.D. and (b) Charles Construction of Construction of Charles and Charl
496	Karsten M Borgwardt, Cheng Soon Ong, Stefan Schonauer, SVN Vishwanathan, Alex J Smola, and
497	i_{47} is i_{72} is i_{100} in the formula of the formula o
498	147-150, 2005.
499	Ting Chen, Yizhou Sun, Yue Shi, and Liangjie Hong. On sampling strategies for neural network-based
500	collaborative filtering. In Proceedings of the 23rd ACM SIGKDD International Conference on
501	Knowledge Discovery and Data Mining, pp. 767–776, 2017.
502	Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
503	contrastive learning of visual representations. In <i>International conference on machine learning</i> , pp.
504	1597–1607. PMLR, 2020.
505	Kerig Clark Migh There Lucas Quee V.L. and Christenhen D.Manning, Electre Destroising
506	Kevin Clark, Minn-Thang Luong, Quoc V Le, and Christopher D Manning. Electra: Pre-training
507	Representations 2010
508	Kepresentations, 2019.
509	Nicola De Cao and Thomas Kipf. Molgan: An implicit generative model for small molecular graphs.
510	arXiv preprint arXiv:1805.11973, 2018.
511	Asim Kumar Debnath, Rosa L Lopez de Compadre, Gargi Debnath, Alan J Shusterman, and Corwin
512	Hansch. Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro compounds.
513	correlation with molecular orbital energies and hydrophobicity. Journal of medicinal chemistry, 34
514	(2):786–797, 1991.
515	Paul D Dobson and Andrew I Doig. Distinguishing enzyme structures from non-enzymes without
516 517	alignments. Journal of molecular biology, 330(4):771–783, 2003.
518 519	Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin. Graph neural networks for social recommendation. In <i>The world wide web conference</i> , pp. 417–426, 2019.
520	Hongyang Gao and Shuiwang Ii Graph u-nets. In international conference on machine learning pp
521 522	2083–2092. PMLR, 2019.
523	Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
524	message passing for quantum chemistry. In International conference on machine learning, pp.
525	1263–1272. PMLR, 2017.
526	Aditya Grover and Jure Leskovec, node2vec: Scalable feature learning for networks. In Proceedings
527	of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining, pp.
528	855–864, 2016.
529	$\mathbf{F}^{(1)} = \mathbf{C} + \mathbf{C}^{(1)} + \mathbf{V}^{(1)} + \mathbf{C}^{(1)} + \mathbf{C}^{(1)$
530	Filippo Guerranti, Zinuo Yi, Anna Starovoit, Rafiq Mazen Kamel, Simon Geisler, and Stephan
531	2023 Workshop: New Frontiers in Graph Learning 2023
532	2025 Workshop. New Fromers in Oraph Learning, 2025.
533	William L Hamilton, Rex Ying, and Jure Leskovec. Representation learning on graphs: Methods and
534	applications. arXiv preprint arXiv:1709.05584, 2017.
535	Kaveh Hassani and Amir Hosein Khasahmadi. Contrastive multi-view representation learning on
536	graphs. In International conference on machine learning, pp. 4116–4126. PMLR, 2020.
537	Waikua IIu Dawan Liu Jacanh Comea Marinka Zitaila Dawa Liang Viina Dawla and Las Las L
538 539	Strategies for pre-training graph neural networks. In <i>International Conference on Learning Representations</i> , 2020a. URL https://openreview.net/forum?id=HJ1WWJSFDH.

540 541 542	Ziniu Hu, Yuxiao Dong, Kuansan Wang, Kai-Wei Chang, and Yizhou Sun. Gpt-gnn: Generative pre-training of graph neural networks. In <i>Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining</i> , pp. 1857–1867, 2020b.
543 544 545 546	Dasol Hwang, Jinyoung Park, Sunyoung Kwon, KyungMin Kim, Jung-Woo Ha, and Hyunwoo J Kim. Self-supervised auxiliary learning with meta-paths for heterogeneous graphs. <i>Advances in Neural Information Processing Systems</i> , 33:10294–10305, 2020.
547 548 549	Dongki Kim, Jinheon Baek, and Sung Ju Hwang. Graph self-supervised learning with accurate discrepancy learning. In <i>36th Conference on Neural Information Processing Systems, NeurIPS 2022.</i> Neural Information Processing Systems, 2022.
550 551 552 553	Dongkwan Kim and Alice Oh. How to find your friendly neighborhood: Graph attention design with self-supervision. In <i>International Conference on Learning Representations</i> , 2021. URL https://openreview.net/forum?id=Wi5KUNlqWty.
554 555	Thomas N Kipf and Max Welling. Variational graph auto-encoders. <i>arXiv preprint arXiv:1611.07308</i> , 2016.
556 557 558 559 560	Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017. URL https://openreview.net/forum?id=SJU4ayYgl.
561 562	Junhyun Lee, Inyeop Lee, and Jaewoo Kang. Self-attention graph pooling. In <i>International conference on machine learning</i> , pp. 3734–3743. PMLR, 2019.
563 564 565 566	Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. In <i>ICML 2020 Workshop on Graph Representation Learning and Beyond (GRL+ 2020)</i> , 2020. URL www.graphlearning.io.
568 569 570	Annamalai Narayanan, Mahinthan Chandramohan, Rajasekar Venkatesan, Lihui Chen, Yang Liu, and Shantanu Jaiswal. graph2vec: Learning distributed representations of graphs. <i>arXiv preprint arXiv:1707.05005</i> , 2017.
571 572 573	Yu Rong, Yatao Bian, Tingyang Xu, Weiyang Xie, Ying Wei, Wenbing Huang, and Junzhou Huang. Self-supervised graph transformer on large-scale molecular data. <i>Advances in Neural Information</i> <i>Processing Systems</i> , 33:12559–12571, 2020.
574 575 576 577	Nino Shervashidze, SVN Vishwanathan, Tobias Petri, Kurt Mehlhorn, and Karsten Borgwardt. Efficient graphlet kernels for large graph comparison. In <i>Artificial intelligence and statistics</i> , pp. 488–495. PMLR, 2009.
578 579	Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt Mehlhorn, and Karsten M Borgwardt. Weisfeiler-lehman graph kernels. <i>Journal of Machine Learning Research</i> , 12(9), 2011.
580 581 582 583	Weijing Shi and Raj Rajkumar. Point-gnn: Graph neural network for 3d object detection in a point cloud. In <i>Proceedings of the IEEE/CVF conference on computer vision and pattern recognition</i> , pp. 1711–1719, 2020.
584 585 586 587	Fan-Yun Sun, Jordan Hoffman, Vikas Verma, and Jian Tang. Infograph: Unsupervised and semi- supervised graph-level representation learning via mutual information maximization. In <i>Interna-</i> <i>tional Conference on Learning Representations</i> , 2020. URL https://openreview.net/ forum?id=rllfF2NYvH.
588 589 590 591	Susheel Suresh, Pan Li, Cong Hao, and Jennifer Neville. Adversarial graph augmentation to improve graph contrastive learning. <i>Advances in Neural Information Processing Systems</i> , 34:15920–15933, 2021.
592 593	Cheng Tan, Jun Xia, Lirong Wu, and Stan Z Li. Co-learning: Learning from noisy labels with self-supervision. In <i>Proceedings of the 29th ACM International Conference on Multimedia</i> , pp. 1405–1413, 2021.

594 Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of Machine 595 Learning Research, 9(86):2579–2605, 2008. 596 Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua 597 Bengio. Graph attention networks. In 6th International Conference on Learning Representations, 598 ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net, 2018. URL https://openreview.net/forum?id=rJXMpikCZ. 600 601 Petar Veličković, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio, and R Devon 602 Hjelm. Deep graph infomax. In International Conference on Learning Representations, 2019. 603 URL https://openreview.net/forum?id=rklz9iAcKQ. 604 Nikil Wale, Ian A Watson, and George Karypis. Comparison of descriptor spaces for chemical 605 compound retrieval and classification. Knowledge and Information Systems, 14:347–375, 2008. 606 607 Tongzhou Wang and Phillip Isola. Understanding contrastive representation learning through align-608 ment and uniformity on the hypersphere. In International Conference on Machine Learning, pp. 9929-9939. PMLR, 2020. 609 610 Jun Xia, Lirong Wu, Jintao Chen, Bozhen Hu, and Stan Z Li. Simgrace: A simple framework for 611 graph contrastive learning without data augmentation. In Proceedings of the ACM Web Conference 612 2022, pp. 1070-1079, 2022a. 613 614 Jun Xia, Yanqiao Zhu, Yuanqi Du, and Stan Z Li. A survey of pretraining on graphs: Taxonomy, methods, and applications. arXiv preprint arXiv:2202.07893, 2022b. 615 616 Dongkuan Xu, Wei Cheng, Dongsheng Luo, Haifeng Chen, and Xiang Zhang. Infogel: Information-617 aware graph contrastive learning. Advances in Neural Information Processing Systems, 34: 618 30414-30425, 2021. 619 Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural 620 networks? In International Conference on Learning Representations, 2019. URL https: 621 //openreview.net/forum?id=ryGs6iA5Km. 622 623 Pinar Yanardag and SVN Vishwanathan. Deep graph kernels. In Proceedings of the 21th ACM 624 SIGKDD international conference on knowledge discovery and data mining, pp. 1365–1374, 2015. 625 Yihang Yin, Qingzhong Wang, Siyu Huang, Haoyi Xiong, and Xiang Zhang. Autogcl: Automated 626 graph contrastive learning via learnable view generators. In Proceedings of the AAAI Conference 627 on Artificial Intelligence, volume 36, pp. 8892-8900, 2022. 628 629 Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure Leskovec. Hier-630 archical graph representation learning with differentiable pooling. Advances in neural information 631 processing systems, 31, 2018. 632 Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. Graph 633 contrastive learning with augmentations. Advances in neural information processing systems, 33: 634 5812-5823, 2020. 635 636 Yuning You, Tianlong Chen, Yang Shen, and Zhangyang Wang. Graph contrastive learning automated. 637 In International Conference on Machine Learning, pp. 12121–12132. PMLR, 2021. 638 Han Yue, Chunhui Zhang, Chuxu Zhang, and Hongfu Liu. Label-invariant augmentation for 639 semi-supervised graph classification. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, 640 and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL 641 https://openreview.net/forum?id=rg_yN3HpCp. 642 643 Xin Zhang, Qiaoyu Tan, Xiao Huang, and Bo Li. Graph contrastive learning with personalized augmentation. IEEE Transactions on Knowledge and Data Engineering, 2024. 644 645 Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang, 646 Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and applications. 647 AI open, 1:57-81, 2020.

A NOTATIONS USED IN THIS PAPER

The notations used in this work are listed in Table 5.

_	NT - 4 - 4 *	Commenting Marian
_	Notation	Corresponding Meanings
9	G	The original graph
9	$\mathcal{G}^{'}$	An augmentation of the original graph \mathcal{G}
,	$\mathcal{T}(\mathcal{G})$	An augmentation pool for graph \mathcal{G}
	$f_g(\cdot; \theta)$	A GNN encoder with parameters θ
1	$g(\cdot)$	The Projection Head
	\mathcal{V}	The set of nodes of graph ${\cal G}$
	E	The set of edges of graph ${\cal G}$
-	$oldsymbol{X}_v$	The matrix of node features
	X_e	The matrix of edge features
	d_v	The dimensionality of node feature
	d_e	The dimensionality of edge feature
4	h_v	The representation of a node v
	hg	The representation of a graph \mathcal{G}
	$h_v^{(k)}$	The representation h_v in the k-th layer GNN
-	$AGGREGATION(\cdot)$	A trainable function that aggregates messages from the neighbors of node v
	$\mathcal{N}(v)$	The set of neighbors of node v
	$\text{UPDATE}(\cdot)$	A trainable function that updates the representation of node v
	$POOL(\cdot)$	The pooling function that generates the representation $h_{\mathcal{G}}$
	\mathcal{D}_n	The Node-oriented Discriminator
1	\mathcal{D}_e	The Edge-oriented Discriminator
,	\mathcal{L}_{node}	The predictive loss of the Node-oriented Discriminator
	\mathcal{L}_{edge}	The predictive loss of the Edge-oriented Discriminator
	$\mathcal{P}_n(v)$	An indicator to determine whether node v is disturbed
	$P_e(v)$	An indicator to determine whether node v is affected by the edges' perturbations
	z_i	The representation of graph G_i after Projection Head $g(\cdot)$
	z_i	The positive augmentation representation for z_i
1	B	The minibatch
5	$\operatorname{SIM}(\cdot)$	The VIEW similarity function
	$\mathcal{C}^{(\mathbf{y}_i)}$	The contractive loss y_i
,	\mathcal{L}_{con}	Fire contrastive toss Sosling weights to belence the losses
	$\lambda_1, \lambda_2, \lambda_3$	Scaling weights to balance the losses
1	ρ_n, ρ_e	File reweighted factor Scaling weights to belonce a land a
	$\gamma n, \gamma e$	Scaling weights to balance ρ_n and ρ_e

B Algorithm of Our PerEG

For a dataset containing M graphs: Data $\{\mathcal{G}_m : m \in M\}$, we use our Perturbation Discrimination-Enhanced Graph Contrastive Learning (PerEG) to train the GNN encoder $f_g(\cdot; \theta)$ for producing semantically good graph representation. The procedure of our PerEG is depicted in Algorithm 1.

C BASELINES

We compare and evaluate our PerEG framework with a series of baseline models, which are grouped by graph kernel methods, graph self-supervised learning methods, predictive learning methods, and contrastive learning methods. The detailed introduction of the baseline models is as follows:

1) graph kernel methods:

• **GL** (Shervashidze et al., 2009). A graph kernel method that measures the similarity between graphs based on counting small subgraphs. It can be used for graph classification and clustering tasks. The kernel computes a similarity score based on the frequency of graph occurrences, providing a way to compare the structural characteristics of different graphs.

700		
702	-	Algorithm 1: Perturbation Discrimination-Enhanced Graph Contrastive Learning
703	ī	Initialize : Data $\{\mathcal{G}_m : m \in M\}$ GNN encoder $f_{-}(\cdot; \theta)$ pooling function POOL(.) projection head $q(\cdot)$
704		node-oriented predictor $\mathcal{D}_n(\cdot;\theta_n)$, edge-oriented predictor $\mathcal{D}_e(\cdot;\theta_e)$, structure-perturbed
705		augmentation pool \mathcal{T}
706	1 1	for sampled minibatch \mathcal{B} of data { $\mathcal{G}_i: i \in N_b$ } do
707	2	$\mathbf{for}\ \mathcal{G}_i = \{\mathcal{V}, \mathcal{E}\} \in \mathcal{B}\ \mathbf{do}$
708	3	Sample \mathcal{G}'_i form $\mathcal{T}: \mathcal{G}'_i \leftarrow \mathcal{T}(\mathcal{G}_i)$ # Structure-perturbed augmentation
709	4	$\{h_v\}_{v=1}^{ \nu } = f_g(\mathcal{G}_i;\theta)$
710	5	$\{h'_v\}_{v=1}^{ \mathcal{V} } = f_g(\mathcal{G}'_i;\theta)$
711	6	$z_i = g\left(\text{POOL}\left(\{h_v\}_{v=1}^{ \mathcal{V} }\right)\right)$
712		$ \begin{pmatrix} (1,1) \\ ($
713	7	$\left[z_{i} = g\left(\text{POOL}\left(\{n_{v}\}_{v=1}^{v}\right)\right)\right]$
714	8	end
715	9	$\mathcal{L}_{node}(\mathcal{G}_i) = \sum_{v=1}^{ \mathcal{V} } \left(-\mathbb{1}\left(\mathcal{P}_n(v) = 1\right) \log\left(\mathcal{D}_n(h'_v; \theta_n)\right) - \mathbb{1}\left(\mathcal{P}_n(v) = 0\right) \log\left(1 - \mathcal{D}_n(h'_v; \theta_n)\right) \right)$
717	10	$\mathcal{L}_{edge}(\mathcal{G}_i) = \sum_{v=1}^{ \mathcal{V} } \left(-\mathbb{1}\left(\mathcal{P}_e(v) = 1\right) \log\left(\mathcal{D}_e(h'_v; \theta_e)\right) - \mathbb{1}\left(\mathcal{P}_e(v) = 0\right) \log\left(1 - \mathcal{D}_e(h'_v; \theta_e)\right) \right)$
718	11	$\rho_n = \frac{1}{ \mathcal{V}_{pn} } \sum_{v \in \mathcal{V}_{pn}} \left(\mathbb{1}(\mathcal{D}_n(v) = 1) \right)$
719	12	$\rho_e = \frac{1}{ \mathcal{V} } \sum_{w \in \mathcal{V}} \left(\mathbb{1}(\mathcal{D}_e(v) = 1) \right)$
720	13	
721		$r = \frac{1}{10} r^{\mu} r^{$
722	14	$\ell(\mathcal{G}_i) = -\log \frac{1}{\sum_{k=1,k\neq i}^{N_b} \exp(\sin(z_i, z_k)/\tau)} \times \rho$
723	15	$\mathcal{L}_{node} = \frac{1}{N_i} \sum_{\mathcal{G}_i \in \mathcal{B}} \mathcal{L}_{node}(\mathcal{G}_i) $ # Loss of Node-oriented Predictor
724	16	$\mathcal{L}_{edge} = \frac{1}{N_{v}} \sum_{G \in \mathcal{B}} \mathcal{L}_{edge}(\mathcal{G}_{i}) $ # Loss of Edge-oriented Predictor
725	17	$\mathcal{L}_{con} = \frac{1}{N} \sum_{\mathcal{G}_i \in \mathcal{B}} \ell(\mathcal{G}_i) \#$ Loss of Graph-level Contrastive Learning
726	18	$\mathcal{L} = \lambda_1 \mathcal{L}_{con} + \lambda_2 \mathcal{L}_{node} + \lambda_3 \mathcal{L}_{edge}$
727	19	Update $f_g(\cdot; \theta), g(\cdot), \mathcal{D}_n(\cdot; \theta_n)$, and $\mathcal{D}_e(\cdot; \theta_e)$ to minimize \mathcal{L}
720	20	end
729	21	Return: GNN Encoder $f_g(\cdot; \theta)$
701		
730		
732		• WL (Shervashidze et al., 2011). A Weisfeiler-Lehman sub-tree kernel measures the similarity
73/		between graphs by comparing their labeled substructures. It iteratively refines the node labels
725		by aggregating the labels of neighboring nodes, capturing graph structure, and preserving
736		information about node attributes.
737		• DGK (Yanardag & Vishwanathan, 2015). A deep graph kernel method that uses neural
738		networks to learn representations of subgraphs and combine them to compute a similarity
730		score, enabling more expressive and flexible graph comparisons for various graph analysis
7/0		tasks.
7/11		
7/12		2) graph self-supervised learning methods:
743		CAE (Kief & Welling 2016) A graph group lastered and delived for a second lastering
744		• GAE (Kipi & weiling, 2010). A graph neural neuwork model used for unsupervised learning
745		a graph by reconstructing the adjacency matrix or node attributes, enabling tasks such as
746		link prediction and node classification in the graph domain
747		
748		• node2vec (Grover & Leskovec, 2016). An algorithm for learning feature representations
749		or embeddings for nodes in a graph. It combines random walks and the Skip-gram model
750		to capture structural properties and node relationships. The resulting embeddings enable
751		various graph anarysis tasks such as this prediction, node classification, and clustering.
752		• sub2vec (Adhikari et al., 2018). An unsupervised algorithm that has a global view of the
753		learning subgraph and captures the similarities and differences between the properties of the
754		entire subgraph.
755		• graph2vec (Narayanan et al., 2017). A graph representation learning algorithm that uses

756 757	By aggregating node embeddings, Graph2Vec captures the structural properties and global characteristics of graphs, enabling downstream graph analysis tasks.
758 759 760 761	• InfoGraph (Sun et al., 2020). Obtaining graph representation by maximizing the mutual information between the graph-level representation and the representation of substructures at different scales (such as nodes, edges, and triangles).
762 763	3) predictive learning methods:
764 765 766 767 768	• ContextPred (Hu et al., 2020a). Performing node-level self-supervised pre-training and graph-level multi-task supervised pre-training. When GNN pretraining is completed, the pre-trained GNN model is fine-tuned for downstream tasks, specifically adding a linear classifier to predict downstream graph labels based on graph-level representation.
769	4) contrastive learning methods:
770 771 772 772	• MVGRL (Hassani & Khasahmadi, 2020). Performing contrastive learning on different structural views of graphs for both node and graph levels to enrich feature learning.
774 775	• GraphCL (You et al., 2020). Designing four types of graph augmentations to learn the similarity metrics between augmentations with contrastive learning.
776 777	• JOAO and JOAOv2 (You et al., 2021). Utilizing an auto augmentation strategy to select the best augmentations from the four types of graph augmentations designed by GraphCL.
778 779	• AD-GCL-FIX and AD-GCL-OPT (Suresh et al., 2021). Learning graph augmentation strategies with adversarial methods.
780 781 782	• SimGRACE (Xia et al., 2022a). Generating contrastive objects of graphs for contrast by perturbing the weights of the model.
783 784 785	• AutoGCL (Yin et al., 2022). Designing a view generation learner for each graph augmenta- tion method to learn the probability distribution of the augmentation method for specific graph data.
786 787 788	• GPA (Zhang et al., 2024). Let each graph to select its own suitable data augmentation operations through a learnable augmentation selector.
789 790 791	D MORE DETAILS OF EXPERIMENTAL IMPLEMENTATION
792 793 794 795	All experiments are conducted in Intel(R) Xeon(R) Gold 5220R CPU @ 2.20GHz, 4 NVIDIA V100 GPU with 32 GB of RAM. The detailed settings of hyperparameters in our unsupervised and semi-supervised learning experiments are shown in Table 6.
796 797 798	E ANALYSIS OF AUGMENTATION STRENGTH
799 800 801 802 803 804	To examine whether the strength of augmentations can affect the performance of our PerEG, we conduct experiments with different strengths in producing augmentations and show the results in Figure 6. The structure-perturbed graph augmentation results of Figure $6(a)$ -(c) show that ratios near 0.5 worsen the performance, denoting that disturbing around half of the nodes in a graph will increase the uncertainty of the graph structure, thereby increasing the difficulty of prediction. Figure 6(d) shows that, for edge perturbation, the fluctuation in performance is relatively slight at different ratios, implying that an adge perturbation affects multiple pedge and a smaller presenting of edge.
805	ratios, imprying that an edge perturbation affects multiple nodes, and a smaller proportion of edge

ao5 ratios, implying that an edge perturbation affects multiperturbations may cause significant structural changes.

Further, Figure 7 shows the comparison results of using different perturbation strategies to produce
 perturbed augmentations. Our PerEG achieves better performance than GraphCL in different augmentation strategies. Meanwhile, the improvement of different strategies varies. Therefore, we need to explore different augmentation strategies to learn richer graph representations.

51 1	Description	Unsupervised	Semi-su
		1	Pre-train
-	Learning rate	0.005	0.001
B	Batch size	128	128
K	Number of GNN layers	3	-
d_h	Hidden layer dimensionality	32	128
λ_1	Scaling weight of pode predictive loss \mathcal{L}_{con}	1.0	1.0
λ_2	Scaling weight of edge predictive loss \mathcal{L}_{node}	1.0	1.0
\sim	Scaling weight of node reweighted factor ρ	0.5	0.5
γ_{-}	Scaling weight of edge reweighted factor ρ_n	0.5	0.5
- -	Training epochs	20	25
n_{a}	Augmentation ratio	0.2	0.2
$POOL(\cdot)$	Pooling function	'sum'	'sum'
	Number of feature transform layers		1
-	Number of GCN layers	-	3
-	Number of fully-connect layers	-	2
	Learning rate of fine-tuning		
-	Training epochs of fine-tuning	-	-
-	Number of k-fold splits in fine-tuning	-	-
1	89.5	4 05 06 07 08 00 89.0	1
0.1 0.2 0.3 0.4 0.5 (a) NodeDro	(b) AttrMask ratio (c) Si	bgraph ratio	0.1 0.2 0.3 0.4 (d) Edg
(a) NodeDro	imental results of performance versus augmo	entation strengt	h on MUT
Gai of a of	(c) Strimental results of performance versus augmental from the second s	entation strengt	h on MUT
Gai of a of	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	entation strengt	h on MUT
Gai of a of	92.5 92.0 92.5 92.0 92.5 92.0 92.5 92.0 92.5 92.0 92.5	entation strengt	h on MUT
Gai of a of	$\begin{array}{c} 92.5\\ 92.0\\ 91.5\end{array} \qquad \qquad$	entation strengt	h on MUT
Gai of a of	Similar control of the control of t	entation strengt	h on MUT
Gai of as of a so of a	Finental results of performance versus augmental results of 92.5 92.0 91.5 91.0 91.0 91.0	entation strengt	h on MUT
Figure 6: Expendence	Finental results of performance versus augmental results of 92.5 92.0 91.5 92.5 91.0 92.5 91.0 92.5 91.0 92.5 91.0 92.5 91.0 92.5 91.0 92.5 91.0 92.5 91.0 92.5 91.0 92.5 91.0 92.5 91.0 92.5 91.0 92.5 91.0 92.5 91.0 92.5 91.0 92.5 91.0 92.5 91.0 92.5 91.0 92.5 91.0 92.5 91.5 92.5 91.5 92.5 91.5 92.5 91.5 92.5 91.5 92.5 91.5 92.5 91.5 92.5 91.5 92.5 91.5 92.5 91.5	entation strengt	h on MUT
Given the first of	Finental results of performance versus augm 92.5 92.0 91.5 90.5 90.5 90.5 90.5	entation strengt	h on MUT
Given the first of	Finental results of performance versus augm 92.5 92.0 91.5 90.5 90.0 90.5 90.0	CL 6 (ours)	h on MUT
Given the first of	Finental results of performance versus augm 92.5 92.0 91.5 90.5 90.5 90.0 90.5 90.0 90.5 90.0 90.5 90.0 90.5 90.0 90.5 90.0 90.5 90.0 90.5 90.0 90.5 90.0 90.5 90.0 90.5 90.0 90.5 90.0 90.5 90.0 90.5 90.0 90.5 90.0 90.5 90.0 90.5 90.0 90.5 90.5 90.0 90.5	CL 6 (ours)	h on MUT
Given the second	Finental results of performance versus augm 92.5 92.0 91.5 90.5 90.0 89.5	CL 6 (ours)	h on MUT
Figure 6: Expe	Similar constraints of performance versus augm 92.5 92.0 91.5 91.5 90.5	CL G (ours) Subgraph	h on MUT
Figure 6: Expe	So us	CL G (ours) Subgraph	h on MUT

F ROBUSTNESS STUDY

860 861

Following Guerranti et al. (2023), we conducted additional experiments of robustness studies for our
 model. The results are shown in Table 7. From the results, we can see that our model (PerEG) can
 succeed in enhancing adversarial robustness in comparison with GraphCL.

Table 7: Robus	stness studies	s for PerEG	on TUDatase
Methods	PROTEINS	NCI1	DD
GraphCL (Clean)	65.93	73.09	68.85
GraphCL (Attack)	40.29 (↓ 38.89)	32.20 (↓ 55.94)	15.74 (↓ 75.34)
PerEG (Clean)	68.73	74.03	74.83
PerEG (Attack)	48.07 (\ 32.69)	33.35 (↓ 54.95)	26.20 (↓ 64.99)

G FURTHER STUDIES ON THE PERFORMANCE OF DISCRIMINATORS

In order to further validate the performance of the discriminator we used, we analyze the accuracy of the two discriminators in PerEG. Here we report the performances of the discriminators in Table 8. We can see that the discriminators perform well on all datasets, the accuracy of all datasets is above 80%. This proves that the discriminators are effective and capable of identifying most of the perturbations. Further, those small parts that cannot be recognized, will be considered as noise, making them ineffective in graph contrastive learning.

Table 8: Accuracy of the discriminators (%)

Discriminator	NCI1	PROTEINS	DD	MUTAG	COLLAB	RDT-B	RDT-M5K	IMDB-B
${\mathcal D}_n$	87.23	85.45	90.32	90.89	86.43	90.20	81.83	88.26
${\cal D}_e$	87.87	86.02	92.75	91.43	87.27	91.56	85.55	89.34

Additionally, we combine the two discriminators and then retest the performance of the model. As shown in Table 9, the performance of combining two discriminators is worse than our PerEG.

Table 9: Comparison results of combining tw	wo discriminators and our PerEG (%)
---	-------------------------------------

Methods	NCI1	PROTEINS	DD	MUTAG	COLLAB	RDT-B	RDT-M5K	IMDB-B
Combine	78.64	74.86	79.15	89.35	73.02	89.85	56.30	71.67
PerEG	79.94	76.04	80.02	90.61	73.84	90.57	56.81	72.97

H EXPERIMENTS ON NODE CLASSIFICATION TASK

We also evaluate our PerEG in the unsupervised representation learning in the node classification scenario following Veličković et al. (2019) and You et al. (2020). We use GCN as the GNN-based encoder to generate the node embeddings and then feed them into a downstream classifier. The results in Table10 show that PerEG outperforms both DGI and GraphCL, proving the superiority of our PerEG.

903 BROADER IMPACTS

Learning on graph-structured data has a wide range of interests and applications, such as recommendation systems, social media, neural structure search, and drug discovery. Our PerEG contributes a general framework for processing different kinds of graph augmentations. Further, the proposed node-level predictive learning can perceive the fine-grained structural differences and identify the topological information of the graph from node-oriented and edge-oriented perspectives, providing a new idea for learning graph-structured information.

LIMITATIONS

In order to mitigate the generation of isolated outlier nodes, we produce four perturbed augmentations
for each graph. However, there is still a situation where a node is isolated in different augmentations,
which will hinder the performance of perturbation discrimination in our PerEG. Therefore, in future
work, we will consider trying more reasonable strategies for producing perturbed augmentations to avoid the generation of isolated nodes, aiming to further improve the performance of our PerEG.

938Table 10: Comparing classification accuracy on top of learned node representations. The compared939DGI(Veličković et al., 2019) and GraphCL(You et al., 2020) performance are from the original paper940under the same experiment setting.

1	Methods	Augmentation	Cora	Citeseer
	DGI	raginontation	82 30+0.60	71 80+0 70
	100	- NodeDrop v s NodeDrop	81.76 ± 0.00	73.14 ± 0.15
		EdgePert v.s. EdgePert	82.32 ± 0.15	73.11 ± 0.19
	GraphCL	AttrMask v.s. AttrMask	81.78 ± 0.17	72.05 ± 0.22
		Subgraph v.s. Subgraph	81.71 ± 0.14	73.12 ± 0.17
		NodeDrop v.s. Identical	82.41 ± 0.10	72.22 ± 0.18
		EdgePert v.s. Identical	82.45 ± 0.11	72.23 ± 0.17
		AttrMask v.s. Identical	82.45 ± 0.12	72.31 ± 0.13
		Subgraph v.s. Identical	$82.49 {\pm} 0.12$	$72.33 {\pm} 0.18$
		NodeDrop v.s. NodeDrop	81.90 ± 0.16	73.70 ± 0.20
	PerEG (ours)	EdgePert v.s. EdgePert	83.58 ± 0.15	74.11 ± 0.16
		AttrMask v.s. AttrMask	82.78 ± 0.21	72.69 ± 0.25
		Subgraph v.s. Subgraph	82.26 ± 0.12	73.69 ± 0.20
		NodeDrop v.s. Identical	83.16 ± 0.13	73.53 ± 0.26
		EdgePert v.s. Identical	83.04 ± 0.18	72.76 ± 0.20
		AttrMask v.s. Identical	83.04 ± 0.19	72.72 ± 0.27
		Subgraph v.s. Identical	83.06±0.13	72.80 ± 0.20