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ABSTRACT

Face recognition datasets are often collected by crawling Internet and without in-
dividuals’ consents, raising ethical and privacy concerns. Generating synthetic
datasets for training face recognition models has emerged as a promising alter-
native. However, the generation of synthetic datasets remains challenging as it
entails adequate inter-class and intra-class variations. While advances in genera-
tive models have made it easier to increase intra-class variations in face datasets
(such as pose, illumination, etc.), generating sufficient inter-class variation is still a
difficult task. In this paper, we formulate the dataset generation as a packing prob-
lem on the embedding space (represented on a hypersphere) of a face recognition
model and propose a new synthetic dataset generation approach, called Hyper-
Face. We formalize our packing problem as an optimization problem and solve it
with a gradient descent-based approach. Then, we use a conditional face genera-
tor model to synthesize face images from the optimized embeddings. We use our
generated datasets to train face recognition models and evaluate the trained mod-
els on several benchmarking real datasets. Our experimental results show that
models trained with HyperFace achieve state-of-the-art performance in training
face recognition using synthetic datasets.

1 INTRODUCTION

Recent advances in the development of face recognition models are mainly driven by the deep neural
networks (He et al., 2016), the angular loss functions (Deng et al., 2019; Kim et al., 2022), and the
availability of large-scale training datasets (Guo et al., 2016; Cao et al., 2018; Zhu et al., 2021).
The large-scale training face recognition datasets are collected by crawling the Internet and without
the individual’s consent, raising privacy concerns. This has created important ethical and legal
challenges regarding the collecting, distribution, and use of such large-scale datasets (Nat, 2022).
Considering such concerns, some popular face recognition datasets, such as MS-Celeb (Guo et al.,
2016) and VGGFace2 (Cao et al., 2018), have been retracted.

With the development of generative models, generating synthetic datasets has become a promising
solution to address privacy concerns in large-scale datasets (Melzi et al., 2024; Shahreza et al.,
2024). In spite of several face generator models in the literature (Deng et al., 2020; Karras et al.,
2019; 2020; Rombach et al., 2022; Chan et al., 2022), generating a synthetic face recognition model
that can replace real face recognition datasets and be used to train a new face recognition model
from scratch is a challenging task. In particular, the generated synthetic face recognition datasets
require adequate inter-class and intra-class variations. While conditioning the generator models
on different attributes can help increasing intra-class variations, increasing inter-class variations
remains a difficult task.

In this paper, we focus on the generation of synthetic face recognition datasets and formulate the
dataset generation process as a packing problem on the embedding space (represented on the surface
of a hypersphere) of a pretrained face recognition model. We investigate different packing strategies
and show that with a simple optimization, we can find a set of reference embeddings for synthetic
subjects that has a high inter-class variation. We also propose a regularization term in our optimiza-
tion to keep the optimized embedding on the manifold of face embeddings. After finding optimized
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Figure 1: Sample face images from the HyperFace dataset

embeddings, we use a face generative model that can generate face images from embeddings on the
hypersphere, and generate synthetic face recognition datasets. We use our generated synthetic face
recognition datasets, called HyperFace, to train face recognition models. We evaluate the recog-
nition performance of models trained using synthetic datasets, and show that our optimization and
packing approach can lead to new synthetic datasets that can be used to train face recognition mod-
els. We also compare trained models with our generated dataset to models trained with previous
synthetic datasets, where our generated datasets achieve competitive performance with state-of-the-
art synthetic datasets in the literature. Figure 1 illustrates sample face images from our synthetic
dataset.

The remainder of this paper is organized as follows. In Section 2, we present our problem formula-
tion and describe our proposed method to generate synthetic face datasets. In Section 3, we provide
our experimental results and evaluate our synthetic datasets. In Section 4, we review related work in
the literature. Finally, we conclude the paper in Section 5.

2 PROBLEM FORMULATION AND PROPOSED METHOD

2.1 PROBLEM FORMULATION

Identity Hypersphere: Let us assume that we have a pretrained face recognition model F : I →
X , which can extract identity features (a.k.a. embedding) x ∈ X ⊂ Rn

X from each face image
I ∈ I. Without loss of generality, we can assume that the extracted identity features cover a unit
hypersphere1, i.e., ||x||2 = 1,∀x ∈ X .

Representing Synthetic Dataset on the Identity Hypersphere: We can represent a synthetic face
recognition dataset D on this hypersphere by finding the embeddings for each image in the dataset.
For simplicity, let us assume that for subject i in the synthetic face dataset, we can have a reference
face image Iref,i and reference embedding xref,i = F (Iref,i). Note that the reference face image Iref,i
may already exist in the synthetic dataset D, otherwise we can assume the reference embedding xref,i
as the average of embeddings of all images for subject i in the dataset D. Therefore, the synthetic
face recognition dataset D with nid number of subjects can be represented as a set of reference
embeddings {xref,i}nid

i=1.

2.2 HYPERFACE SYNTHETIC FACE DATASET

HyperFace Optimization Problem: By representing a synthetic dataset D on the identity hyper-
sphere as a set of reference embeddings {xref,i}nid

i=1, we can raise the question that “How should
1If the identity embedding x extracted by F (.) is not normalized, we normalize it such that ||x||2 = 1.
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Figure 2: Block diagram of HyperFace Dataset Generation: We start from randomly synthesized
face images and extract their embeddings using a pretrained face recognition model F . The extracted
embeddings are normalised and used as initial points {xref,i}nid

i=1 in our HyperFace optmization.
The HyperFace optimization tries to increase the intra-class variation for synthetic identities on
the manifold of the face recognition model over the hypersphere using a regularization term. The
resulting points are then used by a face generator model G, which can generate synthetic face images
from the embeddings.

reference embeddings cover the identity hypersphere?” To answer this question, we remind that
the distances between reference embeddings indicate the inter-class variation in the synthetic face
recognition dataset D. Therefore, since we would like to have a high inter-class variation in the gen-
erated dataset D, we can say that we need to maximize the distances between reference embeddings
{xref,i}nid

i=1. In other words, we need to solve the following optimization problem:

max min
{xref},i̸=j

d(xref,i,xref,j) subject to ||xref,k||2 = 1,∀k ∈ {1, ..., nid} (1)

where d(·, ·) is a distance function.

Solving the HyperFace Optimization: The optimization problem stated in Eq. 1 is a well-known
optimization problem, which is known as spherical code optimization (J. H. Conway, 1998) or the
Tammes problem (Tammes, 1930), where the goal is to pack a given number of points (e.g., parti-
cles, pores, electrons, etc.) on the surface of a unit sphere such that the minimum distance between
points is maximized. There are different approaches for solving this optimization problem (such
as geometric optimization). However, for a large dimension of hypersphere (i.e., nX ) and a large
number of points (i.e., number of subjects nid in our problem), solving this optimization can be com-
putationally expensive. To address this issue, we solve the optimization problem with an iterative
approach based on gradient descent. To this end, we can randomly initialize the reference embed-
dings and find the optimised reference embeddings {xref,i}nid

i=1 using the Adam optimizer (Kingma
& Ba, 2015). This allows us to solve the optimization with a reasonable computation resource. For
example, we can solve the optimization for nX = 512 and nid = 10, 000 on a system equipped with
a single NVIDIA 3090 GPU in 6 hours.

Regularization: While we solve the optimization problem in Eq. 1 on the surface of a hyper-
sphere, we should note that the manifold of embeddings X does not necessarily cover the whole
surface of the hypersphere. This means if we get out of the distribution of embeddings X , we may
not be able to generate face images from such embeddings. Therefore, we need to add a regulariza-
tion term to our optimization problem that tends to keep the reference embeddings on the manifold
of embeddings X . To this end, we consider a set of face images {Ii}

ngallery
i=1 as a gallery of images2 and

extract their embeddings to have set of valid embeddings {xi}
ngallery
i=1 . Then, we try to minimize the

distance of our reference embeddings {xref,i}nid
i=1 to the set of embeddings {xi}

ngallery
i=1 , which approx-

imates the manifold of embeddings X . To this end, for each reference embedding {xref,i}nid
i=1, we

find the closest embedding in {xi}
ngallery
i=1 and minimize their distance. We can write the optimization

in Eq. 1 as a regularized min-max optimization as follows:

2The gallery of face images {Ii}
ngallery
i=1 can be generated using an unconditional face generator network such

as StyleGAN (Karras et al., 2020), Latent Diffusion Model (LDM) (Rombach et al., 2022), etc.
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Algorithm 1 HyperFace Optimization for Finding Reference Embeddings

1: Inputs: λ : learning rate, nitr : number of iterations, {xg}
ngallery
g=1 : embeddings of a gallery of face images,

2: α : hyperparameter (contribution of regularization).
3: Output: Xref = {xref,i}nid

i=1 : optimized reference embeddings.
4: Procedure:
5: Initialize reference embeddings {xref,i}nid

i=1

6: For n = 1, .., nitr do
7: Find xref,i,xref,j ∈Xref which have minimum distance d(xref,i,xref,j)
8: Reg← 1

nid

∑nid
k=1 min{xg}gallery d(xref,k,xg) ▷ Calculate the regularization term

9: cost← −d(xref,i,xref,j)
10: Xref ←Xref − Adam(∇cost, λ)
11: Xref ← normalize(Xref) ▷ To ensure that resulting embeddings Xref remain on the hypersphere.
12: End For
13: End Procedure

min max
{xref},i̸=j

−d(xref,i,xref,j) + α
1

nid

nid∑
k=1

min
{xg}

ngallery
g=1

d(xref,k,xg);︸ ︷︷ ︸
regularization

subject to ||xref,k||2 = 1,∀k ∈ {1, ..., nid},

(2)

where α is a hyperparameter that controls the contribution of the regularization term in the opti-
mization. To provide more flexibility in our optimization, we consider the size of gallery ngallery to
be greater or equal to the number of identities nid in the synthetic dataset (i.e., ngallery ≥ nid).

Initialization: To solve the HyperFace optimization problem in Eq. 1 using Algorithm 1, we need
to initialize the reference embeddings {xref,i}nid

i=1. To this end, we can generate nid number random
synthetic images {Ii}nid

i=1 using a face generator model, such as StyleGAN (Karras et al., 2020),
Latent Diffusion Model (LDM) (Rombach et al., 2022). These models use a noise vector as the input
and can generate synthetic face images in an unconditional setting. Then, after generating {Ii}nid

i=1
images, we can extract their embeddings using the face recognition model F (·) and use the extracted
embeddings as initialization values for the reference embeddings {xref,i}nid

i=1 in Algorithm 1.

Image Generation: After we find the reference embeddings {xref,i}nid
i=1 using Algorithm 1, we

can use an identity-conditioned image generator model to generate face images from reference em-
beddings. To this end, we use a recent face generator network (Papantoniou et al., 2024), which
is based on probabilistic diffusion models. The diffusion face generator model G(·, ·) can generate
a face image I = G(xref, z) from reference embedding xref and a random noise z ∼ N (0, IDM).
Therefore, by changing the random noise z and sampling different noise vectors, we can generate
different samples for the reference embedding xref. In addition, to increase intra-class variation, we
add Gaussian noise v ∼ N (0, InX ) to the reference embedding xref, and then normalize it to locate
it on the hypersphere. In summary, we can generate different samples for each reference embedding
xref by changing z and v noise vectors as follows:

I = G(
xref + βv

||xref + βv||2
, z), v ∼ N (0, InX ), z ∼ N (0, IDM), (3)

where β is a hyperparamter that controls the variations to the reference embedding. Figure 2 depicts
the block diagram of our synthetic dataset generation process. Algorithm 3 in Appendix F also
present a pseudo-code of dataset generation process.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Dataset Genration: For solving the HyperFace optimization in Algorithm 1, we use an initial
learning rate of λ = 0.01 and reduce the learning rate by power 0.75 every 5, 000 iterations for a

4
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Table 1: Comparison of recognition performance of face recognition models trained with different
synthetic datasets and a real dataset (i.e., CASIA-WebFace). The performance reported for each
dataset is in terms of accuracy and best value for each benchmark is emboldened.

Dataset name # IDs # Images LFW CPLFW CALFW CFP AgeDB

SynFace (Qiu et al., 2021) 10’000 999’994 86.57 65.10 70.08 66.79 59.13
SFace (Boutros et al., 2022) 10’572 1’885’877 93.65 74.90 80.97 75.36 70.32
Syn-Multi-PIE (Colbois et al., 2021) 10’000 180’000 78.72 60.22 61.83 60.84 54.05
IDnet (Kolf et al., 2023) 10’577 1’057’200 84.48 68.12 71.42 68.93 62.63
ExFaceGAN (Boutros et al., 2023b) 10’000 599’944 85.98 66.97 70.00 66.96 57.37
GANDiffFace (Melzi et al., 2023) 10’080 543’893 94.35 76.15 79.90 78.99 69.82
Langevin-Dispersion (Geissbühler et al., 2024) 10’000 650’000 94.38 65.75 86.03 65.51 77.30
Langevin-DisCo (Geissbühler et al., 2024) 10’000 650’000 97.07 76.73 89.05 79.56 83.38
DigiFace-1M (Bae et al., 2023) 109’999 1’219’995 90.68 72.55 73.75 79.43 68.43
IDiff-Face (Uniform) (Boutros et al., 2023a) 10’049 502’450 98.18 80.87 90.82 82.96 85.50
IDiff-Face (Two-Stage) (Boutros et al., 2023a) 10’050 502’500 98.00 77.77 88.55 82.57 82.35
DCFace (Kim et al., 2023) 10’000 500’000 98.35 83.12 91.70 88.43 89.50
HyperFace [ours] 10’000 500’000 98.50 84.23 89.40 88.83 86.53

CASIA-WebFace (Yi et al., 2014) 10’572 490’623 99.42 90.02 93.43 94.97 94.32

total number of iterations nitr = 100, 000. We also consider cosine distance, which is commonly
used in face recognition systems for the comparison of face embeddings, as our distance function
d(·, ·). For the hyperparameters α and β, we consider default values of 0.5 and 0.01, respectively, in
our experiments. We also consider the size of gallery to be the same as the number of identities, and
explore other cases where ngallery > nid in our ablation study. We generate 64 images, by default, per
each identity in our generated datasets and explore other numbers of images in our ablation study.

We use ArcFace (Deng et al., 2019) as the pretrained face recognition model F (·) with the embed-
ding dimension of nX = 512 and use a pretrained generator model (Papantoniou et al., 2024) to
generate face images from ArcFace embeddings. After generating face images, we align all face
images using a pretrained MTCNN (Zhang et al., 2016) face detector model. For our regularization,
we randomly generate images with StyleGAN (Karras et al., 2020) as default, and investigate other
generator models in our ablation study.

Evaluation: To evaluate the generated synthetic datasets, we use each generated datasets as a
training dataset for training a face recognition model. To this end, we use the iResNet50 backbone
and train the model with AdaFace loss function (Kim et al., 2022) using the Stochastic Gradient De-
scent (SGD) optimizer with the initial learning rate 0.1 and a weight decay of 5×10−4 for 30 epochs
with the batch size of 256. After training the face recognition model with the synthetic dataset,
we benchmark the performance of the trained face recognition models on different benchmarking
datasets of real images, including Labeled Faces in the Wild (LFW) (Huang et al., 2008), Cross-age
LFW (CA-LFW) (Zheng et al., 2017), CrossPose LFW (CP-LFW) (Zheng & Deng, 2018), Celebri-
ties in Frontal-Profile in the Wild (CFP-FP) (Sengupta et al., 2016), and AgeDB-30 (Moschoglou
et al., 2017) datasets. For consistency with prior works, we report recognition accuracy calculated
using 10-fold cross-validation for each of benchmarking datasets. The source code of our experi-
ments and generated datasets are publicly available3.

3.2 ANALYSIS

Comparison with Previous Synthetic Datasets: We compare the recognition performance of
face recognition models trained with our synthetic dataset and previous synthetic datasets in the
literature. We use the published dataset for each method and train all models with the same con-
figuration for different datasets to prevent the effect of other hyperparameters (such as number of
epochs, batch size, etc.). For a fair comparison, we consider the versions of datasets with a similar

3The source code and generated datasets will be available upon acceptance of the paper.
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number of identities4, if there are different datasets available for each method. Table 1 compares
the recognition performance of face recognition models trained with different synthetic datasets.
As the results in this table show, our method achieves state-of-the-art performance in training face
recognition using synthetic data. Figure 1 illustrates sample face images from our synthetic dataset.
Figure 4 of appendix also presents more sample images from HyperFace dataset.

Table 2: Ablation study on the effect of number of images

Image/ID LFW CPLFW CALFW CFP AgeDB

32 98.70 84.17 88.83 88.74 86.33
50 98.50 84.23 89.40 88.83 86.53
64 98.67 84.68 89.82 89.14 87.07
96 98.42 84.15 89.00 89.51 87.45
128 98.20 83.63 89.82 89.31 87.62

Ablation Study: In our dataset
generation method, there are differ-
ent hyperparameters which can affect
the HyperFace optimization and the
generated synthetic datasets. Table 2
reports the ablation study on the num-
ber of images generated per each syn-
thetic identity in our experiments. As
the results in Table 2 show, increas-
ing the number of images per identity
improves the recognition performance of trained face recognition model, but it tends to saturate after
64 images per identity.

Table 3: Ablation study on the effect of number of identities

# IDs LFW CPLFW CALFW CFP AgeDB

10k 98.67 84.68 89.82 89.14 87.07
30k 98.82 85.23 91.12 91.74 89.42
50k 98.27 85.60 91.48 92.24 90.40

Table 3 also compares the number of
identities in the generated dataset, in-
cluding 10k, 20k, and 50k identities.
As the results in Table 3 show, in-
creasing the number of identities im-
proves the recognition performance
of trained face recognition model on
the benchmarking datasets. The re-
sults in this table demonstrates that we can still increase the number of identities and scale our
dataset generation without saturating the performance. The main issue for increasing the size of
dataset is computation resource, which is discussed in detail in Appendix A. We can also reduce
the complexity of our optimization for large number of identities, which is discussed in detail in
Appendix B.

Table 4: Ablation study on the effect of ngallery

ngallery LFW CPLFW CALFW CFP AgeDB

10K 98.53 84.00 88.92 89.34 85.9
20K 98.50 84.32 89.28 89.17 86.00
50K 98.72 84.23 88.72 89.19 86.85

Table 4 reports the recognition per-
formance achieved for face recogni-
tion model trained with datasets with
10k identity and optimized with dif-
ferent numbers of gallery images. As
the results in this table shows, in-
creasing the size of gallery improves
the performance of the trained model.
However, with 10,000 images we can still approximate the manifold of face embeddings on the hy-
persphere.

Table 5: Ablation study on the type of data in gallery

Gallery LFW CPLFW CALFW CFP AgeDB

StyleGAN 98.67 84.68 89.82 89.14 87.07

LDM 98.65 84.35 89.17 89.09 86.35

BUPT 98.70 84.77 90.03 89.16 87.13

As another ablation study, we use
different source of images for the
gallery set to use in our regulariza-
tion and solve the HyperFace opti-
mization. We use pretrained Style-
GAN (Karras et al., 2020) as a GAN-
based generator model and a pre-
trained latent diffusion model (Rom-
bach et al., 2022) as a diffusion-based
generator model. We use these generator models and randomly generate some synthetic face im-
ages. In addition, for our ablation study, we consider some real images from BUPT dataset (Wang
et al., 2019) as a dataset of real face images. As the results in Table 5 show, optimization with im-
ages from StyleGAN and LDM lead to comparable performance for the generated face recognition

4Only in the dataset used for DigiFace (Bae et al., 2023) there are more identities, because there is only one
version available for this dataset, which has a greater number of identities compared to other existing synthetic
datasets.
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dataset. However, the real images in the BUPT dataset lead to superior performance. This suggests
that the synthesized images cannot completely cover the manifold of embeddings and if we use real
images as our gallery it can improve the generated dataset and recognition performance of our face
recognition model.

Table 6: Ablation study on the effect of α

α LFW CPLFW CALFW CFP AgeDB

0 98.40 84.15 88.87 89.31 86.48
0.50 98.67 84.68 89.82 89.14 87.07
0.75 98.62 84.32 89.48 89.67 86.72
1.0 98.55 84.72 89.10 89.76 86.63

We also study the effect of hyper-
parameters α and β on the gener-
ated face recognition dataset. Ta-
ble 6 reports the ablation study for
the contribution of regularization in
our optimization (α). As the results
in this table shows, the regulariza-
tion enhances the quality of generated
dataset and improves the recognition
performance of face recognition model. In fact, our regularization term helps our optimization to
keep the points on the manifold of face recognition over the hypersphere, and therefore improves
the quality of our synthetic dataset.

Table 7: Ablation study on the effect of β

β LFW CPLFW CALFW CFP AgeDB

0 98.53 84.00 88.92 89.34 85.90
0.005 98.67 84.68 89.82 89.14 87.07
0.010 98.7 84.72 90.05 89.54 88.42
0.020 98.4 84.05 91.32 90.13 89.83

Similarly, Table 7 reports the ab-
lation study for the effect of noise
in data generation and augmentation
(i.e., hyperparamter β in in Eq. 3). As
can be seen, the added noise increases
the variation for images of each sub-
ject and increases the performance of
face recognition models trained with
the generated datasets. With a larger
value of β, the generated images for each identity have more variations, which increases the perfor-
mance of the face recognition model trained with our synthetic dataset.

Table 8: Ablation study on the network structure

Network LFW CPLFW CALFW CFP AgeDB

ResNet18 98.33 81.38 88.53 86.03 85.27
ResNet34 98.5 83.47 88.88 88.29 86.42
ResNet50 98.67 84.68 89.82 89.14 87.07
ResNet101 98.73 85.43 90.05 89.54 87.52

As another experiment, we con-
sider different backbones and train
face recognition models with differ-
ent number of layers. As the results
in Table 8 show, increasing the num-
ber of layers improve the recognition
performance of trained face recogni-
tion model. While this is expected
and has been observed for training us-
ing large-scale face recognition datasets, it sheds light on more potentials in the generated synthetic
datasets.

3.3 DISCUSSION

Scaling Dataset Generation: To increase the size of the synthetic face recognition dataset, we
can increase the number of images per identity and also the number of samples per identity. In our
ablation study, we investigated the effect of the number of images (Table 2) and the number of iden-
tities (Table 3) on the recognition performance of the face recognition model. However, increasing
the size of the dataset requires more computation. Increasing the number of images in the dataset
has linear complexity in our image generation step (i.e., O(nimages), where nimages is the number of
images in the generated dataset). However, the complexity of solving the HyperFace optimization
problem with iterative optimization in Algorithm 1 has quadratic complexity (i.e., O(n2

id)). There-
fore, solving this optimization for a larger number of identities requires much more computation
resources. Meanwhile, most existing synthetic datasets in the literature have a comparable num-
ber of identities to our experiments. We should note that in our optimization, we considered all
points in each iteration of optimization which introduces quadratic complexity to our optimization.
However, we can solve the optimization with stochastic mini-batches of points on the embedding
hypersphere, which can reduce the complexity in each iteration (i.e., O(b2), where b is the size of
batch and b ≤ nid). We further discuss the complexity of our optimization and dataset generation in

7
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Figure 3: Sample pairs of images with the highest similarity between face embeddings of images in
synthesized dataset and training dataset of StyleGAN, which was used to generate random images
for initialization and regularization in the HyperFace optimization.

Appendix A and present further analyses for stochastic optimization, that reduces the complexity of
our optimization, in Appendix B.

Leakage of Identity: In our dataset generation method, we used images synthesized by StyleGAN
for initialization and regularization. Therefore, it is important if there is any leakage of privacy data
in the images generated from StyleGAN in the final generated dataset. To this end, we extract and
compare embeddings from all the generated images to embeddings of all face images in the training
dataset of StyleGAN. The highest similarity score between generated images and training dataset
correspond to children images (as shown in Figure 3a) which are difficult to compare visually and
conclude potential leakage. Figure 3b illustrates images of highest scores excluding children. While
there are some visual similarities in the images, it is difficult to conclude leakage of identity in
the generated synthetic dataset. We further study the effect of identity leakage on the recognition
performance of face recognition models in Appendix D.

Ethical Considerations: State-of-the-art face recognition models are trained with large-scale face
recognition datasets, which are crawled from the Internet, raising ethical and privacy concerns. To
address the ethical and privacy concerns with web-crawled data, we can use synthetic data to train
face recognition models. However, generating synthetic face recognition datasets also requires face
generator models which are trained from a set of real face images. Therefore, we still rely on real
face images in the generation pipeline. In our experiments, we investigated if we have leakage of
identity in the generated synthetic dataset based on images used for initialization and regularization.
However, there are other privacy-sensitive components used in our method. For example, we defined
and solved our optimization problem on the embedding hypersphere of a pretrained face recognition
model. Therefore, for generating fully privacy-friendly datasets, the leakage of information by other
components needs to be investigated.

We should also note that while we tried to increase the inter-class variations in our method, there
might be still a potential lack of diversity in different demography groups, stemming from implicit
biases of the datasets used for training in our pipeline (such as the pretrained face recognition model,
the gallery of images used for regularization, etc.). It is also noteworthy that the project on which
the work has been conducted has passed an Institutional Ethical Review Board (IRB).

4 RELATED WORK

With the advances in generative models, several synthetic face recognition datasets have been pro-
posed in the literature. Bae et al. (2023) proposed DigiFace dataset where they used a computer-
graphic pipeline to render different identities and also generate different images for each identity
by introducing different variations based on face attributes (e.g., variation in facial pose, acces-
sories, and textures). In contrast to (Bae et al., 2023) , other papers in the literature used Generative
Adversarial Networks (GANs) or probabilistic Diffusion Models (PDMs) to generate synthetic face

8
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datasets. Qiu et al. (2021) proposed SynFace and utilised DiscoFaceGAN (Deng et al., 2020) to gen-
erate their dataset. They generated different synthetic identities using identity mixup by exploring
the latent space of DiscoFaceGAN to increase intra-class variation and then used DiscoFaceGAN to
generate different images for each identity.

Boutros et al. (2022) proposed SFace by training an identity-conditioned StyleGAN (Karras et al.,
2020) on the CASIA-WebFace (Yi et al., 2014) and then generating the SFace dataset using the
trained model. Kolf et al. (2023) also trained an identity-conditioned StyleGAN (Karras et al., 2020)
in a three-player GAN framework to integrate the identity information into the generation process
and proposed the IDnet dataset. Colbois et al. (2021) proposed the Syn-Multi-PIE dataset using a
pretrained StyleGAN (Karras et al., 2020). They trained a support vector machine (SVM) to find di-
rections for different variations (such as pose, illuminations, etc.) in the intermediate latent space of
a pretrained StyleGAN. Then, they used StyleGAN to generate different identities and synthesized
different images for each identity by exploring the intermediate latent space of StyleGAN using
linear combinations of calculated directions. Boutros et al. (2023b) proposed ExFaceGAN, where
they used SVM to disentangle the identity information in the latent space of pretrained GANs, and
then generated different identities with several images within the corresponding identity boundaries.
Geissbühler et al. (2024) used stochastic Brownian forces to sample different identities in the inter-
mediate latent space of pretrained StyleGAN (Karras et al., 2020) and generate different identities
(named Langavien). Then they solved a similar dynamical equation in the latent space of StyleGAN
to generate different images for each identity (named Langavien-Dispersion) and further explored
the intermediate latent space of StyleGAN (named Langavien-DisCo).

Melzi et al. (2023) proposed GANDiffFace, a hybrid dataset generation framework, where they used
StyleGAN to generate face images with different identities, and then used DreamBooth (Ruiz et al.,
2023) as a diffusion-based generator, to generate different samples for each identity. Boutros et al.
(2023a) trained an identity-conditioned diffusion model to generate synthetic face images and pro-
posed IDiffFace datasets. They generated different samples using an unconditional model, and then
generated different samples using their conditional diffusion model (named IDiff-Face Two-Stage).
Alternatively, they uniformly sampled different identities and generated different samples for each
identity using their identity-conditioned diffusion model (named IDiff-Face Uniform). Kim et al.
(2023) proposed DCFace, where they trained a dual condition (style and identity conditions) face
generator model based on diffusion models on the CASIA-WebFace dataset. They used their trained
diffusion model to generate different identities and different styles for each identity by varying iden-
tity and style conditions.

5 CONCLUSION

In this paper, we formalized the dataset generation as a packing problem on the hypersphere of a pre-
trained face recognition model. We focused on inter-class variation and designed our packing prob-
lem to increase the distance between synthetic identities. Then, we considered our packing problem
as a regularized optimization and solved it with an iterative gradient-descent-based approach. Since
the manifold of face embeddings does not cover the whole hypersphere, the regularization allows us
to approximate the manifold of face embeddings and enhance the quality of generated face images.
We used the generated datasets by our method (called HyperFace) to train face recognition models,
and evaluated the trained models on several real benchmarking datasets. Our experiments demon-
strate the effectiveness of our approach, which achieves state-of-the-art performance for training
face recognition using synthetic data. We also presented an extensive ablation study to investigate
the effect of each hyperparameter in our dataset generation method.
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generation via latent space exploration from brownian identity diffusion. arXiv preprint
arXiv:2405.00228, 2024.

Yandong Guo, Lei Zhang, Yuxiao Hu, Xiaodong He, and Jianfeng Gao. Ms-celeb-1m: A dataset
and benchmark for large-scale face recognition. In Computer Vision–ECCV 2016: 14th European
Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part III 14, pp. 87–
102. Springer, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Gary B Huang, Marwan Mattar, Tamara Berg, and Eric Learned-Miller. Labeled faces in the wild:
A database forstudying face recognition in unconstrained environments. In Workshop on faces
in’Real-Life’Images: detection, alignment, and recognition, 2008.

N. J. A. Sloane J. H. Conway. Sphere Packings, Lattices and Groups. Springer New York, NY, 1998.
ISBN 978-0-387-98585-5. doi: https://doi.org/10.1007/978-1-4757-6568-7.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 4401–4410, 2019.

Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Analyz-
ing and improving the image quality of stylegan. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 8110–8119, 2020.

Minchul Kim, Anil K Jain, and Xiaoming Liu. Adaface: Quality adaptive margin for face recog-
nition. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 18750–18759, 2022.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Minchul Kim, Feng Liu, Anil Jain, and Xiaoming Liu. Dcface: Synthetic face generation with dual
condition diffusion model. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 12715–12725, 2023.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proceedings of
the International Conference on Learning Representations (ICLR), San Diego, California., USA,
May 2015.

Jan Niklas Kolf, Tim Rieber, Jurek Elliesen, Fadi Boutros, Arjan Kuijper, and Naser Damer. Identity-
driven three-player generative adversarial network for synthetic-based face recognition. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 806–816,
2023.

Pietro Melzi, Christian Rathgeb, Ruben Tolosana, Ruben Vera-Rodriguez, Dominik Lawatsch, Flo-
rian Domin, and Maxim Schaubert. Gandiffface: Controllable generation of synthetic datasets for
face recognition with realistic variations. arXiv preprint arXiv:2305.19962, 2023.

Pietro Melzi, Ruben Tolosana, Ruben Vera-Rodriguez, Minchul Kim, Christian Rathgeb, Xiaoming
Liu, Ivan DeAndres-Tame, Aythami Morales, Julian Fierrez, Javier Ortega-Garcia, et al. Frcsyn
challenge at wacv 2024: Face recognition challenge in the era of synthetic data. In Proceedings
of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 892–901, 2024.

Stylianos Moschoglou, Athanasios Papaioannou, Christos Sagonas, Jiankang Deng, Irene Kotsia,
and Stefanos Zafeiriou. Agedb: the first manually collected, in-the-wild age database. In proceed-
ings of the IEEE conference on computer vision and pattern recognition workshops, pp. 51–59,
2017.

Foivos Paraperas Papantoniou, Alexandros Lattas, Stylianos Moschoglou, Jiankang Deng, Bernhard
Kainz, and Stefanos Zafeiriou. Arc2face: A foundation model of human faces. arXiv preprint
arXiv:2403.11641, 2024.

Haibo Qiu, Baosheng Yu, Dihong Gong, Zhifeng Li, Wei Liu, and Dacheng Tao. Synface: Face
recognition with synthetic data. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 10880–10890, 2021.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR), pp. 10684–10695, 2022.

Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman.
Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 22500–
22510, 2023.

Soumyadip Sengupta, Jun-Cheng Chen, Carlos Castillo, Vishal M Patel, Rama Chellappa, and
David W Jacobs. Frontal to profile face verification in the wild. In 2016 IEEE winter confer-
ence on applications of computer vision (WACV), pp. 1–9. IEEE, 2016.

Hatef Otroshi Shahreza, Christophe Ecabert, Anjith George, Alexander Unnervik, Sébastien Marcel,
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A COMPLEXITY AND REQUIRED COMPUTATION RESOURCE

The computation required to generate the synthetic datasets in our approach has two main parts:

1. HyperFace Optimization: The HyperFace optimization (Algorithm 1) considers all refer-
ence points {xref,i}nid

i=1 in the hypersphere and maximizes their distances. Therefore, this
optimization considers all pairs of points and has quadratic complexity (i.e., O(n2

id)).
Table 9 reports the runtime for solving the HyperFace optimization for different numbers
of identities (i.e., nid) on a system equipped with a single NVIDIA 3090 GPU. Note that
this optimization process cannot be parallelized.

Table 9: Runtime for solving the HyperFace optimization (Algorithm 1) for different numbers of
identities on a system equipped with a single NVIDIA 3090 GPU.

nid HyperFace Optimization Runtime

10k 6 hours
20k 11 hours
30k 23 hours
50k 84 hours

We should note that instead of solving the HyperFace optimization on all pairs of points, we
can solve the optimization stochastically in which in each iteration a mini-batch of points
is considered and optimized. Therefore the complexity will become O(b2), where b is size
of mini-batch and b ≤ nid. This way the complexity of our method can be independent of
the number of identities and significantly reduced (especially for b ≪ nid). Our stochastic
optimization is further studied and discussed in Section B of this Appendix.

2. Image Generation: After solving the HyperFace optimization, we need to use the genera-
tor network in inference mode and generate the required number of images. Therefore, the
generation of dataset has a linear complexity with respect to the number of images (i.e.,
O(nimages), where nimages is the number of images in the generated dataset). The average
runtime for generating a single synthetic face image on a system equipped with a single
NVIDIA 3090 GPU is 1.25 seconds. For example, generating a dataset with 500,000 im-
ages takes about 174 hours on a single NVIDIA 3090 GPU. Note that this optimization
process can be parallelized, and therefore image generation can be deployed on a cluster or
a farm of GPUs.

B HYPERFACE STOCHASTIC OPTIMIZATION

As discussed in Appendix A, HyperFace optimization (Algorithm 1) considers all reference points
{xref,i}nid

i=1 and has a quadratic complexity O(n2
id). To reduce this complexity, in each iteration,

we can randomly select a mini-batch of b points and only optimize the selected b reference points
instead of all nid reference points. This way in each iteration we can compare only

(
b
2

)
pairs instead

of
(
nid
2

)
pairs, and therefore the complexity of our optimization will become O(b2). In the following,

we first theoretically prove that the expected mini-batch gradient approximates the full gradient, and
then validate it with experimental analyses.
Theorem 1. Let Xref = {xref,i}nid

i=1 represent nid points on a n-dimensional hypersphere S. Con-
sider an objective function:

L(Xref) =
1(
nid
2

) nid∑
i=1

nid∑
j=i+1

ℓ(xref,i,xref,j),

where ℓ(·, ·) denotes a pairwise function. The goal is to minimize L(Xref) for Xref = {xref,i}nid
i=1.

Suppose in each iteration, instead of computing ∇L(Xref) over all
(
nid
2

)
pairs, we approximate it us-

ing a random mini-batch B ⊂ Xref of size b ≪ nid. Then, the expected batch gradient approximates
the full gradient:

E[∇LB(Xref)] = ∇L(Xref). (4)
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Proof. For a batch B of size b, the batch objective is:

LB(Xref) =
1(
b
2

) ∑
i∈B

∑
j∈B,j>i

ℓ(xref,i,xref,j). (5)

The full gradient of L(Xref) is:

∇L(Xref) =
1(
nid
2

) nid∑
i=1

nid∑
j=i+1

∇ℓ(xref,i,xref,j). (6)

Similarly, the batch gradient is:

∇LB(Xref) =
1(
b
2

) ∑
i∈B

∑
j∈B,j>i

∇ℓ(xref,i,xref,j). (7)

The expectation over all possible batches B is:

E[∇LB(Xref)] =
1(
b
2

) nid∑
i=1

nid∑
j=i+1

P [(i, j) ∈ B]∇ℓ(xref,i,xref,j), (8)

where P [(i, j) ∈ B] is the probability of selecting the pair (i, j) in a random batch. For uniformly
sampled random batches:

P [(i, j) ∈ B] =

(
b
2

)(
nid
2

) (9)

By substituting P [(i, j) ∈ B] into the expectation in Eq. 8, we will have:

E[∇LB(Xref)] =
1(
nid
2

) nid∑
i=1

nid∑
j=i+1

∇ℓ(xref,i,xref,j) = ∇L(Xref). (10)

Thus, the batch gradient is an unbiased estimator of the full gradient.

Corollary 1. A special case for Theorem 1 is when function ℓ(xref,i,xref,j) is defined as follows:

ℓ(xref,i,xref,j) =

{
−d(xref,i,xref,j) (i, j) = argmaxXref,i̸=j − d(xref,i,xref,j)

0 otherwise.
(11)

Therefore, we can rewrite Algorithm 1 with a stochastic optimization as presented in Algorithm 2.

Algorithm 2 HyperFace Stochastic Optimization for Finding Reference Embeddings

1: Inputs: λ : learning rate, nitr : number of iterations, {xg}
ngallery
g=1 : embeddings of a gallery of face images,

2: α : hyperparameter (contribution of regularization), b : size of mini-batch.
3: Output: Xref = {xref,i}nid

i=1 : optimized reference embeddings.
4: Procedure:
5: Initialize reference embeddings Xref = {xref,i}nid

i=1

6: For n = 1, .., nitr do
7: Sample a random mini-batch B ⊂Xref of size b ▷ Sampling a random mini-batch
8: Find xref,i,xref,j ∈ B which have minimum distance d(xref,i,xref,j)

9: Reg← 1
b

∑b
k=1 min{xg}gallery d(xref,k,xg) ▷ Calculate the regularization term

10: cost← −d(xref,i,xref,j)
11: B ← B − Adam(∇cost, λ)
12: B ← normalize(B) ▷ To ensure that resulting embeddings B remain on the hypersphere.
13: Update B in Xref
14: End For
15: End Procedure

To validate our theoretical analyses, we implement the HyperFace stochastic optimization (Algo-
rithm 2) and use the optimized embeddings to generate synthetic face recognition datasets. We
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consider 30,000 synthetic identities and solve HyperFace stochastic optimization (Algorithm 2) for
different batch sizes. In each case, after solving the stochastic optimization, we generate 50 syn-
thetic images per identity as described in Section 2 (Image Generation). Then, we use the generated
datasets to train face recognition models and evaluate the performance of trained face recognition
models. Table 10 reports the performance of trained face recognition models. As the results in this
table show face recognition models trained with datasets that are generated with stochastic mini-
batch optimization achieve comparable performance to the face recognition model trained with the
dataset that is generated based on full-batch optimization. Therefore, our experimental results meet
our theoretical prediction in Theorem 1.

Table 10: Ablation study on the effect of number of batch size in HyperFace stochastic optimization
(Algorithm 2).

Batch Size LFW CPLFW CALFW CFP AgeDB

1,000 (mini-batch) 98.28 85.23 91.05 91.86 89.37
5,000 (mini-batch) 98.62 84.98 90.73 90.41 88.97
30,000 (full-batch) 98.38 85.07 90.88 91.57 89.60

In terms of complexity, the HyperFace stochastic optimization (Algorithm 2) requires significantly
less computation resources for solving the optimization. Table 11 reports the runtime for solving the
HyperFace stochastic optimization (Algorithm 2) for different batch sizes and different numbers of
identities and a fixed size of gallery on a system equipped with a single NVIDIA 3090 GPU. As the
results in this table show, the complexity is independent of the number of identities (i.e., nid) and
depends on the size of mini-batch b. Comparing the results in Table 11 and Table 9, we can conclude
that our stochastic optimization significantly reduced the complexity.

Table 11: Runtime for solving the HyperFace stochastic optimization (Algorithm 2) for different
numbers of identities on a system equipped with a single NVIDIA 3090 GPU.

Batch Size (b) # ID (nid) HyperFace Stochastic Optimization Runtime

1,000
30k 0.4 hours
50k 0.5 hours
100k 0.5 hours

5,000
30k 2.2 hours
50k 2.2 hours
100k 2.2 hours

10,000
30k 8.8 hours
50k 8.9 hours
100k 8.9 hours

C SYNTHETIC DATASETS AT SCALE

In Table 1 of the paper, we compared our face recognition models trained with our generated dataset
and synthetic datasets in the literature. For previous datasets, we considered the available version
of each dataset which has a similar number of identities (10k). In Table 3, we studied the effect
of the number of identities in our dataset generation, where the results showed that we can scale
our synthetic dataset and achieve a higher recognition performance. In Table 12, we compare the
performance of face recognition models trained with our generated datasets and with all publicly
available versions (particularly larger scale) of synthetic datasets in the literature. As the results in
this table show, our generated datasets achieve competitive performance with synthetic datasets in
the literature at scale. Comparing different datasets in the literature, DCFace, which outperformed
previous datasets in Table 1, does not achieve the best performance on any of the benchmarks for its
larger version. In contrast, Langevin-DisCo achieves a significant improvement for its larger version
with 30k identities compared to its smaller version with 10k identities. However, Geissbühler et al.
(2024) reported a lower performance for their dataset with 50k identities compared to 30k identities,
indicating limitations in further scaling the Langevin-DisCo dataset for more than 30k identities.
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Table 12: Comparison of recognition performance of face recognition models trained with the
largest available versions of different synthetic datasets as well as a real dataset (i.e., CASIA-
WebFace). The performance reported for each dataset is in terms of accuracy and best value for
each benchmark is emboldened.

Dataset name # IDs # Images LFW CPLFW CALFW CFP AgeDB

SynFace (Qiu et al., 2021) 10’000 999’994 86.57 65.10 70.08 66.79 59.13
SFace (Boutros et al., 2022) 10’572 1’885’877 93.65 74.90 80.97 75.36 70.32
Syn-Multi-PIE (Colbois et al., 2021) 10’000 180’000 78.72 60.22 61.83 60.84 54.05
IDnet (Kolf et al., 2023) 10’577 1’057’200 84.48 68.12 71.42 68.93 62.63
ExFaceGAN (Boutros et al., 2023b) 10’000 599’944 85.98 66.97 70.00 66.96 57.37
GANDiffFace (Melzi et al., 2023) 10’080 543’893 94.35 76.15 79.90 78.99 69.82
Langevin-Dispersion (Geissbühler et al., 2024) 10’000 650’000 94.38 65.75 86.03 65.51 77.30
Langevin-DisCo (Geissbühler et al., 2024) 10’000 650’000 97.07 76.73 89.05 79.56 83.38
Langevin-DisCo (Geissbühler et al., 2024) 30’000 1’950’000 98.97 81.52 93.95 83.77 93.32
DigiFace-1M (Bae et al., 2023) 109’999 1’219’995 90.68 72.55 73.75 79.43 68.43
IDiff-Face (Uniform) (Boutros et al., 2023a) 10’049 502’450 98.18 80.87 90.82 82.96 85.50
IDiff-Face (Two-Stage) (Boutros et al., 2023a) 10’050 502’500 98.00 77.77 88.55 82.57 82.35
DCFace (Kim et al., 2023) 10’000 500’000 98.35 83.12 91.70 88.43 89.50
DCFace (Kim et al., 2023) 60’000 1’200’000 98.90 84.97 92.80 89.04 91.52
HyperFace [ours] 10’000 640’000 98.67 84.68 89.82 89.14 87.07
HyperFace [ours] 50’000 3’200’000 98.27 85.60 91.48 92.24 90.40

CASIA-WebFace (Yi et al., 2014) 10’572 490’623 99.42 90.02 93.43 94.97 94.32

Nevertheless, our method achieves improvement by scaling the number of identities (Table 3). In
particular, our dataset with 50k identities and 3.2M images achieves competitive performance with
large-scale synthetic datasets in the literature.

D IDENTITY LEAKAGE AND RECOGNITION PERFORMANCE

In Section 3.3, we discussed identity leakage in the generated face datasets. While the leakage of
identity is not evident in the generated dataset, it is important to see if identity leakage may affect
the recognition performance of face recognition models. To this end, we consider the FFHQ and
CASIA-WebFace datasets as two real face datasets and compare all possible pairs from our syn-
thetic dataset with images in the real datasets. Then, for each of these real datasets, we find the
top-200 pairs (synthetic-real) and exclude the corresponding synthetic image from our generated
dataset. This ensures that images which may contain identity leakage are excluded from the final
synthetic datasets. We use the resulting cleaned datasets to train face recognition models and com-
pare them with the face recognition model trained on our original synthetic dataset. Table 13 reports
the recognition performance of face recognition models trained with original and cleaned synthetic
datasets.

Table 13: Evaluation of potential identity leakage on the recognition performance.

Synthetic Dataset LFW CPLFW CALFW CFP AgeDB

cleaned (Ref.: CASIA-WebFace) 98.52 84.80 89.52 89.43 87.00
cleaned (Ref.: FFHQ) 98.77 84.53 89.35 89.36 86.67
original 98.67 84.68 89.82 89.14 87.07

As the results in Table 13, removing images with similar identities does not impact the recognition
performance of the trained face recognition model. However, we would like to highlight that while
identity leakage may not affect recognition performance on benchmark datasets, it is an important
privacy concern.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

E ADDITIONAL ABLATION STUDY

In Section 3, we reported ablation studies on different hyperparameters in our dataset generation. As
a new experiment, we consider different optimizers for solving HyperFace optimization (full batch).
We consider RMSprop, Adam, and AdamW optimizers. Table 14 compares the performance of
the face recognition model trained with datasets that are generated based on different optimizers
in HyperFace optimization. As the results in this table show, solving HyperFace optimization with
different optimizers leads to comparable performance.

Table 14: Ablation study on optimizer

Optimizer LFW CPLFW CALFW CFP AgeDB

RMSprop 98.47 84.73 89.18 89.27 86.83
AdamW 98.70 84.20 89.02 89.41 86.38
Adam 98.67 84.68 89.82 89.14 87.07

As another experiment, we generate random points on the hypersphere and use random points as
reference embeddings without HyperFace optimization to generate a synthetic dataset. We ensure
that selected points have at least 0.3 cosine distance. Table 15 compares the performance of the
face recognition model trained with the dataset based on random embeddings and HyperFace op-
timization. As the results in this table show, solving HyperFace optimization achieves superior
performance on all benchmarks. Note that with a random selection of points on the hypersphere,
there is no guarantee to be on the manifold of embeddings of the face recognition model. However,
with our HyperFace optimization, we try to keep points on the face recognition manifold, which
results in a dataset that leads to better performance.

Table 15: Ablation study on using random points vs HyperFace optimization.

Reference Embeddings LFW CPLFW CALFW CFP AgeDB

Random 98.12 83.67 86.67 88.79 84.25
HyperFace Optimization 98.67 84.68 89.82 89.14 87.07

F HYPERFACE DATASET GENERATION

We described HyperFace dataset generation in 2. Algorithm 3 summarizes the dataset generation
process in our method.

Algorithm 3 HyperFace Dataset Generation
1: Inputs: nid : number of synthetic identities, nsample : number of sample images per identity,
2: G : face generator model, β : hyperparameter (controls variations in embeddings)
3: Output: DHyperFace = {I} : generated dataset.
4: Procedure:
5: Solve HyperFace optimization to find reference embeddings Xref = {xref,i}nid

i=1 ▷ Algorithm 1 or 2
6: Initialize DHyperFace= [ ]
7: For xref ∈ {xref,i}nid

i=1 do
8: For n = 1, .., nsample do
9: Sample Gaussian noise z ∼ N (0, IDM) ▷ For diffusion model G

10: Sample Gaussian noise v ∼ N (0, InX ) ▷ For variations in the embedding xref

11: Generate synthetic image I = G( xref+βv
||xref+βv||2

,z)

12: DHyperFace.append(I) ▷ Store the generated image I in the dataset DHyperFace
13: End For
14: End For
15: End Procedure
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G VISUALIZATION

Figure 4 illustrates sample face images from the HyperFace dataset. In addition, Figure 5 and
Figure 6 also show intra-class variations for two synthetic identities in the HyperFace dataset.

Figure 4: Sample face images of different synthetic identities from the HyperFace dataset.
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Figure 5: Sample face images of one subject from the HyperFace dataset (intra-class variation).

Figure 6: Sample face images of one subject from the HyperFace dataset (intra-class variation).

19


	Introduction
	Problem Formulation and Proposed Method
	Problem Formulation
	HyperFace Synthetic Face Dataset

	Experiments
	Experimental Setup
	Analysis
	Discussion

	Related Work
	Conclusion
	Complexity and Required Computation Resource
	HyperFace Stochastic Optimization
	Synthetic Datasets at Scale
	Identity Leakage and Recognition Performance
	Additional Ablation Study
	HyperFace Dataset Generation
	Visualization

