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Abstract
We investigate the potential constraints on LLM
scaling posed by the availability of public human-
generated text data. We forecast the growing de-
mand for training data based on current trends and
estimate the total stock of public human text data.
Our findings indicate that if current LLM devel-
opment trends continue, models will be trained
on datasets roughly equal in size to the available
stock of public human text data between 2026 and
2032, or slightly earlier if models are overtrained.
We explore how progress in language modeling
can continue when human-generated text datasets
cannot be scaled any further. We argue that syn-
thetic data generation, transfer learning from data-
rich domains, and data efficiency improvements
might support further progress.

1. Introduction
Recent progress in language modeling has relied heavily on
unsupervised training on vast amounts of human-generated
text, primarily sourced from the web or curated corpora
(Zhao et al., 2023). The largest datasets of human-generated
public text data, such as RefinedWeb, C4, and RedPajama,
contain tens of trillions of words collected from billions of
web pages (Penedo et al., 2023; Together.ai, 2023).

The demand for public human text data is likely to continue
growing. In order to scale the size of models and training
runs efficiently, large language models (LLMs) are typically
trained according to neural scaling laws (Kaplan et al., 2020;
Hoffmann et al., 2022). These relationships imply that in-
creasing the size of training datasets is crucial for efficiently
improving the performance of LLMs.
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Figure 1. Projections of the effective stock of human-generated
public text and dataset sizes used to train notable LLMs. The
intersection of the stock and dataset size projection lines indi-
cates the median year (2028) in which the stock is expected to
be fully utilized if current LLM development trends continue. At
this point, models will be trained on dataset sizes approaching
the total effective stock of text in the indexed web: around 4e14
tokens, corresponding to training compute of ∼5e28 FLOP for
non-overtrained models. Individual dots represent dataset sizes of
specific notable models. The model is explained in Section 2

In this position paper, we argue that human-generated
public text data cannot sustain scaling beyond this
decade. To support this conclusion, we develop a model of
the growing demand for training data and the production of
public human text data. We use this model to predict when
the trajectory of LLM development will fully exhaust the
available stock of public human text data. We then explore
a range of potential strategies to circumvent this constraint,
such as synthetic data generation, transfer learning from
data-rich domains, and the use of non-public data.1

1.1. Related work

Stock of internet data Several studies have sought to quan-
tify the internet’s size and information content. Murray H. &
Moore (2000) estimated the internet’s size at approximately
2.1 billion unique web pages containing 21 terabytes of data.

1The code used in our analysis can be found at
https://epochai.org/code/data-stock.
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Coffman & Odlyzko (1998) and Odlyzko (2016) found that
public internet traffic experienced a rapid growth rate of
approximately 100% per year in the early 1990s, which
slowed down to double-digits in the late 2010s, particularly
in developed countries.

More recently, Reinsel et al. (2018) estimate the total
amount of new data created, captured, or replicated world-
wide in any given year to be 33 billion terabytes. Unfortu-
nately, the analysis does not break this down into different
data modalities (e.g. images, videos, or text data). Focusing
just on Google’s index, van den Bosch et al. (2016) esti-
mated the stock from 2006 to 2015, finding that it varied
significantly over time but is on the order of tens of billions
of web pages.

Data bottlenecks in machine learning Muennighoff et al.
(2023) studied several techniques to mitigate data scarcity
for training LLMs. In particular, they considered repeating
data, adding more code data, and relaxing the quality filters
used during data preprocessing. They quantified the loss of
performance when using these techniques to compensate for
a smaller data budget, finding that both repeating data and
including more code data can compensate for a decrease of
up to 75% in the text data budget. Xue et al. (2023) also
studied multi-epoch training as a solution for data scarcity.
Nostalgebraist (2022) argued that high-quality training data
would soon become a bottleneck for machine learning.

Leading AI researchers have expressed concerns about data
availability limiting the progress of machine learning sys-
tems. Dario Amodei, the CEO of Anthropic, estimates a
10% chance that the scaling of AI systems could stagnate
due to insufficient data (Roose & Newton, 2023). This un-
derscores the importance of investigating the limitations
posed by the finite supply of public human text data.

Estimate Median 95% CI

Common Crawl 130T [100T, 260T]
Indexed web 510T [130T, 2100T]
Whole web 3100T [1900T, 5200T]
Images 300T N/A
Video 1350T N/A

Table 1. Estimates of the stock of data on the web in tokens.3In the
case of images and video we only have point estimates.

2. A model of data scarcity
The core question we aim to answer is whether the limited
availability of public human text data could constrain fur-
ther LLM scaling. We consider two key variables: the total

3Video and image stock estimates are transformed into an equiv-
alent number of text tokens as explained in Appendix D.

amount of public human text data available for use (“data
stock”) and what quantity of this data is actually used in
practice during LLM training (“dataset size”). In this sec-
tion, we develop a model to project both the data stock and
dataset sizes.

2.1. Quantifying dataset sizes

Specifying our model requires being explicit about how we
quantify “data”. To this end, we define the dataset size as
the number of tokens in the training dataset of interest.4 In
large samples of English text, one token usually corresponds
to around 0.8 words (see Appendix E).5

One limitation of this definition is that the size of a text
corpus in tokens depends on how the text is tokenized. That
said, in practice, the number of tokens in a corpus does not
vary greatly between common tokenizers.6 Moreover, the
two most prominent alternatives – the number of words and
the storage size in bytes – can vary significantly between
modalities or even be undefined.7

2.2. Estimating data stocks

The first main variable of our model is the data stock S. We
estimate this by calculating the size of the indexed web and
the amount of data that is contained in the average web page,
using statistics from Common Crawl.

Since web data contains many low-quality segments of text
that do not contribute to model performance (Penedo et al.,
2023), we adjust our estimate to account for differences
in data quality. We also adjust for the possibility of multi-
epoch training. We explain these adjustments in greater
detail in Section 2.3. As a further robustness check, we
estimate the amount of internet text generated each year
based on the world population. Table 1 shows the results of
these estimates.

We model our uncertainty about all the observed variables of

4Tokenization is the process of encoding text or other types of
data using discrete symbols that can be fed into models Zhao et al.
(2023). The resulting discrete symbols are known as tokens. The
most common choice today is sub-word tokenization, in which
each token corresponds to a piece of a word.

5The number of tokens in the dataset should not be confused
with the number of tokens seen during training, which could be
greater than the dataset size if training occurs over multiple epochs.

6We make our estimates based on cl100k base, a byte-pair
encoding (BPE) tokenizer from OpenAI (OpenAI, 2024). In Ap-
pendix E we show that commonly used tokenizers produce between
0.5 and 0.2 tokens per byte of text, so we expect our results to be
similar using other common tokenizers. In the case of image and
video we explain the tokenization estimates in Appendix D.

7For example, the definition of a “word” can be ambiguous (e.g.
in languages which do not use spaces), and in the case of code
there are no well-defined words. Meanwhile, storage size can vary
by orders of magnitude depending on the choice of compression.
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our models as log-normal distributions, and report our 95%
confidence intervals (CIs) for each of them. The CIs for the
latent variables are obtained by Monte Carlo simulations of
the functional relationships that define those variables.

2.2.1. INDEXED WEB

Common Crawl, a regularly updated open-source collection
of scraped web data consisting of over 250 billion web pages
(Common Crawl, 2024),8 serves as the basis for most open
web datasets, such as RefinedWeb, C4, and RedPajama. As
a subset of the indexed web, Common Crawl’s maximum
size is inherently bounded by the size of the indexed web.9

To estimate the size of the indexed web, we use the size of
Google’s index as a proxy.10 Applying the methodology
proposed by van den Bosch et al. (2016), we estimate that
Google’s index contains approximately 250 billion web
pages, with a 95% confidence interval ranging from 100
billion to 1200 billion web pages (see Appendix B).

Assuming that Common Crawl is a representative sample
of the indexed web,11 we can use it to estimate the average
amount of plain text bytes per web page. This number has
increased over time, from around 6100 bytes in 2013 to
about 8200 bytes in 2021.12 We estimate the average plain
text bytes per web page to be 7000 [95%: 6100, 8200].13

Each token corresponds to 4 bytes of plain text [95%: 2, 5]
(see Appendix E), so the raw stock of tokens on the indexed
web in 2024, calculated according to Equation 1 is around
510 trillion [95%: 130T, 2100T].

Since 2013, the plain-text size of the average Common
Crawl web page has been growing by between 2% and 4%
each year. However, estimating the growth rate of the total
number of web pages is more challenging due to conflicting
evidence. The methodology employed by van den Bosch
et al. (2016) suggests that the size of Google’s index has
remained relatively constant over the past decade, which is

8We use the term “web page” to refer to individual pages within
a domain or website, for example a single article in Wikipedia.

9Although some web pages might be crawled by Common
Crawl but not included in any search engine index, possibly due to
being considered very low quality, we expect these web pages to be
largely eliminated by quality filters in the data pipelines. Therefore,
ignoring them should not significantly impact our results.

10Google is the most widely used search engine globally and
receives a significant fraction of all web traffic (Similarweb, 2024).
Consequently, we expect the size of Google’s index to approximate
the size of the indexed web within a factor of 2-5.

11This is the stated intention of the Common Crawl team, and
since the crawling procedure is quite similar for Common Crawl
and search indices, given the size of the archive it seems unlikely
to have any significant bias.

12The total size of web pages is 10-20 times larger, since it also
includes HTML code, scripts and other non-plain-text data.

13We use square brackets to denote 95% confidence intervals.

a counterintuitive result since new web pages are regularly
created. Appendix B discusses alternative explanations for
this apparent lack of growth in Google’s index size.

Indexed Web Projected Growth

SIW (y) = NIW ×BP × TB × (1 + g)y−y0 (1)

where SIW (y) is the estimate of the current stock of
tokens in the indexed web in a given year y, NIW is
the number of unique web pages in the indexed web,
BP is the average number of bytes per web page,
TB is the average number of tokens per byte, and g
is the estimated rate of growth of the total number
of tokens.

To better estimate the growth rate of the indexed web, we
consider several proxies: global IP traffic, link rot rates, and
the growth in the number of internet users. Global IP traffic
was increasing by 24% in 2016 (Cisco, 2017), which can
be considered an upper bound on the growth rate of web
pages, as the majority of traffic corresponds to consumption
rather than creation of text data. Conversely, the number of
internet users is growing by approximately 2-4% per year
(Section 2.2.2), and estimates of the link rot rate range from
2% to 16% (Appendix B). For Google’s index size to remain
constant, the link rot rate must be offset by the creation of
new web pages or links, suggesting possible growth rates of
around 10%.

However, double-digit growth rates would imply that the av-
erage internet user is creating significantly more web pages
over time, a trend that appears to be contradicted by some
observations, such as the roughly constant rate of tweets per
user on Twitter (GDELT, 2020) and similar observations for
other platforms such as Wikipedia (Wikipedia). Given these
considerations, we settle on a confidence interval between
0% and 10% a year.14

2.2.2. INTERNET POPULATION

We consider an alternative model of data stocks that ex-
plicitly accounts for the process that generates data. This
model relies on the observation that much of the internet’s
text data is user-generated and stored on platforms such as
social media, blogs, and forums. While AI-generated text
is becoming more prevalent, we exclude it from this model
and discuss it in Section 3. In principle, we can estimate the

14A doubling of the growth rate from 10% to 20% over a 10-
year period would result in an 0.4 OOM increase in the data stock.
However, this is not large compared to the historical growth rate
in data usage of 0.38 OOM per year. Therefore, our conclusions
are not highly sensitive to variations in the growth rate within this
range.
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amount of public human-generated text data by considering
the number of internet users and the average data produced
per user, with growth in data generation primarily driven by
the increasing number of internet users.

We model the increase in the number of internet users as
coming from two contributors: (1) increases in the human
population, and (2) increases in “internet penetration,” i.e.
the percentage of the population that uses the internet. For
the former, we turn to standard projections by the United
Nations (United Nations, 2022). Since internet penetration
has broadly followed an S-curve from ∼0% in 1990 to 50%
in 2016 to over 60% today (Ritchie & Roser, 2017), we
model this using a sigmoid function, fitting it to the data in
Ritchie & Roser (2017).

Finally, the amount of data generated per internet user varies
across countries and over time due to differences in cul-
ture, demographics, socioeconomic factors, and online ser-
vices. Quantifying these variations is complex and beyond
the scope of this analysis, so we assume that the average
data production rate per user remains constant to enable a
tractable estimate.

1990 2000 2010 2020 2030 2040

Year

2B

4B
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8B

Human population

Internet users (real)

Internet users (fit)

Figure 2. Historical and projected evolution of internet users. His-
torical data is from Ritchie & Roser (2020).

This model of the number of internet users closely matches
the historical data (Figure 2). A more detailed explanation
of this model can be found in Appendix A.

Based on reported user statistics for major online platforms
(see Appendix C), we estimate the total volume of text data
uploaded to the internet in 2024 was between 180T and
500T tokens. To project future data accumulation, we scale
this initial 2024 estimate by the projected number of internet
users in each subsequent year. This provides the estimated
annual data contribution from the global online population.
We then cumulatively sum these yearly contributions over
time to model the total stock of internet text data. The
final estimate is 3100T [95%: 1900T, 5200T] tokens. This
estimate includes both data on the indexed web and the deep
web, and therefore serves as an upper bound on the size of
the indexed web.

2.3. Data quality and multi-epoch training

The preceding subsections outline the core basis of the
model that we use in our analysis. However, before perform-
ing forecasts, we first need to account for a few additional
considerations.

In particular, since our focus is on data constraints in the
scaling of language models, the literal number of tokens
in the training dataset may not be what matters for improv-
ing LLM performance. For example, differences in data
quality (Li et al., 2023) and the number of training epochs
(Muennighoff et al., 2023) can potentially have a substantial
effect on final model performance. In this subsection, we
analyze the significance of these factors and modify our
model accordingly. Our adjustments for data quality and
multi-epoch training are illustrated in Figure 3.

2.3.1. DATA QUALITY

One way in which only considering the measure of “number
of tokens” is too simplistic is that not all public human text
data is created equal. Intuitively, we would expect models
that are trained primarily on books or Wikipedia to outper-
form models that are purely trained on YouTube comments.
In this way, public human text data from books are “higher
quality” than YouTube comments. Such intuitions are in fact
supported by some empirical observations. For example,
data processing techniques like deduplication (Lee et al.,
2022) and data filtering (Gao, 2021) have been shown to
improve model performance.

However, building in these effects into our model is non-
trivial. For one, there is no standard accepted measure of
data quality (Mitchell et al., 2023). Instead, we are forced
to rely on a fairly vague working definition: A dataset is of
higher quality than another if training on it leads to higher
performance, at similar dataset sizes.

Recent findings show that with adequate filtering, data ex-
tracted from the web can outperform datasets constructed
from human-curated sources (Penedo et al., 2023). In ad-
dition, Xie et al. (2023) found that in The Pile, which is a
dataset consisting of web data and human-curated sources,
increasing the proportion of web data up to 40-70% led to
substantially higher performance. These empirical findings
suggest that while much of internet public human text data
is on average “lower quality” than human-curated sources,
one can potentially make up for this through careful data
processing.

Given these considerations, we can attempt to determine
how much we need to adjust our previous model to account
for data quality. We operationalize this in terms of how
much “low quality” data is filtered to achieve optimal per-
formance in practice. Penedo et al. (2023) create a 5T-token
dataset that outperforms curated corpora by carefully filter-
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ing and deduplicating raw data from Common Crawl. The
filtering part of this process reduced the size of the web
dataset by around 30%. Meanwhile, Marion et al. (2023)
found that pruning around 50% of deduplicated data from
a subset of Common Crawl using a perplexity measure led
to optimal performance.15 Based on these empirical results,
we believe with 95% certainty that between 10% and 40%
of deduplicated web data can be used for training without
significantly compromising performance.

Initial deduplicated stock  
510T [130T, 2100T]

Quality-adjusted stock  
100T [22T, 490T]

Repetition-adjusted stock 
320T [65T, 1700T]

Data quality adjustment

Duplicating high-quality training 
data for multi-epoch training

Figure 3. Illustration of the adjustments for quality and repetition
and the adjusted stock sizes in number of tokens. First the lower-
quality data is filtered out, and then the resulting dataset is dupli-
cated for multi-epoch training.

2.3.2. MULTIPLE EPOCHS

Besides data quality, using the “number of tokens” as a
measure does not account for the possibility of multi-epoch
training. The degree to which stocks should be adjusted for
multiple epochs depends on the effectiveness of training on
the same data over multiple epochs, compared to training
on new “unique” data.

Muennighoff et al. (2023) investigate this empirically, fitting
a scaling law for the performance of a model trained for
multiple epochs. Concretely, for a given model trained on
multiple epochs, this law gives an estimate of the dataset
size that would produce an equally capable model with just
one epoch.. This is the “effective dataset size” of a multi-
epoch training run. The authors estimate the maximum
increase in the effective dataset size that can be gained from
multiple epochs at between 3x and 15x, and we anchor to
this estimate in adjusting our model. Because additional

15First, the Common Crawl raw data is filtered using regular
methods down to 20% of the original size, and then the remaining
data is further pruned using several quality metrics. Figure 4 in
Marion et al. (2023) shows that the best result is obtained when
pruning 50% of the deduplicated dataset, for a final size of 10% of
the original. Note that there appears to be no benefit from using
the rest of the data, instead of repeating the best 10%.

epochs yield diminishing returns, the upper extreme of 15x
would require a very inefficient training procedure with a
large number of epochs that does not correspond to common
practices.16 For this reason we reduce it to 5x.

Historical Dataset Size Growth Projection

DH(y) = Gy−y0

D D(y0) (2)

where DH is the training dataset size, GD is the
factor growth per year, Y0 is some base year, and
Y is the year. Both GD and D(y0) are lognormal
distributions.

2.4. Projecting growth in dataset sizes

To project the future values of our second key variable, the
training dataset size D, we begin by examining historical
growth rates and extrapolating them forward.

To estimate historical growth, we use the database of notable
machine learning models in Epoch (2022), a comprehensive
database that contains annotations of over 300 machine
learning models. We filter this data to include only large
language models (LLMs) from papers published between
2010 and 2024, resulting in a subset of around 80 data points.
We then perform a linear regression on the logarithm of the
dataset size against time, as shown in Equation 2. This
yields a median estimate of 0.38 orders of magnitude per
year (OOM/y), or around 2.4x per year, with a bootstrapped
95% confidence interval of 0.27 to 0.48 OOM/y.

To project this trend forward, we first need to determine the
size of the largest datasets used today, which are typically
around 10T tokens.1718 Naively projecting the historical
trend from this baseline suggests that systems could be
trained on over one quadrillion tokens by the end of the
decade (see Figure 4).

The historical growth rate in dataset sizes cannot continue
indefinitely, even if the data stock was unlimited. In the
past, the increasing scale of computing power has driven the

16Typical numbers are between 1 and 4 epochs, for example see
Taylor et al. (2022) and Touvron et al. (2023).

17Skywork-13B (Wei et al., 2023), XVERSE-65B (XVERSE
Technology Inc., 2024), and PaLM 2 (Anil et al., 2023) were
each estimated to be trained on roughly 4T tokens (Epoch, 2023).
DBRX (Mosaic AI, 2024) reportedly used 12T tokens, and Llama
3 (Meta, 2024) used 15T tokens.

18Some of the largest recent models, like GPT-4 and Gemini
Ultra, do not report the size of their datasets and so we have not
included them in the analysis. However, estimates of their training
compute are around 5e25 floating point operations (FLOP) (Epoch,
2023), which, assuming they are trained using Chinchilla scaling,
would correspond to a dataset size of approximately 13T tokens.
Therefore, we expect their datasets to be within the same order of
magnitude as the biggest ones on our list.
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demand for larger training datasets, consistent with neural
scaling laws for dense transformers which suggest that train-
ing data size should scale roughly with the square root of
training compute (Hoffmann et al., 2022; Dey et al., 2023;
Fetterman et al., 2023).
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Figure 4. Projections of data usage. Two extrapolations of data
usage, one from past trends and one from compute availability
estimations plus scaling laws. The shaded areas denote a 90% CI
for the extrapolated median. The dots are individual training runs.

However, the growth in compute is also subject to limits,
and current fast rates may not be sustained indefintely. Tech-
nical limitations, such as the energy efficiency of computing
devices (Ho et al., 2023) and limits on the electricity supply
to data centers,19 restrict the feasible amount of compute.
Other factors like chip production capacity and economic
constraints could slow down the rate at which computing
power used in training can scale. Consequently, if the abil-
ity to scale computing power is constrained, it will likely
lead to a deceleration in the historical trends of dataset size
growth.

To introduce this constraint into our model, we need esti-
mates of the maximum compute budget for training that
will be available in the future. For this purpose, we use the
results from Besiroglu et al. (2022), which performs such
a projection based on estimated training compute growth
rates in frontier machine learning systems between 2010
and 2022.20 Following Hoffmann et al. (2022), we further
assume that compute-optimality involves training on 20
tokens per parameter, per Equation 3.

19In the US, electric grids are already struggling to meet the
growing electricity demands from data centers, which are critical
infrastructure for AI (Zimmerman et al., 2023). Upgrading trans-
mission capacity to deliver more power to these facilities involves
lengthy planning and construction timelines, often spanning many
years (ibid.)

20Note that this projection has a wide range of uncertainty and
includes scenarios in which spending on compute grows orders of
magnitude over current levels, up to 1% of GWP.

Compute-based Dataset Size Growth Projection

DC(y) =

√
20

6
· C(y) (3)

where DC(y) is the projected amount of data used
in notable training runs and C(y) is the probabilistic
projection of largest compute spent on a training run,
modeled following Besiroglu et al. (2022).
6 is the number of FLOP per parameter per token
and 20 is the approximate number of training tokens
per parameter according to Hoffmann et al. (2022).

As illustrated in Figure 4, the resulting model closely
matches the historical trend and its projection until around
2030. It then slows down over time.

Our final projection of growth in dataset sizes is an equally-
weighted mixture of both the historical and compute-based
projections 21 (see Equation 4). It is illustrated in Figure 1.

Mixture Projection of Dataset Size Growth

FD(y) =
1

2

(
FDH(y) + FDC(y)

)
(4)

where DH(y) is the historical projection of dataset
sizes, DC(y) is the compute-based projection, and
FX is the cumulative distribution function of the
random variable X .

2.5. When will the stock of public human text data be
fully utilized?

Combining our projections of dataset size increases, and
our estimate of the stock of data, we can estimate when
the full stock will be used in a training run if past trends
continue. Figure 5 shows the projected availability and
usage of effective data. The intersection between these
projections corresponds to public text data being exhausted.
The median exhaustion year is 2028, and by 2032 exhaustion
becomes very likely. At the point the data stock is fully
utilized, models will be using around 5e28 FLOP during
training.

An important assumption in our projections is that models
are trained compute-optimally22. However, many develop-
ers might instead decide to “overtrain” models to achieve
better efficiency during inference (Sardana & Frankle, 2023),

21The historical projection is simpler but seems to contradict rea-
sonable assumptions about compute scaling. A mixture provides a
good representation of our uncertainty.

22Compute-optimal training refers to selecting the number of
parameters and dataset size of the model to produce the maxi-
mum possible capabilities for a given level of training compute
(Hoffmann et al., 2022).
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Figure 5. Projection of effective stock of human-generated public
text and dataset sizes used to train notable LLMs. The intersection
of the stock and dataset size projection lines indicates the median
year (2028) in which the stock is expected to become fully utilized
if current LLM development trends continue. At this point, models
will be trained on dataset sizes approaching the total effective stock
of text in the indexed web: around 4e14 tokens, corresponding to
training compute of ∼5e28 FLOP for non-overtrained models.
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Figure 6. Compute-based data usage projection, assuming that
frontier models will be overtrained by 5x starting from 2025. This
policy results in the stock of data being fully used earlier than with
a compute-optimal scaling policy.

which would require more data. The degree of overtraining
that will be chosen by developers depends on a multitude
of factors, in particular how many tokens will be generated
during inference (Sardana & Frankle, 2023), and is hard to
predict in advance. That said, based on our analysis in Ap-
pendix F, we consider overtraining by 5x to be a reasonable
choice.23 This would result in a data bottleneck one year
earlier than our projections indicate, at a training compute
level of ∼6e27 FLOP.24

23Overtraining by 5x means that the tokens/parameter ratio is
5x higher than that of a compute-optimal model, or equivalently
that the model uses

√
5 times more data than a training-compute-

optimal model trained using the same amount of compute.
24We still decide to focus on compute-optimal training for two

reasons. First, we are more interested in frontier capabilities, and
at any given compute budget the capabilities of models trained
compute-optimally will be higher. Second, normally only smaller

According to our projections, data could become a signifi-
cant bottleneck for training LLMs this decade, particularly if
LLMs continue to be intensively overtrained. This timeline
allows for potentially substantial improvements in LLM per-
formance, given the rapid progress in recent years (Ho et al.,
2024; Sevilla et al., 2022). However, when considering
the near 70-year history of AI, this timeframe is relatively
short. While significant advancements can be made in the
coming years, the impending data bottleneck presents an
urgent challenge for the long-term progress of AI. For AI
progress to continue into the 2030s, either new sources of
data or less data-hungry techniques must be developed. The
following sections of this paper will address some of these
possibilities.

3. Beyond public human text data
While the core focus of this paper is on public human text
data in particular, understanding the broader implications
of our model’s predictions requires considering ways in
which the model might be wrong or incomplete. Crucially,
although the model predicts that public human text data
will be fully utilized at around the end of the decade, this
does not necessarily imply that training data will bottleneck
ML scaling at that time. In this section, we briefly survey
possible ways of circumventing bottlenecks in public human
text data.

For example, our model assumes no substantial change in
the underlying process of increasing the public human text
data stock. One naive way in which this assumption breaks
is if significantly more humans are paid to generate more
text. While this might be valuable at small scale for certain
types of data, it is unlikely to be an economical way to
generate an appreciable increase in text for general-purpose
pre-training.25

Out of the remaining strategies for circumventing public
human text data bottlenecks, we identify three broad cat-
egories of techniques that appear particularly promising.
These are: a) using models themselves to generate more
data, b) multimodality and transfer learning, which involves
training language models on other existing datasets (e.g.
from different domains), and c) using non-public data.

models are heavily overtrained. For example, Llama 3 8B is over-
trained by close to 100x, while Llama 3 70B is only overtrained
by 10x. Models that are closer to the compute frontier tend to be
less overtrained due to the high cost of overtraining.

25Appreciably increasing the stock of text data could require
hiring millions of people. 10 million people writing 40 words
per minute for 8 hours per day would write 70T words in one
year, which is the same order of magnitude as the stock of data
in Common Crawl, at a cost of hundreds of billions of dollars in
wages.

7
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3.1. AI-generated data

OpenAI alone reportedly generates 100B words per day
(Griffin, 2024). Within a year, this corresponds to around
36.5T words, not far from our estimates of the total number
of high-quality words in Common Crawl. If outputs are
accumulated across different models and across time, the
growth in the stock of training data could expand dramati-
cally in principle, assuming this approach works.

However, the evidence for the effectiveness of training on
generated (synthetic) data is currently mixed. One challenge
is that models might lose information about the original
human data distribution, such that iteratively training on
model outputs results in increasingly homogeneous and
unrealistic outputs (Shumailov et al., 2023). More generally,
repeatedly training on synthetic data can yield diminishing
or even negative returns (Singh et al., 2023), and worse
scaling behavior (Fan et al., 2023; Dohmatob et al., 2024).
These challenges can be mitigated to some extent by using
training data with greater diversity (Fan et al., 2023; OpenAI
et al., 2019), or by training on a mixture of human-generated
and synthetic data (Gunasekar et al., 2023; Shumailov et al.,
2023; Gerstgrasser et al., 2024; Alemohammad et al., 2023).

On the other hand, training on synthetic data has shown
much promise in domains where model outputs are rela-
tively easy to verify, such as mathematics, programming,
and games (Yang et al., 2023; Liu et al., 2023; Haluptzok
et al., 2023).26 For example, AlphaZero (Silver et al., 2017)
was famously trained using self-play, and more recently Al-
phaGeometry (Trinh et al., 2024) was trained purely using
synthetic data from attempts to solve geometry problems.
What is less clear is whether the usefulness of synthetic data
will generalize to domains where output verification is more
challenging, such as natural language.27

We consider synthetic data to be one of the most promising
avenues for circumventing data bottlenecks because of its
potential to produce training data at an massive scale, its
demonstrated success in certain domains, and the existence
of potential strategies to mitigate the challenges associated
with its use.

26Verification processes can be used as training signals which
guide the data generation and improve performance (Zhang &
Parkes, 2023; Huang et al., 2022).

27Despite this, researchers have attempted to train models on
synthetic feedback, such as using model-generated critiques to pre-
vent certain behaviors (Bai et al., 2022; Burns et al., 2023; Irving
et al., 2018). These approaches highlight potential advantages of
synthetic data, including avoiding difficulties in generating human
feedback at scale (Burns et al., 2023; Khan et al., 2024; Saunders
et al., 2022; Michael et al., 2023).

3.2. Multimodal and transfer learning

Another option is to go beyond text data, and train models
on data from other domains or non-text modalities, like
images. Appendix D includes some rough estimates of the
stock of data for some of the most prominent modalities,
concluding that current video and image stocks are not large
enough to prevent a data bottleneck.

But there are other sources that can provide orders of mag-
nitude more data of various types (e.g. financial market
data, scientific databases, etc.). For illustration, (Stephens
et al., 2015) forecasts growth rates of between 2-40 million
terabytes of genomics data every year by 2025.

While it is not clear that leveraging data-rich domains for
language modeling is always possible, there is already ev-
idence that this is feasible in some specific cases. For in-
stance, current frontier models like GPT-4V are trained on
both image and text data (OpenAI, 2023; Pichai & Hassabis,
2023). Aghajanyan et al. (2023) study this question for
several modalities of data and show that these modalities
have some synergy with text, when training on an even mix
of both. In general, better understanding the feasibility of
transfer learning would require further research, such as
scaling laws for transfer learning (Hernandez et al., 2021).

3.3. Using non-public data

While the indexed web is vast, its size is small relative to
the deep web: the part of the web that is not accessible by
search engines. The largest components of the deep web
are closed content platforms like Facebook, Instagram or
Twitter. While part of these platforms are indexed, the vast
majority is not. Another large reservoir of non-public text
data can be found in instant-messaging applications like
WhatsApp or Facebook Messenger.

In Appendix C, we estimate that content platforms and
instant messaging apps both contain on the order of one
quadrillion tokens. Combining this with the similarly-sized
upper estimate of the raw stock of text in the indexed web,
the total stock could reach 3 quadrillion tokens. This in-
crease would delay a data bottleneck by about a year and a
half relative to using only data from the indexed web.

However, the non-public stock seems unlikely to be as use-
ful as indicated by our estimate. First of all, training on this
data would be a grave violation of the privacy of the users
who submitted the data to platforms without expecting it
to be used for training AI models and probably would face
legal challenges. Second, the quality of social media content
is probably substantially lower than that of web content. Fi-
nally, this data is fragmented across several closed platforms
that are controlled by different actors, so it is unlikely that
all of it can be used in a single training run.
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3.4. Data efficiency techniques

According to Ho et al. (2024), training techniques and al-
gorithms for LLMs have been improving at a rate of 0.4
OOM/y [95%: 0.1, 0.8], meaning that roughly 0.4 fewer
OOMs of compute are needed each year to achieve the same
levels of performance. This is partially due to more efficient
data use. Similarly large gains in sample efficiency has been
found for reinforcement learning (Dorner, 2021). Although
we do not know precisely what fraction of LLM efficiency
gains result from “doing more with less data,” it is possible
that improvements in data efficiency are occurring at a pace
that could compensate for the exhaustion of data stocks.

3.5. Other techniques

Another possibility is learning from interactions with the
real world, which might include LLMs training on the mes-
sages received from users or, if ML models become sophis-
ticated enough to act autonomously, learning from sensory
observations or from the results of real-world experiments.
This form of learning will probably become necessary at
some point if AI models are to surpass human knowledge
about the real world.

One additional broad category of techniques is data selec-
tion, in which we include techniques like pruning (Marion
et al., 2023), domain composition tuning (Xie et al., 2023),
and curriculum learning (Campos, 2021). However, we do
not find this class of techniques very promising since the
gains tend to be modest.28

4. Discussion
In this paper, we examine the challenges and opportunities
that lie ahead for scaling machine learning systems, par-
ticularly in light of the finite nature of public human text
data. Our analysis reveals a critical juncture approaching
by the end of this decade, where the current reliance on
public human text data for training ML models may be-
come unsustainable. Despite this looming bottleneck, we
identify transfer learning and self-generated data as viable
and promising pathways that could enable the continued
growth and evolution of ML systems beyond the constraints
of public human text data.

Our conclusions are thus twofold. On the one hand, we
expect that the current paradigm based on public human text
data will not be able to continue a decade from now. On
the other hand, it is likely that alternative sources of data

28See, for example, Marion et al. (2023), where pruning pro-
vides less of a benefit than scaling the dataset by 3x, or Tirumala
et al. (2023), where the benefit of selection is similar to that of scal-
ing datasets by 20%. In general, the benefit of these techniques is
likely limited by the fraction of performance-degrading datapoints
in the dataset.

will likely be adopted before then, allowing ML systems to
continue scaling.

While our arguments about alternative sources of data are
mostly qualitative, a better understanding of data quality
could make it possible to make quantitative estimates of the
benefits of transfer learning and synthetic data. For example,
scaling experiments for transfer learning could be used to
quantify the proximity or synergy between different distri-
butions (Hernandez et al., 2021; Aghajanyan et al., 2023)
and identify new datasets which can effectively expand the
stock of data.

This paper does not explore certain considerations that might
be relevant for understanding the future role of data. Firstly,
the choice of data should depend on the desired skills or
capabilities of the model. Identifying economically or sci-
entifically valuable skills and the datasets needed to teach
them could reveal critical data gaps. Secondly, future ML
breakthroughs, such as systems capable of autonomous real-
world exploration and experimentation, might change the
dominant source of information for learning.

5. Conclusion
We have projected the growth trends in both the training
dataset sizes used for state-of-the-art language models and
the total stock of available human-generated public text
data. Our analysis suggests that, if rapid growth in dataset
sizes continues, models will utilize the full supply of public
human text data at some point between 2026 and 2032, or
one or two years earlier if frontier models are overtrained.
At this point, the availability of public human text data
may become a limiting factor in further scaling of language
models.

However, after accounting for steady improvements in data
efficiency and the promise of techniques like transfer learn-
ing and synthetic data generation, it is likely that we will be
able to overcome this bottleneck in the availability of public
human text data.

It is important to acknowledge the inherent uncertainty in
making long-term projections, especially considering the
rapid pace of advancements in the field of AI. Our results
highlight the need for further research to quantify data ef-
ficiency growth rates and the potential performance gains
from emerging methods. Additionally, future work should
explore the feasibility and effectiveness of transfer learning
from diverse data domains and the impact of synthetic data
generation on model performance, among other things.
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A. Theoretical growth model of the web
We explain in more detail our theoretical model of data
accumulation rates developed in Section 2.2.2 and check
it on Reddit submission data. The model is explained in
Equation 5.

A purely exponential model cannot reproduce the decrease
in the growth rate of Reddit submissions over time, while
a purely sigmoidal model plateaus at zero growth. The
exponential times sigmoid model is able to better capture
the deceleration in submission size growth (see Figure 7).

In our actual model, the slowdown in population growth
(which becomes subexponential) leads to additional deceler-
ation, but the time period covered by the Reddit submission
dataset seems too short for slowing population growth to be
noticeable in the data.

Projection Based on the Number of Internet Users

SIU (y) = Dy0

∫ y

1950

H(x)σ ((x− s0)× 0.15)

H(y0)σ ((y0 − s0)× 0.15)
dx

(5)
where DY0 is the amount of data produced in some
reference year Y0, H(Y ) is the projected human
population in a certain year, and the sigmoid σ mod-
els internet penetration, which is approximately 0%
in 1950 (this why we choose it as the initial point for
the integral) and 50% in s0 = 2016. 0.15 is a fitted
scale parameter. The integral represents the total
number of person-years of internet use, normalized
by the internet use in the reference year.

B. Estimating the size of the indexed web
The “indexed web” comprises those web pages that are
included in the indices of search engines. In particular,
since Google is the most popular search engine worldwide,
we tried to estimate the number of web pages in Google’s
index.

We replicate the methodology of van den Bosch et al. (2016).
We calculate the frequency of words in a large corpus of
clean web documents: the RefinedWeb dataset (Penedo
et al., 2023). Then we select a set of words at logarithmically
equidistant intervals of frequency, called “pivot words” in
van den Bosch et al. (2016). Using the number of results that
Google reports when searching each of the pivot words, we
can extrapolate the total size of Google’s index, assuming
that the frequencies of the words are similar in our corpus
and in Google’s index.

Each pivot word provides a noisy estimate of the total size,
so we take the average to arrive at a more robust estimate.
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Figure 7. Monthly user submissions to Reddit, in linear
scale(down) and log scale(up). While the three functions appear to
fit the data reasonably well in the log scale, the linear plot shows
that the sigmoid times exponential function predicts much better
the recent years.

Using 100 pivot words, the distribution of estimated sizes
is approximately log-normal, with a mean of 330B web
pages, a median of 250B web pages, and a 95% CI between
100B and 1200B (see 8). This is about 4 times more than
Common Crawl, which only has 75B unique urls.

Our results are substantially higher than those obtained by
van den Bosch et al. (2016). This is mostly because we
retrieved the number of Google results for each word using
the Google Custom Search JSON API. However, van den
Bosch et al. (2016) used the numbers shown in Google’s
web interface, which are around half as big for the same
search terms.

We evaluated whether a change in the relative frequency of
words in the web over time might lead to inaccuracies when
the same frequencies are used to estimate the size of the
index across several years. To do this, we computed word
frequencies for webs sampled in different years between
2013 and 2021. The difference in the resulting estimates
was smaller than 10%, so we conclude that this is unlikely
to add significant noise to the estimate.
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Figure 8. Histogram of the estimates of the size of Google’s index
from each pivot word.

B.1. Distribution across languages

The exact distribution of languages in the web is hard to
estimate. In Common Crawl, around 45% of webpages
is in English. This is broadly consistent with the 58.8%
reported by the “Digital 2023: Global Overview Report”
(Kemp, 2023a). However, the Observatory of Linguistic and
Cultural Diversity in the Internet reports that in 2023 around
20% of the content of the web was in English (OBDILCI,
2024).

If Common Crawl does not constitute a representative sam-
ple of the web, then our previous method for estimating the
size of the web might be biased. However, a reduction in
the English share from 45% to 20% would only increase the
estimate of the total size by a factor of 2.25, which is not
enough to significantly change our conclusions.

B.2. Growth in the size of the indexed web

As documented in van den Bosch et al. (2016), the size of
Google’s index has varied significantly over the past decade.
However, this variation does not seem to follow any mono-
tonic temporal pattern, and instead consists of seemingly
random movement around a stable mean. The fact that
the temporal mean of the index size has not increased over
time is surprising: the number of internet users grows by
about 1.8% a year (Kemp, 2023a), the number of pages
in Wikipedia grows by 2.6% per year (Wikipedia), and the
global size of IP traffic grew by 24% per year in 2016 (Cisco,
2017). Given these facts, it seems unlikely that the overall
number of web pages has not grown significantly.

We propose several hypotheses. One is based on link rot, the
phenomenon of web links becoming inaccessible over time
due to deletion, failure, restructuring of web sites, or other
reasons. There have been several estimates of the rate of
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link rot over time, but most claim that between 2% and 16%
of links break during a year (Howell & Burtis, 2022; Loan
& Shah, 2020; Loan et al., 2023; Ott, 2022; Satyanarayana
& Damodar, 2022; Zittrain et al., 2021). Some of the broken
links will be replaced by new links to the same content
(think of a change in domain name, for example, in which
the new domain will point to the same documents as the old
one), but part of that content will be irreversibly lost. If the
rate of growth of the web is similar to the rate of link rot,
the two effects might partially cancel each other and lead to
a more stable index size.

Another possibility is that Google is keeping the size of their
index within a fixed range due to economic or engineering
considerations. In this case, perhaps the web pages deemed
least valuable or useful are eliminated from the index as
more valuable pages appear. It is known that Google does
not index all the pages they crawl (Alpert & Hajaj, 2008)
due to quality considerations.

A final possibility is that all of our estimation methods are
biased towards content in the Anglosphere or the West more
generally. It is possible that both Google and Common
Crawl are not representative examples of the global web,
but only a part of it. Since most of the recent growth in the
number of internet users has been in non-Western countries
(Kemp, 2023a), it is possible that our estimates are missing
this growth.

C. Non-public text data
The term “deep web” refers to that portion of the web that
is not accessible by search engines. While this includes
many categories of data, in this section we focus on closed29

content platforms, since they attract a large share of all web
traffic.30

Given the power-law nature of web pages usage, we can
obtain a fairly reliable estimate of the total size of the deep
web just by examining a few of the most-visited platforms.
In particular, we estimate the amount of data in Facebook,
Instagram and Twitter, three of the largest social media
platforms, as well as Reddit, an indexed and open social
media platform that we use as a sanity check. We then
divide the estimate of the stock of each platform by its share
of global traffic to arrive at a global estimate.

Facebook: Facebook has about 3B users, who on average
make one post and five comments per month (Kemp, 2023c).
From a sample of 70,000 posts and 200,000 comments

29By closed, we mean that they usually require credentials to
access and limit the visibility of their content to unregistered users.

30According to Similarweb, Google, YouTube, Facebook, Insta-
gram, Twitter and Baidu account for a third of global web traffic
(Similarweb, 2024).

(Krebs et al., 2017) we calculate the average post has 60
tokens, while the average comment has 26 tokens.31. This
corresponds to 10T tokens being produced each year. Since
Facebook has had a roughly similar number of users for the
past 10 years or so, its total stock is around 100T tokens.

Instagram: Instagram has 1.6B users (Kemp, 2023a),
who in aggregate make about 66,000 posts per minute
(Domo, 2022), or about 100 million per year. The aver-
age post has about 8-16 tokens (Thorgren et al.), for a total
of around 800B tokens generated per year. Over the past 10
years or so, this corresponds to 8T tokens.

Twitter: Twitter has close to 300M monthly active users.
Each user posts 1.3 times per day, and the average post has
about 7 tokens (GDELT, 2020). This corresponds to about
1.5T tokens per year, and since Twitter has had a roughly
constant number of users for the past 12 years, the total
stock is around 17T tokens.

Reddit: Reddit is public and indexed, so accurate statistics
are available. The number of posts per day was about 60,000
in 2020, while the number of comments was about 500,000
(Baumgartner et al., 2020). These have grown close to
linearly since 2011, so the total is equivalent to about 7
years of submissions at that rate. Each post has on average
48 tokens, and each comment has 21.32 This corresponds to
a total of 75B tokens per year, or about 600B tokens in total.

Finally, we divide each estimate by the share of traffic of
the corresponding platform to arrive at an estimate of the
total stock in the web. We take the average of the estimates
of each platform. As shown in Table 2, the results indicate
that the size of the deep web is roughly comparable to the
size of the indexed web, so using this source of data would
only delay a data bottleneck by a couple years.

Platform Tokens Traffic share Total stock estimate

Facebook 100T 3.6% 3000T
Instagram 8T 1.5% 580T
Twitter 17T 1.3% 1370T
Reddit 600B 0.44% 140T
Geom. mean 760T

Table 2. Estimates of the stock of data in the deep web. Estimates
of the total stock are produced by dividing the estimate of the
number of tokens by the share of traffic. These estimates are rough,
and expected to be accurate only up to an order of magnitude.

31This particular sample might not be representative of the all the
content in Facebook, but we think it’s unlikely to be too different
from the true averages.

32These are estimated from 3M posts and 4.5M comments in
the Pushshift dataset.
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C.1. Instant messaging and email

Instant messaging applications are widely used: Face-
book Messenger alone has over a billion users (Kemp,
2023b). They consequently contain a vast amount of non-
indexed data. In 2020, the messaging apps owned by Meta
(then Facebook) were processing 100B messages per day
(Mosseri & Chudnovsky, 2020). In a sample of 6 million
WhatsApp messages, Rosenfeld et al. (2018) found that the
average message had 5.66 words, or about 4.5 tokens. This
corresponds to 165T tokens generated per year, for a total
stock over a quadrillion tokens.

Note that the quality of instant messaging data relative to
web data is not well documented, so this source of data
might be much less useful for training than our calculation
of the number of tokens suggests. That said, even if we take
the number of tokens at face value, it is comparable to the
stock of text in the indexed and deep web, and therefore
instant messaging data only increases the stock of text by
50%, which would delay a data bottleneck by less than one
year.

Emails could also be a large source of data, comparable to
the overall size of the deep web. There are reportedly over
300B emails received per day (Radicati), which amounts to
around 100T emails per year. It is unclear how many tokens
of unique content this contains. It is likely that most are
”mass emails” such as advertisements or newsletters such
that most received emails are not unique or have substantial
duplicate content. If we conservatively suppose that 10% of
emails are unique and contain about 50 words on average
(consistent with some existing estimates, see Taniguchi et al.
(2020)), this would represent about 625T tokens, which is
the same order of magnitude as our estimates of the stock
of deep web text.

D. Non-text data
There are significant sources of public data in modalities
different than text. Most notably, the web contains large
quantities of images and videos which might be used to
train multimodal systems. However, we believe that the
amount of useful information contained in these additional
sources of data is not enough to meaningfully change our
conclusions. In this appendix we arrive at some rough
estimates for the amount of data available for other common
modalities to justify this conclusion.

Images It is hard to know exactly how many pictures are
taken globally per year, but a reasonable estimate is on
the order of a couple trillion (Lee, 2021). 33 Henighan
et al. (2020) estimates that one image has at least as much

33This is consistent with the average human taking about 100
pictures per year.

information as around three tokens of text. Meanwhile,
image encoders often use hundreds of tokens per image
(Dosovitskiy et al., 2021), but there is probably significant
redundancy in this representation. We take the geometric
average of these two extremes to arrive at a reasonable
middle point of ∼30 tokens per image. Assuming that this
rate of image capture has been maintained for 10 years,
this corresponds to a few hundred trillion tokens, roughly
the same scale as the raw size of Common Crawl. For
this reason, including images in our model is not likely to
produce large changes in our results.

Video In the case of video, YouTube is the most-used
video hosting platform worldwide. More than 500 hours
of video are uploaded to YouTube every minute (YouTube),
which corresponds to 1 trillion seconds of video uploaded
per year. Using again the hypothesis that the information in
an image corresponds to around 30 tokens of text,34 assum-
ing each second of video is as valuable as an independent
image, and maintaining the same rate of video upload for
10 years, we arrive at an estimate of 100 trillion text-token-
equivalents. YouTube represents 7% of the share of internet
traffic (Similarweb, 2024), so if we assume that the share of
content is similar to the share of traffic,35 the total stock of
video might be on the order of one quadrillion tokens. Since
this is similar to the stock of data in the web, including video
data in our estimates of the stock would not significantly
change our results.

One relevant consideration regarding video and images
is that their production is much easier to scale than text.
7B CMOS image sensors were produced in 2020 (Yole
Développement, 2021). If all of them were used for record-
ing, in a single year they could produce 2e17 seconds of
video, 1000 times more than the current stock in the web.

Exotic modalities Stephens et al. (2015) estimated that
astronomy and genomics produce several million terabytes
of compressed data per year. At face value, this corresponds
to a stock of roughly 1e18 tokens, a thousand times larger
than our estimates of the stock for text, images and video.

However, these modalities of data have extremely high re-
dundancy and significant noise. The amount of synergy that
these modalities have with text is also an open question.
For this reason, we currently cannot evaluate whether these
alternative modalities can provide a lasting source of data.

34It is possible that the useful information in videos is over-
whelmingly in the spoken words, rather than the images. Since
humans speak at 100-160 words per minute, the amount of tokens
per second of audio cannot be higher than 4-5, so 30 tokens per
second of video is still an upper bound.

35While this might not be exactly true, it seems hard to argue
that other platforms contain a larger quantity of varied and useful
videos.
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E. Tokenization Schemes Across Datasets
This appendix examines the performance of various tok-
enization schemes across different datasets by analyzing the
average number of tokens produced and the average number
of characters per token. The data presented in Tables 3,
4, and 5 collectively demonstrate that common tokenizers
produce a similar number of tokens across a diverse range
of texts.

E.1. Tokenization in RefinedWeb Dataset

Table 3 compares three tokenizers (BERT, GPT2, and XLM-
Net) on 1000 random web pages in the first segment of the
RefinedWeb dataset, showing that the average number of
tokens produced by each tokenizer is similar, ranging from
621 to 653, with a consistent number of characters per token
(around 4.2 to 4.4). In this dataset the average length of a
word in bytes including whitespace is 5.5, so on average
there are 4.4/5.5 = 0.8 words per token.

Tokenizer Mean Tokens Chars/Token

BERT 621 4.4
GPT2 645 4.2
XLMNet 653 4.2

Table 3. Tokenization schemes in the first segment of RefinedWeb

E.2. Tokenization Using GPT2 Tokenizer Across
Various Datasets

Table 4 demonstrates the performance of the GPT2 tok-
enizer across various datasets, with the characters per token
metric remaining relatively consistent, ranging from 2.22
to 4.15. This suggests that the GPT2 tokenizer produces a
similar number of tokens per character across diverse text
data, despite differences in the nature and average character
length of the datasets.

Dataset TextsAvg Char Length Chars/Token

Enron Emails 1010 1618 3.44
FreeLaw 5094 15707 3.53
GitHub 18337 5238 2.53
EuroParl 133 62975 2.5
DM-Mathematics 2007 8194 2.22
ArXiv 2434 47345 3.05
Books3 301 587352 4.15

Table 4. GPT2 Tokenizer performance across multiple datasets

E.3. Performance of Modern Tokenizers on Selected
Datasets

Table 5 compares the performance of multiple tokenizers
used in modern models (Mixtral-7B, Command-plus-R, and
cl100k base/GPT-4) on selected datasets. The characters
per token metric remains fairly consistent for each tokenizer
across the datasets and always between 2 and 5, indicating
that the choice of tokenizer does not significantly affect the
number of tokens produced per character.

Tokenizer Dataset Chars/Token

Mixtral-7B Books3 3.8
GitHub 2.88
Chinese Modern Po-
etry

2.17

Command-plus-R Books3 4.17
GitHub 3.29
Chinese Modern Po-
etry

3.22

cl100k base Books3 4.31
GitHub 3.78
RefinedWeb 4.41
DM-mathematics 2.25
Chinese Modern Po-
etry

2.1

Table 5. Performance of various tokenizers across selected datasets

The consistency in the characters per token metric across
different tokenizers and datasets supports the conclusion
that the conversion from the number of words to the number
of tokens is roughly independent of the tokenizer used. This
finding has implications for the comparability of tokeniza-
tion results across studies using different tokenizers and
datasets. Further statistical analysis, such as examining the
variance or standard deviation of the characters per token
metric, could provide additional insights into the consistency
of tokenization across datasets and tokenizers.

F. Overtraining in the context of data scarcity
In this appendix we sketch a model of optimal scaling de-
cisions under data scarcity. In particular, we examine how
the decision to overtrain models might be affected by data
scarcity.

Our starting point is the parametric scaling law of Hoffmann
et al. (2022), which predicts the reducible loss of a model
L given its number of parameters N and the size of its
training dataset D (see Equation 9). Hoffmann et al. (2022)
derive from this scaling law a relation between the sizes
of the model and the dataset that minimize the reducible
loss of their model given a fixed training compute budget.
In particular, in compute-optimal models the ratio D/N is
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around 20. We call this the Chinchilla scaling law, and we
call models that follow it Chinchilla-optimal.

Models for which the ratio D/N is above the Chinchilla-
optimal ratio are commonly called overtrained, while mod-
els that are below that ratio are called undertrained. At a
fixed training compute budget, overtrained models require
less compute during inference but more data during train-
ing. This is currently attractive for developers, as compute
is relatively scarce compared to data. As a consequence,
some well-known models, like Llama 3 (Meta, 2024), are
overtrained.36

Profit maximization problem

maximize I(P − 2N)− 6ND (6)
s.t. 6ND + 2NI = C0 (7)

where I = I0(AN−a +BD−b)−rP−h (8)

Here N is the number of parameters of the model, D
is the size of the training dataset in tokens and P is
the price of each inference token in (some multiple
of) dollars. C0 is the total computational budget for
training and inference and I is the number of tokens
produced during inference. A, a,B and b are fitted
parameters of the scaling law, and I0, r and h are
parameters of the inference demand function. All
parameters are positive.

We now examine the relationship between overtraining and
undertraining in the context of a data bottleneck. To simplify
the analysis, here we ignore the cost of gathering data and
focus on the computational cost of the model during training
and inference. We assume that developers want to achieve
the maximum possible profit within their computational
budget, and that this computational budget includes both
training and inference. In particular, given N and D, as well
as a certain number of inference tokens, I , the compute cost
C is given by Equation 7.

We assume that inference demand is a function that increases
with model quality and decreases with the price of infer-
ence. We use the inverse reducible loss L−1 as a proxy for
quality.37 The functional form is given by Equation 8.

The optimal scaling policy depends on the values of r and
h. If h = 0 or r = 0, demand for inference is independent
of price or capabilities, respectively. If h = 1, demand is

36Llama 3 has 70B parameters and was trained on 15T tokens,
so it has 214 tokens per parameter, 11x more than the Chinchilla-
optimal ratio.

37In general, the performance of a model is inversely correlated
with the loss, and this relationship can be approximated by a power
law (Henighan et al., 2020).

constant in dollar terms. If h > 1, demand is decreasing
in dollar terms. Since demand decreases with dollar price
for most goods, we try values of h greater than one. Since
the loss of a compute-optimal model scales as ∼ C−0.15,
for the profit to increase as a function of training compute
(which is what we would expect) r must be higher than
0.15−1 ≈ 7.
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Figure 9. Scaling policies obtained by solving the optimization
problem given by Equations 6-8. The dashed lines represent data
and compute budgets of 100T tokens and 1e27 FLOP, respectively.
Achievable configurations given these budgets are indicated by
solid lines, while unachievable ones are indicated by dotted lines.
Some scaling policies exhaust the compute budget first, meaning
they are compute-constrained, while others exhaust the data budget
first, indicating they are data-constrained.

In general, higher values of r and h lead to greater returns to
overtraining, due to additional demand and price sensitivity.
Figure 9 shows some optimal scaling curves for different
values of these parameters of the inference demand function.
In particular, the values r = 7, h = 1.1 lead to a policy
that is very close to Chinchilla-optimal, while the values
r = 7, h = 2 lead to about 5x overtraining, r = 10, h = 2.4
lead to a level of overtraining that increases with training
compute, and is around 100x at 5e25 FLOP.

While Chinchilla-optimal scaling is bottlenecked by com-
pute, under some assumptions the optimal scaling policy is
instead bottlenecked by data. In any case, more overtraining
leads to the stock of data being completely used earlier, as
shown in Figure 10.

21



Position: Will we run out of data? Limits of LLM scaling based on human-generated data

2020 2022 2024 2026 2028 2030 2032 2034 2036 2038 2040

Year

1011

1012

1013

1014

1015

E
ff

ec
ti

ve
st

o
ck

(n
u

m
b

er
of

to
ke

n
s)

GPT-3

PaLM

Falcon-180B

FLAN

Llama 3

DBRX

Stock of data

No overtraining

5x overtraining

100x overtraining

Figure 10. Compute-based projections of data usage and stock uti-
lization years for the three profit-maximizing scaling policies from
Figure 9. Only medians are shown for the dataset size projections.

Scaling law for reducible loss

L = AN−a +BD−b (9)

Here L is the reducible loss, N is the number of
parameters in the model, and B is the size of the
dataset in tokens. The values of the parameters
A, a,B and b are taken from Besiroglu et al. (2024).

G. Limits of undertraining in a data
bottleneck

If data becomes scarce relative to compute, researchers
might opt to undertrain increasingly large models on the
existing stock of data. Using again the parametric scaling
law found by Hoffmann et al. (2022), we can predict how
much additional performance could be obtained from this
approach.

In particular, we assume that the training data is fixed at
300T tokens and calculate the reducible loss predicted by
Equation 9 as we increase the training compute by adding
more parameters to the model. Figure 11 shows the result
from this model: undertraining can provide the equivalent of
up to 2 additional orders of magnitude of compute-optimal
scaling, but requires 2-3 orders of magnitude more compute.
This is enough to sustain a decreasing rate of progress for
3-6 additional years before the final plateau.
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Figure 11. A toy model of undertraining in a data bottleneck sce-
nario in which the stock of data is fixed at 300T tokens. The
value of the loss is predicted using the parametric scaling law from
Hoffmann et al. (2022), with the revised parameter estimates from
Besiroglu et al. (2024). The compute-optimal training compute
corresponding to a dataset size of 300T tokens is shown in the
left-most black vertical line. We also plot compute-optimal scaling
with unlimited data for comparison.
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