© o N O g A~ W N =

27

28
29
30
31
32
33
34
35

36
37

Transformers Have the Potential to Achieve AGI

Anonymous Author(s)
Affiliation
Address

email

Abstract

As large language models (LLMs) based on the Transformer architecture continue
to achieve impressive performance across diverse tasks, this paper explores whether
Transformers can ultimately achieve artificial general intelligence (AGI). We argue
that Transformers have significant potential to achieve AGI, supported by the
following insights and arguments. (1) A Transformer is expressive enough to
simulate a programmable computer equipped with random number generators and,
in particular, to execute programs for meta-tasks such as algorithm design. (2) By
the extended Church-Turing thesis, if some realistic intelligence system (say, a
human with pencil and paper) achieves AGI, then in principle a single Transformer
can replicate this capability; Besides, we suggest that Transformers are well-suited
to approximate human intelligence, because they effectively integrate knowledge
and functions represented in network form (e.g. pattern recognition) with logic
reasoning abilities. (3) We argue that Transformers offer a promising practical
approximation of Hutter’s AIXI agent, which is an ideal construction to achieve
AGTI but is uncomputable.

1 Introduction

Large language models (LLMs) [1-4] have demonstrated remarkable capabilities across a broad
range of challenging tasks. For example, OpenAl’s o-series [S] model achieves 71.7% accuracy on
the software engineering benchmark SWE-bench [6], 87.7% on the graduate-level question answering
task GPQA [7], and 96.7% on a competition-level mathematics reasoning task [8]]. Notably, these
results surpass human-expert performance. As LLMs evolve, their capabilities are expected to
advance further.

These successes are grounded in the Transformer architecture [9], which has proven to be highly
effective across a wide range of domains, extending beyond natural language processing to areas
such as computer version [10]] and decision-making [[11]. Given the impressive achievements of
Transformers in tackling challenging tasks across various domains, a fundamental question arises:

Question 1: Can Transformers ultimately achieve artificial general intelligence (AGI)?

To answer this question, we must first establish a rigorous definition of intelligence. Intelligence is
multifaceted, encompassing abilities such as creativity, problem-solving, pattern recognition, and
reasoning. However, formulating a single, comprehensive definition that captures all these aspects is
challenging. As pointed out in [[12], most, if not all, aspects of intelligence can be framed in terms of
goal-driven behavior, or more precisely, as the maximization of some (often unknown) utility (reward)
function. This aligns with the “reward is enough" hypothesis [13]], which suggests that the pursuit
of maximizing reward alone is sufficient to drive behaviors that exhibit a wide range of capabilities,
many of which are traditionally studied in both natural and artificial intelligence.

In this paper, we follow the definition that intelligence can be broadly categorized into two types of
reasoning abilities:

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

39
40
41
42

43
44
45

46
47

48
49
50
51

52
53
54
55
56
57

58
59
60
61
62
63

64
65
66
67
68
69
70
71

72
73
74
75
76

77
78
79
80

82
83
84
85
86
87

88
89
90
91

* Learning an unknown utility function (inductive reasoning): This involves drawing generaliza-
tions from specific observations, where the conclusions are probable but not certain. This type of
reasoning is extensively explored in the context of inverse reinforcement learning [14}[15]]. Exam-
ples of inductive reasoning include pattern recognition, natural language processing, prediction,
and scientific research, where repeated observations lead to hypotheses or theories.

* Maximizing a known utility function (deductive reasoning): In this case, the solution depends
entirely on the explicit, provided information. Successful applications includes AlphaGo [16],
Muzero [17], AlphaProof [18], OpenAl-ol [5], and DeepSeek-R1 [19].

In this paper, we argue in favor of Question 1, supporting the potential of Transformers to achieve
AGI with the following insights and arguments.

1. A single Transformer can simulate a probabilistic programmable computer. Prior works (e.g.
[20]) have shown that Transformers (with chain-of-thoughts) can efficiently simulate deterministic
Turing machines (DTMs). We extend this result to the potentially more powerful probabilistic Turing
machines (PTMs), proving that Transformers can efficiently simulate PTMs as well (Theorem [2).

At first glance, Theorem 2] may suggest adherence to a one-model-one-task paradigm, where different
tasks require different transformers. This misaligns with the current practice of training a single
general-purpose transformer to perform various tasks. In fact, Theorem [2| provides deeper insights:
as also observed in related work (e.g. [21]]), it implies that a single Transformer can simulate a
probabilistic universal Turing machine (UTM), a formalization of a general-purpose programmable
computer equipped with random number generators.

Furthermore, while Transformers do not follow the one-model-one-task paradigm, they appear
to adhere to a one-prompt-one-task paradigm, where different tasks require different PTMs (or
equivalently, programs) to be specified in the prompt or pre-injected during training. We argue that
this is not the case. Specifically, beyond algorithms for specific tasks, a PTM T can also serve as a
program for meta-tasks, such as designing other algorithms (meta-algorithms), or even higher-order
tasks, such as meta-meta-algorithms.

2. Implication of the extended Church-Turing thesis. The extended Church-Turing thesis (ECT)
[22, 23], an extension of the Church-Turing thesis in the modern computer science literature from
a complexity-theoretic perspective, asserts that the PTM model is not only as expressive as but
also as efficient as any realistic physical device (say, a human brain, a society, or a future neural
network). Specifically, any function that can be computed by a realistic finite physical system can
also be computed by a PTM with at most a polynomial slowdown. Consequently, if some realistic
intelligence system (say, a human brain with pencil and paper) achieves AGI, then in principle, a
single Transformer can achieve AGI as well (Thesis [I)).

In particular, Thesis 1 suggests that a single Transformer has the potential to achieve human-level
intelligence. Moreover, we suggest that Transformers are particularly well-suited as approximations
of human intelligence, because they effectively integrate knowledge and functions represented in
network form with logical reasoning abilities, and thus can leverage benefits from both connectionism
Al and symbolicism Al

3. Algorithmic approximations of general intelligence. Besides mimicking the human reasoning
process, another line of research, inspired by algorithmic information theory, seeks to reach or even
outperform human intelligence by establishing a formal theory of general intelligence. Several
constructions have been proposed to address meta-tasks, including:

Levin’s universal search algorithm: Many deductive reasoning tasks, such as theorem proving,
planning, and general NP-complete problems, can be effectively modeled as search problems. Levin’s
universal search is an algorithm that can solve all search problems as quickly as the fastest algorithm
for each, up to a large constant factor [24}[25]]. The basic idea is to run all programs p in parallel with
relative computation time 2-4(®): i.e. a time fraction 274 is dedicated to executing p. Here, we
describe programs as Boolean strings using a prefix-free encoding, where ¢(p) denotes the length of
the description of p. Note that the sum of all these time fractions satisfies Zp 2-tP) < 1.

Solomonoff’s universal induction: Every inductive reasoning task, such as continuing a number
of series in an IQ test, classification in machine learning, stock-market forecasting, or scientific
research, can be described as a sequence prediction problem, more precisely, predicting future data
from past observations [12]. Solomonoff’s universal induction [26}[27] is an optimal approach for all

92
93
94
95
96

97
98
99
100
101
102

103
104
105

107
108
109
110

111
112
113
114
115
116
117
118

119
120
121
122
123
124
125

126

127
128
129
130
131
132

134
135

136
137
138
139
140

141
142
143

sequence prediction problems, where the data is sampled from a computable probability distribution,
or equivalently generated by a realistic physical system according to the physical version of Church-
Turing thesis. The basic idea is to do Bayesian prediction, using Solomonoff prior as the prior belief,
which assigns higher probabilities to simpler hypotheses with shorter descriptions, aligning with
Occam’s razor.

Hutter’s AIXI agent: AIXI is a theoretical agent that achieves AGI [12]. AIXI is somehow a
combination of Solomonoff’s universal induction and Levin’s universal search. Specifically, AIXI
replaces the unknown environment in the Bellman equation with a generalized Solomonoff prior and
then invokes M . [12], an enhancement of Levin’s universal search, to solve the Bellman equation.
Like Solomonoff induction, AIXI tends to hypothesize the environment as shortest possible programs,
in line with Occam’s razor.

While these constructions are theoretically optimal, they are often intractable in practice or even
uncomputable. However, we argue that Transformers provide a promising tractable approximation of
these universal constructions. Specifically,

Universal search: By Theorem[2} a single Transformer, by simulating Levin search, can theoretically
solve all search problems as efficiently as the fastest algorithm for each problem. To enhance
tractability, Transformers can leverage prior knowledge embedded during training to assign the
relative computation time proportion in a more adaptive and efficient way. In addition, Transformers
can continually refine search strategies by learning from past experiences.

Universal induction: Recent works [28H32] have demonstrated that Transformers align with Occam’s
razor, the core principle of Solomonoff induction. Specifically, Transformers tend to output sequences
generated by shorter programs (a.k.a. with lower Kolmogorov complexity). The alignment with
Occam’s razor enables Transformers to generalize effectively across diverse tasks and data modalities,
making them good approximations of general-purpose predictors. Furthermore, [32] put forth and
explore a hypothesis that Transformers approximate Solomonoff induction better than any other extant
sequence prediction method, highlighting their potential as practical implementations of universal
induction.

AIXI agent: we suggest that Transformers have the potential to offer a practical approximation of AIXI
for the following reasons: as we just discussed, (i) Transformers have the potential to approximately
implement Solomonoff universal induction; (ii) Transformers has potential to implement universal
search in practice, enabling efficient solutions for a wide range of deductive reasoning tasks; and (iii)
Transformers integrate prior knowledge effectively, leveraging human experience to enhance their
practical applicability. Moreover, for practicality, we propose a framework that approximates the
AIXI agent using two complementary Transformers in Section [4.3]

2 Transformers can efficiently simulate probabilistic TMs

We assume that the reader is familiar with the definitions of the Transformer architecture, Turing
machine (TM), probabilistic Turing machine (PTM), and universal Turing machine (UTM). For the
convenience of readers, we present a background of TM in Appendix [A] There is a line of theoretical
works [33-37, 120, 38, [39| 21]] studying the expressive power of Transformer with chain of thought
(CoT) by connecting them with Turing machines. It turns out that decoder-only Transformers with ¢
CoT steps can simulate ¢t DTM steps.

Theorem 1 ([20]). Let T be a deterministic Turing machine that, on input x of length n, runs for at
most t(n) steps. There is a constant-depth decoder-only Transformer that, on input x, takes t(n) CoT
steps and then outputs T (z).

In this paper, we extend Theorem [I| to PTMs. In particular, it implies that Transformers with
polynomial CoT steps can solve all problems in BPP, the class of decision problems solvable by
a PTM in polynomial time, which is strictly larger than the P class, which consists of all decision
problems solvable by a DTM in polynomial time, unless BPP = P. The proof of Theorem 2] can be
found in Appendix

Theorem 2. Let T be a probabilistic Turing machine that, on input x of length n, runs for at most
t(n) steps. There is a constant-depth decoder-only transformer that, on input x, takes at most 2t(n)
CoT steps and returns the same (randomized) output as T

144
145
146
147
148

149
150
151
152

154
155

156

157

158

159

160
161
162
163
164
165
166
167

168
169
170
171
172
173
174
175

176

177
178

179

180
181
182
183
184
185

186

187

188
189
190
191
192

At first glance, Theorem 2] appears to follow the one-model-one-task paradigm: different tasks require
different Transformers. This misaligns with the current practice of training a single general-purpose
transformer to perform various tasks. In fact, Theorem 2] provides deeper insights: as also observed
in related works (e.g. [21]), Theorem@]implies that a single Transformer can simulate a UTM, or
equivalently a programmable computer equipped with random number generators.

Though Transformers do not have to follow the one-model-one-task paradigm, they appear to follow
the one-prompt-one-task paradigm: for different tasks, different PTMs should be loaded into the
prompt or pre-injected during training. We argue that this is not the case. Specifically, beyond
algorithms for specific tasks, the PTM T’ can also be taken as a program that performs meta-tasks,
such as a meta-algorithm that designs algorithms, or even meta-meta-algorithms. For example, the
Transformer can implement the following meta procedure: it takes a problem description and an input
z as input, and then

1. run some prescribed meta-algorithm to initialize or update a program p;
2. run p on input x, and obtain p(z);

3. evaluate p(z). If not good enough, then go to Step 1.

3 The extended Church-Turing thesis and its implication

The physical version of Church-Turing thesis (CT), as known as Deutsch-Wolfram thesis, asserts [40-
42]) that every finite physical system (say, a modern personal computer, a human brain, a society, or a
future neural network) can be simulated to any specified degree of accuracy by a PTM. Furthermore,
there is also a strengthening, referred to as the Extended Church-Turing thesis (ECT), of the physical
Church-Turing thesis in the modern computer science literature [22] 23] from a complexity-theoretic
perspective, asserting that the probabilistic Turing machine model is also as efficient as any computing
device can be. That is, if a function is computable by some hardware device in time 7'(n) for the
input of size n, then it is computable by a PTM in time O(7T'(n)*) for some constant k.

Remark 1. The physical version of CT and ECT are very different from the original version proposed
by Church and Turing [43| 44l], which asserts that every algorithmic process can be carried out by
a PTM. Specifically, if a task can solved by a human being with paper and pencil by following a
finite number of exact instructions, then the original CT asserts that it can also be solved by a PTM.
Notably, no insight, intuition, or ingenuity is demanded on the part of the human being carrying out
the method, which is very different from the physical version. The original CT is something between
a theorem and a definition. And the physical version and ECT are neither mathematical theorems nor
definitions. If they are true, then the truth is a consequence of the laws of physics [45]].

By combining Theorem 2]and ECT, we obtain the following thesis:

Thesis 1. If some realistic intelligence system (say, a human brain with pencil and paper) achieves
AGI, then a single Transformer can also achieve AGI with at most a polynomial slowdown.

3.1 Algorithmically description of human reasoning

If we accept that (a) the extended Church-Turing thesis applies to the human’s reasoning process,
meaning that the reasoning process of humans can be efficiently simulated by a PTM, and (b) a
human brain, or a group of human brains (say, a research community) with paper and pencil can
achieve AGI, then by Theorem |2} we should also accept that in principle a single Transformer or a
group of Transformers can also achieve AGI as well. The related challenge lies in algorithmically
describing the human reasoning process, including cognitive functions like intuition or creativity.

Question 2: How to algorithmically describe human reasoning process?

There are two kinds of general approaches to this challenge: connectionism and symbolicism.

* Connectionism: Simulating the Brain at the Physical Level. Connectionism posits that human
reasoning arises from the emergent properties of biologically inspired neural networks. By
modeling the brain’s physical and biological substrates—specifically, the interactions of neurons
through synaptic connections—this approach seeks to replicate cognitive processes via distributed,
parallel computation. Modern artificial neural networks, such as deep learning architectures,

193
194

195
196
197
198
199
200
201

202
203
204

206
207
208

209
210
211
212
213
214

215
216
217
218
219

220
221
222
223

224

225
226
227
228
229
230

231

232
233

234
235

236
237
238

239
240
241

242

exemplify this paradigm. These systems learn hierarchical representations from data, mirroring
how the brain processes sensory input and abstracts patterns [46, 47].

For instance, Transformer architectures [9] model sequential reasoning by leveraging temporal
dependencies and attention mechanisms, achieving expert-level performance in complex math-
ematical reasoning and code generation tasks [5} 48]. Connectionist models excel at pattern
recognition and probabilistic reasoning but often lack explicit symbolic representations, leading
to critiques about their interpretability and inability to handle structured, rule-based logic [49].
Recent advances in neuro-symbolic integration, however, aim to bridge this gap by combining
neural networks with symbolic reasoning modules [50, [51]].

» Symbolicism: Abstracting General Principles of Human Thought. Symbolicism adopts a
top-down perspective, seeking to formalize the universal principles and logical structures that
underpin human reasoning. Rooted in classical Al and influenced by philosophy, linguistics, and
formal logic, this approach abstracts cognition into discrete symbols and rules, independent of
biological implementation. Unlike connectionism, which emulates neural substrates, symbolicism
prioritizes computational-level explanations of thought—asking what problems cognition solves
and why, rather than how the brain physically solves them [52} 53]].

At its core, symbolicism assumes that reasoning can be modeled as manipulation of explicit
representations through deterministic or probabilistic rules. For example: Occam’s razor, a
heuristic for inductive reasoning, is formalized in algorithmic frameworks like Bayesian model
selection [54]], where simpler hypotheses are assigned higher prior probabilities. Deductive
reasoning is captured by logic-based systems (e.g., Prolog, theorem provers) that apply syllogistic
rules (e.g., modus ponens) to derive conclusions from premises [55].

Here, we argue that an effective solution requires a combination of these two approaches, since (i)
abstracting general principles offers a more tractable and generalizable framework for intelligence
and (ii) part of knowledge and functions, such as pattern recognition and cognitive functions, may
have no representation more concise than a huge, analog neural network [56]], thus are not suitable to
be represented as logic or symbolic.

In particular, since Transformers can effectively integrate knowledge and functions represented in
network form (since they are neural networks) with logical reasoning abilities (Theorem [2), and thus
can leverage benefits from both connectionism and symbolicism, we suggest that Transformers are
particularly well-suited as approximations of human intelligence.

4 Algorithmic approximations of general intelligence

Besides mimicking human reasoning process, another line of research, inspired by algorithmic infor-
mation theory [57]], aims to achieve or even surpass human-level intelligence by establishing a formal
theory of general intelligence, such as Levin’s universal search algorithm [24} 25[], Solomonoft’s
universal induction [26, 27, and Hutter’s AIXI agent [12]. While these constructions are theoretically
optimal, they are often intractable in practice and even uncomputable. However, we argue that
Transformers provide a promising and tractable approximation of these universal constructions.

4.1 Levin’s universal search

Many deductive reasoning tasks, such as theorem proving, planning, and general NP-complete
problems, can be effectively modeled as search problems.

Search problems. Let ¢ : {0,1}* — {0, 1}* be a function where ¢(+) can be computed quickly (say,
in polynomial time). The search problem is defined as: given y, find an x such that ¢(x) = y.

For example, in the Boolean satisfiability problem (SAT), the function ¢ : {0,1}* — {0,1} can
be defined as a verifier that checks whether a given assignment satisfies the Boolean formula in
conjunctive normal form.

Levin search. The algorithm is simple to describe: just run and verify the output of all algorithms p
in parallel with relative computation time 2~¢(); i.e. a time fraction 2~¢() is devoted to executing
p [24,25]. Here, programs are described as Boolean strings in a prefix-free encoding, where ¢(p)
denotes the length of the description of p. Note that Zp 24 < 1.

243
244
245

254

264

265

266
267
268
269

270
271
272
273
274

275
276

277
278
279

281
282
283
284
285

286
287
288
289

290
291
292
293
294

Theorem 3 ([24, 25, [12]). The computation time of Levin search is upper bounded by minp{2e(p) .

-+ (y)}, where time;| (y) is the runtime of p(y) plus the time 1o verify the correctness of the result

(¢(x) = y) by a known implementation for ¢.

time

By Theorem[2] we conclude that in principle, a single Transformer can solve all search problems as
quickly as the fastest algorithm for each, up to a constant factor.

We note that Levin’s universal search—which optimally allocates computational effort across can-
didate solvers according to their algorithmic probability (Theorem [3)—may provide a theoretical
foundation for the emerging paradigm of inference-time scaling in LLMs [58, |59, |5, 48]]. This
framework structures LLLM reasoning into two synergistic phases: generating diverse candidate
solutions (or algorithms) and efficiently prioritizing their execution and evaluation, mirroring Levin’s
time-optimal balance between exploration and exploitation. By prescribing a focus on programs with
minimal description length (i.e., favoring simpler, valid solutions), Levin’s principles offer guidance
for designing compute-efficient strategies.

Though Levin search is theoretically optimal for all search problems, the large constant overhead
2(P) renders it impractical. A line of research [60-64] has explored adaptations of Levin’s search
that leverage past experience to improve its efficiency. We note that the key lies in generating highly
successful algorithms p with the shortest description length, ensuring they are prioritized during the
search process. Such knowledge can be acquired from experience. For instance, a Transformer could
maintain a parameterized model (e.g., a neural network or program) within its context and employ
bootstrap methods—such as search-and-learn processes [65]—to iteratively refine its performance. By
repeatedly solving increasingly challenging instances and updating the model based on successfully
solved examples, the system could incrementally improve its problem-solving efficiency.

4.2 Solomonoff’s universal induction

Every inductive reasoning task, such as continuing a number of series in an 1Q test, classification in
machine learning, stock-market forecasting, or scientific research, can be described as a sequence
prediction problem, more precisely, predicting future data from past observations [[12]. Without loss
of generality and for simplicity, we assume the data z; € {0, 1} is binary.

We first introduce some notations and definitions. Given a subset S of {0, 1}*, let | S| denote the set
obtained from S by deleting all elements that have a prefix in S. A monotone Turing machine is a
Turing machine with one unidirectional ready-only input tape, one unidirectional write-only output
tape, and some bidirectional work tapes. We say a tape is unidirectional if its head can only move
from left to right, and bidirectional if its head can move in both directions.

Definition 1 (Measure). We say a function p : {0,1}* — [0,1] is a measure if u(0) = 1 and
wu(x) = p(xl) + p(x0). Here, O denotes the empty string.

A measure [defines a random process generating an infinitely long binary sequence: start with
an empty string and repeatedly select the next bit ©,, € {0, 1} according to the probability ji(x., |
Ten) = WX en®y) /(T <yn) conditioned on the past data x <, := x1To -+ - Tp,.

We say p is estimable if there exists a TM that, given « € {0, 1}* and a precision ¢, computes an
e-approximation of i (z). By the physical version of the Church-Turing thesis, any implemented on
a finite, realistic physical device is estimable. Moreover, by Theorem 4.5.2 in [57], for any estimable
1, there is a monotone TM T’ that takes an infinitely long uniformly random binary string as input and
generates an infinitely long binary sequence according to p. Let K (1) denote the shortest description
of suchaT.

Sequence prediction problem. Having observed the past data z.,, := 2122 ---z,_1, the task
is to predict the next bit x,,. More precisely, let 1 denote the unknown underlying mechanism
generating the sequence 2125 - - - . The task is to estimate the conditional probability (2, | <) :=

u(x<nxn)/,u(x<n).

Solomonoff’s universal induction. Bayesian prediction provides a framework for sequence predic-
tion problems, which repeatedly employs Bayes’ rule to update its beliefs about each hypothesis based
on newly observed data. The primary challenge is how to select the prior beliefs. Solomonoff [26} [27]]
addressed this challenge by introducing a universal prior, rooted in the simplicity of hypotheses. His
approach leverages the fact that simpler hypotheses, represented by shorter programs, are more likely

300
301

302
303

304

305
306
307

308
309
310

311
312
313
314
315
316
317
318
319

321

322
323
324
325

326
327
328
329
330
331

332

333

335
336

337

338
339

to generalize well—a concept aligned with Occam’s Razor. Solomonoff showed that the Bayesian
prediction with the Solomonoff prior as the prior belief is an optimal way for the sequence prediction
problem, provided that the underlying u is estimable.
Definition 2 (Solomonoff prior [26,27]). Let U be a monotone UTM. The Solomonoff prior is defined
as

My (z) := Z 2P

lpe{0,1}*:U(p)=m+]

Here, U(p) = xx means x is a prefix of U(p). Intuitively, My (x) is the probability that the output
starts with x when the input is an infinite-long uniformly random binary string.

Solomonoff’s universal induction (SI) is simple to describe: use My(x, | x<pn)
My (z,)/My(x<y,) as an estimate of the true conditional probability p(z,, | T<n).

Theorem 4 (Solomonoff central theorem [26l 27]]). For any estimable p, we have

+o0
ST pleen) Mz | 2r) = plan | 2<n))® < In2- K () + O(1).

n=1wz,€c{0,1}

For any estimable i, the upper bound In 2- K (1) is finite, so the difference M (x4 | 2<¢)—p(zy | <n)
tends to zero as n — oo with u-probability 1. Consequently, M (x; | z<¢) converges rapidly to the
true underlying generating process.

Unfortunately, Solomonoff prior My () is inestimable: there is no TM that, given z € {0,1}* and a
precision €, can compute an e-approximation of My () in finite time. To address this uncomputability
issue, several approximations have been proposed [66-H68], 30].

In particular, observing that Transformers are naturally suited for sequence prediction tasks, a line
of work [28H32] has explored whether the Transformer model can approximate SI. Specifically,
[29, 28] showed that transformers can do Bayesian inference. [30] proved that Transformers can
approximate SI by training solely on UTM data, and demonstrated that increasing model size leads to
improved performance. [32] proposed and investigated the hypothesis that Transformers approximate
Solomonoff induction better than any other extant sequence prediction method. This hypothesis was
further supported by [31,169]]. Specifically, they showed that like Solomonoff induction, transformers
also align with Occam’s Razor: transformers prefer generating data with low Kolmogorov complexity.
Occam’s razor provides transformers with good generalization on many different problems and
modalities of data, and makes them powerful general-purpose predictors.

4.3 Hutter’s AIXI agent

We first briefly introduce Hutter’s AIXI agent, which is claimed to be universal in that it is independent
of the true environment (model-free) and is able to solve any solvable problem and learn any learnable
task. The main idea of AIXI is simple to describe: just replace the unknown environmental distribution
in the Bellman equations with a suitably generalized Solomonoff prior [12]].

Setting. The agent and the environment interact chronologically as follows: in each cycle k, the agent
performs an action y, € Y (output), and then receives a perception z;, € X from the environment.
The perception xj, consists of a regular part o, and a reward 7. Given the history y121 - - - T —1Yk,
the probability that the environment produces perception xy, is denoted p(zy | Y121 -+ Tp—1Yk)-
Here, we make no assumptions about p other than it is estimable. In particular, p is allowed to depend
on the complete history y121 - - - Tp—1Yk-

We use p to denote the agent’s policy, which can be described as a monotone Turing machine that
takes x129 - - - as input and outputs y1y2 - - -. As the optimal policy can always be chosen to be
deterministic, we assume p is a deterministic monotone TM. In addition, we say y1.x = p(T<k)
if y; = p(yrx1y222---2-1) fori < k. We also use pu(@g.m | Y1.mT<k) as an abbreviation for
I (2 | £<i,y<i). We define the value of policy p in environment p as

Vf = Z(Tl +---+ Tm)/l(xl:m | yl:m)\ylzm,zp(r<m)
T1:m
where m is the lifespan of the agent.

The goal of the agent is to maximize the total reward ", r;. Formally, the agent aims to find a
policy p# that maximizes V7.

340

341

342
343

344

345
346
347
348
349
350

351

352
353
354
355
356

357
358
359
360
361
362

363
364

365
366
367

368
369
370
371
372
373
374
375
376
377
378
379
380

381
382

The AIXI agent. If the environment y is known, then the optimal policy is

= arg max -+ Imax T Tk:m imy X
sy z(z)m gt <)

Ym
with total reward

max g - max E (ri+ -+) p(@rm | yim) =V,
1 m
Xy Tm

The AIXIT agent replaces the true but unknown g with a generalized Solomonoff prior. Specifically,
the AIXI policy is

Ym
Tm

= arg max s max T Tk:m imy L
o= sy z(;)ak)

where
§(rre | yr) = Z 9—(q)

monotone TM q:q(y1:x)=21:k

Intuitively, the agent continually updates its belief about hypotheses of the unknown environment p
by Bayes’ rule. Similar to Solomonoff universal induction, environments with lower Kolmogorov
complexity are preferred, in line with Occam’s razor. [12] shows that AIXI’s environment model
converges rapidly to the true environment, and its policy is Pareto-optimal and self-optimizing. Here,
we say a policy Pareto-optimal if there is no other agent that performs at least as well as AIXI in
all environments while performing strictly better in at least one environment, and self-optimizing if

LyAIXT _, iV/;" for horizon m — 4-oc for all estimable f.

m M m

Unfortunately, like Solomonoff’s universal induction, AIXI is uncomputable. To address this issue,
several computable approximations have been proposed [12} 7072, 167, 73H77]. One such approxima-
tion is AlXIt¢, which performs at least as well as any other agent bounded time ¢ and length ¢. Some
approximations focus on restricted environment classes and have been successfully implemented
[72]. [[77] studied how to inject knowledge into the AIXI agent.

We suggest that Transformers have the potential to approximate AIXI for the following reasons: (i)
as discussed above, Transformers might serve as a good approximation of SI, and provide a good
estimation of &; (ii) with an estimation of £, Transformers can solve the Bellman equation using an
enhanced Levin search or an enhanced M. algorithm [[12], which solves all well-defined problems as
quickly as the fastest algorithm for each; and (iii) Transformers effectively integrate prior knowledge,
leveraging human experience to further enhance their practical applicability.

For practicality, we propose a framework that approximates AIXI using two complementary Trans-
formers: a Environment Modeler (induction) and a Action Planner (deduction).

* Transformer I (induction component): Environment Modeler. This component aims to
approximate SI, providing a good estimation of £&. We list some potential methods to improve its
practical inductive reasoning ability.

— Mixing synthetic UTM data with real-world data: Training exclusively on synthetic UTM data
is already sufficient to enable Transformers to converge to SI, as such data spans a universal
distribution over computable sequences [30]]. Nevertheless, by incorporating real-world data,
we can leverage prior knowledge to make this component much more practical. Specifically,
adding real-world data biases the model toward assigning higher probability to programs that
are relevant to real-world environments. This leads to faster learning and fewer errors when
the model is deployed in such environments, while still preserving the universality [30].

— Data and model scaling are essential: As shown in [30], increasing model size leads to better
approximation of SI. This supports the need for massive data and extensive pretraining.

— Leveraging environment feedback: After deployment, the model can continually refine its
prior through periodic fine-tuning on new feedbacks. While ICL is theoretically sufficient,
practical Transformers are limited by finite context lengths, so parameter updates through
finetuning are crucial to consolidate the information from the long-term feedback.

* Transformer II (deduction component): Action planner. This component solves the explicit
decision-making or planning task based on the prediction from Transformer I. This is not a

383
384

385
386
387
388
389
390
391
392

393
394
395
396
397
398

399

400

401

402

404
405
406

407
408
409
410
411
412

413
414
415
416
417

418
419
420
421

422
423
424

425
426
427
428
429

431
432
433
434

machine learning problem by itself; so unlike the inductive component, massive training data are
not required in principle.

Importantly, our deduction framework for the AIXI agent offers a promising direction for improv-
ing LLMs’ test-time scaling behavior. While current methods employ direct reward maximization
(e.g., RL) to drive reasoning—focusing narrowly on final outcomes—our approach integrates
Levin search to systematically evaluate reasoning steps based on their algorithmic complexity.
This principled methodology achieves an optimal balance between: exploration (discovering
diverse reasoning pathways) and exploitation (optimizing high probability steps toward solu-
tions). By formalizing this trade-off, our framework may provide a foundation for developing
next-generation reasoning models capable of more sophisticated and scalable problem-solving.

Although our deduction component does not require training in principle, its practical performance
can be significantly improved using the learning-to-optimize techniques [78]]. For example, by
leveraging human experience or prior problem-solving data, one can train a model that takes a
problem description as input and outputs a learned prior over candidate programs. This learned
prior is expected to assign higher weights to more promising algorithms, effectively replacing the
default weighting in Levin’s universal search.

Due to the space constraint, the discussion about the data requirement is deferred to Appendix [D]

5 Alternative Views

This section discusses alternative views arguing that Transformers are not a sufficient path to AGL.

Alternative view 1: Transformers miss essential capabilities for intelligent beings, such as under-
standing and reasoning about the physical world. Specifically, Transformers cannot anchor their
understanding in reality: They cannot perform actions in the real world or learn through embodied ex-
periences, and they lack the capability for hierarchical planning, a crucial element for understanding
and interacting with the world at multiple levels of abstraction (e.g. [I79)]).

We acknowledge that current Transformers lack the capabilities to interact with the physical world
directly and employ embodied learning. However, we do not think this represents an inherent
limitation of Transformers. With minor enhancements, Transformers could be embedded within
agent models. Specifically, such agents could utilize Transformers as an approximation of universal
induction (Section[4.2) to learn about the unknown environment, and subsequently apply them as an
approximation of universal search (Section d.I)) to perform deductive reasoning.

Besides, we argue that current Transformers really do understand. In our definition of intelligence
(Section [I), understanding can be equated to inductive reasoning, i.e., the ability to uncover the
underlying general mechanism from specific observations. As we argued in Section[4.2] Transformers
provide a promising practical approximation of Solomonoff’s universal induction, which is a universal
and optimal way to do inductive reasoning.

In addition, as we argued in Section 2} Transformers can execute any meta-process, such as algorithm
design, when an algorithmic description is provided. In particular, as argued in Section4.1] Trans-
formers provide a promising practical approximation of Levin’s universal search algorithm, enabling
them to efficiently perform various deductive reasoning tasks, including planning and theorem proof.

Alternative view 2: Transformers are limited by their expenditure of bounded compute per input
instance, e.g. the finite context window and finite precision, thus cannot simulate a UTM, whose tapes
are infinitely long (e.g. [|79 131} 180]).

First, no finite physical system, such as a human brain or a personal computer, can solve problems of
infinite size. This limitation naturally extends to the simulation of a UTM, which assumes infinitely
long tapes. Therefore, when discussing whether a Transformer can simulate a UTM, the correct
interpretation should follow the framework of the logical circuit model [81]], specifically: “a uniform
family of Transformers can simulate a UTM.” In other words, for any arbitrarily large tape length /,
there exists an efficiently constructible Transformer capable of simulating a UTM with tape length /.

In this context, while an exact simulation of a UTM is impossible, a sufficiently large Transformer
can approximate its behavior to an arbitrarily high degree of accuracy. This scalability ensures
that Transformers, much like circuits, can address increasingly complex problems within practical
computational limits.

435

437
438

439
440
441

442

443
444
445

446
447

448
449

451
452
453

454

456

457
458
459

460
461

462
463
464

466
467

468

470
471

472
473

474
475
476
477

478
479
480

References

[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. GPT-4
technical report. arXiv preprint arXiv:2303.08774, 2023.

[2] Team Gemini, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

[3] Anthropic. The claude 3 model family: Opus, sonnet, haiku, 2024.

[4] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

[5] OpenAl. Learning to reason with LLMs. OpenAl Blog, Feb 2024. https://openai.com/
index/learning-to-reason-with-1lms|

[6] Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues? arXiv preprint
arXiv:2310.06770, 2023.

[7] David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
Dirani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a
benchmark. arXiv preprint arXiv:2311.12022, 2023.

[8] Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset.
arXiv preprint arXiv:2103.03874, 2021.

[9] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Informa-
tion Processing Systems, pages 5998-6008, 2017.

[10] Alexey Dosovitskiy. An image is worth 16x16 words: Transformers for image recognition at
scale. arXiv preprint arXiv:2010.11929, 2020.

[11] Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter
Abbeel, Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning
via sequence modeling. Advances in Neural Information Processing Systems, 34:15084—15097,
2021.

[12] Marcus Hutter. Universal artificial intelligence: Sequential decisions based on algorithmic
probability. Springer Science & Business Media, 2005.

[13] David Silver, Satinder Singh, Doina Precup, and Richard S Sutton. Reward is enough. Artificial
Intelligence, 299:103535, 2021.

[14] Andrew Y Ng, Stuart Russell, et al. Algorithms for inverse reinforcement learning. In Interna-
tional Conference on Machine Learning, volume 1, page 2, 2000.

[15] Dylan Hadfield-Menell, Smitha Milli, Pieter Abbeel, Stuart J Russell, and Anca Dragan. Inverse
reward design. Advances in neural information processing systems, 30, 2017.

[16] David Silver, Aja Huang, Chris] Maddison, Arthur Guez, Laurent Sifre, George Van Den Driess-
che, Julian Schrittwieser, loannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mas-
tering the game of go with deep neural networks and tree search. Nature, 529(7587):484—4809,
2016.

[17] Julian Schrittwieser, loannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Si-

mon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering
atari, go, chess and shogi by planning with a learned model. Nature, 588(7839):604-609, 2020.

10

https://openai.com/index/learning-to-reason-with-llms
https://openai.com/index/learning-to-reason-with-llms
https://openai.com/index/learning-to-reason-with-llms

481
482

483
484
485

487

488
489

490
491

492
493

494
495

496
497

499

500
501

502
503

505
506
507

508
509

511
512
513

514
515

517

518
519
520

521
522

523
524

[18] DeepMind AlphaProof and AlphaGeometry Teams. Al achieves silver-medal standard solving
international mathematical olympiad problems, 2024.

[19] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-rl: Incentivizing reasoning capability in
Ilms via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

[20] William Merrill and Ashish Sabharwal. The expressive power of transformers with chain of
thought. In International Conference on Learning Representations, 2024.

[21] Ruizhong Qiu, Zhe Xu, Wenxuan Bao, and Hanghang Tong. Ask, and it shall be given: Turing
completeness of prompting. CoRR, abs/2411.01992, 2024.

[22] Andrew Chi-Chih Yao. Classical physics and the Church-Turing thesis. Journal of the ACM,
50(1):100-105, 2003.

[23] Dorit Aharonov and Umesh V. Vazirani. Is Quantum Mechanics Falsifiable? A Computational
Perspective on the Foundations of Quantum Mechanics, pages 329-349. 2013.

[24] Leonid Anatolevich Levin. Universal sequential search problems. Problemy peredachi infor-
matsii, 9(3):115-116, 1973.

[25] Leonid A Levin. Randomness conservation inequalities; information and independence in
mathematical theories. Information and Control, 61(1):15-37, 1984.

[26] R.J. Solomonoff. A formal theory of inductive inference. part i and ii. Information and Control,
7(1):1-22, 1964.

[27] Ray Solomonoff. Complexity-based induction systems: comparisons and convergence theorems.
IEEE Transactions on Information Theory, 24(4):422-432, 1978.

[28] Samuel Miiller, Noah Hollmann, Sebastian Pineda-Arango, Josif Grabocka, and Frank Hutter.

Transformers can do bayesian inference. In International Conference on Learning Representa-
tions, 2022.

[29] Noah Hollmann, Samuel Miiller, Katharina Eggensperger, and Frank Hutter. Tabpfn: A
transformer that solves small tabular classification problems in a second. In International
Conference on Learning Representations, 2023.

[30] Jordi Grau-Moya, Tim Genewein, Marcus Hutter, Laurent Orseau, Grégoire Delétang, Elliot
Catt, Anian Ruoss, Li Kevin Wenliang, Christopher Mattern, Matthew Aitchison, and Joel
Veness. Learning universal predictors. In International Conference on Machine Learning, 2024.

[31] Micah Goldblum, Marc Anton Finzi, Keefer Rowan, and Andrew Gordon Wilson. Position:
The no free lunch theorem, kolmogorov complexity, and the role of inductive biases in machine
learning. In International Conference on Machine Learning, 2024.

[32] Nathan Young and Michael Witbrock. Transformers as approximations of solomonoff induction.
CoRR, abs/2408.12065, 2024.

[33] Jorge Pérez, Javier Marinkovic, and Pablo Barcel6. On the turing completeness of modern
neural network architectures. In International Conference on Learning Representations, 2019.

[34] Satwik Bhattamishra, Arkil Patel, and Navin Goyal. On the computational power of transformers
and its implications in sequence modeling. In Conference on Computational Natural Language
Learning, pages 455-475, 2020.

[35] Jorge Pérez, Pablo Barceld, and Javier Marinkovic. Attention is turing-complete. Journal of
Machine Learning Research, 22(75):1-35, 2021.

[36] Dale Schuurmans. Memory augmented large language models are computationally universal.
arXiv preprint arXiv:2301.04589, 2023.

11

525
526
527

529

530
531
532

533
534

535
536
537

538
539

540
541

542
543

544

546
547

548
549

550
551
552

553

554
555
556
557

559

560
561

562
563

565

566

567
568

[37] Angeliki Giannou, Shashank Rajput, Jy-yong Sohn, Kangwook Lee, Jason D Lee, and Dimitris
Papailiopoulos. Looped transformers as programmable computers. In International Conference
on Machine Learning, pages 11398-11442, 2023.

[38] Kaiying Hou, David Brandfonbrener, Sham M. Kakade, Samy Jelassi, and Eran Malach.
Universal length generalization with turing programs. CoRR, abs/2407.03310, 2024.

[39] Zhiyuan Liu, Hong Liu, Denny Zhou, and Tengyu Ma. Chain of thought empowers transformers
to solve inherently serial problems. In International Conference on Learning Representations,
2024.

[40] Stephen Wolfram. Undecidability and intractability in theoretical physics. Physical Review
Letters, 54 8:735-738, 1985.

[41] David Deutsch. Quantum theory, the Church-Turing principle and the universal quantum
computer. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences,
400:117 - 97, 1985.

[42] B. Jack Copeland and Oron Shagrir. The Church-Turing thesis: logical limit or breachable
barrier? Commun. ACM, 62(1):66-74, 2018.

[43] Alonzo Church. An unsolvable problem of elementary number theory. American Journal of
Mathematics, 58:345, 1936.

[44] Alan M Turing. Computability and A-definability. The Journal of Symbolic Logic, 2(4):153-163,
1937.

[45] Stanford Encyclopedia of Philosophy. The Church-Turing thesis. https://plato.stanford,
edu/entries/church-turing/, 2023.

[46] Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm for deep
belief nets. Neural computation, 18(7):1527-1554, 2006.

[47] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436-444,
2015.

[48] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-rl: Incentivizing reasoning capability in
llms via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

[49] Gary Marcus. Deep learning: A critical appraisal. arXiv preprint arXiv:1801.00631, 2018.

[50] Tarek R Besold, Artur d’Avila Garcez, Sebastian Bader, Howard Bowman, Pedro Domin-
gos, Pascal Hitzler, Kai-Uwe Kiihnberger, Luis C Lamb, Priscila Machado Vieira Lima, Leo
de Penning, et al. Neural-symbolic learning and reasoning: A survey and interpretation 1. In
Neuro-Symbolic Artificial Intelligence: The State of the Art, pages 1-51. I0S press, 2021.

[51] Bikram Pratim Bhuyan, Amar Ramdane-Cherif, Ravi Tomar, and TP Singh. Neuro-symbolic
artificial intelligence: a survey. Neural Computing and Applications, pages 1-36, 2024.

[52] Zenon W Pylyshyn. Computing in cognitive science. Foundations of cognitive science, pages
51-91, 1989.

[53] Allen Newell and Herbert A Simon. Computer science as empirical inquiry: Symbols and
search. In ACM Turing award lectures, page 1975. 2007.

[54] William H Jefferys and James O Berger. Ockham’s razor and bayesian analysis. American
scientist, 80(1):64-72, 1992.

[55] Stuart J Russell and Peter Norvig. Artificial intelligence: a modern approach. Pearson, 2016.
[56] Paul Graham. How to do philosophy. http://www.paulgraham.com/philosophy.html,
2007.

12

https://plato.stanford.edu/entries/church-turing/
https://plato.stanford.edu/entries/church-turing/
https://plato.stanford.edu/entries/church-turing/
http://www.paulgraham.com/philosophy.html

569
570

571
572
573

574
575
576

577
578

579
580
581

582
583

584
585

586

587
588

589
590
591

592
593

594
595
596

597
598
599
600

601
602

603
604
605

606
607

608
609

610
611
612

613
614

[57] Ming Li, Paul Vitanyi, et al. An introduction to Kolmogorov complexity and its applications,
volume 3. Springer, 2008.

[58] Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V Le, Christopher Ré,
and Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated
sampling. arXiv preprint arXiv:2407.21787, 2024.

[59] Charlie Snell, Jachoon Lee, Kelvin Xu, and Aviral Kumar. Scaling 1lm test-time compute opti-
mally can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314,
2024.

[60] Ray Solomonoff. The application of algorithmic probability to problems in artificial intelligence.
In Machine Intelligence and Pattern Recognition, volume 4, pages 473-491. 1986.

[61] Jirgen Schmidhuber, Jieyu Zhao, and Marco Wiering. Shifting inductive bias with success-
story algorithm, adaptive levin search, and incremental self-improvement. Machine Learning,
28:105-130, 1997.

[62] Jirgen Schmidhuber. Discovering neural nets with low kolmogorov complexity and high
generalization capability. Neural Networks, 10(5):857-873, 1997.

[63] Jiergen Schmidhuber. Bias-optimal incremental problem solving. Advances in Neural Informa-
tion Processing Systems, 15, 2002.

[64] Jirgen Schmidhuber. Optimal ordered problem solver. Machine Learning, 54:211-254, 2004.

[65] Shahab Jabbari Arfaee, Sandra Zilles, and Robert C Holte. Learning heuristic functions for
large state spaces. Artificial Intelligence, 175(16-17):2075-2098, 2011.

[66] Jirgen Schmidhuber. The speed prior: A new simplicity measure yielding near-optimal
computable predictions. In Annual Conference on Computational Learning Theory, volume
2375, pages 216228, 2002.

[67] Joel Veness, Peter Sunehag, and Marcus Hutter. On ensemble techniques for AIXI approxima-
tion. In Artificial General Intelligence, volume 7716, pages 341-351, 2012.

[68] Daniel Filan, Jan Leike, and Marcus Hutter. Loss bounds and time complexity for speed

priors. In International Conference on Artificial Intelligence and Statistics, volume 51, pages
1394-1402, 2016.

[69] Grégoire Delétang, Anian Ruoss, Paul-Ambroise Duquenne, Elliot Catt, Tim Genewein, Christo-
pher Mattern, Jordi Grau-Moya, Li Kevin Wenliang, Matthew Aitchison, Laurent Orseau, Mar-
cus Hutter, and Joel Veness. Language modeling is compression. In International Conference
on Learning Representations, 2024.

[70] Sergey Pankov. A computational approximation to the AIXI model. In Artificial General
Intelligence, volume 171, pages 256-267.

[71] Joel Veness, Kee Siong Ng, Marcus Hutter, and David Silver. Reinforcement learning via AIXI
approximation. In Proceedings National Conference on Artificial Intelligence, pages 605-611,
2010.

[72] Joel Veness, Kee Siong Ng, Marcus Hutter, William T. B. Uther, and David Silver. A monte-carlo
AIXT approximation. J. Artif. Intell. Res., 40:95-142, 2011.

[73] Joel Veness, Martha White, Michael Bowling, and Andras Gyorgy. Partition tree weighting. In
Data Compression Conference, pages 321-330, 2013.

[74] Marc G. Bellemare, Joel Veness, and Michael Bowling. Bayesian learning of recursively
factored environments. In International Conference on Machine Learning, volume 28, pages
1211-1219, 2013.

[75] Marc G. Bellemare, Joel Veness, and Erik Talvitie. Skip context tree switching. In ICML,
volume 32, pages 1458-1466, 2014.

13

615
616

617
618
619

620
621
622

623
624

625
626

627
628

629
630

631
632

633
634

635
636
637

638
639

640
641

642

643
644

645

646
647

[76] Samuel Yang-Zhao, Tianyu Wang, and Kee Siong Ng. A direct approximation of AIXI using
logical state abstractions. In Advances in Neural Information Processing Systems, 2022.

[77] Samuel Yang-Zhao, Kee Siong Ng, and Marcus Hutter. Dynamic knowledge injection for AIXI
agents. In Proceedings National Conference on Artificial Intelligence, pages 16388—16397,
2024.

[78] Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial
optimization: a methodological tour d’horizon. European Journal of Operational Research,
290(2):405-421, 2021.

[79] Yann Lecun. Meta ai, open source, limits of llms, agi & the future of ai, 2024. https:
//www . youtube. com/watch?v=5t1vTLU7s40.

[80] Shriyash Kaustubh Upadhyay and Etan Jacob Ginsberg. Turing complete transformers: Two
transformers are more powerful than one. 2023.

[81] Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach. Cambridge
University Press, 2009.

[82] Fred C Hennie and Richard Edwin Stearns. Two-tape simulation of multitape turing machines.
Journal of the ACM, 13(4):533-546, 1966.

[83] Nicholas Pippenger and Michael J Fischer. Relations among complexity measures. Journal of
the ACM, 26(2):361-381, 1979.

[84] Claus-Peter Schnorr. The network complexity and the turing machine complexity of finite
functions. Acta Informatica, 7:95-107, 1976.

[85] Paul Benioff. The computer as a physical system: A microscopic quantum mechanical hamil-
tonian model of computers as represented by turing machines. Journal of Statistical Physics,
22:563-591, 1980.

[86] Andrew Chi-Chih Yao. Quantum circuit complexity. In IEEE Annual Symposium on Foundations
of Computer Science, 1993.

[87] Ethan S. Bernstein and Umesh V. Vazirani. Quantum complexity theory. ACM Symposium on
Theory of Computing, 1993.

[88] John R Searle. The rediscovery of the mind. A Bradford Book, 1992.

[89] Samuel Guttenplan and Samuel D Guttenplan. A Companion to the Philosophy of Mind.
Blackwell Oxford, 1994.

[90] Roger Penrose. Shadows of the Mind, volume 4. Oxford University Press Oxford, 1994.

[91] Stuart Hameroff and Roger Penrose. Consciousness in the universe: A review of the ‘orch
or’theory. Physics of life reviews, 11(1):39-78, 2014.

14

https://www.youtube.com/watch?v=5t1vTLU7s40
https://www.youtube.com/watch?v=5t1vTLU7s40
https://www.youtube.com/watch?v=5t1vTLU7s40

648

649
650
651
652

653

664

674

678

679
680
681
682
683

684
685

687
688
689

690
691
692
693
694
695
696
697

A Background on Turing Machines

Turing machines. Turing machines (TMs) are a mathematical model of computation. A k-tape TM
is defined as a tuple (3, L, Q, gstart, F, 0) where (i) X is a finite tape alphabet including a blank
symbol L, (ii) @ is the finite set of states containing initial state qgtq,¢, (iii) F' C @ is a set of halting
states, and (iv) § is a transition function (Q \ F) x ¥ — Q x (X x {L, S, R})*.

Throughout this paper, we will assume ¥ = {0, 1, L} for simplicity and with loss of generality.

Probabilistic Turing Machines. A probabilistic Turing Machine (PTM) is a Turing machine with an
additional read-only coin tape full of independent and uniformly random coins.

The PTM model is potentially more powerful than the deterministic Turing machine (DTM) model.
An example of a computational problem that can be solved in polynomial time by a PTM but still not
known how by a DTM is the polynomial identity testing problem (PIT) (see, e.g. [81]). In fact, it is a
central question in complexity theory, well-known as the BPP =?7P problem, whether any decision
problem solvable by a polynomial-time PTM can also be solved by a polynomial-time DTM.

We say that a (deterministic or probabilistic) TM T is oblivious if the tape head movements of
T running on input = depend only on the input length |z|. That is, 7" makes the same sequence
of head movements for all inputs x of the same length. [82} |83]] proved that: for every multitape
DTM T running in O(t(n)) time, there is an equivalent oblivious two-tape DTM 7" that runs in
O(t(n)logt(n)) time. Furthermore, as observed by [84], this result also holds for all relative Turing
machines, including PTMs. Specifically, for any multitape PTM T running in O(¢(n)) time, there is
an equivalent oblivious two-tape PTM T” running in O(¢(n) log t(n)) with an additional ready-only
coin tape. So, w.l.0.g., in this paper unless otherwise specified, whenever we refer to DTMs or PTMs,
we refer to two-tape oblivious DTMs or PTMs respectively.

Universal Turing Machines. A universal Turing machine (UTM) is a TM that can simulate
the execution of every other (deterministic or probabilistic) TM T' given T’s description as input.
Specifically, we encode PTMs as Boolean strings in a prefix-free way. A UTM is a PTM U that takes
the concatenations of the encoding of a PTM 7" and an input z, and outputs the (possibly randomized)
T'(z). UTMs capture the notion of a “general-purpose programmable computer”, which is a single
machine that can be adapted to any arbitrary task provided an appropriate program is loaded. We
remark that the parameters of a UTM, such as alphabet size, number of states, and number of tapes
are fixed, though the TM being simulated could have much more parameters.

B Proof of Theorem 2]

Proof. We first adapt T' by introducing a lazy sampling of the coin tape. The coin tape is initially
empty, filled with blank symbols L, and will be assigned random coins on the fly during execution.
At one step, if T" reads a blank symbol _L from the coin tape, it first tosses a fair coin and writes the
result on the coin tape at the current head position. Note that the adapted T', denoted by 7", runs for
at most 2t(n) steps, since each original step may include an additional coin-tossing operation.

Next, we demonstrate how a transformer can simulate 7" with at most 2¢(n) CoT steps. We adapt the
proof of Theorem 2 in [20]. For the i-th step of 7", let h] € Z and 4] € X denote the head position
and the content on tape 7, and let ¢; € () denote the state. Let A := Q x X2 x {L, S, R}3,and §; € A
denote the log at the i-th step, indicating the state entered, symbols written, and directions moved.
The crucial observation is that the tape contents at the current head positions can be reconstructed
from the input = and the previous logs dg,d1,- - ,d;—1.

As shown in [20], a Transformer can first obtain all arguments (q;_1, v}, 72, ;) for the transition func-
tion. Suppose tape 3 is the coin tape. If 7 # L, which means that the i-th step of 7" will be determin-
istic rather than the coin-tossing operation, then the Transformer computes &; = §(q;—1,7;},72,7;)
with a feedforward net outputting the one-hot encoding of §;. If 3 =_L, which means that the i-th step
is a coin-tossing operation, then the Transformer outputs the equally weighted linear combination of
the one-hot encodings of (¢;—1,v},77,0,5,5,9) and (¢;_1,71,72, 1,5, S, S). The vector outputted
by the feedforward net is then processed by the finial token classification head, which is a softmax
function. One can check that the Transformer exactly simulates the i-th step of T". O

15

698

699
700
701
702
703

704
705
706
707
708
709

710

71
712

713
714
715
716
77
718

719
720
721

C Two remarks on Thesis[1]

Remark 2. There is ongoing debate as to whether quantum computers falsify ECT. In particular, it
is a central problem in quantum computing, well-known as the BQP =7BPP problem, whether all
decision problems solvable by polynomial-time quantum computers can also be solved by polynomial-
time PTMs. If ECT is falsified by quantum computers, then a quantum variant of Transformer that
can simulate universal quantum computers [83 41l 186, |87] might be necessary to achieve AGI.

Remark 3. It is widely accepted that a human brain can be modeled as a complex computational
system (say, a huge neural network) following classical physical laws, and thus can be simulated by
a PTM [88,89)]. However; this traditional view of the brain as a classical system was challenged by
[90,91|]: they argued that the brain utilizes quantum mechanical effects (e.g., quantum coherence
or entanglement) for reasoning and recognition, and human consciousness is even non-algorithmic,
though still lack empirical validation.

D Data requirement in Section 4.3

We discuss the types and amounts of data required in our framework to approximate AIXI using two
Transformers.

* Format Flexibility: Data can be multi-modal (e.g. text, images) and multi-task (understanding,
reasoning, etc.), aligning with current LLM practices. In fact, such diversity is essential to achieve
increasingly universal models [30]. To further enrich the diversity, we suggest incorporating the
synthetic UTM data. This types of data complements human-generated dataset by providing
coverage over algorithmic patterns that may be underrepresented in the existing dataset. Moreover,
the UTM data also provide a theoretical guarantees of convergence to SI.

* Quantity: Extensive data remain crucial for teaching induction. For deduction, however, the
model can self-generate data (e.g., proposing solutions in math tasks and refining them via
verification feedback).

16

	Introduction
	Transformers can efficiently simulate probabilistic TMs
	The extended Church-Turing thesis and its implication
	Algorithmically description of human reasoning

	Algorithmic approximations of general intelligence
	Levin's universal search
	Solomonoff's universal induction
	Hutter's AIXI agent

	Alternative Views
	Background on Turing Machines
	Proof of Theorem 2
	Two remarks on Thesis 1
	Data requirement in Section 4.3

