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Abstract

As large language models (LLMs) based on the Transformer architecture continue1

to achieve impressive performance across diverse tasks, this paper explores whether2

Transformers can ultimately achieve artificial general intelligence (AGI). We argue3

that Transformers have significant potential to achieve AGI, supported by the4

following insights and arguments. (1) A Transformer is expressive enough to5

simulate a programmable computer equipped with random number generators and,6

in particular, to execute programs for meta-tasks such as algorithm design. (2) By7

the extended Church-Turing thesis, if some realistic intelligence system (say, a8

human with pencil and paper) achieves AGI, then in principle a single Transformer9

can replicate this capability; Besides, we suggest that Transformers are well-suited10

to approximate human intelligence, because they effectively integrate knowledge11

and functions represented in network form (e.g. pattern recognition) with logic12

reasoning abilities. (3) We argue that Transformers offer a promising practical13

approximation of Hutter’s AIXI agent, which is an ideal construction to achieve14

AGI but is uncomputable.15

1 Introduction16

Large language models (LLMs) [1–4] have demonstrated remarkable capabilities across a broad17

range of challenging tasks. For example, OpenAI’s o-series [5] model achieves 71.7% accuracy on18

the software engineering benchmark SWE-bench [6], 87.7% on the graduate-level question answering19

task GPQA [7], and 96.7% on a competition-level mathematics reasoning task [8]. Notably, these20

results surpass human-expert performance. As LLMs evolve, their capabilities are expected to21

advance further.22

These successes are grounded in the Transformer architecture [9], which has proven to be highly23

effective across a wide range of domains, extending beyond natural language processing to areas24

such as computer version [10] and decision-making [11]. Given the impressive achievements of25

Transformers in tackling challenging tasks across various domains, a fundamental question arises:26

Question 1: Can Transformers ultimately achieve artificial general intelligence (AGI)?27

To answer this question, we must first establish a rigorous definition of intelligence. Intelligence is28

multifaceted, encompassing abilities such as creativity, problem-solving, pattern recognition, and29

reasoning. However, formulating a single, comprehensive definition that captures all these aspects is30

challenging. As pointed out in [12], most, if not all, aspects of intelligence can be framed in terms of31

goal-driven behavior, or more precisely, as the maximization of some (often unknown) utility (reward)32

function. This aligns with the “reward is enough" hypothesis [13], which suggests that the pursuit33

of maximizing reward alone is sufficient to drive behaviors that exhibit a wide range of capabilities,34

many of which are traditionally studied in both natural and artificial intelligence.35

In this paper, we follow the definition that intelligence can be broadly categorized into two types of36

reasoning abilities:37
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• Learning an unknown utility function (inductive reasoning): This involves drawing generaliza-38

tions from specific observations, where the conclusions are probable but not certain. This type of39

reasoning is extensively explored in the context of inverse reinforcement learning [14, 15]. Exam-40

ples of inductive reasoning include pattern recognition, natural language processing, prediction,41

and scientific research, where repeated observations lead to hypotheses or theories.42

• Maximizing a known utility function (deductive reasoning): In this case, the solution depends43

entirely on the explicit, provided information. Successful applications includes AlphaGo [16],44

Muzero [17], AlphaProof [18], OpenAI-o1 [5], and DeepSeek-R1 [19].45

In this paper, we argue in favor of Question 1, supporting the potential of Transformers to achieve46

AGI with the following insights and arguments.47

1. A single Transformer can simulate a probabilistic programmable computer. Prior works (e.g.48

[20]) have shown that Transformers (with chain-of-thoughts) can efficiently simulate deterministic49

Turing machines (DTMs). We extend this result to the potentially more powerful probabilistic Turing50

machines (PTMs), proving that Transformers can efficiently simulate PTMs as well (Theorem 2).51

At first glance, Theorem 2 may suggest adherence to a one-model-one-task paradigm, where different52

tasks require different transformers. This misaligns with the current practice of training a single53

general-purpose transformer to perform various tasks. In fact, Theorem 2 provides deeper insights:54

as also observed in related work (e.g. [21]), it implies that a single Transformer can simulate a55

probabilistic universal Turing machine (UTM), a formalization of a general-purpose programmable56

computer equipped with random number generators.57

Furthermore, while Transformers do not follow the one-model-one-task paradigm, they appear58

to adhere to a one-prompt-one-task paradigm, where different tasks require different PTMs (or59

equivalently, programs) to be specified in the prompt or pre-injected during training. We argue that60

this is not the case. Specifically, beyond algorithms for specific tasks, a PTM T can also serve as a61

program for meta-tasks, such as designing other algorithms (meta-algorithms), or even higher-order62

tasks, such as meta-meta-algorithms.63

2. Implication of the extended Church-Turing thesis. The extended Church-Turing thesis (ECT)64

[22, 23], an extension of the Church-Turing thesis in the modern computer science literature from65

a complexity-theoretic perspective, asserts that the PTM model is not only as expressive as but66

also as efficient as any realistic physical device (say, a human brain, a society, or a future neural67

network). Specifically, any function that can be computed by a realistic finite physical system can68

also be computed by a PTM with at most a polynomial slowdown. Consequently, if some realistic69

intelligence system (say, a human brain with pencil and paper) achieves AGI, then in principle, a70

single Transformer can achieve AGI as well (Thesis 1).71

In particular, Thesis 1 suggests that a single Transformer has the potential to achieve human-level72

intelligence. Moreover, we suggest that Transformers are particularly well-suited as approximations73

of human intelligence, because they effectively integrate knowledge and functions represented in74

network form with logical reasoning abilities, and thus can leverage benefits from both connectionism75

AI and symbolicism AI.76

3. Algorithmic approximations of general intelligence. Besides mimicking the human reasoning77

process, another line of research, inspired by algorithmic information theory, seeks to reach or even78

outperform human intelligence by establishing a formal theory of general intelligence. Several79

constructions have been proposed to address meta-tasks, including:80

Levin’s universal search algorithm: Many deductive reasoning tasks, such as theorem proving,81

planning, and general NP-complete problems, can be effectively modeled as search problems. Levin’s82

universal search is an algorithm that can solve all search problems as quickly as the fastest algorithm83

for each, up to a large constant factor [24, 25]. The basic idea is to run all programs p in parallel with84

relative computation time 2−ℓ(p); i.e. a time fraction 2−ℓ(p) is dedicated to executing p. Here, we85

describe programs as Boolean strings using a prefix-free encoding, where ℓ(p) denotes the length of86

the description of p. Note that the sum of all these time fractions satisfies
∑

p 2
−ℓ(p) ≤ 1.87

Solomonoff’s universal induction: Every inductive reasoning task, such as continuing a number88

of series in an IQ test, classification in machine learning, stock-market forecasting, or scientific89

research, can be described as a sequence prediction problem, more precisely, predicting future data90

from past observations [12]. Solomonoff’s universal induction [26, 27] is an optimal approach for all91
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sequence prediction problems, where the data is sampled from a computable probability distribution,92

or equivalently generated by a realistic physical system according to the physical version of Church-93

Turing thesis. The basic idea is to do Bayesian prediction, using Solomonoff prior as the prior belief,94

which assigns higher probabilities to simpler hypotheses with shorter descriptions, aligning with95

Occam’s razor.96

Hutter’s AIXI agent: AIXI is a theoretical agent that achieves AGI [12]. AIXI is somehow a97

combination of Solomonoff’s universal induction and Levin’s universal search. Specifically, AIXI98

replaces the unknown environment in the Bellman equation with a generalized Solomonoff prior and99

then invokes M ϵ
p∗ [12], an enhancement of Levin’s universal search, to solve the Bellman equation.100

Like Solomonoff induction, AIXI tends to hypothesize the environment as shortest possible programs,101

in line with Occam’s razor.102

While these constructions are theoretically optimal, they are often intractable in practice or even103

uncomputable. However, we argue that Transformers provide a promising tractable approximation of104

these universal constructions. Specifically,105

Universal search: By Theorem 2, a single Transformer, by simulating Levin search, can theoretically106

solve all search problems as efficiently as the fastest algorithm for each problem. To enhance107

tractability, Transformers can leverage prior knowledge embedded during training to assign the108

relative computation time proportion in a more adaptive and efficient way. In addition, Transformers109

can continually refine search strategies by learning from past experiences.110

Universal induction: Recent works [28–32] have demonstrated that Transformers align with Occam’s111

razor, the core principle of Solomonoff induction. Specifically, Transformers tend to output sequences112

generated by shorter programs (a.k.a. with lower Kolmogorov complexity). The alignment with113

Occam’s razor enables Transformers to generalize effectively across diverse tasks and data modalities,114

making them good approximations of general-purpose predictors. Furthermore, [32] put forth and115

explore a hypothesis that Transformers approximate Solomonoff induction better than any other extant116

sequence prediction method, highlighting their potential as practical implementations of universal117

induction.118

AIXI agent: we suggest that Transformers have the potential to offer a practical approximation of AIXI119

for the following reasons: as we just discussed, (i) Transformers have the potential to approximately120

implement Solomonoff universal induction; (ii) Transformers has potential to implement universal121

search in practice, enabling efficient solutions for a wide range of deductive reasoning tasks; and (iii)122

Transformers integrate prior knowledge effectively, leveraging human experience to enhance their123

practical applicability. Moreover, for practicality, we propose a framework that approximates the124

AIXI agent using two complementary Transformers in Section 4.3.125

2 Transformers can efficiently simulate probabilistic TMs126

We assume that the reader is familiar with the definitions of the Transformer architecture, Turing127

machine (TM), probabilistic Turing machine (PTM), and universal Turing machine (UTM). For the128

convenience of readers, we present a background of TM in Appendix A. There is a line of theoretical129

works [33–37, 20, 38, 39, 21] studying the expressive power of Transformer with chain of thought130

(CoT) by connecting them with Turing machines. It turns out that decoder-only Transformers with t131

CoT steps can simulate t DTM steps.132

Theorem 1 ([20]). Let T be a deterministic Turing machine that, on input x of length n, runs for at133

most t(n) steps. There is a constant-depth decoder-only Transformer that, on input x, takes t(n) CoT134

steps and then outputs T (x).135

In this paper, we extend Theorem 1 to PTMs. In particular, it implies that Transformers with136

polynomial CoT steps can solve all problems in BPP, the class of decision problems solvable by137

a PTM in polynomial time, which is strictly larger than the P class, which consists of all decision138

problems solvable by a DTM in polynomial time, unless BPP = P. The proof of Theorem 2 can be139

found in Appendix B.140

Theorem 2. Let T be a probabilistic Turing machine that, on input x of length n, runs for at most141

t(n) steps. There is a constant-depth decoder-only transformer that, on input x, takes at most 2t(n)142

CoT steps and returns the same (randomized) output as T .143
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At first glance, Theorem 2 appears to follow the one-model-one-task paradigm: different tasks require144

different Transformers. This misaligns with the current practice of training a single general-purpose145

transformer to perform various tasks. In fact, Theorem 2 provides deeper insights: as also observed146

in related works (e.g. [21]), Theorem 2 implies that a single Transformer can simulate a UTM, or147

equivalently a programmable computer equipped with random number generators.148

Though Transformers do not have to follow the one-model-one-task paradigm, they appear to follow149

the one-prompt-one-task paradigm: for different tasks, different PTMs should be loaded into the150

prompt or pre-injected during training. We argue that this is not the case. Specifically, beyond151

algorithms for specific tasks, the PTM T can also be taken as a program that performs meta-tasks,152

such as a meta-algorithm that designs algorithms, or even meta-meta-algorithms. For example, the153

Transformer can implement the following meta procedure: it takes a problem description and an input154

x as input, and then155

1. run some prescribed meta-algorithm to initialize or update a program p;156

2. run p on input x, and obtain p(x);157

3. evaluate p(x). If not good enough, then go to Step 1.158

3 The extended Church-Turing thesis and its implication159

The physical version of Church-Turing thesis (CT), as known as Deutsch-Wolfram thesis, asserts [40–160

42] that every finite physical system (say, a modern personal computer, a human brain, a society, or a161

future neural network) can be simulated to any specified degree of accuracy by a PTM. Furthermore,162

there is also a strengthening, referred to as the Extended Church-Turing thesis (ECT), of the physical163

Church-Turing thesis in the modern computer science literature [22, 23] from a complexity-theoretic164

perspective, asserting that the probabilistic Turing machine model is also as efficient as any computing165

device can be. That is, if a function is computable by some hardware device in time T (n) for the166

input of size n, then it is computable by a PTM in time O(T (n)k) for some constant k.167

Remark 1. The physical version of CT and ECT are very different from the original version proposed168

by Church and Turing [43, 44], which asserts that every algorithmic process can be carried out by169

a PTM. Specifically, if a task can solved by a human being with paper and pencil by following a170

finite number of exact instructions, then the original CT asserts that it can also be solved by a PTM.171

Notably, no insight, intuition, or ingenuity is demanded on the part of the human being carrying out172

the method, which is very different from the physical version. The original CT is something between173

a theorem and a definition. And the physical version and ECT are neither mathematical theorems nor174

definitions. If they are true, then the truth is a consequence of the laws of physics [45].175

By combining Theorem 2 and ECT, we obtain the following thesis:176

Thesis 1. If some realistic intelligence system (say, a human brain with pencil and paper) achieves177

AGI, then a single Transformer can also achieve AGI with at most a polynomial slowdown.178

3.1 Algorithmically description of human reasoning179

If we accept that (a) the extended Church-Turing thesis applies to the human’s reasoning process,180

meaning that the reasoning process of humans can be efficiently simulated by a PTM, and (b) a181

human brain, or a group of human brains (say, a research community) with paper and pencil can182

achieve AGI, then by Theorem 2, we should also accept that in principle a single Transformer or a183

group of Transformers can also achieve AGI as well. The related challenge lies in algorithmically184

describing the human reasoning process, including cognitive functions like intuition or creativity.185

Question 2: How to algorithmically describe human reasoning process?186

There are two kinds of general approaches to this challenge: connectionism and symbolicism.187

• Connectionism: Simulating the Brain at the Physical Level. Connectionism posits that human188

reasoning arises from the emergent properties of biologically inspired neural networks. By189

modeling the brain’s physical and biological substrates—specifically, the interactions of neurons190

through synaptic connections—this approach seeks to replicate cognitive processes via distributed,191

parallel computation. Modern artificial neural networks, such as deep learning architectures,192
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exemplify this paradigm. These systems learn hierarchical representations from data, mirroring193

how the brain processes sensory input and abstracts patterns [46, 47].194

For instance, Transformer architectures [9] model sequential reasoning by leveraging temporal195

dependencies and attention mechanisms, achieving expert-level performance in complex math-196

ematical reasoning and code generation tasks [5, 48]. Connectionist models excel at pattern197

recognition and probabilistic reasoning but often lack explicit symbolic representations, leading198

to critiques about their interpretability and inability to handle structured, rule-based logic [49].199

Recent advances in neuro-symbolic integration, however, aim to bridge this gap by combining200

neural networks with symbolic reasoning modules [50, 51].201

• Symbolicism: Abstracting General Principles of Human Thought. Symbolicism adopts a202

top-down perspective, seeking to formalize the universal principles and logical structures that203

underpin human reasoning. Rooted in classical AI and influenced by philosophy, linguistics, and204

formal logic, this approach abstracts cognition into discrete symbols and rules, independent of205

biological implementation. Unlike connectionism, which emulates neural substrates, symbolicism206

prioritizes computational-level explanations of thought—asking what problems cognition solves207

and why, rather than how the brain physically solves them [52, 53].208

At its core, symbolicism assumes that reasoning can be modeled as manipulation of explicit209

representations through deterministic or probabilistic rules. For example: Occam’s razor, a210

heuristic for inductive reasoning, is formalized in algorithmic frameworks like Bayesian model211

selection [54], where simpler hypotheses are assigned higher prior probabilities. Deductive212

reasoning is captured by logic-based systems (e.g., Prolog, theorem provers) that apply syllogistic213

rules (e.g., modus ponens) to derive conclusions from premises [55].214

Here, we argue that an effective solution requires a combination of these two approaches, since (i)215

abstracting general principles offers a more tractable and generalizable framework for intelligence216

and (ii) part of knowledge and functions, such as pattern recognition and cognitive functions, may217

have no representation more concise than a huge, analog neural network [56], thus are not suitable to218

be represented as logic or symbolic.219

In particular, since Transformers can effectively integrate knowledge and functions represented in220

network form (since they are neural networks) with logical reasoning abilities (Theorem 2), and thus221

can leverage benefits from both connectionism and symbolicism, we suggest that Transformers are222

particularly well-suited as approximations of human intelligence.223

4 Algorithmic approximations of general intelligence224

Besides mimicking human reasoning process, another line of research, inspired by algorithmic infor-225

mation theory [57], aims to achieve or even surpass human-level intelligence by establishing a formal226

theory of general intelligence, such as Levin’s universal search algorithm [24, 25], Solomonoff’s227

universal induction [26, 27], and Hutter’s AIXI agent [12]. While these constructions are theoretically228

optimal, they are often intractable in practice and even uncomputable. However, we argue that229

Transformers provide a promising and tractable approximation of these universal constructions.230

4.1 Levin’s universal search231

Many deductive reasoning tasks, such as theorem proving, planning, and general NP-complete232

problems, can be effectively modeled as search problems.233

Search problems. Let ϕ : {0, 1}∗ → {0, 1}∗ be a function where ϕ(·) can be computed quickly (say,234

in polynomial time). The search problem is defined as: given y, find an x such that ϕ(x) = y.235

For example, in the Boolean satisfiability problem (SAT), the function ϕ : {0, 1}∗ → {0, 1} can236

be defined as a verifier that checks whether a given assignment satisfies the Boolean formula in237

conjunctive normal form.238

Levin search. The algorithm is simple to describe: just run and verify the output of all algorithms p239

in parallel with relative computation time 2−ℓ(p); i.e. a time fraction 2−ℓ(p) is devoted to executing240

p [24, 25]. Here, programs are described as Boolean strings in a prefix-free encoding, where ℓ(p)241

denotes the length of the description of p. Note that
∑

p 2
−ℓ(p) ≤ 1.242
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Theorem 3 ([24, 25, 12]). The computation time of Levin search is upper bounded by minp{2ℓ(p) ·243

time+p (y)}, where time+p (y) is the runtime of p(y) plus the time to verify the correctness of the result244

(ϕ(x) = y) by a known implementation for ϕ.245

By Theorem 2, we conclude that in principle, a single Transformer can solve all search problems as246

quickly as the fastest algorithm for each, up to a constant factor.247

We note that Levin’s universal search—which optimally allocates computational effort across can-248

didate solvers according to their algorithmic probability (Theorem 3)—may provide a theoretical249

foundation for the emerging paradigm of inference-time scaling in LLMs [58, 59, 5, 48]. This250

framework structures LLM reasoning into two synergistic phases: generating diverse candidate251

solutions (or algorithms) and efficiently prioritizing their execution and evaluation, mirroring Levin’s252

time-optimal balance between exploration and exploitation. By prescribing a focus on programs with253

minimal description length (i.e., favoring simpler, valid solutions), Levin’s principles offer guidance254

for designing compute-efficient strategies.255

Though Levin search is theoretically optimal for all search problems, the large constant overhead256

2ℓ(p) renders it impractical. A line of research [60–64] has explored adaptations of Levin’s search257

that leverage past experience to improve its efficiency. We note that the key lies in generating highly258

successful algorithms p with the shortest description length, ensuring they are prioritized during the259

search process. Such knowledge can be acquired from experience. For instance, a Transformer could260

maintain a parameterized model (e.g., a neural network or program) within its context and employ261

bootstrap methods—such as search-and-learn processes [65]—to iteratively refine its performance. By262

repeatedly solving increasingly challenging instances and updating the model based on successfully263

solved examples, the system could incrementally improve its problem-solving efficiency.264

4.2 Solomonoff’s universal induction265

Every inductive reasoning task, such as continuing a number of series in an IQ test, classification in266

machine learning, stock-market forecasting, or scientific research, can be described as a sequence267

prediction problem, more precisely, predicting future data from past observations [12]. Without loss268

of generality and for simplicity, we assume the data xi ∈ {0, 1} is binary.269

We first introduce some notations and definitions. Given a subset S of {0, 1}⋆, let ⌊S⌋ denote the set270

obtained from S by deleting all elements that have a prefix in S. A monotone Turing machine is a271

Turing machine with one unidirectional ready-only input tape, one unidirectional write-only output272

tape, and some bidirectional work tapes. We say a tape is unidirectional if its head can only move273

from left to right, and bidirectional if its head can move in both directions.274

Definition 1 (Measure). We say a function µ : {0, 1}∗ → [0, 1] is a measure if µ(∅) = 1 and275

µ(x) = µ(x1) + µ(x0). Here, ∅ denotes the empty string.276

A measure µ defines a random process generating an infinitely long binary sequence: start with277

an empty string and repeatedly select the next bit xn ∈ {0, 1} according to the probability µ(xn |278

x<n) := µ(x<nxn)/µ(x<n) conditioned on the past data x<n := x1x2 · · ·xn.279

We say µ is estimable if there exists a TM that, given x ∈ {0, 1}∗ and a precision ϵ, computes an280

ϵ-approximation of µ(x). By the physical version of the Church-Turing thesis, any µ implemented on281

a finite, realistic physical device is estimable. Moreover, by Theorem 4.5.2 in [57], for any estimable282

µ, there is a monotone TM T that takes an infinitely long uniformly random binary string as input and283

generates an infinitely long binary sequence according to µ. Let K(µ) denote the shortest description284

of such a T .285

Sequence prediction problem. Having observed the past data x<n := x1x2 · · ·xn−1, the task286

is to predict the next bit xn. More precisely, let µ denote the unknown underlying mechanism287

generating the sequence x1x2 · · · . The task is to estimate the conditional probability µ(xn | x<n) :=288

µ(x<nxn)/µ(x<n).289

Solomonoff’s universal induction. Bayesian prediction provides a framework for sequence predic-290

tion problems, which repeatedly employs Bayes’ rule to update its beliefs about each hypothesis based291

on newly observed data. The primary challenge is how to select the prior beliefs. Solomonoff [26, 27]292

addressed this challenge by introducing a universal prior, rooted in the simplicity of hypotheses. His293

approach leverages the fact that simpler hypotheses, represented by shorter programs, are more likely294
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to generalize well—a concept aligned with Occam’s Razor. Solomonoff showed that the Bayesian295

prediction with the Solomonoff prior as the prior belief is an optimal way for the sequence prediction296

problem, provided that the underlying µ is estimable.297

Definition 2 (Solomonoff prior [26, 27]). Let U be a monotone UTM. The Solomonoff prior is defined298

as299

MU (x) :=
∑

⌊p∈{0,1}∗:U(p)=x⋆⌋

2−ℓ(p).

Here, U(p) = x⋆ means x is a prefix of U(p). Intuitively, MU (x) is the probability that the output300

starts with x when the input is an infinite-long uniformly random binary string.301

Solomonoff’s universal induction (SI) is simple to describe: use MU (xn | x<n) =302

MU (xn)/MU (x<n) as an estimate of the true conditional probability µ(xn | x<n).303

Theorem 4 (Solomonoff central theorem [26, 27]). For any estimable µ, we have304

+∞∑
n=1

∑
xn∈{0,1}

µ(x<n) (M(xt | x<t)− µ(xn | x<n))
2 ≤ ln 2 ·K(µ) +O(1).

For any estimable µ, the upper bound ln 2·K(µ) is finite, so the difference M(xt | x<t)−µ(xn | x<n)305

tends to zero as n → ∞ with µ-probability 1. Consequently, M(xt | x<t) converges rapidly to the306

true underlying generating process.307

Unfortunately, Solomonoff prior MU (x) is inestimable: there is no TM that, given x ∈ {0, 1}∗ and a308

precision ϵ, can compute an ϵ-approximation of MU (x) in finite time. To address this uncomputability309

issue, several approximations have been proposed [66–68, 30].310

In particular, observing that Transformers are naturally suited for sequence prediction tasks, a line311

of work [28–32] has explored whether the Transformer model can approximate SI. Specifically,312

[29, 28] showed that transformers can do Bayesian inference. [30] proved that Transformers can313

approximate SI by training solely on UTM data, and demonstrated that increasing model size leads to314

improved performance. [32] proposed and investigated the hypothesis that Transformers approximate315

Solomonoff induction better than any other extant sequence prediction method. This hypothesis was316

further supported by [31, 69]. Specifically, they showed that like Solomonoff induction, transformers317

also align with Occam’s Razor: transformers prefer generating data with low Kolmogorov complexity.318

Occam’s razor provides transformers with good generalization on many different problems and319

modalities of data, and makes them powerful general-purpose predictors.320

4.3 Hutter’s AIXI agent321

We first briefly introduce Hutter’s AIXI agent, which is claimed to be universal in that it is independent322

of the true environment (model-free) and is able to solve any solvable problem and learn any learnable323

task. The main idea of AIXI is simple to describe: just replace the unknown environmental distribution324

in the Bellman equations with a suitably generalized Solomonoff prior [12].325

Setting. The agent and the environment interact chronologically as follows: in each cycle k, the agent326

performs an action yk ∈ Y (output), and then receives a perception xk ∈ X from the environment.327

The perception xk consists of a regular part ok and a reward rk. Given the history y1x1 · · ·xk−1yk,328

the probability that the environment produces perception xk is denoted µ(xk | y1x1 · · ·xk−1yk).329

Here, we make no assumptions about µ other than it is estimable. In particular, µ is allowed to depend330

on the complete history y1x1 · · ·xk−1yk.331

We use p to denote the agent’s policy, which can be described as a monotone Turing machine that332

takes x1x2 · · · as input and outputs y1y2 · · · . As the optimal policy can always be chosen to be333

deterministic, we assume p is a deterministic monotone TM. In addition, we say y1:k = p(x<k)334

if yi = p(y1x1y2x2 · · ·xi−1) for i ≤ k. We also use µ(xk:m | y1:mx<k) as an abbreviation for335

Πm
i=kµ(xi | x<i, y≤i). We define the value of policy p in environment µ as336

V p
µ :=

∑
x1:m

(r1 + · · ·+ rm)µ(x1:m | y1:m)|y1:m=p(x<m)

where m is the lifespan of the agent.337

The goal of the agent is to maximize the total reward
∑m

i=1 ri. Formally, the agent aims to find a338

policy pµ that maximizes V p
µ .339
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The AIXI agent. If the environment µ is known, then the optimal policy is340

yk := argmax
yk

∑
xk

· · ·max
ym

∑
xm

(
m∑
i=k

ri

)
µ(xk:m | y1:m, x<k)

with total reward341

max
y1

∑
x1

· · ·max
ym

∑
xm

(r1 + · · ·+ rm)µ(x1:m | y1:m) := V ∗
µ

The AIXI agent replaces the true but unknown µ with a generalized Solomonoff prior. Specifically,342

the AIXI policy is343

yk := argmax
yk

∑
xk

· · ·max
ym

∑
xm

(
m∑
i=k

ri

)
ξ(xk:m | y1:m, x<k)

where344

ξ(x1:k | y1:k) :=
∑

monotone TM q:q(y1:k)=x1:k

2−ℓ(q).

Intuitively, the agent continually updates its belief about hypotheses of the unknown environment µ345

by Bayes’ rule. Similar to Solomonoff universal induction, environments with lower Kolmogorov346

complexity are preferred, in line with Occam’s razor. [12] shows that AIXI’s environment model347

converges rapidly to the true environment, and its policy is Pareto-optimal and self-optimizing. Here,348

we say a policy Pareto-optimal if there is no other agent that performs at least as well as AIXI in349

all environments while performing strictly better in at least one environment, and self-optimizing if350

1
mV AIXI

µ → 1
mV ∗

µ for horizon m → +∞ for all estimable µ.351

Unfortunately, like Solomonoff’s universal induction, AIXI is uncomputable. To address this issue,352

several computable approximations have been proposed [12, 70–72, 67, 73–77]. One such approxima-353

tion is AlXItℓ, which performs at least as well as any other agent bounded time t and length ℓ. Some354

approximations focus on restricted environment classes and have been successfully implemented355

[72]. [77] studied how to inject knowledge into the AIXI agent.356

We suggest that Transformers have the potential to approximate AIXI for the following reasons: (i)357

as discussed above, Transformers might serve as a good approximation of SI, and provide a good358

estimation of ξ; (ii) with an estimation of ξ, Transformers can solve the Bellman equation using an359

enhanced Levin search or an enhanced M ϵ
p∗ algorithm [12], which solves all well-defined problems as360

quickly as the fastest algorithm for each; and (iii) Transformers effectively integrate prior knowledge,361

leveraging human experience to further enhance their practical applicability.362

For practicality, we propose a framework that approximates AIXI using two complementary Trans-363

formers: a Environment Modeler (induction) and a Action Planner (deduction).364

• Transformer I (induction component): Environment Modeler. This component aims to365

approximate SI, providing a good estimation of ξ. We list some potential methods to improve its366

practical inductive reasoning ability.367

– Mixing synthetic UTM data with real-world data: Training exclusively on synthetic UTM data368

is already sufficient to enable Transformers to converge to SI, as such data spans a universal369

distribution over computable sequences [30]. Nevertheless, by incorporating real-world data,370

we can leverage prior knowledge to make this component much more practical. Specifically,371

adding real-world data biases the model toward assigning higher probability to programs that372

are relevant to real-world environments. This leads to faster learning and fewer errors when373

the model is deployed in such environments, while still preserving the universality [30].374

– Data and model scaling are essential: As shown in [30], increasing model size leads to better375

approximation of SI. This supports the need for massive data and extensive pretraining.376

– Leveraging environment feedback: After deployment, the model can continually refine its377

prior through periodic fine-tuning on new feedbacks. While ICL is theoretically sufficient,378

practical Transformers are limited by finite context lengths, so parameter updates through379

finetuning are crucial to consolidate the information from the long-term feedback.380

• Transformer II (deduction component): Action planner. This component solves the explicit381

decision-making or planning task based on the prediction from Transformer I. This is not a382
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machine learning problem by itself; so unlike the inductive component, massive training data are383

not required in principle.384

Importantly, our deduction framework for the AIXI agent offers a promising direction for improv-385

ing LLMs’ test-time scaling behavior. While current methods employ direct reward maximization386

(e.g., RL) to drive reasoning—focusing narrowly on final outcomes—our approach integrates387

Levin search to systematically evaluate reasoning steps based on their algorithmic complexity.388

This principled methodology achieves an optimal balance between: exploration (discovering389

diverse reasoning pathways) and exploitation (optimizing high probability steps toward solu-390

tions). By formalizing this trade-off, our framework may provide a foundation for developing391

next-generation reasoning models capable of more sophisticated and scalable problem-solving.392

Although our deduction component does not require training in principle, its practical performance393

can be significantly improved using the learning-to-optimize techniques [78]. For example, by394

leveraging human experience or prior problem-solving data, one can train a model that takes a395

problem description as input and outputs a learned prior over candidate programs. This learned396

prior is expected to assign higher weights to more promising algorithms, effectively replacing the397

default weighting in Levin’s universal search.398

Due to the space constraint, the discussion about the data requirement is deferred to Appendix D399

5 Alternative Views400

This section discusses alternative views arguing that Transformers are not a sufficient path to AGI.401

Alternative view 1: Transformers miss essential capabilities for intelligent beings, such as under-402

standing and reasoning about the physical world. Specifically, Transformers cannot anchor their403

understanding in reality: They cannot perform actions in the real world or learn through embodied ex-404

periences, and they lack the capability for hierarchical planning, a crucial element for understanding405

and interacting with the world at multiple levels of abstraction (e.g. [79]).406

We acknowledge that current Transformers lack the capabilities to interact with the physical world407

directly and employ embodied learning. However, we do not think this represents an inherent408

limitation of Transformers. With minor enhancements, Transformers could be embedded within409

agent models. Specifically, such agents could utilize Transformers as an approximation of universal410

induction (Section 4.2) to learn about the unknown environment, and subsequently apply them as an411

approximation of universal search (Section 4.1) to perform deductive reasoning.412

Besides, we argue that current Transformers really do understand. In our definition of intelligence413

(Section 1), understanding can be equated to inductive reasoning, i.e., the ability to uncover the414

underlying general mechanism from specific observations. As we argued in Section 4.2, Transformers415

provide a promising practical approximation of Solomonoff’s universal induction, which is a universal416

and optimal way to do inductive reasoning.417

In addition, as we argued in Section 2, Transformers can execute any meta-process, such as algorithm418

design, when an algorithmic description is provided. In particular, as argued in Section 4.1, Trans-419

formers provide a promising practical approximation of Levin’s universal search algorithm, enabling420

them to efficiently perform various deductive reasoning tasks, including planning and theorem proof.421

Alternative view 2: Transformers are limited by their expenditure of bounded compute per input422

instance, e.g. the finite context window and finite precision, thus cannot simulate a UTM, whose tapes423

are infinitely long (e.g. [79, 31, 80]).424

First, no finite physical system, such as a human brain or a personal computer, can solve problems of425

infinite size. This limitation naturally extends to the simulation of a UTM, which assumes infinitely426

long tapes. Therefore, when discussing whether a Transformer can simulate a UTM, the correct427

interpretation should follow the framework of the logical circuit model [81], specifically: “a uniform428

family of Transformers can simulate a UTM.” In other words, for any arbitrarily large tape length ℓ,429

there exists an efficiently constructible Transformer capable of simulating a UTM with tape length ℓ.430

In this context, while an exact simulation of a UTM is impossible, a sufficiently large Transformer431

can approximate its behavior to an arbitrarily high degree of accuracy. This scalability ensures432

that Transformers, much like circuits, can address increasingly complex problems within practical433

computational limits.434
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A Background on Turing Machines648

Turing machines. Turing machines (TMs) are a mathematical model of computation. A k-tape TM649

is defined as a tuple ⟨Σ,⊥, Q, qstart, F, δ⟩ where (i) Σ is a finite tape alphabet including a blank650

symbol ⊥, (ii) Q is the finite set of states containing initial state qstart, (iii) F ⊆ Q is a set of halting651

states, and (iv) δ is a transition function (Q \ F )× Σk → Q× (Σ× {L, S,R})k.652

Throughout this paper, we will assume Σ = {0, 1,⊥} for simplicity and with loss of generality.653

Probabilistic Turing Machines. A probabilistic Turing Machine (PTM) is a Turing machine with an654

additional read-only coin tape full of independent and uniformly random coins.655

The PTM model is potentially more powerful than the deterministic Turing machine (DTM) model.656

An example of a computational problem that can be solved in polynomial time by a PTM but still not657

known how by a DTM is the polynomial identity testing problem (PIT) (see, e.g. [81]). In fact, it is a658

central question in complexity theory, well-known as the BPP =?P problem, whether any decision659

problem solvable by a polynomial-time PTM can also be solved by a polynomial-time DTM.660

We say that a (deterministic or probabilistic) TM T is oblivious if the tape head movements of661

T running on input x depend only on the input length |x|. That is, T makes the same sequence662

of head movements for all inputs x of the same length. [82, 83] proved that: for every multitape663

DTM T running in O(t(n)) time, there is an equivalent oblivious two-tape DTM T ′ that runs in664

O(t(n) log t(n)) time. Furthermore, as observed by [84], this result also holds for all relative Turing665

machines, including PTMs. Specifically, for any multitape PTM T running in O(t(n)) time, there is666

an equivalent oblivious two-tape PTM T ′ running in O(t(n) log t(n)) with an additional ready-only667

coin tape. So, w.l.o.g., in this paper unless otherwise specified, whenever we refer to DTMs or PTMs,668

we refer to two-tape oblivious DTMs or PTMs respectively.669

Universal Turing Machines. A universal Turing machine (UTM) is a TM that can simulate670

the execution of every other (deterministic or probabilistic) TM T given T ’s description as input.671

Specifically, we encode PTMs as Boolean strings in a prefix-free way. A UTM is a PTM U that takes672

the concatenations of the encoding of a PTM T and an input x, and outputs the (possibly randomized)673

T (x). UTMs capture the notion of a “general-purpose programmable computer", which is a single674

machine that can be adapted to any arbitrary task provided an appropriate program is loaded. We675

remark that the parameters of a UTM, such as alphabet size, number of states, and number of tapes676

are fixed, though the TM being simulated could have much more parameters.677

B Proof of Theorem 2678

Proof. We first adapt T by introducing a lazy sampling of the coin tape. The coin tape is initially679

empty, filled with blank symbols ⊥, and will be assigned random coins on the fly during execution.680

At one step, if T reads a blank symbol ⊥ from the coin tape, it first tosses a fair coin and writes the681

result on the coin tape at the current head position. Note that the adapted T , denoted by T ′, runs for682

at most 2t(n) steps, since each original step may include an additional coin-tossing operation.683

Next, we demonstrate how a transformer can simulate T ′ with at most 2t(n) CoT steps. We adapt the684

proof of Theorem 2 in [20]. For the i-th step of T ′, let hτ
i ∈ Z and γτ

i ∈ Σ denote the head position685

and the content on tape τ , and let qi ∈ Q denote the state. Let ∆ := Q×Σ2×{L, S,R}3, and δi ∈ ∆686

denote the log at the i-th step, indicating the state entered, symbols written, and directions moved.687

The crucial observation is that the tape contents at the current head positions can be reconstructed688

from the input x and the previous logs δ0, δ1, · · · , δi−1.689

As shown in [20], a Transformer can first obtain all arguments (qi−1, γ
1
i , γ

2
i , γ

3
i ) for the transition func-690

tion. Suppose tape 3 is the coin tape. If γ3
i ̸=⊥, which means that the i-th step of T ′ will be determin-691

istic rather than the coin-tossing operation, then the Transformer computes δi = δ(qi−1, γ
1
i , γ

2
i , γ

3
i )692

with a feedforward net outputting the one-hot encoding of δi. If γ3
i =⊥, which means that the i-th step693

is a coin-tossing operation, then the Transformer outputs the equally weighted linear combination of694

the one-hot encodings of (qi−1, γ
1
i , γ

2
i , 0, S, S, S) and (qi−1, γ

1
i , γ

2
i , 1, S, S, S). The vector outputted695

by the feedforward net is then processed by the finial token classification head, which is a softmax696

function. One can check that the Transformer exactly simulates the i-th step of T ′.697
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C Two remarks on Thesis 1698

Remark 2. There is ongoing debate as to whether quantum computers falsify ECT. In particular, it699

is a central problem in quantum computing, well-known as the BQP =?BPP problem, whether all700

decision problems solvable by polynomial-time quantum computers can also be solved by polynomial-701

time PTMs. If ECT is falsified by quantum computers, then a quantum variant of Transformer that702

can simulate universal quantum computers [85, 41, 86, 87] might be necessary to achieve AGI.703

Remark 3. It is widely accepted that a human brain can be modeled as a complex computational704

system (say, a huge neural network) following classical physical laws, and thus can be simulated by705

a PTM [88, 89]. However, this traditional view of the brain as a classical system was challenged by706

[90, 91]: they argued that the brain utilizes quantum mechanical effects (e.g., quantum coherence707

or entanglement) for reasoning and recognition, and human consciousness is even non-algorithmic,708

though still lack empirical validation.709

D Data requirement in Section 4.3710

We discuss the types and amounts of data required in our framework to approximate AIXI using two711

Transformers.712

• Format Flexibility: Data can be multi-modal (e.g. text, images) and multi-task (understanding,713

reasoning, etc.), aligning with current LLM practices. In fact, such diversity is essential to achieve714

increasingly universal models [30]. To further enrich the diversity, we suggest incorporating the715

synthetic UTM data. This types of data complements human-generated dataset by providing716

coverage over algorithmic patterns that may be underrepresented in the existing dataset. Moreover,717

the UTM data also provide a theoretical guarantees of convergence to SI.718

• Quantity: Extensive data remain crucial for teaching induction. For deduction, however, the719

model can self-generate data (e.g., proposing solutions in math tasks and refining them via720

verification feedback).721
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