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Abstract

We observe that BatchBALD, a popular acquisition function for batch Bayesian
active learning for classification, can conflate epistemic and aleatoric uncertainty,
leading to suboptimal performance. Motivated by this observation, we propose
to focus on the predictive probabilities, which only exhibit epistemic uncertainty.
The result is an acquisition function that not only performs better, but is also faster
to evaluate, allowing for larger batches than before.

1 Introduction

Batch active learning attempts to acquire batches of data that will be the most informative in build-
ing a model. In the Bayesian active learning setting, where the surrogate model directly gives its
certainty in the latent function, BatchBALD [7] has been a popular algorithm for batch acquisition in
classification. By extending the work of Houlsby et al. [5] and considering the mutual information
over the whole batch, BatchBALD increases batch diversity over a naı̈ve greedy approach. However,
BatchBALD has a number of issues. First, in its closed form, it is limited by its exponential memory
cost in batch size as well as an exponential computation cost. Moreover, as we depict in Fig. 1, de-
spite its use of the mutual information on the whole batch, it is still susceptible to choosing similar
points. We argue that the latter of these is caused by a conflation of the surrogate model’s epistemic
uncertainty (reducible uncertainty in the parameters or function values) and aleatoric uncertainty
(irreducible uncertainty due to noise),1 motivating us to explore methods of focusing on the model’s
epistemic uncertainty alone. Coincidentally, we show that by focusing on the continuous space of
predictive probabilities, we can avoid the excessive combinatorial cost of enumerating all possible
discrete outputs.

2 Background

In its most general form, the goal of active learning is to train a model as data-efficiently as pos-
sible by acquiring the most informative set of new points. In this work, we focus on classification

1See e.g., Kendall and Gal [6] for more in-depth discussion of the role of epistemic and aleatoric uncertainty
in Bayesian machine learning.
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(a) GP prediction (b) BatchBALD (c) BBB

Figure 1: The GP prediction along with BatchBALD and BBB-AL (ours) acquisition landscapes for
B = 2, where x1 (the first point in the batch) is on the x-axis and x2 (the second point) is on the
y-axis. For BatchBALD, we see that the optimal acquisition is x1 = x2 = 1, whereas for BBB-AL
we obtain x1 = 0, x2 = 1.

tasks. We assume that we have already collected an initial dataset D = (X,y) of input-output
pairs, {xn, yn}Nn=1 with xn ∈ X and yn ∈ {0, . . . , C − 1}, where C is the number of classes.
In batch active learning, we acquire a new batch of data DB = {xb, yb}Bb=1 by using a surrogate
model trained on D to select a new batch of query points {xb}Bb=1, which we send to an oracle to
obtain {yb}Bb=1. We repeat this process multiple times, until we exhaust our budget of either data or
computational resources. By using knowledge of previously acquired data, we hope that we can be
more data-efficient than by simply acquiring a single large dataset from the start.

2.1 Bayesian active learning

In Bayesian active learning, we employ a Bayesian surrogate model, which imposes a prior distribu-
tion over functions, p (f), either explicitly, as with Gaussian process (GP) models [16], or implicitly
through a prior distribution over model weights, p (w). Given a likelihood p (y|f,x) and data D,
we can obtain the posterior p (f |D) through Bayes’ rule. This posterior is then used in tandem with
an acquisition function to acquire the new batch of query points:

{x∗
1, . . . ,x

∗
B} = argmax

{x1,...,xB}
a ({x1, . . . ,xB} ; p (f |D)) .

These query points are passed to an oracle to obtain DB , and we update the dataset D ← D ∪DB .

For B = 1, a popular acquisition function for Bayesian active learning is known as Bayesian active
learning by disagreement [BALD; 5], which takes the form

aBALD (x; p (f |D)) = I (y; f |x,D)
= H (y|x,D)− Ep(f |D) [H (y|x, f,D)] ,

where I represents mutual information, and H represents differential entropy. Intuitively, this ac-
quisition function favors points where the model is uncertain in its prediction (the first term) due to
diverging hypotheses about the predictions (the second term, which penalizes agreeing hypotheses),
i.e., where it has high epistemic uncertainty about the label of the point.

2.2 The promises and pitfalls of BatchBALD

A naı̈ve extension of BALD to the batch case would be to simply take the points with the top-B
BALD scores. However, this will lead to redundant points; instead, Kirsch et al. [7] extend BALD
to account for batches by considering the mutual information of the whole batch and the model’s
predictions:

aBatchBALD

(
{xb}Bb=1 ; p (f |D)

)
= I

(
{yb}Bb=1 ; f

∣∣∣{x}Bb=1 ,D
)

= H
(
{yb}Bb=1

∣∣∣{xb}Bb=1 ,D
)

− Ep(f |D)

[
H
(
{yb}Bb=1

∣∣∣{xb}Bb=1 , f,D
)]

.
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While this appears to be a trivial change, it is not practical to implement in its naı̈ve form. Therefore,
Kirsch et al. [7] propose a couple of modifications: 1) a greedy approximation algorithm to avoid a
combinatorial explosion in the joint scoring of sets of points and 2) Monte Carlo sampling to reduce
the computational and memory costs for larger batches.

Despite its reliance on the joint mutual information considering the entire batch, BatchBALD does
not fully mitigate the issue of querying similar points. Consider the simple binary classification
problem shown in Fig. 1. We show the GP prediction for toy data in Fig. 1a, as well as the acquisition
landscape for B = 2 for BatchBALD in Fig. 1b. We observe that there is not a significant penalty
for acquiring twice in the same location, leading BatchBALD to select x1 = x2 = 1. This effect
is caused by the inability of BatchBALD to distinguish effectively between epistemic and aleatoric
uncertainty, meaning that the increased aleatoric uncertainty in the vicinity of x = 1 adds enough
uncertainty to reduce the impact that considering the joint entropy of the batch has. By contrast, our
method, BBB-AL (big batch Bayesian active learning), shows the desirable behavior of choosing
distinct points, as shown in Fig. 1c, and directly penalizing the acquisition of similar points, as seen
by the sharp diagonal area with low score.

3 Active learning for classification through predictive probabilities

Motivated by these shortcomings of BatchBALD, in this work, instead of focusing on the mutual
information between labels and functions (or parameters), we propose to instead reduce the un-
certainty in the predictive probabilities of the model. Typically, in classification, the surrogate
model will model latent functions for each class, f : X → RC , where the class probabilities
are given by a link function σ(·) which “squashes” the latent functions to [0, 1]

C (e.g., a softmax):
p (x) := (p0 (x) , . . . , pC−1 (x)) = σ(f0 (x) , . . . , fC−1 (x)). As the underlying function f is
stochastic in Bayesian modeling, we can also define a posterior density p (p (x)|D). This density
informs where the model is certain or not about the class probabilities of a certain point. This un-
certainty is a natural target for classification as it squashes the latent function’s uncertainty when
applicable, and it is purely epistemic, as it can be entirely reduced by observing more data. Hence
we propose to acquire batches of points that maximize its joint differential entropy:

a
(
{xb}Bb=1 ; p (f |D)

)
= H

(
{p (xb)}Bb=1

)
.

In order to make this tractable, we make two simplifying assumptions: first, that the class probabili-
ties are Gaussian-distributed, and second, that each output is independent. It is then straightforward
to show that this leads to the acquisition function (up to constant terms)

aBBB

(
{xb}Bb=1 ; p (f |D)

)
=

C−1∑
c=0

log det(Cc
p),

where Cc
p is the B ×B covariance matrix of the probabilities for the c-th class, i.e.,(

Cc
p

)
i,j

= C (pc (xi) , pc (xj)) ,

where C (·, ·) denotes covariance. In Appendix A, we show that in binary GP classification, our
acquisition function has can be written in terms of Gaussian integrals that have efficient approxima-
tions. For more general models, we adopt a sampling-based approach, using Ledoit-Wolf shrinkage
[9] to ensure a well-conditioned covariance matrix (see App. B).

When we are free to choose the batch of points in X arbitrarily, we can simply jointly maximize the
locations of {xb}Bb=1 using efficient multi-start optimizers provided in standard Bayesian optimiza-
tion packages [e.g., 14, 1]. However, it is more common that we will have a pool of unlabeled points
to choose from, Dpool. In this case, the problem can be reformulated as maximizing the probability
assigned to the subset of points {xi}Bi=1 by the determinantal point process

P
(
{xi}Bi=1

)
∝ log detC

(
{σ (f (xi))}Bi=1

)
.

While joint maximization of this probability is NP-hard, efficient greedy approaches exist which
operate in O

(
|Dpool| ×B2

)
time [2].
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Figure 2: Accuracy on CIFAR-10 for BBB-AL and BatchBALD acquisition functions versus time
for B = 1, B = 10, and B = 50. The darker lines show the mean performance, whereas the lighter
lines show individual runs.

3.1 Computational complexity

In its naı̈ve implementation, BatchBALD has a computational complexity ofO(CB×|Dpool|B×S),
where S is the number of samples from the model posterior. This high cost in B is due to the need
for BatchBALD to enumerate all possible combinations in {0, 1}B . By using Monte Carlo sampling
of these combinations to approximate the objective, Kirsch et al. [7] reduce this to O(BCM ×
|Dpool| × S) complexity, where M is the number of Monte Carlo samples. For BBB-AL, we have
a time complexity of O(C ×B2 × |Dpool|) for GP models. For more general models, this becomes
O(S×C×|Dpool|+C×B2×|Dpool|) computational cost. For small B, we expect this to be better
than BatchBALD, and below, we show that in practice we are significantly faster than BatchBALD
regardless of batch size.

4 Experiments

We demonstrate our approach on CIFAR-10 [8] using the small “ResNet-8” convolutional network
from Ober and Aitchison [13]. We use their fac → gi variational posterior with a learned vari-
ance (per layer) Gaussian prior, which was shown to provide a good trade-off between performance
and computational complexity, using 100 inducing points, horizontal flipping and random cropping
as data augmentations, and KL tempering with a factor of 0.1. We initialize the model with 50
randomly-selected points, and acquire the greater of 50 acquisitions or 500 points for batch sizes 1,
10, and 50. We repeat each experiment 5 times, and plot the accuracy as a function of time in Fig. 2.
Note that we only plot the time related to acquisition, and so we exclude the time related to model
training.

We observe first that our proposed approach gives marginally better results on B = 1, even in terms
of accuracy: this may be somewhat surprising, as our approach was motivated by the batch setting.
However, we believe this validates our argument that BALD can conflate epistemic and aleatoric
uncertainty. For larger batch sizes, our approach is clearly significantly faster than BatchBALD,
while again obtaining better outright performance.

5 Related work

Beyond BatchBALD [7], perhaps the most conceptually similar work to ours in terms of Bayesian
active learning is given in [17]: they consider the entropy of the probabilities as we do. However,
they introduce additional terms and hence propose a different objective, and most importantly they
only consider single-point acquisitions. Pinsler et al. [15] provide the most relevant related work for
batch active learning; however, their work assumes a true underlying posterior for a pool of data,
which may not always be a realistic assumption. Our batch formulation takes inspiration from DPP-
based approximations [11, 10, 12] from the related method of Bayesian optimization — where data

4



is collected to maximally learn about specific properties of the underlying process, rather than to
reduce global uncertainty.

6 Conclusion & future work

In this work, we have highlighted some of the limitations of BatchBALD. To address these, we have
attempted to focus our method on capturing only the epistemic uncertainty of the model. In doing
so, our method also avoids the combinatorial cost of naı̈ve BatchBALD. We have shown that our
method can outperform BatchBALD in terms of both accuracy and time, allowing for bigger batches
at faster runtimes.
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A Expression for binary GP classification

Suppose we have a GP prior on the latent function, f ∼ GP(µ, k), where µ : X → R is the prior
mean function and k : X × X → R is a kernel function. To perform inference, we require a like-
lihood, p (y|f), which for binary classification is typically a Bernoulli likelihood with probabilities
computed using an link function. In this case, we use the normal c.d.f. as the link function, resulting
in a probit model:

P (y = 1|f,x) = Φ (f(x))

P (y = 0|f,x) = 1− Φ (f(x)) .

For our acquisition function, we are thus interested in finding covariances of the form

C (Φ (f (xi)) ,Φ (f (xj))) .

In order to compute this quantity, we approximate the needed covariance by assuming that the pos-
terior over latents, p (f |D), is also a Gaussian process, which is a common approximation in the GP
literature [e.g., 4]. Under this assumption, we can write the posterior for two points as

p (fij |D) = N (fij ;µ,Σ) ,

where we have defined

fij :=

(
f(xi)
f(xj)

)
.

Recall that

C (Φ (f (xi)) ,Φ (f (xj))) = E [Φ (f (xi)) Φ (f (xj))]− E [Φ (f (xi))]E [Φ (f (xj))] .

By using the definition of the c.d.f. Φ (·), and using the shorthand fi := f (xi), the first term in this
expression can be computed as

E [Φ (fi) Φ (fj)] =

∫
Φ (fi) Φ (fj)N (fij ;µ,Σ) dfij

=

∫ (∫
I [y1 ≤ fi, y2 ≤ fj ]N (y;0, I2) dy

)
N (fij ;µ,Σ) dfij (1)

=

∫ (∫
I [z1 ≥ 0, z2 ≥ 0]N (z; fij , I2) dz

)
N (fij ;µ,Σ) dfij (2)

=

∫
I [z1 ≥ 0, z2 ≥ 0]N (z;µ,Σ+ I2) dz (3)

In this derivation, we have defined y = (y1, y2)
⊤ and z = fij − y. Eq. 1 results from the definition

of the normal c.d.f., Eq. 2 comes from substituting z in as defined, and the final Eq. 3 is a result of
marginalization. The final equation is the probability assigned to the event that z ≥ 0 by a normal
distribution with mean µ and covariance Σ + I2. While this quantity does not have a closed-form
expression, efficient approximations exist for the normal case [3].
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We now turn to the remaining expectation, which we can derive a closed-form expression for using
similar tricks:

E [Φ (fi)] =

∫
Φ (fi)N

(
fi;µi, σ

2
ii

)
dfi

=

∫ (∫
I [y ≤ fi]N (y; 0, 1) dy

)
N
(
fi;µi, σ

2
ii

)
dfi

=

∫ (∫
I [z ≥ 0]N (z; fi, 1) dz

)
N
(
fi;µi, σ

2
ii

)
dfi

=

∫
I [z ≥ 0]N

(
z;µi, σ

2
ii + 1

)
dz

= Φ

(
µi√
σ2
ii + 1

)
.

We are now able to calculate our desired acquisition function for a set of points {xb}Bb=1.

B Sample-based acquisition

To allow for more general models than a GP, we use a sample-based approach, in which we sample
S functions fs, and build an estimator of the covariance matrix:

C (σ (f (xi)) , σ (f (xj))) ≈
1

S

S∑
s=1

(σ (fs (xi))σ (fs (xj)))− µ̂σ (xi) µ̂σ (xj) ,

µ̂σ (·) =
1

S

S∑
s=1

σ (fs (·)) .

Naı̈vely applying this estimator of the covariance matrix, however, has two issues: first, the covari-
ance matrix will be degenerate when B ≥ S, and second, even if it is not degenerate, the result-
ing covariance matrix may be numerically unstable. To address these issues, we use Ledoit-Wolf
shrinkage [9], a popular covariance estimator in mathematical finance which will give us a full-rank
covariance matrix. As we do not wish to evaluate the Ledoit-Wolf shrinkage factor using the full
|Dpool| × |Dpool|, we use a randomly-selected subset of our pool data to do so.
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