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ABSTRACT

Federated learning facilitates collaborative model training across multiple dis-
tributed clients without requiring data sharing. However, conventional federated
methods struggle with classification tasks in an unsupervised paradigm due to the
absence of category knowledge. Recently, CLIP, a prominent visual language
model, has demonstrated impressive results, particularly its remarkable zero-shot
classification ability, which alleviates the dependence on labeled data. In this pa-
per, we first explore a new realistic problem, unsupervised federated learning us-
ing CLIP, where clients with unlabeled heterogeneous data collaborate to enhance
global performance. To address this problem, we propose FedPP, a method that
incorporates a cooperative pseudo-label selection strategy and a partial prompt
aggregation protocol. Our selection strategy ensures that all classes are trained
in a balanced manner through global pseudo-label allocation. Concurrently, the
aggregation protocol divides parameters into aggregated and retained components
to optimize global performance while supporting local personalization. Extensive
experiments across six datasets with various types of heterogeneity demonstrate
the effectiveness of FedPP. Our code is available in the supplementary materials.

1 INTRODUCTION

Federated Learning (McMahan et al., 2017) is a distributed machine learning framework that enables
decentralized collaboration among clients without sharing their local training data. For instance, in
multi-institutional healthcare collaborations, participating clients (e.g., medical institutions and hos-
pitals) can collaboratively train powerful models without leaking patient information (Liu et al.,
2021). The conventional federated algorithms typically operate within a system composed of clients
with labeled data, following an iterative process of local training at the client level and global aggre-
gation at the server level (McMahan et al., 2017; Sheller et al., 2020; Li et al., 2020; Luo et al., 2021;
Zhang et al., 2023b; Guo et al., 2024). Additionally, researchers have begun to apply federated tech-
niques in unsupervised learning settings (Zhang et al., 2023a; Tian et al., 2024; Nardi et al., 2024;
Lu et al., 2022; Lubana et al., 2022). Existing unsupervised federated methods primarily concen-
trate on leveraging self-supervised algorithms for representation learning tasks and clustering tasks.
However, the absence of category knowledge presents a significant challenge for classification tasks
involving unlabeled datasets in federated learning.

Recently, pre-trained vision-language models (VLMs), such as CLIP (Radford et al., 2021), have
shown remarkable representation and generalization capabilities across various downstream tasks,
such as image classification (Cho et al., 2023; Kan et al., 2023; Liang et al., 2024), semantic seg-
mentation (Wang et al., 2022; Xu et al., 2022; Liang et al., 2023), and object detection (Esmaeilpour
et al., 2022; Chen et al., 2024). Benefiting from pre-training on large-scale image-text pairs, CLIP
has powerful zero-shot classification capability. This is achieved by utilizing the textual encoder to
generate classifier weights from a simple prompt, such as “a photo of a [CLASS]”. The impressive
zero-shot prediction capability of CLIP eliminates the reliance on labeled data, opening new avenues
for unsupervised federated learning.

In this paper, we investigate a novel and realistic problem, unsupervised federated learning with
CLIP, where clients leverage unlabeled data to collaborate on complex problems such as image clas-
sification. In this setting, each client is equipped with an identically initialized pre-trained CLIP and
the names of target categories. Similar to standard federated learning frameworks, clients periodi-
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cally upload their non-data knowledge (e.g., statistical information, model parameters) to the server
for aggregation and download global knowledge in return. However, due to the nature of unsuper-
vised learning and the federated paradigm, label skews among clients can easily lead to negative
transfer and aggregation failure.

To address this problem, we propose an unsupervised federated method called FedPP. FedPP incor-
porates two key components, the cooperative pseudo labels selection (CPS) strategy and the partial
prompt aggregation (PPA) protocol. The CPS strategy focuses on selecting reliable pseudo labels
that enhance both local training and global aggregation for each client. Specifically, to improve per-
formance across all categories, we globally select pseudo labels by category and distribute them to
participating clients based on their estimated pseudo label distribution. This approach mitigates the
category bias caused by the inherent bias of CLIP, improving the accuracy of the pseudo labels.

Bisides, the PPA protocol uploads only visual prompts to the server for aggregation, while keeping
textual prompts retained locally to enhance personalization and avoid aggregation conflicts. The
reason for only choosing visual prompts for aggregation is that visual prompts often learn general
representations of the image domain while textual prompts tend to learn category-related information
which may introduce conflicts due to label skews. Consequently, global performance is improved
through the aggregated visual prompts, while clients benefit from personalized textual prompts better
suited to their data distribution. Experimental results across standard federated prompt learning
benchmarks with both Dirichlet-based and quantity-based label skews demonstrate the effectiveness
of the proposed FedPP method. Our main contributions are summarized as follows:

• We introduce unsupervised federated learning with CLIP, a novel and realistic problem
where clients with unlabeled data collaborate to improve model performance.

• To address the unsupervised federated learning problem, we propose FedPP, which com-
prises two key components: cooperative pseudo labels selection, which ensures balanced
training across all classes through global pseudo-label allocation, and partial prompt aggre-
gation, which separates parameters into aggregated and retained components.

• Extensive experiments across six datasets with different types of heterogeneity demonstrate
the effectiveness of FedPP.

2 RELATED WORKS

2.1 VISION-LANGUAGE MODELS

Recently, vision-language models (VLMs) such as CLIP (Radford et al., 2021), ALBEF (Li et al.,
2021), BLIP (Li et al., 2022a), and Flamingo (Alayrac et al., 2022), pre-trained on large-scale image-
text data, have achieved significant success in zero-shot learning (Lu et al., 2019; Wang et al., 2024b;
Liang et al., 2024; Wang et al., 2023; Kim et al., 2021; Zhang et al., 2024b), in-context learn-
ing (Zhou et al., 2024; Doveh et al., 2024), open-world segmentation (Tang et al., 2024; Ha & Song,
2022), and open-world detection (Wang et al., 2024a). Furthermore, the performance of VLMs
can be enhanced through fine-tuning with annotated data from downstream datasets (Zhou et al.,
2022b;a; Udandarao et al., 2023). For instance, CoOp (Zhou et al., 2022b) learns textual prompts
for downstream tasks via back-propagation on few-shot datasets, while CoCoOp (Zhou et al., 2022a)
incorporates visual information into textual prompts for regularization, improving base-to-new gen-
eralization performance. Additionally, CLIP-Adapter (Gao et al., 2024) proposes learning both a
visual and a textual adapter to refine the original representations of vision-language models. In this
paper, we primarily focus on the performance of CLIP as a representative VLM in downstream tasks.

2.2 FEDERATED LEARNING WITH VISION-LANGUAGE MODELS

Federated Learning (FL) (McMahan et al., 2017) has emerged as a pivotal paradigm for decentral-
ized training of machine learning models on heterogeneous data, preserving data privacy and reduc-
ing data transfer overhead (Qu et al., 2022; Li et al., 2023b; Guo et al., 2024; Shi et al., 2023; 2024).
Recently, the fine-tuning of Vision-Language Models (VLMs) has been extended to the federated
framework to alleviate the computational load on individual devices while addressing challenges in
federated learning, such as subpar performance and robustness in cross-domain scenarios, as well
as non-IID data distributions among clients (Qiu et al., 2023; Li & Wang, 2024; Halbe et al., 2023;
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Su et al., 2024; Yang et al., 2023). For example, FedCLIP (Lu et al., 2023) directly extends the
standard fine-tuning of CLIP to the federated setting to achieve strong performance and personaliza-
tion. PromptFL (Guo et al., 2023b) introduces a federated learning framework for prompt learning,
enabling participants to collaboratively learn a common prompt vector. pFedprompt (Guo et al.,
2023a) combines a federated prompt learning scheme with personalized spatial visual features. Ad-
ditionally, pFedPG (Yang et al., 2023) generates personalized prompts for each client based on their
visual prompts to better align with their data distribution. FedOPT (Li et al., 2024) utilizes knowl-
edge from both personal and global textual prompts for prediction through non-uniform optimal
transport. However, previous methods have primarily focused on supervised federated learning with
VLMs. In this paper, we further explore leveraging VLMs for unsupervised federated learning,
capitalizing on their zero-shot capabilities.

2.3 UNSUPERVISED LEARNING FOR VISION-LANGUAGE MODELS

In real-world applications, high annotation costs are often required to ensure that each data source
has labeled data. This necessity drives us to develop effective methods for utilizing unlabeled data
in downstream tasks. Pseudo-labeling strategy (Huang et al., 2022; Menghini et al., 2023; Zhang
et al., 2024a; Jia et al., 2024; Tanwisuth et al., 2023) and entropy minimization (Liang et al., 2024)
are widely studied. For instance, UEO (Liang et al., 2024) leverages sample-level confidence to
minimize the conditional entropy of confident instances while maximizing the marginal entropy of
less confident ones. POUF (Tanwisuth et al., 2023) fine-tunes the model or prompt by aligning the
discrete distributions derived from the prompts and unlabeled target data. UPL (Huang et al., 2022)
and FPL (Menghini et al., 2023) select an equal number of pseudo-labels for each category, while
CPL (Zhang et al., 2024a) generates multiple pseudo labels for each sample to enhance labeling
accuracy. However, existing pseudo labeling strategies have proven challenging to apply directly
to the zero-shot predictions of VLMs in federated settings (Huang et al., 2022). In this paper, we
propose a novel cooperative pseudo labels selection strategy to mitigate the category bias introduced
by the inherent biases of pre-trained VLMs and significantly improve the accuracy of pseudo labels.

3 METHOD

In this section, we present a detailed overview of our problem and proposed method. First, in
Sec. 3.1, we review foundational concepts related to CLIP (Radford et al., 2021) and prompt tuning
methods. Next, Sec. 3.2 provides an overview of our unsupervised heterogeneous federated problem
for Vision Language Models (VLMs). We then introduce our proposed method, FedPP, which is
built upon two key strategies: cooperative pseudo-label selection discussed in Sec. 3.3, and partial
prompt aggregation covered in Sec. 3.4.

3.1 PRELIMINARIES

In this paper, we adopt CLIP (Radford et al., 2021) as the foundational model. CLIP utilizes a
dual-branch architecture consisting of an image encoder, F v(·), and a text encoder, F t(·), with each
encoder processing data from its respective modality. For zero-shot predictions in downstream tasks,
CLIP utilizes a human-designed prompt (e.g., “a photo of a [CLASS]”) for each class. Take a C-way
classification task as an example, textual embeddings of all classes {f t

c}Cc=1 and the embedding of
the test image fv(x) are derived from the text and image encoders, respectively. The probability
that image x belongs to the c-th category is calculated after applying the softmax operation:

pc(x) =
exp(sim(fv(x), f t

c))/τ)∑C
j=1 exp(sim(fv(x), f t

j ))/τ)
, (1)

where τ is a temperature parameter. To enhance performance in downstream tasks, prompt tuning
is widely adopted as a parameter-efficient fine-tuning method. This involves introducing additional
learnable textual tokens P t and visual tokens P v (Zhou et al., 2022b; Jia et al., 2022; Xing et al.,
2023) (referred to as textual/visual prompts) into the corresponding encoders, thereby optimizing
the original CLIP model for specific applications.
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(a) Unsupervised FL problem. (b) Dirichlet-based distribution. (c) Quantity-based distribution.

Figure 1: Illustration of unsupervised federated learning problem. (a) displays the unsupervised
federated learning problem, where each client possesses unlabeled data and an identically initialized
pre-trained vision-language model (VLM). (b) and (c) depict label skews of the data distribution
among clients.

3.2 UNSUPERVISED HETEROGENEOUS FEDERATED PROBLEM FOR VLMS

The powerful zero-shot classification capabilities of CLIP alleviate the requirement of labeled data
in federated learning scenarios. We investigate an unsupervised heterogeneous federated learning
problem involving a central server and K remote clients, as illustrated in Figure 1 (a). Each client
possesses an unlabeled local dataset Dk with a capacity of nk and an identically initialized CLIP.
Similar to standard federated learning frameworks, clients periodically upload their non-data knowl-
edge (e.g., statistical information, model parameters) to the server for aggregation and download
global knowledge in return. A challenge of the problem is heterogeneity, characterized by label
skew in the unlabeled datasets across clients. Specifically, the union of all clients’ datasets

⋃
k Dk

encompasses data from all categories, while Dk may only represent a subset of these categories.
Additionally, the number of samples for each category can vary among clients. Figure 1 (b) and (c)
illustrate client data distribution under Dirichlet-based and quantity-based label skews, respectively.
Further details on heterogeneity can be found in Sec. 4.1. Label skews among clients’ unlabeled
datasets can lead to negative transfer and pose significant risks to federated aggregation.

3.3 COOPERATIVE PSEUDO LABELS SELECTION

To tackle the challenges associated with unsupervised heterogeneous federated learning, we pro-
pose an effective solution called FedPP. This approach integrates two core strategies: a cooperative
pseudo label selection strategy and partial prompt aggregation. The illustration of our method is
shown in Figure 2, and the pseudocode of the algorithm can be found in the appendix A.1.

Given the heterogeneity of unlabeled datasets among clients, directly applying conventional pseudo
label selection methods can lead to an imbalanced global distribution and low-quality pseudo labels.
To address this, we introduce a cooperative pseudo label selection strategy that ensures the union of
pseudo labels across all clients maintains a uniform distribution across categories. Simultaneously,
the pseudo labels for each client are tailored to fit their specific local data distribution.

To facilitate class assignments on the server, clients first estimate the local label distribution. For
client k, we filter the reliable samples from the unlabeled set Dk based on the confidence and entropy
of model predictions to construct the estimated set Dest

k as follows:

Dest
k = {(x, ŷ)|max

c
pc(x) > p 1

2
, Ent(pc(x)) < H 1

2
}, (2)

where ŷ = argmax
c

pc(x) represents the predicted label, and Ent(·) denotes the Shannon Entropy
operator. Here, p 1

2
and H 1

2
are the medians of confidence and entropy within the alternative set,

respectively. We then compute statistics on the pseudo labels by category, yielding the estimated
distribution Uest

k , a C-dimensional vector where the c-th element uk,c =
∑

i 1(ŷi = c) indicates
the number of samples associated with class c according to the pseudo labels.
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Figure 2: The overview of our FedPP. For pseudo labels generation, FedPP begins by filtering the
reliable samples to estimate the local label distribution, which is aggregated as global estimated label
distribution in the server. Then, the server globally selects M pseudo labels for each category and
allocates them to clients based on local and global estimated distributions. To handle label skews
during training, we aggregate only visual prompts on the server to enhance global performance be-
cause the differences in textual prompts are significantly greater than those found in visual prompts.

Subsequently, clients upload their estimated distribution Uest
k to the server for the collaborative as-

signment. To ensure adequate training for all categories, the server globally selects M pseudo labels
for each category and allocates them to clients based on their estimated distributions, as follows:

Ũk = (ũk,1, ũk,2, ..., ũk,C), where ũk,c =

⌈
uk,c∑
i ui,c

·M
⌉

(3)

denotes the amount of training data of category c assigned to client k.

Finally, client k constructs the training set D̃k based on its capacity Ũk. The ũk,c samples with the
highest prediction probability for the c-th class in the original dataset Dk are selected and added
to the training set D̃k. As federated training progresses, we will periodically repeat these steps
to generate, estimate, and assign pseudo-labels, thereby obtaining new high-quality training data
D̃k. The cooperative pseudo labels selection strategy ensures uniform training across all categories
globally, establishing a solid foundation for aggregation. Additionally, the assigned training data for
each client is tailored based on the estimated distribution, enhancing the local model’s consistency
with its specific data distribution.

3.4 PARTIAL PROMPT AGGREGATION
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(a) Drift Diversity. (b) Cosine Distance.

Figure 3: Drift diversity and cosine distance
of prompts among clients during training in CI-
FAR10 (Krizhevsky et al., 2009) dataset. The dif-
ferences observed in textual prompts are signifi-
cantly greater than those found in visual prompts.

For each client, we select both textual prompt
P t
k and visual prompt P v

k as the optimization
parameters to be trained using the local train-
ing set D̃k. Since each client’s training set per-
tains to the same task, effective knowledge ag-
gregation can enhance the overall framework’s
performance. A straightforward approach is to
aggregate the prompts using a simple averag-
ing operation. However, this method may lead
to suboptimal or even detrimental performance.
As for CLIP, the updates to the visual branch
primarily enhance image representation knowl-
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edge, while the textual branch focuses on determining the classification boundaries by leveraging
category information. Consequently, under heterogeneous data distributions among clients, the vi-
sual prompts {P v

k }Kk=1 tend to be more similar, whereas the textual prompts {P v
t }Kk=1 exhibit greater

variability. To validate this conjecture, we measure the differences in both textual and visual prompts
across all clients using drift diversity (Li et al., 2023a) and cosine distance, which respectively re-
flect the diversity in the amount and direction of prompts among clients. As illustrated in Figure 3,
the differences in textual prompts are significantly greater than those found in visual prompts.

Thus, we propose a partial prompt aggregation protocol, where all clients upload their visual prompts
{P v

k }Kk=1 to the server for aggregation while keeping their textual prompts {P t
k}Kk=1 local for person-

alization. For the server, we design the visual prompt aggregation strategy that utilizes a weighted
average approach as follows:

P̃ v =

K∑
k=1

ñk∑
i ñi
· P v

k , (4)

where ñk =
∑
c
ũk,c represents the total number of samples assigned to client k. The weighting

mechanism ensures that clients with a larger allocated sample capacity have a greater influence on
the aggregation process. The aggregated visual prompts P̃ v are then distributed back to the clients
as initialization for their local models for the next training round. The overall objective function of
FedPP is formulated as follows:

min
P̃v,{P t

k}
K
k=1

K∑
k=1

E(x,ŷ)∈D̃k
ℓce

(
g(P̃ v, P t

k;x), ŷ
)
, (5)

where g(P̃ v, P t
k; ·) represents the model output, ŷ denotes pseudo labels, and ℓce(·, ·) is the cross-

entropy loss function.

This approach enhances global performance by aggregating visual prompts {P v
k }Kk=1 while allowing

clients to utilize personalized textual prompts {P t
k}Kk=1 that align better with their specific data

distributions. Moreover, in comparison to methods that aggregate prompts from both modalities,
our approach can reduce communication overhead, making it more practical for environments where
communication resources are limited or constrained.

4 EXPERIMENTS

4.1 SETUPS

Datasets. We evaluated the performance of our method on six public benchmark datasets char-
acterized by varying types of label skew. Following previous research (Guo et al., 2023a; Li et al.,
2024; Cui et al., 2024), we utilized four representative visual classification datasets: DTD (Cim-
poi et al., 2014), RESISC45 (Cheng et al., 2017), UCF101 (Soomro, 2012), and CUB (Wah
et al., 2011), along with two standard federated learning benchmark datasets: CIFAR10 and CI-
FAR100 (Krizhevsky et al., 2009). We partitioned each dataset into distinct training and test sets,
which were subsequently divided into non-overlapping subsets for different clients. To construct
sample sets with label skew, we followed the settings outlined in (Li et al., 2022b) and employed
two prevalent forms of label skew: quantity-based and Dirichlet-based. In the quantity-based label
skew, all training data is grouped by label and allocated into shards with imbalanced quantities. The
parameter s signifies the number of shards per client, regulating the level of label skew (Lee et al.,
2022). In the Dirichlet-based label skew, clients receive samples for each class based on the Dirich-
let distribution (Zhu et al., 2021). Here, the parameter β controls the degree of label skew, with
lower values indicating greater label skews.

Baseline methods. In our experiments, we compare FedPP, with two popular pseudo-label selection
methods in central unsupervised learning and four supervised federated learning methods. Regard-
ing pseudo-labeling selection, CPL (Zhang et al., 2024a) selects the most reliable samples based on
confidence for each class, while FPL (Menghini et al., 2023) generates multiple pseudo-labels for
each sample through selection at both the sample and category levels. Zero shot learning involves
using the pre-trained CLIP model with a hand-crafted textual prompt template, such as “a photo of a
[CLASS],” to predict on the test data. For supervised federated learning methods, PromptFL (Guo

6
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Table 1: Accuracies (%) of experiments under two degrees of Dirichlet-based label skews.
FPL (Menghini et al., 2023) and CPL (Zhang et al., 2024a) are adopted as baseline pseudo-labeling
(PL) method. All results are averaged over 3 runs. Bold and underline represent the best and second-
best results, respectively.

Method PL DTD RESISC45 CUB UCF101 CIFAR10 CIFAR100
β = 0.1 β = 0.05 β = 0.1 β = 0.05 β = 0.1 β = 0.05 β = 0.1 β = 0.05 β = 0.1 β = 0.05 β = 0.1 β = 0.05

Zore shot - 43.24 43.24 54.51 54.51 51.28 51.28 61.00 61.00 68.90 68.90 64.17 64.17
PromptFL FPL 45.79 44.62 59.76 58.05 47.29 46.16 64.39 62.96 68.07 65.77 63.26 62.56
PromptFL CPL 44.84 46.32 62.52 60.99 48.72 48.86 63.86 64.97 70.22 70.60 66.04 65.14
Promptprox FPL 45.15 43.88 59.36 58.59 47.04 47.01 62.91 61.27 68.14 66.53 62.77 64.12
Promptprox CPL 43.51 45.85 59.99 62.35 49.25 48.65 64.55 63.94 71.45 70.71 65.86 66.15
pFedPrompt FPL 44.56 46.19 65.95 60.52 48.48 44.42 64.37 64.18 68.20 70.73 65.08 65.83
pFedPrompt CPL 44.22 47.59 61.76 66.79 47.23 50.97 65.59 65.44 71.16 69.26 65.63 67.86
FedOPT FPL 30.46 35.89 50.15 45.39 46.04 46.38 55.71 57.86 51.73 52.36 47.51 47.50
FedOPT CPL 36.85 33.31 41.10 39.75 42.94 43.73 58.34 56.26 48.10 47.32 57.87 59.81

Ours CPS 60.89 66.37 75.76 80.26 56.09 54.80 73.20 74.97 75.88 76.17 73.59 72.84

Table 2: Accuracies (%) of experiments under quantity-based label skews.

Method PL DTD RESISC45 CUB UCF101 CIFAR10 CIFAR100
Zore shot - 43.24 54.51 51.28 61.00 68.90 64.17
PromptFL FPL 43.53 57.53 46.66 62.35 70.38 63.94
PromptFL CPL 43.82 61.11 47.31 64.23 70.74 67.23
Promptprox FPL 44.89 56.71 48.74 61.80 67.96 64.01
Promptprox CPL 45.53 60.77 47.61 63.86 70.99 66.49
pFedPromp FPL 45.09 60.46 47.71 65.39 68.10 62.82
pFedPrompt CPL 45.14 66.68 50.45 65.57 68.79 65.45
FedOPT FPL 36.65 49.04 42.61 52.95 49.22 46.76
FedOPT CPL 35.32 42.08 36.26 50.05 44.21 57.98

Ours CPS 56.18 81.06 56.31 72.03 75.06 73.39

et al., 2023b) utilizes unified prompt vectors learned across clients via FedAvg (McMahan et al.,
2017). Promptprox, introduced in Guo et al. (2023b), is derived from traditional federated learn-
ing technique FedProx (Li et al., 2020). pFedPrompt (Guo et al., 2023a) learns a unified prompt
with personalized attention modules for local visual embeddings. Finally, FedOPT (Li et al., 2024)
performs optimal transport between the global and local textual prompts to obtain an optimal model.

Implementation details. We adopt the widely recognized vision-language model CLIP ViT-B32
as our base model. We set the number of clients, K, to 5 for the CUB and UCF101 datasets,
and to 10 for the other datasets, implementing full client participation by default. We conduct 20
communication rounds for all experimental datasets, regenerating pseudo-labels using the updated
local model every 5 communication intervals. Within each communication round, local training
spans 10 epochs. We optimize the prompts using mini-batch Stochastic Gradient Descent (SGD)
with a learning rate of 0.1, a momentum of 0.9, and decay following the cosine annealing rule. For
our proposed method, we set the global number of pseudo-labels for each class configured to one-
quarter of the total data from all clients. Following the approach in FedOPT (Li et al., 2024), we
conduct three trials for each experimental setting and report the mean accuracy. All experiments are
conducted using PyTorch (Paszke et al., 2019) on NVIDIA 3090 GPUs. More details on the datasets
and implementation can be found in the technical appendix A.2.

4.2 EXPERIMENTAL RESULTS

Results under Dirichlet-based label skews with various datasets. Table 1 presents the per-
formance results of various methods with different levels of Dirichlet-based label skews (β ∈
{0.1, 0.05}). Our method, FedPP, significantly outperforms state-of-the-art algorithms across all
datasets, confirming the effectiveness of our cooperative pseudo-label selection strategy and partial
prompt aggregation protocol. Notably, FedOPT, the latest personalized supervised federated prompt
tuning method, demonstrates that the results obtained when combining it with baseline pseudo-label
selection methods are inferior to those of zero-shot learning. This is attributed to the low accuracy
of the pseudo-labels chosen by each client, which do not accurately represent the true distribution
of local data, a situation exacerbated by personalized training. We will discuss this further in the
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Table 3: Accuracies (%) of combining proposed pseudo-labeling strategy CPS with existing feder-
ated training methods under Dirichlet-based label skews (β = 0.1).

Method PL DTD RESISC45 CUB UCF101
PromptFL FPL 45.79 59.76 47.29 64.39
PromptFL CPS 47.34 (+1.55) 61.68(+1.92) 49.08(+1.79) 64.97(+0.58)
pFedPrompt FPL 44.56 65.95 48.48 64.37
pFedPrompt CPS 49.25(+4.69) 67.97(+2.02) 52.77(+2.29) 67.93(+3.56)
FedOPT FPL 30.46 50.15 46.04 55.71
FedOPT CPS 57.93(+27.47) 74.85(+24.70) 55.72(+9.68) 69.21(+13.50)

5 10 15
Client Number

45

50

55

60

Ac
c 

(%
)

(a) DTD

5 10 15
Client Number

60

65

70

75

(b) RESISC45

0.5 0.8 1.0
Joining Rate

30

40

50

60
(c) DTD

0.5 0.8 1.0
Joining Rate

40

50

60

70

(d) RESISC45

PromptFL PromptProx pFedPrompt Ours

Figure 4: Results of experiments with various client numbers and different client joining rates under
Dirichlet-based label skews (β = 0.1).

following sections. In the CUB dataset, all baseline results are worse than the zero-shot results. In
contrast, our method consistently maintains excellent performance, underscoring the importance of
the cooperative pseudo-label selection strategy and partial prompt aggregation protocol.

Results under quantity-based label skews with various datasets. We present the performance
of all methods under quantity-based label distribution skews in Table 2, utilizing parameters s =
C × 0.2 for all datasets, where C represents the number of classes in each dataset. In this setting,
each client possesses samples from only a few classes, complicating pseudo-labeling and model
training. Owing to this challenge, many baseline results are outperformed by the zero-shot approach.
In contrast, our method maintains strong performance, similar to that observed with Dirichlet-based
distributions, further underscoring the superiority of our approach.

4.3 ANALYSIS

Comparation of different pseudo labels selection methods. During the unsupervised training
process using pseudo-labels, the selection of pseudo-labels directly determines the final model
performance. Here, we compare our pseudo-label selection method with two baseline methods,
CPL (Zhang et al., 2024a) and FPL (Menghini et al., 2023). As shown in Table 1 and Table 2,
for the same federated training method, CPL outperforms FPL on datasets such as DTD and CUB,
whereas the opposite is true for the CIFAR datasets. In contrast, our cooperative pseudo-label se-
lection strategy consistently outperforms both baseline methods across all datasets. This is due to
the significantly higher accuracy of the pseudo-labels generated by our selection method compared
to the others. To further demonstrate the effectiveness of our approach, we combine our pseudo-
label selection method with other state-of-the-art supervised federated training methods. As shown
in Table 3, our method significantly improves the performance of baseline pseudo-label selection
methods across different datasets, with a notable increase of up to 27.47% on the DTD dataset.
Overall, these results strongly demonstrate the effectiveness of our pseudo-label selection method.

Results under different client numbers. We analyze our proposed method’s performance against
baseline methods across varying numbers of clients. Unless specified otherwise, our experiments
focus on Dirichlet-based skews with the parameter β = 0.1. We divide the DTD and RESISC45
datasets into 5, 10, and 15 clients, showcasing their final accuracy in Figure 4 (a) and (b). Re-
markably, our method consistently outperforms the baseline methods, regardless of the number of
clients. This demonstrates the robustness and scalability of our approach, ensuring efficient and
effective learning even as the number of participating clients fluctuates.
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Table 4: Accuracies (%) of experiments using
CLIP ViT-B16 as base model under Dirichlet-
based label skews (β = 0.1) across four bench-
marks.

Method PL DTD RESISC45 CUB UCF101
Zero shot - 42.87 56.61 55.16 65.13
PromptFL FPL 44.36 61.36 51.95 64.60
PromptProx FPL 47.12 61.01 49.44 65.31
pFedPrompt FPL 47.65 63.18 50.19 65.19
FedOPT FPL 39.52 48.94 49.67 61.68
Ours CPS 56.83 77.50 59.78 78.29

Table 5: Ablation study. Accuracies (%) un-
der Dirichlet-based label skews. Conf. and Ent.
denote confidence-based and entropy-based fil-
ters. G.A. represents global allocation.

Conf. Ent. G.A. PPA DTD RESISC45 CUB UCF101
- - - - 45.79 59.76 47.29 64.39
- - - ✓ 34.13 42.70 44.23 54.63
- - ✓ ✓ 46.35 69.60 51.98 65.31
- ✓ ✓ ✓ 58.83 72.28 54.91 70.23
✓ - ✓ ✓ 55.59 73.66 50.38 69.13
✓ ✓ ✓ - 47.34 61.68 49.08 64.97
✓ ✓ ✓ ✓ 60.89 75.76 56.09 73.20

Impact of client joining rates. In this analysis, we investigate variations in participation rates,
considering values from {0.5, 0.8, 1.0}. As illustrated in Figure 4 (c) and (d), our method consis-
tently outperforms other approaches across all participation rates. As the client participation rate
decreases, the accuracy of all methods declines significantly. This instability is expected, as a lower
client participation rate amplifies the divergence between randomly participating clients and the
global model, resulting in erratic convergence. However, our method remains the best performer,
highlighting its robustness to varying participation rates.

Results under different image encoder backbone. We further conduct experiments to evaluate the
effect of different image encoders. The comparison results on DTD, RESISC45, CUB, and UCF101
datasets using ViT-B16 are presented in Table 4. Our method consistently surpasses previous ap-
proaches, demonstrating the effectiveness of our strategy in enhancing the performance of CLIP in
unsupervised federated prompt tuning when smaller image encoders are employed. These experi-
ments underscore the versatility and robustness of FedPP in real-world federated learning scenarios
utilizing various backbone architectures.

Effectiveness of each component. Our approach comprises two key modules: a cooperative
pseudo-label selection strategy (CPS) and a partial prompt aggregation (PPA) protocol. The re-
sults presented in Table 5 reveal that the two filtering criteria (confidence and entropy) and global
allocation in the cooperative pseudo-label selection strategy contribute to significant performance
improvements compared to the pseudo-label selection method FPL (Menghini et al., 2023). Similar
to the results of FedOPT in Tables 1 and 2, without the cooperative pseudo-label selection strategy,
our personalized training results are inferior to those of zero-shot learning. This is due to the fact
that, without suitable pseudo-labels, the personalized strategy exacerbates clients’ misclassification
of unlabeled data. Comparing the last and second-to-last rows of Table 5 illustrates that our per-
sonalized method can achieve significant improvements under appropriate pseudo-label conditions.
These findings demonstrate the effectiveness of our two key modules in improving overall model
performance in federated learning scenarios with label skews.

5 CONCLUSION

In this paper, we introduce an unsupervised federated learning problem with CLIP, where clients
with unlabeled data employ collaborative training for better performance without data sharing. To
address such problem, we propose FedPP, an unsupervised solution including a cooperative pseudo
labels selection strategy and a partial prompt aggregation protocol. The pseudo labels selection
strategy allows the server to customize the selection process for each client, taking into account
both local and global pseudo labels distributions. The aggregation protocol only aggregates visual
prompts on the server for performance improvements through collaboration among clients and tex-
tual prompts are kept locally for better personalization by each client. Extensive results demonstrate
the effectiveness of both components, and proposed FedPP outpergorms baseline methods across
diverse datasets and various degrees of label skews. In future work, we will conduct a theoretical
analysis of FedPP, including convergence, privacy, fairness, and other pertinent considerations.
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A APPENDIX

A.1 THE PSEUDOCODE OF OUR METHOD

Here, we provide detailed descriptions of the algorithm for our FedPP, as shown in Algorithm 1.
For the pseudo labels selection, each client uploads their estimated distribution Uest

k , which is fil-
tered by confidence and entropy, to the server for cooperative pseudo labels assignment. The server
globally selects M pseudo labels for each category and allocates them to clients according to their
estimated distribution, where the training data distribution for client k is Ũk. Finally, client k con-
structs the training set D̃k by selecting the most confident samples according to the capacity Ũk.
For personalization, we only aggregate visual prompts on the server while keeping textual prompts
locally.

Algorithm 1 FedPP

Input: number of communication rounds T , number of clients K, unlabeled dataset {Dk}Kk=1,
client participating rate R, number of local epochs E, batch size B, learning rate η, pseudo
labels update interval Q.

Output: the global visual prompt P v and personalized textual prompts {P t
k}Kk=1

1: initialize P v,0 , {P t,0
k }Kk=1

2: m← max(⌊R ·K⌋, 1)
3: for communication round r = 1, 2, · · · , T do
4: if r % Q = 0 then
5: {D̃k} = pseudo labels Selection({Dk}Kk=1)
6: end if
7: Mr ← randomly select a subset containing m clients
8: for each client k ∈Mt do
9: P v,r

k = P v,r , P t,r
k = P t,r

k

10: P v,r+1
k , P t,r+1

k ← LocalUpdate(P v,r
k , P t,r

k )
11: end for
12: P v,r+1 = P v,r +

∑
k∈Mr

|D̃k|
|D̃|

(P v,r+1
k − P v,r

k )

13: end for

14: pseudo labels Selection({Dk}Kk=1):
15: for k = 1, ...,K do
16: Dest

k = {(x, ŷ)|max
c

pc(x) > pα , Ent(pc(x)) < Hα}, Eq2

17: Ũk = {ũk,1, ũk,2, ..., ũk,C}, ũk,c =
uk,c∑K

k=1 uk,c
×M , uk,c is the number of data for class c in

Dest
k , Eq3

18: D̃k is selected by the most confident samples according to the capacity Ũk

19: end for
20: return {D̃k}Kk=1

21: LocalUpdate(P v,r
k , P t,r

k ):
22: for epoch e = 1, 2, · · · , E do
23: for each batch Bi = {x, y} ∈ D̃i do

24: L(P v, P t;Bi) = −E(x,y)∼Bi log
(

ef(Pv,Pt;x)[y]∑
c e

f(Pv,Pt;x)[c]

)
25: P v,r

k = P v,r
k − η∇L(P v,r

k ;Bi)
26: P t,r

k = P t,r
k − η∇L(P t,r

k ;Bi)
27: end for
28: end for
29: return P v,r

k , P t,r
k

14
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A.2 EXPERIMENTAL DETAILS

Details of Dataset Setup. For our evaluation, we have chosen six diverse visual classification
datasets as our benchmark. The detailed statistics of each dataset are shown in Table 6, including
the original tasks, the number of classes, the size of training, and testing samples.

Table 6: The detailed statistics of datasets used in experiments.

Dataset Task Classes Training Size Testing Size
CUB Image classification 200 5,594 5,794
RESISC45 Scene classification 45 6,300 25,200
UCF101 Action recognition 101 7,639 3,783
DTD Texture recognition 47 2,820 1,692
CIFAR10 Image classification 10 50,000 10,000
CIFAR100 Image classification 100 50,000 10,000

We employed quantity-based and Dirichlet-based label skews to construct data heterogeneity. For
quantity-based distribution, each client has category counts of 10, 58, 66, 30, 2, and 20 in the DTD,
RESICS45, CUB, UCF101, CIFAR10, and CIFAR100 datasets, respectively. For Dirichlet-based
label skews, we used β = {0.1, 0.05} to generate data for each client. Here, we present the data
distribution for each case, using CIFAR-10 as an example.
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(a) Dirichlet-based (β = 0.1). (b) Dirichlet-based (β = 0.1). (c) Quantity-based.

Figure 5: (a) and (b) depict label skews of Dirichlet-based label skews and (c) presents the quantity-
based label skew.

Implementation details. All input images across datasets are resized to 224 × 224 pixels and
further divided into 14 × 14 patches with a dimension of 768. We take deep visual prompts into our
implementation and we add trainable prompts with a dimension of 5 × 867 to the output of each
transformer layer in the visual encoder. For text prompts, we set the length to 16 with a dimension
of 512. Batch sizes are set to 64 for both training and testing.

A.3 DRIFT DIVERSITY

Following(Li et al., 2023a), we employ drift diversity to assess magnitude differences. Specifically,
drift diversity is defined as follows:

ξr :=

∑K
k=1 ∥mr

k∥2

∥
∑K

k=1 m
r
k∥2

with mr
k = P r

k − P r−1 (6)

where P r
k is updated prompt of client k in round r and P r−1 is aggregated prompt on the server in

round r − 1.

A.4 ADDITIONAL EXPERIMENTS RESULTS

Comparison of pseudo-label accuracy. As shown in Table 7, we present the accuracy of different
pseudo-label selection methods, utilizing CLIP’s zero-shot prediction results. Obviously, our pseudo

15
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Table 7: Pseudo-label accuracy of different method with Dirichlet-based label skews (β = 0.1) on
various datasets. The baseline pseudo-label selection method is FPL (Menghini et al., 2023) and
CPL (Zhang et al., 2024a).

DTD RESISC45 CUB UCF101 CIFAR10 CIFAR100
CPL 31.84 43.04 41.04 45.72 41.18 39.05
FPL 34.32 40.42 47.75 50.57 37.02 57.81
Ours 78.74 84.73 89.30 85.12 87.30 86.13

labels selection method significantly improves accuracy against baseline pseudo labels selection
methods across different datasets.
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