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Abstract

Advancing loss function design is pivotal for opti-
mizing neural network training and performance.
This work introduces Random Linear Projections
(RLP) loss, a novel approach that enhances training
efficiency by leveraging geometric relationships
within the data. Distinct from traditional loss func-
tions that target minimizing pointwise errors, RLP
loss operates by minimizing the distance between
sets of hyperplanes connecting fixed-size subsets
of feature-prediction pairs and feature-label pairs.
Our empirical evaluations, conducted across bench-
mark datasets and synthetic examples, demonstrate
that neural networks trained with RLP loss outper-
form those trained with traditional loss functions,
achieving improved performance with fewer data
samples, and exhibiting greater robustness to addi-
tive noise. We provide theoretical analysis support-
ing our empirical findings.

1 INTRODUCTION

Deep Neural Networks have achieved success across vari-
ous applications, including computer vision [LeCun et al.,
1995, Krizhevsky et al., 2012, Minaee et al., 2021], natural
language processing [Hochreiter and Schmidhuber, 1997,
Vaswani et al., 2017, Radford et al., 2018], generative mod-
eling [Goodfellow et al., 2020, Kingma et al., 2019, Song
et al., 2020], and reinforcement learning [Mnih et al., 2013,
Van Hasselt et al., 2016, Haarnoja et al., 2018]. Foundational
to these fields are the tasks of regression and classification,
in which neural networks have been empirically shown to
outperform conventional techniques [Reddy et al., 2012].
Training neural networks relies on the principle of empirical
risk minimization (ERM) [Vapnik and Bottou, 1993], which
aims to optimize the average loss on observed data to ensure
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model generalization. ERM relies on the development of
state-of-the-art loss functions to minimize the generalization
error, enabling better convergence for diverse tasks.

Among the most popular loss functions used to train neural
networks are Mean Squared Error (MSE) and Cross Entropy,
tailored to regression and classification tasks, respectively.
MSE measures the average squared differences between the
observed values (labels) and model outcomes (predictions)
while Cross Entropy assesses the divergence between class
labels and predicted probabilities — both MSE and Cross
Entropy are measures of local pointwise deviation, as they
compare individual predictions with their labels. Neural net-
works trained with these loss functions have achieved state-
of-the-art performance across benchmark datasets for re-
gression and classification (e.g., California Housing [Géron,
2022] and MNIST [Deng, 2012]).

Despite achieving state-of-the-art performance on bench-
mark datasets, neural networks trained with MSE and Cross
Entropy also face significant challenges. Empirical evidence
suggests these models often converge more slowly to opti-
mal solutions, which affects training efficiency [Livni et al.,
2014, Bartlett and Ben-David, 2002, Blum and Rivest, 1988].
Additionally, their performance can be limited when over-
parameterized [Aggarwal et al., 2018], and the presence of
additive noise may result in unstable behavior and variable
predictions [Feng et al., 2020]. These issues underline the
limitations of neural networks optimized with loss functions
akin to MSE and Cross Entropy, underscoring the necessity
for more effective training methodologies.

In the deep learning literature, several methods have been
proposed to address the aforementioned challenges. In par-
ticular, it is commonplace to regularize the weights of the
neural network (e.g., L2 regularization [Krogh and Hertz,
1991]). However, these regularization approaches usually
assume the existence of a prior distribution over the model
weights. Another approach is to modify the gradient descent
optimization procedure itself. In particular, SGD [Rumel-
hart et al., 1986], SGD with Nesterov momentum [Nesterov,
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1983], Adam [Kingma and Ba, 2014], AdamW [Loshchilov
and Hutter, 2017], and Adagrad [Duchi et al., 2011] are
examples of such optimizer variations. On the other hand,
rather than altering the neural network training procedure,
data preprocessing methods, especially data augmentation
techniques, have been proven successful in computer vi-
sion, speech recognition, and natural language processing
applications [Van Dyk and Meng, 2001, Chawla et al., 2002,
Han et al., 2005, Jiang et al., 2020, Chen et al., 2020, Feng
et al., 2021]. Among these data augmentation strategies,
mixup [Zhang et al., 2017] has been proposed as a means of
mitigating the vulnerabilities discussed above.

Recalling that MSE and Cross Entropy are measures of lo-
cal pointwise deviation, we seek to answer a fundamental
question: does the consideration of non-local properties of
the training data help neural networks achieve better gener-
alization? Firstly, as depicted in Figure 1, we note that if two
functions share the same hyperplanes connecting all subsets
of their feature-label pairs, then they must necessarily be
equivalent. Extending this knowledge to deep learning, if the
distance between sets of hyperplanes connecting fixed-size
subsets (batches) of the neural network’s feature-prediction
pairs and feature-label pairs approaches zero, then the pre-
dicted function represented by the neural network converges
to the true function (the true mapping between the features
and labels). If a loss function were to incorporate this intu-
ition, it would be able to capture non-local properties of the
training data, addressing some of the limitations presented
by the traditional training approach.

In this light, we introduce Random Linear Projections (RLP)
loss: a hyperplane-based loss function that captures non-
local linear properties of the training data to improve model
generalization. More concretely, we consider a simple ex-
ample to illustrate RLP loss. Suppose we have a training
dataset consisting of d-dimensional features and real-valued
outcomes. To train a given neural network with RLP loss,
we first obtain as many fixed size (M ⩾ d+ 1) subsets of
feature-label pairs as possible. Across all such subsets, we
obtain a corresponding subset of feature-prediction pairs,
where the predictions are the outcomes of the neural net-
work. Subsequently, we learn the corresponding regression
matrices [Van De Geer, 1987], and we minimize the distance
between the hyperplanes associated with these matrices. We
note that this method does not assume the true function is
linear, as the large number of fixed-size subsets of feature-
label pairs (random linear projections) encourages the neural
network to capture potential nonlinearities.

The outline of this paper is as follows. In Section 2, we math-
ematically formalize RLP loss and prove relevant properties.
In Section 3, we delineate the algorithm for generating fixed-
sized subsets of feature-label pairs from the training data.
In Section 4, we provide empirical results demonstrating
that neural networks trained with RLP loss achieve supe-
rior performance when compared to MSE loss and Cross
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Figure 1: Comparing true and predicted functions: illustra-
tion that two functions are equivalent iff they share identical
hyperplanes generated by all possible feature-label pairs.

Entropy loss. Finally, in Section 5, we summarize our work.
Our contributions are summarized below:

1. We introduce Random Linear Projections (RLP) loss,
a new loss function that leverages geometric relation-
ships to capture non-local linear properties.

2. We prove that neural networks trained with RLP loss
learn the optimal function when the loss is minimized,
and that they converge faster than those trained with
MSE loss when certain properties hold.

3. We propose an algorithmic procedure to generate fixed-
size subsets of feature-label pairs that are necessary for
training neural networks with RLP loss.

4. We demonstrate that neural networks trained with RLP
loss achieve better performance and converge faster
than those trained with MSE and Cross Entropy loss.

Related work. There are two primary methods for enhanc-
ing the performance of neural networks trained with MSE
loss and Cross Entropy loss. On one hand, incorporating
regularization during training is a prevalent approach [Wang
et al., 2020, Zhang et al., 2018]. For instance, in L2 regular-
ization [Krogh and Hertz, 1991], the loss function is altered
to incorporate the weighted L2 norm of the weights during
optimization. This discourages excessively large weights,
thereby preventing overfitting. Other proposed regulariza-
tion techniques include L1 regularization [Tibshirani, 1996,
Lv and Fan, 2009] and adaptive weight decay [Nakamura
and Hong, 2019]. On the other hand, data augmentation
techniques, such as mixup [Zhang et al., 2017, 2020], go
beyond empirical risk minimization and have demonstrated
increased robustness against noise and adversarial attacks
— mixup trains a neural network on convex combinations
of pairs of examples and their corresponding labels. In our
study, we choose a different direction by changing the MSE
loss function itself. We aim to minimize the distance be-
tween sets of hyperplanes that connect fixed-size subsets
of the neural network’s feature-prediction pairs and feature-
label pairs. While it is conceivable to integrate both regular-
ization and data augmentation methods into our proposed
loss function, we reserve that exploration for future research.



2 THEORETICAL RESULTS

Let {(Xi, Yi)}Mi=1 denote a set of independent and identi-
cally distributed (i.i.d) random variables, where Xi ∈ Rd

is the feature vector with dimension, d, Yi ∈ R is the corre-
sponding label, and M is the number of considered random
variables (assumed to be strictly greater than d). Now, let X
denote the matrix inMM,d(R) such that the ith row of the
matrix corresponds to the vector, Xi. Similarly, let Y be the
vector in RM such that its ith element corresponds to Yi.

Furthermore, we defineH ⊂ {h : Rd → R} as the class of
hypothesis functions that model the relationship between
Xi and Yi. In our empirical setting, we letH denote the set
of neural networks that have predetermined architectures.
Subsequently, we delineate h :MM,d(R) → RM , where
X 7→ (h(X1), . . . , h(XM ))

⊤ denotes the extension of the
hypothesis, h, over the space of matrices,MM,d(R).

We begin by defining the MSE loss function, the standard
measure for regression tasks, and subsequently introduce
our proposed Random Linear Projections (RLP) loss.

Definition 2.1 (MSE Loss). The MSE loss function is de-
fined as,

L0(h) = E
[
∥h(X)− Y ∥2

]
where (X,Y ) and {(Xi, Yi)}Mi=1 are independent and iden-
tically distributed (i.i.d) random variables.

Definition 2.2 (Random Linear Projections Loss). The RLP
loss function is defined as,

L(h) = E

[∥∥∥∥((X⊤X
)−1

X⊤ (Y − h(X))
)⊤

X

∥∥∥∥2
]

where the expectation is taken over the probability density,
p(X,X1, Y1, . . . XM , YM ), with X being independent of
and identically distributed to {Xi}Mi=1.

The proposed definition for RLP loss is based on the obser-
vation that

(
X⊤X

)−1
X⊤Y and

(
X⊤X

)−1
X⊤h(X) rep-

resent the regression matrices that solve the linear problem
of regressing a subset of observed outcomes and predicted
outcomes, respectively, on their associated features. Conse-
quently, RLP loss seeks to minimize the disparity between
all conceivable predicted hyperplanes and observed hyper-
planes. In this study, we opt to minimize the distance be-
tween these hyperplanes by evaluating the images of points
drawn from the support using the random variable, X . This
approach provides us with points from the hyperplanes, al-
lowing us to minimize the squared distance between them.
Now, we present the following proposition proving that the
solution for RLP is optimal.

Proposition 2.3. Let h ∈ H be a hypothesis function. We
observe that L(h) ≥ 0 with the hypothesis minimizing the
loss being h(x) = E [Y |X = x] almost surely.

This proposition ensures that the optimal hypothesis func-
tion, h, aligns with the conditional expectation of Y given
X = x, almost everywhere.

Let us now consider a set of parameterized functions de-
noted byH = hθ, where θ ∈ Θ. For simplicity, we represent
the loss function as L(θ) in place of L(hθ).

In the following proposition, we assume that the class of
hypothesis functions, H, is fully defined by a vector of
parameters, θ ∈ RW . In our empirical setting, this corre-
sponds to the class of neural networks with predetermined
architectures.

Proposition 2.4. Let L0 denote the MSE loss and let θ∗ be
the optimal parameters (i.e., hθ∗ = E [Y |X] almost surely).
We assume that both the MSE and RLP loss functions are
convex. Under the following conditions:

(i) E [XiXj ] = [1, · · · , 1]⊤1i=j .

(ii) (Y − hθ(X)) ⩽ 0 and ∇θhθ(X) ⩽ 0
(component-wise inequality).

(iii) For every j, k ∈ {1, 2, . . . , d} and for every l ∈
{1, 2, . . . ,M}, E [ajkalk] ⩾ 1

d2 , where (ajk) and

(alk) are the components of A =
(
X⊤X

)−1
X⊤.

We observe that for every step size ϵ ⩾ 0 and parameter
θ ∈ RW for which gradient descent converges,

∥θ∗ − (θ − ϵ∇θL(θ))∥ ⩽ ∥θ∗ − (θ − ϵ∇θL0(θ))∥

This proposition contrasts the convergence behavior of the
two loss functions, MSE and RLP, for gradient descent
optimization in parameterized models. It asserts that under
certain conditions — (i), (ii), and (iii) from Proposition 2.4
— updates based on the gradient of the RLP loss function
bring the parameters closer to the optimal solution than
those based on the gradient of the MSE loss function.

3 ALGORITHM

In this section, we detail our methodology for training neural
networks using the Random Linear Projections (RLP) loss.
Our approach comprises two main steps. First, we employ
the balanced batch generation strategy to sample unique
batches from the training dataset. Subsequently, we utilize
these batches to train a neural network model using gradient
descent and our proposed RLP loss.

Let J = {(xi, yi)}Ni=1 denote the observed training dataset,
where xi ∈ Rd and yi ∈ R. Let M ≪ N be the number of
training examples used to identify the regression matrices of
the different hyperplanes, where M is denoted as the batch
size. Let P = N !

(M+1)!(N−M−1)! . The RLP loss is computed
by examining all possible combinations of size M +1 from
the training data. For each combination, regression matrices



are constructed using the firstM components. Subsequently,
the dot product is calculated between this regression matrix
and the (M+1)th component. Hence the proposed empirical
RLP loss function can be defined as follows:

L(θ) =
1

P

P∑
j=1

(((
x⊤
j xj

)−1
x⊤
j

(
yj − hθ(xj)

))⊤
xj

)2

Above, xj = (xj1 , . . . , xjM )
⊤ is the matrix inMM,d(R),

whose rows correspond to M different xjk from the set of
training data feature vectors, yj = (yj1 , . . . , yjM )

⊤ denotes
the corresponding labels, and xj denotes an observed fea-
ture vector distinct from all rows comprising matrix xj . It is
important to note that by invoking the law of large numbers,
the empirical RLP will converge in probability to the RLP
loss (Definition 2.2). Given that the number of permuta-
tions can be exceedingly large, our approach for training
the regression neural network with the RLP loss involves
randomly sampling K batches from the P possible batches
of size M that comprise the training dataset, J .

3.1 BALANCED BATCH GENERATION

The objective of balanced batch generation is to produce
batches from the training dataset such that each example
appears in at least one batch, where no two batches are iden-
tical. Let J denote the training dataset, with corresponding
labels, M be the size of each batch, and K be the total num-
ber of batches we intend to generate. To construct balanced
batches, B, from J , our methodology involves a continuous
sampling process, ensuring each data point is incorporated
in at least one batch. To maintain the uniqueness of batches
and avoid repetitions, we employ a tracking set, I.

Algorithm 1: Balanced Batch Generator
Input: J (Training dataset), M (Batch size),

K (Number of batches to generate)
Output: B (Set of generated batches)

1 I ← {0, 1, . . . , |J | − 1} (Initialize set of all indices)
2 B ← ∅ (Initialize set of generated batches)
3 while |B| < K do
4 Randomly shuffle I to obtain Ishuffled
5 for i = 0,M, 2M, . . . , |J | −M do
6 b← {J [Ishuffled[i : i+M ]]}
7 if b /∈ B then
8 B ← B ∪ {b}
9 if |B| ⩾ K then

10 break

11 return B

The main loop facilitates the consistent sampling of unique
batches until we accumulate a total of K batches. Within

this loop, we first generate a full sequence of dataset indices,
followed by a shuffle operation to ensure randomness. Itera-
tively, we then allocate train examples to batches in strides
of size M . As each batch is formed, we check for its exis-
tence within our I set to uphold the uniqueness principle.
This operation continues until we have attained our target
number of unique batches, K.

Per Algorithm 1, we observe that each training example in
J appears in at least one batch and that no two batches in B
are identical. Subsequently, during each training epoch, we
iterate over the K randomly sampled batches and employ
the Random Linear Projections loss. Subsequently, the algo-
rithm for training a neural network using gradient descent
with the RLP loss is provided in Algorithm 2.

Algorithm 2: Neural Network Training With RLP Loss
Input: J (Training dataset), θ (Initial NN parameters),

α (Learning rate), M (Batch size), K (Number
of batches to generate), E (Number of epochs)

Output: θ (Trained NN parameters)
1 B ← Balanced_Batch_Generator(J , M , K)
2 for epoch = 1, 2, . . . , E do
3 for j = 1, 2, . . . ,K do
4 xj ←Matrix of features from batch B[j]
5 yj ← Vector of labels from batch B[j]
6 My ←

(
x⊤j xj

)−1 x⊤j yj
7 Mh ←

(
x⊤j xj

)−1 x⊤
j hθ(xj)

8 Randomly sample xj (feature vector) from J

9 lj(θ)←
(
(My −Mh)

⊤
xj

)2
10 L(θ)← 1

K

∑K
j=1 lj(θ)

11 θ ← θ − α∇θL(θ)
12 return θ

The above algorithm, Algorithm 2, provides a systematic
procedure for training a neural network with RLP loss. By
iterating through each epoch, and for each batch within this
epoch, we compute the observed regression matrix, calcu-
late the RLP loss, and then update the model parameters
using gradient descent. This iterative process continues for
a predefined number of epochs, ensuring that the model
converges to a solution that minimizes the RLP loss.

4 EMPIRICAL RESULTS

In this section, we present our empirical results for regres-
sion, image reconstruction, and classification tasks, using a
variety of synthetic and benchmark datasets. We first present
the regression results on two benchmark datasets (California
Housing [Géron, 2022] and Wine Quality [Cortez et al.,
2009]), as well as two synthetic datasets: one Linear dataset
where the true function is a linear combination of the fea-



tures in the dataset, and one Nonlinear dataset, where the
true function combines polynomial terms with trigonometric
functions of the features in the dataset. For the image re-
construction tasks, we utilize two different datasets: MNIST
[Deng, 2012] and CIFAR10 [Krizhevsky et al., 2009]. We
also present the classification results on MNIST (for classi-
fication results on the Moons dataset, see Section C.1 of the
Appendix). A comprehensive description of these datasets
is provided in Section B of the Appendix.

For the evaluations that follow, our default setup utilizes
|J | = 0.5|X | training and |G| = |X | − |J | test examples,
where |X | signifies the size of each dataset — we do not
consider any distribution shift or additive noise. To ensure
a fair comparison, we also use the same learning rate for
each loss and network architecture across all experiments
on a given dataset. Deviations from this configuration are
explicitly mentioned in the subsequent analysis. We first
present the performance results when the neural network
is trained with RLP loss, MSE loss, and MSE loss with L2

regularization for regression and reconstruction tasks, and
with RLP loss and Cross Entropy loss for classification tasks.
For the RLP loss case, the neural network is trained using
K = 1000 batches (see Algorithm 1). Moreover, we present
ablation studies on the impact of three different factors:

(1) The number of training examples |J | ∈ {50, 100}.
(2) The distribution shift bias γ ∈ {0.1, 0.2, ..., 0.9}.
(3) The noise scaling factor β ∈ {0.1, 0.2, ..., 0.9} for the

additive standard normal noise.

In (1), the neural network is trained using K = 100 batches
for the RLP case, and in (2) and (3), the neural network is
trained usingK = 1000 batches for the RLP case, produced
via Algorithm 1. Our empirical findings demonstrate that
the proposed loss helps mitigate the vulnerability of neural
networks to these issues.

4.1 PERFORMANCE ANALYSIS

This first evaluation provides an in-depth assessment of our
methods across various benchmark and synthetic datasets,
illuminating the efficacy of RLP loss compared to MSE loss,
its variant with L2 regularization, and Cross Entropy loss,
when there are no ablations introduced within the data.

Regression Task Results. For the California Housing
dataset, a benchmarking dataset for regression tasks, we
observe several differences in performance. In particular,
when we leverage the Adam optimizer [Kingma and Ba,
2014], the regression neural network trained with RLP loss
demonstrates enhanced efficacy. This contrasts with the case
where the regression neural network is trained with MSE
loss and its L2 regularized counterpart. Notably, RLP loss
not only exhibits superior performance, since the test er-
ror is lower when measured using MSE or RLP, but also

demonstrates resilience against overfitting. We observe that
after 100 training epochs, MSE loss and its L2 regularized
counterpart begin to overfit the training data, resulting in
diminished generalization, whereas RLP loss continues to
minimize the test error. We further observe that the stan-
dard deviation of the test error (compiled after 500 training
epochs) is demonstrably lower when the regression neural
network is trained with RLP loss as opposed to MSE loss or
MSE loss with L2 regularization.

Subsequently, for the Wine Quality dataset, which has fea-
tures derived from physicochemical tests assessing wine
constituents and their influence on quality, we discern sev-
eral performance differences. When using the Adam opti-
mizer, the regression neural network trained with RLP loss
outperforms those trained with MSE loss and L2 regularized
MSE loss. RLP loss not only showcases improved perfor-
mance metrics — evidenced by a reduced test error when
assessed by either MSE or RLP — but also demonstrates
more rapid convergence. In particular, within just 20 train-
ing epochs, we observe a test MSE of 0.6 in the RLP loss
case. In contrast, both the MSE loss and MSE loss + L2

regularization cases only achieve this test MSE after 200
epochs. Moreover, we find that the standard deviation of the
test error, gathered after 200 training epochs, is lower when
the regression neural network is trained using RLP loss as
opposed to MSE loss or its L2 regularized variant.

Delving into the synthetic datasets, we consider the afore-
mentioned two scenarios: a Linear dataset, where the true
function is a linear combination of its features, and a Non-
linear dataset, where the true function blends polynomial
and trigonometric functions of its features. Using the Adam
optimizer, the regression neural network trained with RLP
loss exhibits a notably improved performance trajectory in
both synthetic scenarios, outpacing networks trained with
MSE loss and L2 regularized MSE loss. In the context of
the Linear dataset, the efficacy of RLP loss is particularly
pronounced, as it converges to a test MSE below 3× 10−6

within 200 training epochs. In contrast, both MSE loss and
its L2 regularized version yield a test MSE above 0.2 at the
same epoch count. As it pertains to the Nonlinear dataset,
RLP loss similarly yields a lower test error in comparison to
MSE loss and its L2 regularized counterpart. Cumulatively,
these results demonstrate that RLP loss yields improved
performance over MSE loss and MSE loss with L2 regular-
ization, even when the true function has nonlinearities.

Image Reconstruction Task Results. With MNIST, a
benchmark dataset in image reconstruction tasks, our find-
ings are in line with previous observations. Leveraging
the SGD optimizer with Nesterov momentum [Nesterov,
1983], we observe that the autoencoder trained using RLP
loss yields a test MSE of 0.018 after 100 training epochs,
whereas the autoencoder trained using MSE loss or L2 reg-
ularized MSE loss yields a test MSE above 0.04 after 100



Table 1: Test performance across different datasets for |J | = 0.5|X | training examples and |X | − |J | test examples.

MSE MSE with L2 RLP
Dataset Perf. (MSE) Perf. (RLP) Perf. (MSE) Perf. (RLP) Perf. (MSE) Perf. (RLP)
California Housing 0.915±0.997 0.101±0.127 0.961±1.151 0.106±0.102 0.575±0.314 0.016±0.012

Wine Quality 0.542±0.014 0.194±0.386 0.546±0.015 0.169±0.089 0.532±0.011 0.031±0.015

Linear 0.227±0.104 0.111±0.059 0.209±0.086 0.087±0.065 2.6e-6±1.7e-6 5.2e-8±9.2e-8

Nonlinear 0.075±0.009 0.008±0.004 0.073±0.006 0.008±0.005 0.033±0.012 0.002±0.001

MNIST 0.042±0.001 0.047±0.001 0.052±0.011 0.049±0.001 0.018±0.002 4.7e-3±5.0e-4

CIFAR-10 6.0e-4±1.0e-4 6.1e-4±9.8e-6 1.8e-3±1.0e-4 1.8e-3±7.1e-6 2.7e-5±1.0e-6 2.7e-5±1.0e-6

(a) California Housing (b) Wine Quality (c) Linear

(d) Nonlinear (e) MNIST (f) CIFAR-10

Figure 2: Test performance comparison across six datasets (California Housing, Wine Quality, Linear, Nonlinear, MNIST,
and CIFAR-10) using three different loss functions: Mean Squared Error (MSE), MSE with L2 regularization (MSE + L2),
and RLP. The x-axis represents training epochs, while the y-axis indicates the test MSE.

training epochs. When the test error is instead measured
using RLP, the gains provided by RLP loss over MSE and
MSE + L2 regularization become even more apparent. As
in before, we also observe that the standard deviation of the
test error, gathered after 100 training epochs, is lower when
the autoencoder is trained using RLP loss instead of MSE
loss or its L2 regularized variant.

Our experiments on CIFAR-10 corroborate our earlier find-
ings from the MNIST experiments. Utilizing the SGD opti-
mizer with Nesterov momentum, we observe a test MSE of
2.7× 10−5 when the autoencoder is trained with RLP loss
for 50 epochs. In contrast, we observe a test MSE exceeding
5.0× 10−4 when the autoencoder is trained with MSE loss
or L2 regularized MSE loss for 50 epochs. We also observe
a reduction in the standard deviation of the test error after
50 epochs when the autoencoder is trained using RLP loss
versus MSE loss and MSE loss with L2 regularization.

Classification Task Results. Per Section C.1 of the Ap-
pendix, RLP loss can also be applied to classification tasks.
We consider the MNIST dataset for our experiments. Using
the AdamW optimizer Loshchilov and Hutter [2017], we
observe that the convolutional neural network (CNN) con-
verges to a test accuracy of 96% after 10 epochs using RLP
loss. In contrast, we observe a test accuracy of 86% when
the CNN is trained with Cross Entropy loss after 10 epochs.
This evaluation demonstrates that the faster convergence
yielded by RLP loss is preserved in classification scenarios.

4.2 ABLATION STUDIES

This next evaluation delves into the performance dynamics
of our methods under ablated data scenarios, highlighting
the resilience of RLP loss relative to MSE loss and MSE loss
with L2 regularization in the presence of data perturbations.



(a) California Housing (b) Wine Quality (c) Nonlinear

Figure 3: Distribution shift test performance comparison across three datasets (California Housing, Wine Quality, and
Nonlinear) using three different loss functions: Mean Squared Error (MSE), MSE with L2 regularization (MSE + L2), and
RLP. The x-axis is the degree of bias, γ, between the test data and the train data, while the y-axis indicates the test MSE.

Figure 4: Test performance comparison on MNIST using
Cross Entropy loss and RLP loss. The x-axis represents
training epochs, while the y-axis indicates the classification
accuracy (left) and F1 score (right).

(a) Epoch 5 (b) Epoch 10 (c) Epoch 50

(d) Epoch 5 (e) Epoch 10 (f) Epoch 50

Figure 5: Comparison of reconstructed images for an autoen-
coder trained with MSE loss (top row) and RLP loss (bottom
row) at different epochs. The model trained with RLP loss
learns faster and better with limited data (|J | = 50).

Number of Training Examples. In the ablation study
with a constraint of |J | = 50 training examples, our find-
ings across the six datasets underline the robustness and
efficacy of the RLP loss. For the California Housing and
Wine Quality regression benchmark datasets, the RLP loss-
trained models consistently outperform their MSE loss and
L2 regularized MSE loss-trained counterparts in both con-

Table 2: Test Performance for |J | = 50 training examples.

Dataset MSE MSE+L2 RLP
Cali. Housing 4.09±3.00 4.42±3.44 3.04±1.87

Wine Quality 1.16±0.26 1.31±0.47 1.15±0.14

Linear 0.86±0.19 0.84±0.20 5.0e-4±7.0e-4

Nonlinear 0.13±0.02 0.13±0.03 0.09±0.03

MNIST 0.23±0.01 0.23±0.01 0.05±0.01

CIFAR-10 0.25±0.01 0.25±0.01 5.6e-4±1.2e-5

(a) California Housing (b) Wine Quality

Figure 6: Limited training data (|J | = 50) test performance
comparison across two datasets (California Housing and
Wine Quality) using three different loss functions: Mean
Squared Error (MSE), MSE with L2 regularization (MSE +
L2), and RLP. The x-axis represents training epochs, while
the y-axis indicates the test MSE.

vergence rate and test error, despite the limited data. This
trend persists in the Linear and Nonlinear synthetic regres-
sion datasets, with RLP loss-trained neural networks achiev-
ing rapid convergence and low error. Similarly, for the im-
age reconstruction tasks on MNIST and CIFAR-10, RLP
loss-trained models achieve faster convergence. Figure 5
in particular shows that after 5, 10, and 50 training epochs,
the MNIST images reconstructed by the RLP loss-trained
autoencoder are more accurate and clearer than those gen-
erated by the MSE loss-trained autoencoder. Results for
the case of |J | = 100 training data points can be found in
Section C.2 of the Appendix.



(a) California Housing (b) Wine Quality (c) Nonlinear

Figure 7: Noise robustness test performance comparison across three datasets (California Housing, Wine Quality, and
Nonlinear) using three different loss functions: Mean Squared Error (MSE), MSE with L2 regularization (MSE + L2), and
RLP. The x-axis is the scaling factor, β, for the additive standard normal noise, while the y-axis indicates the test MSE.

Distribution Shift Bias. In this ablation study, we con-
sider the case of a distribution shift between the train and test
data, characterized by a bias parameter, γ. Given a dataset
X consisting of d-dimensional feature vectors, xi, let µ
be the mean vector of X and σ be the standard deviation
vector. Regarding preliminaries, we introduce a notation
for element-wise comparison of vectors: for two vectors
a,b ∈ Rd, we write a ≺ b to denote that aj < bj for all
j ∈ {1, 2, . . . , d}. Using this notation, we define the region
of interest (ROI) in the feature space via two conditions that
must hold simultaneously: xi − µ ≺ ϵ and µ − xi ≺ ϵ,
where ϵ = 0.5× σ. Per these definitions:

(1) For examples within the ROI (close to the mean):

P[xi ∈ J | (xi − µ ≺ ϵ) and (µ− xi ≺ ϵ)] = γ

(2) For examples outside the ROI (far from the mean):

P[xi ∈ J | (xi − µ ⊀ ϵ) or (µ− xi ⊀ ϵ)] = 1− γ

Thus, data examples that are closer to the mean are more
likely to be included in the training dataset if γ > 0.5 and
in the test dataset otherwise (and vice versa). By varying
the bias parameter, γ, which modulates the distribution shift
between the training and test data, we discern a consistent
trend favoring the RLP loss across the California Housing,
Wine Quality, and Nonlinear datasets. The Nonlinear dataset
in particular illustrates that regardless of the selected dis-
tribution shift bias, neural networks employing RLP loss
invariably outperform, in terms of test MSE, those anchored
by MSE loss or its L2 regularized counterpart. These find-
ings emphasize the robustness of RLP loss in the face of
distributional disparities between training and test data.

Noise Scaling Factor. Given the training dataset, J , the
objective of this ablation study is to examine the impact of
additive Gaussian noise on the performance of RLP loss-
trained, MSE loss-trained, and L2 regularized MSE loss-
trained models. Specifically, we add standard normal noise
scaled by a factor, β, to each example xi ∈ J , where i ∈
{1, 2, ..., N}. The modified training dataset, J ′, is denoted

as J ′ = {(x′i, yi)}Ni=1, where:

x′i = xi + β ×N (0, Id)

This experimental setup allows us to gauge how the signal-
to-noise ratio (SNR) influences the efficacy of our regression
neural network when it is trained using RLP loss, conven-
tional MSE loss, or MSE loss with L2 regularization.

We now evaluate the robustness of the RLP loss under dif-
ferent noise intensities by varying the noise scaling factor, β.
Across the California Housing, Wine Quality, and Nonlinear
datasets, for all tested values of β, the neural network trained
using RLP loss consistently achieves a lower test MSE com-
pared to those trained with MSE loss and MSE loss with
L2 regularization. Furthermore, as β is increased — im-
plying increased noise in the training data — we observe
that the RLP loss-trained neural network displays more pro-
nounced asymptotic behavior in the test MSE relative to its
counterparts trained with MSE loss and MSE loss with L2

regularization. This behavior indicates that RLP loss not
only mitigates the detrimental effects of additive noise but
also adapts more effectively to its presence, highlighting its
robustness under such data perturbations.

5 CONCLUSION

In this work, we presented a new loss function called RLP
loss, tailored for capturing non-local linear properties in
observed datasets. We provided a mathematical analysis
outlining relevant properties of RLP loss, and extended this
analysis via rigorous empirical testing on benchmark and
synthetic datasets for regression, reconstruction, and clas-
sification tasks. It is important to note that training neural
networks with RLP loss involves inverting matrices during
each training epoch, which is computationally expensive.
Optimizing this training process and proving further statisti-
cal properties of RLP loss is an open research problem. We
consider this work to be a milestone in designing loss func-
tions that capture non-local geometric properties verified by
observed datasets.
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Appendix

A PROOFS OF THE THEORETICAL RESULTS

In this section, we present the proofs of the theoretical results outlined in the main text.

Proposition 2.3. Let h ∈ H be a hypothesis function. We observe that L(h) ≥ 0 with the hypothesis minimizing the loss
being h(x) = E [Y |X = x] almost surely.

Proof. Let X ∈MM,d(R). Firstly, we observe that L(h) = E

[∥∥∥∥((X⊤X
)−1

X⊤ (Y − h(X))
)⊤

X

∥∥∥∥2
]

is the expectation

of a non-negative random variable. Accordingly, the expectation is non-negative, and therefore, L(h) ⩾ 0.

We start by proving the first implication. Firstly, we suppose that h(x) = E [Y |X = x] almost surely. Then, the extension
h (X1, . . . , XM ) =

(
E [Y |X1] , . . . ,E [Y |XM ]

)⊤
. Therefore,

L(h) = E

[∥∥∥∥((X⊤X
)−1

X⊤ (Y − h(X))
)⊤

X

∥∥∥∥2
]

= E

[
E

[∥∥∥∥((X⊤X
)−1

X⊤ (Y − h(X))
)⊤

X

∥∥∥∥2
∣∣∣∣∣X
]]

(by the law of total expectation)

Let Z =
((

X⊤X
)−1

X⊤ (Y − h(X))
)

, where Z ∈ Rd. Furthermore, let X =
(
x1, . . . , xd

)
, and Z =

(
z1, . . . , zd

)
.

By linearity of conditional expectation, We have that,

L(h) = E

E
( d∑

i=1

zixi

)2 ∣∣∣∣X


= E

E
 d∑

i=1

z2i x
2
i + 2

∑
1≤i<j≤d

zizjxixj

∣∣∣∣X


= E

E[ d∑
i=1

z2i x
2
i

∣∣∣∣X
]
+ 2 E

 ∑
1≤i<j≤d

zizjxixj

∣∣∣∣X


= E

 d∑
i=1

E
[
z2i x

2
i

∣∣∣∣X]+ 2
∑

1≤i<j≤d

E
[
zizjxixj

∣∣∣∣X]


= E

 d∑
i=1

E
[
z2i
∣∣X]E [x2i ]+ 2

∑
1≤i<j≤d

E
[
zi
∣∣X]E [zj∣∣X]E [xi]E [xj ]


The last equation follows from the following independence conditions: X ⊥⊥ X, Z ⊥⊥ X|X, and zi ⊥⊥ zj |X.

We now prove that for every i ∈ {1, . . . , d}, E[z2i |X] = 0 and E[zi|X] = 0.

Let A =
(
X⊤X

)−1
X⊤, where A =

a11 . . . a1M
...

. . .
...

ad1 . . . adM

. We have that zi =
∑M

k=1 aik (Yk − h(Xk)).

Therefore, by linearity of the conditional expectation, and since we considered that h = E[Yk|Xk], we have E[zi|X] = 0.



Furthermore, we have that,

E[z2i |X] = E

( M∑
k=1

aik (Yk − h(Xk))

)2 ∣∣∣∣X


= E

[
M∑
k=1

a2ik (Yk − h(Xk))
2

∣∣∣∣X
]
+ 2 E

 ∑
1≤k<l≤M

aikail (Yk − h(Xk)) (Yl − h(Xl))

∣∣∣∣X


=

M∑
k=1

E
[
a2ik

∣∣∣∣X]E [(Yk − h(Xk))
2

∣∣∣∣X]+ 2
∑
k<l

E
[
aikail

∣∣∣∣X]E [(Yk − h(Xk))

∣∣∣∣X]E [(Yl − h(Xl))

∣∣∣∣X]
= 0

We now prove the second implication, assuming that L(h) = 0. Finding the minimum over the space of functions, H, is
equivalent to solving for h(x) for every x. Subsequently, letting x ∈MM,d(R), we have that,

h(x) = arg min
c∈RM

E

[∥∥∥∥X⊤
((

X⊤X
)−1

X⊤ (Y − c)
)∥∥∥∥2

∣∣∣∣∣X = x

]

By taking the gradient with respect to c, we have that,

∇cE

[∥∥∥∥X⊤
((

X⊤X
)−1

X⊤ (Y − c)
)∥∥∥∥2

∣∣∣∣∣X = x

]
= E

[
∇c

∥∥∥∥X⊤
((

X⊤X
)−1

X⊤ (Y − c)
)∥∥∥∥2

∣∣∣∣∣X = x

]

= E

[(
X⊤A (Y − c)

) (
(Y − c)⊙A⊤X

) ∣∣∣∣∣X = x

]

Consequently, if the gradient with respect to c is zero, it implies that for every i ∈ {1, . . . ,M}, we have that,

d∑
j=1

M∑
k=1

d∑
l=1

E
[
xlxjajkali (yk − ck) (yi − ci)

∣∣X = x
]
= 0

where xi is the ith component of X and ajk are the elements of the matrix A. By the independence of X , and the fact that
ajk is X-measurable, it follows that if the gradient is zero. Accordingly, we have that,

d∑
j=1

M∑
k=1

d∑
l=1

E [xlxj ] ajkaliE
[
(yk − ck) (yi − ci)

∣∣X = x
]
= 0

Since the rows of X are independent and identically distributed and since M > d, we have that X⊤X is full rank and
invertible, and hence, A is positive definite. Furthermore, E [xlxj ] are the elements of the covariance matrix of X , which is
also positive definite. If the gradient is equal to zero, this implies that, for every i, k ∈ {1, . . . ,M},

E
[
(yk − ck) (yi − ci)

∣∣X = x
]
= 0

Consequently, for i = k,
E
[
(yi − ci)2

∣∣X = x
]
= 0

Hence,
c = E

[
Y
∣∣X = x

]
Therefore, we see that L(h) ≥ 0 with the hypothesis minimizing the loss being h(x) = E [Y |X = x] almost surely.

Proposition 2.4. Let L0 denote the MSE loss and let θ∗ be the optimal parameters (i.e hθ∗ = E [Y |X] almost surely). We
assume that both the MSE and RLP loss functions are convex. Under the following conditions:

(i) E [XiXj ] = [1, · · · , 1]⊤1i=j .



(ii) (Y − hθ(X)) ⩽ 0 and ∇θhθ(X) ⩽ 0 (component-wise inequality).

(iii) For every j, k ∈ {1, 2, . . . , d} and for every l ∈ {1, 2, . . . ,M}, E [ajkakl] ⩾ 1
d2 , where (ajk) and (akl) are the

components of A =
(
X⊤X

)−1
X⊤.

We observe that for every step size ϵ ⩾ 0 and parameter θ ∈ RW for which gradient descent converges,

∥θ∗ − (θ − ϵ∇θL(θ))∥ ⩽ ∥θ∗ − (θ − ϵ∇θL0(θ))∥

This proposition contrasts the convergence behavior of the two loss functions, MSE loss and RLP loss, for gradient descent
optimization in parameterized models. It asserts that under certain conditions — (i), (ii), and (iii) from Proposition 2.4 —
updates based on the gradient of the RLP loss function bring the parameters closer to the optimal solution than those based
on the gradient of the MSE loss function.

Proof. Under the following assumptions: (i) E [XiXj ] = [1, · · · , 1]⊤1i=j .

(ii) (Y − hθ(X)) ⩽ 0 and ∇θhθ(X) ⩽ 0 (component-wise inequality)

(iii) E [ajkalk] ⩾ 1
d2 ∀j, k, l, where (aim)1≤i≤d,1≤m≤M are the components of the matrix A =

(
X⊤X

)−1
X⊤

We have that,

∥θ∗ − θ + ε∇θL (θ)∥22 =

K∑
i=1

(
θ∗i − θi + ϵ

∂

∂θi
L (θ)

)2

Letting 1 ⩽ i ⩽W , we have that,

∂

∂θi
L(θ) = −2 E

[
X⊤

n+1

((
X⊤X

)−1
X⊤ (Y − h(X))

)
×X⊤

n+1

((
X⊤X

)−1
X⊤ ∂

∂θi
h(X)

)]

= −2 E
[
X2

n+1

]⊤ E

[((
X⊤X

)−1
X⊤ (Y − h(X))

)
⊙
((

X⊤X
)−1

X⊤ ∂

∂θi
h(X)

)]

Where ⊙ denotes the Hadamard product between two vectors. Note that 1
2

∂
∂θi
L(θ) ⩽ 0. Subsequently, it follows from

assumption (i) that,

−1

2

∂

∂θi
L(θ) = E

[
(Y − h(X))

⊤
A⊤A

∂

∂θi
hθ(X)

]
=

M∑
j=1

M∑
l=1

d∑
k=1

E
[
(Yj − h(Xj))ajkalk

∂

∂θi
h(Xl)

]

=

M∑
j=1

M∑
l=1

d∑
k=1

E
[
E
[
(Yj − h(Xj))ajkalk

∂

∂θi
h(Xl)

] ∣∣∣∣Xj , Xl

]

=

d∑
k=1

M∑
j ̸=l

E [(Yj − h(Xj))]E
[
∂

∂θi
h(Xl)

]
E [ajkalk]

+
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M∑
j=1

E
[
(Yj − h(Xj))

∂

∂θi
h(Xj)

]
E [ajkajk]

⩾
M

d
E
[
(Y1 − h(X1))

∂

∂θi
h(X1)

]
⩾ −1

2

∂

∂θi
L0(θ)

This result follows from the application of the tower property, noting that for j ̸= l, we have that Yj ⊥⊥ Yl|Xj , Xl and
h(Xj) ⊥⊥ h(X)l|Xj , Xl, and by applying assumption (ii) and (iii). Therefore we have that,(

θ∗i − θi + ϵ
∂

∂θi
L (θ)

)2

⩽

(
θ∗i − θi + ϵ

∂

∂θi
L0 (θ)

)2



Accordingly, we observe that ∥θ∗ − (θ − ϵ∇θL(θ))∥ ⩽ ∥θ∗ − (θ − ϵ∇θL0(θ))∥ for every step size ϵ ⩾ 0 and parameter
θ ∈ RW for which gradient descent converges.

B DATASET DESCRIPTIONS

B.1 CALIFORNIA HOUSING DATASET

The California Housing dataset contains housing data of California derived from the 1990 U.S. census. It is often used for
regression predictive modeling tasks. The dataset has:

• |X | = 20640 examples, with |J | training examples and |X | − |J | test examples.

• d = 8 features: MedInc, HouseAge, AveRooms, AveBedrms, Population, AveOccup, Latitude, and Longitude.

• Target Variable: Median house value for California districts.

B.2 WINE QUALITY DATASET

The Wine Quality dataset from consists of physicochemical tests and the quality of red and white vinho verde wine samples,
from the north of Portugal. The dataset has:

• |X | = 6497 examples (combined red and white wine), with |J | training examples and |X | − |J | test examples.

• d = 11 features: fixed acidity, volatile acidity, citric acid, residual sugar, chlorides, free sulfur dioxide, total sulfur
dioxide, density, pH, sulphates, and alcohol.

• Target Variable: Quality score between 0 and 10.

B.3 LINEAR SYNTHETIC DATASET

The Linear dataset is a synthetic dataset, generated with fixed random seed, rng = np.random.RandomState(0)
(in python code). The dataset has:

• |X | = 6000 examples, with |J | training examples and |X | − |J | test examples.

• d = 5 features: X1,X2,X3,X4,X5 ∼ U [0, 1), where each feature is uniformly distributed between 0 and 1.

• Target Variable: Given by the equation

Y = 0.5X1 + 1.5X2 + 2.5X3 + 3.5X4 + 4.5X5

B.4 NONLINEAR SYNTHETIC DATASET

The Nonlinear dataset is a synthetic dataset, produced with fixed random seed, rng = np.random.RandomState(1)
(in python code). The dataset has:

• |X | = 6000 examples, with |J | training examples and |X | − |J | test examples.

• d = 7 features: X1,X2,X3,X4,X5,X6,X7 ∼ U [0, 1), where each feature is uniformly distributed between 0 and 1.

• Target Variable: Given by the equation

Y = X1 + X 2
2 + X 3

3 + X 4
4 + X 5

5 + eX6 + sin(X7)



B.5 MNIST DATASET

The MNIST (Modified National Institute of Standards and Technology) dataset is a collection of handwritten digits
commonly used for training image processing systems. While the original MNIST dataset consists of 50000 training and
10000 test examples, we consider a smaller version of the dataset (randomly partitioned from the original training and test
datasets) that has:

• |X | = 10000 examples, with |J | training examples (from the MNIST training examples) and |X | − |J | test examples
(from the MNIST test examples).

• Each example (image) is of size 28× 28 pixels, represented as a grayscale intensity from 0 to 255.

• Target Variable: The actual digit the image represents, ranging from 0 to 9.

B.6 CIFAR-10 DATASET

The CIFAR-10 dataset comprises color images categorized into 10 different classes, representing various objects and
animals such as airplanes, cars, and birds. The images cover a broad range of scenarios, making the dataset highly versatile
for various computer vision tasks. While the original CIFAR-10 dataset consists of 50000 training and 10000 test examples,
we consider a smaller version of the dataset (randomly partitioned from the original training and test datasets) that has:

• |X | = 10000 examples, with |J | training examples (from the CIFAR-10 training examples) and |X |− |J | test examples
(from the CIFAR-10 test examples).

• Each example (image) is of size 32× 32× 3, with three color channels (Red, Green, Blue), and size 32× 32 pixels for
each channel, represented as a grayscale intensity from 0 to 255.

• Target Variable: The class label of the image.

C ADDITIONAL EXPERIMENTS

C.1 CLASSIFICATION TASKS

While the RLP loss was introduced in the scope of regression and reconstruction tasks, we note that the loss can also be
applied to classification tasks. We provide a motivation for using the RLP loss for classification in Figure 8 — paralleling
the regression case, we note that if two discontinuous functions with discrete images share the same hyperplanes connecting
all subsets of their feature-label pairs, then they must necessarily be equivalent.
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Figure 8: Comparison of true and predicted functions — a demonstration that two discontinuous functions with discrete
images are equivalent if and only if they share identical hyperplanes generated by all possible feature-label pairs.

Accordingly, we observe that minimizing the RLP loss (and achieving zero loss) ensures that we learn the true [discontinuous]
function — this is supported by our theoretical findings in Section A. Our empirical results, obtained from datasets such as the
Moons dataset (sklearn.datasets.make_moons in python) and MNIST, affirm that the RLP loss offers accelerated
convergence and superior outcomes in terms of accuracy and the F1-score. Additionally, we employ mixup [Zhang et al.,
2017] and juxtapose RLP loss against the cross-entropy loss when both are combined with mixup data augmentation (we
further investigate mixup data augmentation for regression in section C.2). The results are illustrated in Figures 9 and 10.



(a) Moons (b) Moons with Mixup

(c) Moons (d) Moons with Mixup

Figure 9: Comparing performance between Cross Entropy Loss and Random Linear Projections Loss for a classification
task on the Moons dataset in terms of accuracy and F1-score. Figure 9a showcases results with |J | = 900 training and
|X | − |J | = 100 test examples (|X | = 1000). Figure 9b uses the same data split but is augmented with mixup. Figure 9c
employs a smaller set of |J | = 25 training examples and |X | − |J | = 475 test examples (|X | = 500), while Figure 9d
integrates the mixup data augmentation method on this smaller dataset. Both loss functions are evaluated across all scenarios.

(a) MNIST (b) MNIST with Mixup

(c) MNIST (d) MNIST with Mixup

Figure 10: Performance comparison between Cross Entropy Loss and Random Linear Projections Loss for a classification
task on MNIST, evaluated in terms of accuracy and F1-score. Figure 10a showcases results with |J | = 5000 training and
|X| − |J | = 5000 test examples (|X| = 10000). Figure 10b uses the same data split but is augmented with the mixup
method. Figure 10c employs a smaller set of |J | = 100 training and |X| − |J | = 1000 test examples, while Figure 10d
integrates the mixup data augmentation method on this smaller dataset. Both loss functions are evaluated across all scenarios.

C.2 REGRESSION AND RECONSTRUCTION TASKS

We now provide additional empirical results pertaining to the regression and reconstruction tasks outlined in the main text.
As an extension, we compare RLP loss with (1) mixup-augmented MSE loss (MSE loss + Mixup) and (2) mixup-augmented
RLP loss (RLP loss + Mixup). Regarding (1), we use MSE loss to train the neural network on the virtual training examples
produced by mixup, whereas in (2), we use RLP loss to train the neural network on the virtual training examples formed



using convex combinations between two unique pairs of sets of hyperplanes connecting fixed-size subsets of the neural
network’s feature-prediction pairs and feature-label pairs (see Algorithm 3).

Algorithm 3: Neural Network Training With Mixup-Augmented RLP Loss
Input: J (Training dataset), θ (Initial NN parameters), α (Learning rate), M (Batch size),

K (Number of batches to generate), E (Number of epochs), ψ (Beta distribution shape parameter)
Output: θ (Trained NN parameters)

1 Ba ← Balanced_Batch_Generator(J , M , K)
2 Bb ← Balanced_Batch_Generator(J , M , K)
3 for epoch = 1, 2, . . . , E do
4 for j = 1, 2, . . . ,K do
5 xa, xb ←Matrix of features from batches Ba[j] and Bb[j], respectively
6 ya, yb ← Vector of labels from batches Ba[j] and Bb[j], respectively
7 if size(xa) ̸= size(xb) then
8 λ← Beta(ψ,ψ) (Randomly sample from Beta distribution)
9 xj ← (λ)xa + (1− λ)xb

10 yj ← (λ)ya + (1− λ)yb
11 My ←

(
x⊤j xj

)−1 x⊤j yj
12 Mh ←

(
x⊤j xj

)−1 x⊤j hθ(xj)

13 lj(θ)←
(∑M

k=1 (My −Mh)
⊤
xjk

)2
14 L(θ)← 1

K

∑K
j=1 lj(θ)

15 θ ← θ − α∇θL(θ)
16 return θ

C.2.1 Performance Analysis

Extending the first evaluation from the main text, we evaluate the efficacy of RLP loss compared to the mixup-augmented
MSE loss and mixup-augmented RLP loss, when there are no ablations introduced within the data. We observe that across
all three datasets, neural networks trained with RLP loss and mixup-augmented RLP loss achieve improved performance
when compared to those trained with mixup-augmented MSE loss. The results are illustrated in Figure 11.

(a) California Housing (b) Wine Quality (c) Nonlinear

Figure 11: Test performance comparison across three datasets (California Housing, Wine Quality, and Nonlinear) using
three different loss functions: mixup-augmented MSE, RLP, and mixup-augmented RLP. The x-axis represents training
epochs, while the y-axis indicates the test MSE.

We also compare the elapsed training time (in seconds) using RLP loss versus MSE loss on the California Housing, Wine
Quality, and Nonlinear datasets. This result was compiled with an Intel Xeon CPU @ 2.20GHz, and is depicted in Figure 12.
For the RLP loss case, we train the neural network using K = 2000 batches.



(a) California Housing (b) Wine Quality (c) Nonlinear

Figure 12: Test performance comparison across three datasets (California Housing, Wine Quality, and Nonlinear) using
MSE loss and RLP loss. The x-axis represents elapsed time in seconds, while the y-axis indicates the test MSE.

C.2.2 Ablation Study — Number of Training Examples

For the ablation study pertaining to the number of training examples, |J |, we first consider the case where |J | = 100 training
examples. For this case, we train the regression neural network using MSE loss, MSE loss with L2 regularization, or RLP
loss. As in the |J | = 50 case from the main text, we observe that the RLP loss-trained models consistently outperform their
MSE loss and L2 regularized MSE loss-trained counterparts in both convergence rate and test error, despite the limited data.
These results are illustrated in Figure 13.

(a) California Housing (b) Wine Quality (c) Nonlinear

Figure 13: Limited training data (|J | = 100) test performance comparison across three datasets (California Housing, Wine
Quality, and Nonlinear) using three different loss functions: MSE, MSE with L2 regularization (MSE + L2), and RLP. The
x-axis represents training epochs, while the y-axis indicates the test MSE.

We also consider the case where |J | = 100 for the image reconstruction task. We observe that across both CIFAR-10 and
MNIST, neural networks trained with RLP loss achieve improved performance when compared to those trained with MSE
loss and L2 regularized MSE loss. These results are illustrated in Figure 14.

(a) MNIST (b) CIFAR-10

Figure 14: Limited training data (|J | = 100) test performance comparison across two datasets (CIFAR-10 and MNIST)
using three different loss functions: MSE, MSE with L2 regularization, and RLP. The x-axis represents training epochs,
while the y-axis indicates the test MSE.

Subsequently, we extend this study by evaluating the efficacy of RLP loss compared to the mixup-augmented MSE loss and



mixup-augmented RLP loss when |J | ∈ {50, 100}. We see that across all three datasets (California Housing, Wine Quality,
and Nonlinear), neural networks trained with RLP loss and mixup-augmented RLP loss achieve improved performance
when compared to those trained with mixup-augmented MSE loss. These results are illustrated in Figures 15 and 16.

(a) California Housing (b) Wine Quality (c) Nonlinear

Figure 15: Limited training data (|J | = 50) test performance comparison across three datasets (California Housing, Wine
Quality, and Nonlinear) using three different loss functions: mixup-augmented MSE, RLP, and mixup-augmented RLP. The
x-axis represents training epochs, while the y-axis indicates the test MSE.

(a) California Housing (b) Wine Quality (c) Nonlinear

Figure 16: Limited training data (|J | = 100) test performance comparison across three datasets (California Housing, Wine
Quality, and Nonlinear) using three different loss functions: mixup-augmented MSE, RLP, and mixup-augmented RLP. The
x-axis represents training epochs, while the y-axis indicates the test MSE.

C.2.3 Ablation Study — Distribution Shift Bias

We extend the distribution shift bias ablation study by evaluating the efficacy of RLP loss compared to the mixup-augmented
MSE loss and mixup-augmented RLP loss for bias parameter γ ∈ {0.1, 0.2, . . . , 0.9}. We observe that across all three
datasets, neural networks trained with RLP loss and mixup-augmented RLP loss achieve improved performance when
compared to those trained with mixup-augmented MSE loss. This result is illustrated in Figure 17.

(a) California Housing (b) Wine Quality (c) Nonlinear

Figure 17: Distribution shift test performance comparison across three datasets (California Housing, Wine Quality, and
Nonlinear) using three different loss functions: mixup-augmented MSE, RLP, and mixup-augmented RLP. The x-axis is the
degree of bias, γ, between the test data and the training data, while the y-axis indicates the test MSE.



C.2.4 Ablation Study — Noise Scaling Factor

We extend the noise scaling factor ablation study by evaluating the efficacy of RLP loss compared to the mixup-augmented
MSE loss and mixup-augmented RLP loss for standard normal noise scaling factor β ∈ {0.1, 0.2, . . . , 0.9}. We observe
that across all three datasets, neural networks trained with RLP loss and mixup-augmented RLP loss achieve improved
performance when compared to those trained with mixup-augmented MSE loss. This result is illustrated in Figure 18.

(a) California Housing (b) Wine Quality (c) Nonlinear

Figure 18: Noise robustness test performance comparison across three datasets (California Housing, Wine Quality, and
Nonlinear) using three different loss functions: mixup-augmented MSE, RLP, and mixup-augmented RLP. The x-axis is the
scaling factor, β, for the additive standard normal noise, while the y-axis indicates the test MSE.

C.2.5 RLP Loss vs. Mean Absolute Error (MAE) Loss

Mean Absolute Error (MAE) loss is widely utilized in machine learning for its simplicity and interpretability, particularly in
regression tasks. Its effectiveness is underscored by research demonstrating its superiority in vector-to-vector regression
and in enhancing neural network training with noisy labels, showcasing its adaptability across various applications Qi et al.
[2020], Zhang and Sabuncu [2018]. Paralleling the first evaluation from the main text, we evaluate the efficacy of RLP loss
compared to MAE loss, when there are no ablations introduced within the data, for |J | = 0.5|X | training examples and
|X | − |J | test examples. We observe that across all three datasets, neural networks trained with RLP loss achieve improved
performance when compared to those trained with MAE loss. The results are illustrated in Figure 19.

(a) California Housing (b) Wine Quality (c) Nonlinear

Figure 19: Test performance comparison across three datasets (California Housing, Wine Quality, and Nonlinear) using two
different loss functions: RLP and MAE. The x-axis represents training epochs, while the y-axis indicates the test MAE.

D EXPERIMENT DETAILS

D.1 NEURAL NETWORK ARCHITECTURES

We first provide a detailed description of four different neural network architectures designed for various tasks: regression,
image reconstruction, and classification. Each of these architectures were employed to generate the respective empirical
results pertaining to the aforementioned tasks.



D.1.1 Regression Neural Network

The Regression Neural Network utilized in our analysis is designed for regression tasks, mapping input features to continuous
output values (see Figure 20). The architecture comprises the following layers:

• Fully Connected Layer (fc1): Transforms the input features to a higher dimensional space. It takes d-dimensional
inputs and yields 32-dimensional outputs.

• ReLU Activation (relu1): Introduces non-linearity to the model. It operates element-wise on the output of fc1.

• Fully Connected Layer (fc2): Takes 32-dimensional inputs and yields 1-dimensional outputs (final predictions).

D.1.2 Autoencoders for Image Reconstruction

The Autoencoder utilized in our analysis is tailored for image reconstruction tasks (see Figure 20). The architecture consists
of two main parts: an encoder and a decoder. We note that preliminarily, all images are flattened to d-dimensional inputs and
have their pixel values normalized to be within the range [0, 1].

• Encoder:

– Fully Connected Layer (fc1): Encodes the flattened, d-dimensional input into a latent representation of size 32.
– ReLU Activation (relu1): Introduces non-linearity to the encoding process.

• Decoder:

– Fully Connected Layer (fc2): Transforms the 32-dimensional latent representation into a d-dimensional output.
– Sigmoid Activation (sig1): Ensures the output values are in the range [0, 1] (akin to normalized pixel values).

(a) Regression Neural Network (b) Autoencoder

Figure 20: Architectures of the regression neural network (left) and autoencoder (right)

D.1.3 LeNet-5 for Image Classification on MNIST

LeNet-5 [Lecun et al., 1998], a convolutional neural network, is widely used for image classification tasks such as handwritten
digit recognition (e.g., MNIST). For our MNIST image classification study, we preliminarily zero-pad the images so they
are of size 32× 32. The employed architecture of LeNet-5 (see Figure 21) consists of the following layers:

• Convolutional Layer (conv1): Applies 6 filters of size 5× 5 to the input image.

• Tanh Activation (tanh1): Applies the hyperbolic tangent activation function element-wise.

• Average Pooling Layer (pool1): Down-samples the feature map by a factor of 2.

• Convolutional Layer (conv2): Applies 16 filters of size 5× 5.

• Tanh Activation (tanh): Applies the hyperbolic tangent activation function element-wise.

• Average Pooling Layer (pool2): Further down-samples the feature map by a factor of 2.



• Flattening Layer (flatten1): Transforms the 2-dimensional feature map into a flat vector.

• Fully Connected Layer (fc1): Transforms the flat vector to a 120-dimensional space.

• Tanh Activation (tanh): Applies the hyperbolic tangent activation function element-wise.

• Fully Connected Layer (fc2): Reduces the dimensionality to 84.

• Tanh Activation (tanh): Applies the hyperbolic tangent activation function element-wise.

• Fully Connected Layer (fc3): Produces the final classification output with 10 dimensions.

The above architecture is considered when we use cross-entropy loss for image classification on MNIST. However, when
RLP loss is employed, we include a sigmoid activation layer, sig1, that follows the last fully connected layer, fc3:

• Sigmoid Activation (sig1): Ensures the output values are in the range [0, 1] (probabilistic classification).

Figure 21: Architecture of LeNet-5 for image classification on MNIST

D.1.4 MoonsClassifier for Classification on the Moons Dataset

The provided MoonsClassifier is a neural network designed for classifying examples from the Moons dataset, which consists
of 2-dimensional points forming two interleaved half-circle shapes. The architecture of MoonsClassifier (see Figure 22)
consists of three fully connected layers and two ReLU activation functions, as detailed below:

• Fully Connected Layer (fc1): Transforms the 2-dimensional input to a 50-dimensional space. The input features
represent the coordinates of a point in the dataset.

• ReLU Activation (relu1): Applies the ReLU activation function element-wise, introducing non-linearity.

• Fully Connected Layer (fc2): Further transforms the data in the 50-dimensional space.

• ReLU Activation (relu2): Applies the ReLU activation function element-wise.

• Fully Connected Layer (fc3): Reduces the dimensionality from 50 to 2, producing the final classification output.

The above architecture is considered when we use cross-entropy loss for classification on the Moons dataset. However, when
RLP loss is employed, we include a sigmoid activation layer, sig1, that follows the last fully connected layer, fc3:

• Sigmoid Activation (sig1): Ensures the output values are in the range [0, 1] (probabilistic classification).

Figure 22: Architecture of MoonsClassifier for image classification on the Moons dataset



D.1.5 Neural Network Training Hyperparameters

The relevant hyperparameters used to train the regression neural networks, autoencoders, and classifiers outlined in Section
D.1 are provided in Tables 3 and 4. All results presented in the main text and in Sections C.1 and C.2 of the appendix were
produced using these hyperparameter choices.

Table 3: Regression and reconstruction tasks — neural network training hyperparameters (grouped by dataset).

Dataset Experiment Optimizer Learning
Rate (α)

Weight Decay
(MSE loss + L2)

Shape Parameter (ψ)
(Mixup & RLP + Mixup)

California Housing No ablations Adam 0.0001 0.0001 0.25
California Housing |J | ∈ {50, 100} AdamW 0.0005 0.01 0.25
California Housing Distribution shift Adam 0.0001 0.0001 0.25
California Housing Additive noise Adam 0.0001 0.0001 0.25
California Housing RLP vs. MAE Adam 0.0005 — —
California Housing Training Time Adam 1.0e-6 — —

Wine Quality No ablations Adam 0.0001 0.0001 0.25
Wine Quality |J | ∈ {50, 100} AdamW 0.005 0.01 0.25
Wine Quality Distribution shift Adam 0.0001 0.0001 0.25
Wine Quality Additive noise Adam 0.0001 0.0001 0.25
Wine Quality RLP vs. MAE Adam 0.0005 — —
Wine Quality Training time Adam 1.0e-6 — —

Linear No ablations Adam 0.0001 0.0001 —
Linear |J | ∈ {50, 100} AdamW 0.0005 0.01 —

Nonlinear No ablations Adam 0.0001 0.0001 0.25
Nonlinear |J | ∈ {50, 100} AdamW 0.0005 0.01 0.25
Nonlinear Distribution shift Adam 0.0001 0.0001 0.25
Nonlinear Additive noise Adam 0.0001 0.0001 0.25
Nonlinear RLP vs. MAE Adam 0.0005 — —
Nonlinear Training time Adam 1.0e-6 — —
MNIST No ablations SGD 0.01 0.0001 —
MNIST |J | ∈ {50, 100} SGD 0.01 0.0001 —

CIFAR-10 No ablations SGD 0.01 0.0001 —
CIFAR-10 |J | ∈ {50, 100} SGD 0.01 0.0001 —

Table 4: Classification tasks — neural network training hyperparameters (grouped by dataset).

Dataset Experiment Optimizer Learning
Rate (α)

Weight Decay
(MSE loss + L2)

Shape Parameter (ψ)
(Mixup & RLP + Mixup)

Moons Dataset No ablations Adam 0.001 — 0.2
Moons Dataset |J | = 25 Adam 0.001 — 0.4

MNIST No ablations AdamW 0.002 — 0.2
MNIST |J | = 100 AdamW 0.002 — 0.2

The default AdamW weight decay is set to 0.0001 in all relevant experiments and is only changed for MSE loss + L2 regularization.
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