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Abstract

Text-to-image diffusion models rely on massive, web-scale datasets. Training them from
scratch is computationally expensive, and as a result, developers often prefer to make
incremental updates to existing models. These updates often compose fine-tuning steps
(to learn new concepts or improve model performance) with “unlearning" steps (to “forget"
existing concepts, such as copyrighted works or explicit content). In this work, we demonstrate
a critical and previously unknown vulnerability that arises in this paradigm: even under
benign, non-adversarial conditions, fine-tuning a text-to-image diffusion model on seemingly
unrelated images can cause it to “relearn" concepts that were previously “unlearned." We
comprehensively investigate the causes and scope of this phenomenon, which we term concept
resurgence, by performing a series of experiments which compose “concept unlearning" with
subsequent fine-tuning of Stable Diffusion v1.4 and Stable Diffusion v2.1. Our findings
underscore the fragility of composing incremental model updates, and raise serious new
concerns about current approaches to ensuring the safety and alignment of text-to-image
diffusion models.

1 Introduction

Modern generative models are not static. In an ideal world, developing new models would require minimal
resources, allowing users to tailor unique, freshly trained models to every downstream use case. In practice,
making incremental updates to existing models is far more cost-effective, which is why it is standard for
models developed for one context to be updated for use in another (50} 245 [25). This paradigm of updating
pre-trained models is widely considered beneficial, as it promotes broader and more accessible development
of AI. However, for sequential updates to become a sustainable standard, it is critical to ensure that these
updates compose in predictable ways.

Developers commonly update models to acquire new information or to improve performance—for example,
by fine-tuning an existing model on data tailored to a particular use case. But sometimes, developers also
seek to remowve information from an existing model. One prominent example is machine unlearning, which
aims to efficiently update a model to “forget" portions of its training data (3} 135} [1)) in order to respond to
privacy concerns. This is particularly important to comply with regulations like the General Data Protection
Regulation (GDPR) “right to be forgotten" (LIJ).

Here, we focus on the related notion of “concept unlearning" in the context of text-to-image diffusion models
(hereafter, referred to as “diffusion models"). In contrast to machine unlearning, which targets individual
data points, concept unlearning seeks to erase general categories of content, such as offensive or explicit
images. There has been substantial recent progress in this area (16; 31; 20; [15; 53; [26). For example, the
current state-of-the-art algorithms such as “unified concept editing" (UCE) (16) and “mass concept erasure'
(MACE) (31)) can now effectively erase dozens of concepts from a pre-trained diffusion model. This is useful
in contexts where undesired concepts cannot be comprehensively identified during the pre-training phase,
and thus instead must be erased after the model is deployed or as it is adapted for different downstream
applications.



Under review as submission to TMLR

(a) Stable Diffusion v1.4 (b) MACE (c) Additional Fine-tuning

Figure 1: Images generated by the prompt “A portrait of Jennifer Aniston." Stable Diffusion v1.4 successfully
generates this image (a), and Mass Concept Erasure (MACE) successfully induces the pretrained model to
“forget" this concept (b). However, subsequent fine-tuning on an unrelated set of randomly selected celebrity
images reintroduces the ability to generate the target concept (c).

Our work begins with a surprising observation: fine-tuning a diffusion model can re-introduce
previously erased concepts (see Figure [1| for a striking yet representative example). This can occur even
when fine-tuning is performed on seemingly unrelated concepts and when users prompt the model to generate
a completely unrelated concept. This hidden vulnerability, which we call concept resurgence, poses a challenge
to the current paradigm of composing model updates via incremental fine-tuning. In particular, while the
current state of the art in concept unlearning may initially suppress the generation of unwanted concepts
(e.g., harmful, biased or copyrighted images), a developer cannot presently guarantee that concept unlearning
will prevent the accidental reintroduction of these concepts in later updates to the model. As a consequence,
consumers who fine-tune a “safe” model might inadvertently reintroduce undesirable behavior.

This paper systematically explores concept resurgence, identifying it as a critical and previously unrecognized
vulnerability in diffusion models. Our primary contributions are:

e Demonstrating the prevalence of concept resurgence. Through a series of systematic
experiments, we investigate the conditions under which concept resurgence occurs. We show that
concept resurgence does not require fine-tuning on data which is similar to the unlearned concept(s),
or that the fine-tuning set is chosen adversarially to “jailbreak" the model. Instead, we show that
concept resurgence can occur under common and benign usage patterns. Even well-meaning engineers
may unintentionally expose users to unsafe or unwanted content that was previously removed. Figure[l]
presents a representative example of this phenomenon.

e Understanding the severity of concept resurgence. We conduct a thorough examination of
different factors that impact the degree of concept resurgence. These include challenges related to
scaling unlearning to many simultaneous concepts, and the impact of key implementation choices in
common unlearning algorithms.

o Investigating the cause(s) of concept resurgence. We analyze a linear score-based diffusion
model to understand, in a provable setting, why concept resurgence occurs after unlearning. Our
analysis identifies two key factors that govern the strength of resurgence during fine-tuning: (1) the
projection overlap between the forgotten subspace and the gradient directions introduced during fine-
tuning, and (2) a curvature-limited sensitivity bound that quantifies how small gradient components
in low-curvature subspaces can induce disproportionately large parameter updates. Crucially, our
results show that some degree of resurgence is inevitable whenever there is nonzero overlap between
the fine-tuning gradient subspace and the forgotten subspace, even if the overlap is small. Moreover,
resurgence is most pronounced at early diffusion steps where gradients are strongest, but can also be
amplified at intermediate-to-late steps when curvature is low and residual alignment persists.
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Organization of the paper. Section [2| covers background and related work. In Section [3] we quantify the
extent of concept resurgence across a variety of domains. In Section E we explore some of the factors that
influence the severity of concept resurgence. Finally, in Section [5| we construct a stylized model to provably
investigate the fundamental drivers of concept resurgence.

2 Background and related work

Machine unlearning. We build on a growing literature on machine unlearning (2 [36} 28} [3} 215 [46} (43} [19;
28: 129: 132)), which develops methods for efficiently modifying a trained machine learning model to forget some
portion of its training data. In the context of classical discriminative models, machine unlearning is often
motivated by a desire to preserve the privacy of individuals who may appear in the training data. A key
catalyst for this work was the introduction of Article 17 of the European Union General Data Protection
Regulation (GDPR), which preserves an individual’s “right to be forgotten" (11). More recent work in machine
unlearning has expanded to include modern generative Al models, which may reproduce copyrighted material,
generate offensive or explicit content, or leak sensitive information which appears in their training data
(52 15). Our work focuses specifically on unlearning in the context of text-to-image diffusion models (23} 140]).
The literature on diffusion models has grown rapidly over the last few years; though we cannot provide a
comprehensive overview here, we refer to (52)) for an excellent recent survey.

Concept unlearning. Our work is directly inspired by a line of recent research that proposes methods for
inducing models to forget abstract concepts (1} 131t [14% 1165 53} 1205 [15¢ 126), as opposed to simply unlearning
specific training examples. A key challenge in this context is maintaining acceptable model performance on
concepts that are not targeted for unlearning, especially those closely related to the erased concepts.

We investigate seven recently proposed unlearning algorithms: ESD (15]), SDD (26), UCE (15)), MACE (31J),
SalUn (13), SHS (48), and EraseDiff (49). At a high level, ESD and SDD focus on fine-tuning either the
cross-attention weights or all of the model parameters such that encountering the concept of interest results
in “unconditional" sampling (i.e., sampling which is not conditioned on the unwanted prompt). EraseDiff
performs unlearning similarly via a bi-level optimization problem. MACE and UCE used closed-form edits to
modify the cross-attention weights — and MACE additionally fine-tunes the remaining model parameters — to
erase the concept of interest. SalUn and SHS both start by identify the most influential parameters related to
the concepts being unlearned and then finetune those parameters. We discuss these algorithms in additional

detail in Section [4.2]

Attacking machine unlearning systems. Finally, a recent line of research explores data poisoning attacks
targeting machine unlearning systems, including (6} 34} 45 95 [37% [30). These works show that certain new risks,
such as camouflaged data poisoning attacks and backdoor attacks, can be implemented via the “updatability”
functionality in machine unlearning, even when the underlying algorithm unlearns perfectly (i.e., simulates
retraining-from-scratch). In contrast, our work exposes a qualitatively new kind of vulnerability in machine
unlearning, where a previously forgotten concept may be reacquired as a consequence of additional learning.

Additionally, there have been numerous works in LLM unlearning and alignment demonstrating that both
adversarial and benign finetuning can undo both (12 [7]). There has been less work in the diffusion model
unlearning literature on the unintended consequences of benign finetuning. We note one contemporaneous
work to ours that is much more limited in its analysis (18 Other works and algorithms have been focused on
robustness to both adversarial inputs and adversarial finetuning (55t [1'7; [56). These studies are complementary
and orthogonal from our results on benign finetuning and benign prompting.

3 Composing Updates Causes Concept Resurgence

As discussed in Section [I, the scale of modern diffusion models has motivated a new paradigm in which
updates to pretrained models are incrementally composed to avoid retraining models from scratch. These
updates broadly take the form of one of two interventions: either the model is updated to learn a new concept,

We also note that this study is currently under investigation for plagiarizing our work. Thus, we limit our discussion of the
work.
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or it is updated to “unlearn" an unwanted concept. The standard procedure for learning new concepts is to
curate a dataset of images representing the new concept of interest and fine-tune the model on this dataset.
Similarly, to unlearn an unwanted concept(s), an “unlearning" algorithm will typically update the weights of
the pretrained model in an attempt to ensure that the model no longer generates content associated with
that concept. These two steps may be repeatedly composed over the lifetime of a deployed model. This
paradigm raises an important question:

To what extent is concept unlearning robust to compositional updates?

Our investigation into this question begins with seven of the most recent and performant unlearning methods
discussed in Section [2: MACE, UCE, SDD, ESD, SalUn, SHS, and EraseDiff. We apply these unlearning
algorithms to four different concept unlearning tasks (celebrity erasure, copyright erasure, unsafe content
erasure, and object erasure) and two different diffusion models (Stable Diffusion v1.4 and Stable Diffusion
v2.1). We describe these tasks in detail below. For each task, we first apply one of the unlearning algorithms
to erase the concept of interest, and then subsequently fine-tune the model on a random set of in-domain
concepts. For example, in the context of celebrity erasure — where the goal of the erasure task is to “unlearn”
the ability to generate images of a particular celebrity — we further fine-tune the resulting model on a random
set of celebrity images (which exclude the unlearned celebrity). This simulates the real world paradigm of
composing unlearning with unrelated fine-tuning steps, the latter of which are intended to help the model
learn new concepts or otherwise improve performance. In particular, we do not fine-tune the model on
adversarially chosen concepts, as our goal is to understand whether benign updates can degrade or otherwise
alter performance. For work on adversarial attacks and/or jailbreaking of text-to-image diffusion models,
see (335 51k [10). Additionally, we focus on settings where the models retained high utility after unlearning.
We describe the fine-tuning datasets and training details in Appendix [C.

Via these experiments, we uncover a phenomenon we term concept resurgence: composing unlearning and
fine-tuning may cause a model to regain knowledge of previously erased concepts. Below we provide further
details on each of these tasks and quantify the degree of concept resurgence.

Celebrity erasure. Following (31), the first benchmark we consider is inducing the model to forget certain
celebrities (the “erase set") while retaining the ability to generate others (the “retain set"). We benchmark
Stable Diffusion v1.4 and v2.1 in combination with each unlearning algorithm on the task of unlearning 100
celebrities, and then evaluate whether the model succeeds in generating images of these celebrities (e.g., after
being prompted with “A portrait of [erased celebrity name]"). To ensure consistency, both the subtasks and
prompts are identical to those in (31)); the full set of celebrities in each subtask, along with the prompts used
to evaluate the model, are provided in Appendix [C] We quantify model performance across three random
seeds by separately computing the mean top-1 accuracy of the Giphy Celebrity Detector (GCD) (22)) on both
erased and retained celebrities ]

Copyright erasure. Motivated by recent, well-publicized concerns regarding the ability of diffusion models
to generate copyrighted content (44 |45 |47t [54), the second task we consider is one in which we induce
the model to unlearn a popular fictional character while retaining the ability to generate other characters.
Specifically, we apply each of the seven unlearning algorithms to Stable Diffusion v1.4 and v2.1 to unlearn the
concept “Iron Man", and then evaluate whether subsequent fine-tuning reintroduces the ability to generate
this character (e.g., after being prompted with “a pose of Iron Man in action."). The full set of retained
characters and the prompts used to evaluate the model are provided in Appendix [C. We quantify the model
performance by prompting Molmo 7B-D (8]), an open-source multimodal LLM, with the generated image and
two questions: “Is [copyrighted character] in this image? Answer Yes or No." and “Who is in this image?
State their name only.". We categorize the image as including the character if the response to the first prompt
is “Yes" or the character name is correct. We perform this evaluation across three random seeds on the set of
evaluation prompts.

Unsafe content erasure. The third task we consider, motivated by concern that diffusion models can
generate images containing depictions of self-harm, hate, violence, and/or harassment (41} [39; 38), is the

2The GCD is a popular open source model for classifying celebrity images; (31) document that the GCD achieves > 99%
top-1 accuracy on celebrity images sampled from Stable Diffusion v1.4.
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Before Finetuning

After Finetuning

o

A portrait of Andrew Garfield A portrait of Angelina Jolie A portrait of Melania Trump A portrai

Mila Kunis

Figure 2: Selected images generated by SD v1.4 after initially applying each unlearning algorithm (top row)
and after subsequent fine-tuning (bottom row) in the celebrity unlearning task. In each case, the model
initially unlearns the target concept, e.g., how to generate images of Andrew Garfield. However, fine-tuning
on unrelated images can inadvertently reintroduce the erased concepts. We note that UCE is more robust to
this phenomenon than the other three algorithms. We discuss this result in Section and provide examples
for SHS, SalUn, and EraseDiff in Appendix@

resurgence of unsafe content. We construct this task by leveraging the i2P dataset, which contains a set of
prompts that are labeled across different unsafe content categories and their probability of being labeled as
inappropriate by the Q16 classifier (42)). As in the previous tasks, we first induce the model to forget the
concepts of self-harm, hate, violence, and harassment. We then evaluate whether the model retains the ability
to generate these concepts by providing it prompts from the i2P dataset which are labeled as generating an
inappropriate image from the unwanted category with a probability of at least 70%. We use the Q16 classifier
to evaluate the percentage of unsafe content generated amongst these prompts across three random seeds.

Object erasure. Finally, following (31)), the final benchmark we consider is inducing the model to forget
how to generate certain types of objects from the CIFARI10 dataset (the “erase set") while retaining the
ability to generate others (the “retain set"). We apply each unlearning algorithm to Stable Diffusion v1.4 to
erase three objects (automobiles, ships, and birds) simultaneously. We then evaluate whether the model can
generate images of these objects and their synonyms (e.g., after being prompted with “a photo of the [erased
object]"). Both the full set of erased objects and retained objects, along with the prompts used to evaluate
the model, are provided in Appendix [C] As in the celebrity erasure task, we adopt the set of concepts to
be erased, evaluation prompts and other hyperparameters from (L'ﬂl) We quantify model performance by
computing the CLIP accuracy across three random seeds on the set of evaluation prompts.

Evaluating concept resurgence. In each of these settings, we are primarily concerned with whether
concept resurgence occurs, and, if it does, the rate at which it does so. We curate specific examples to
characterize the severity of concept resurgence in Figure 2l We show concept resurgence can occur in striking
and seemingly unpredictable ways across all seven algorithms, running the risk that developers or users can
inadvertently reintroduce harmful or unwanted content.

3The only exception is the Erase 5 Objects task, which we add to evaluate simultaneous erasure of multiple concepts.
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Method Celebrity Copyright

Before FT After FT Before FT After FT
ESD 0.144 + 0.011 0.950 4+ 0.007 0.000 £ 0.000 0.100 £ 0.067
MACE 0.042 + 0.004 0.391 4+ 0.043 0.100 = 0.100 0.267 £ 0.167
SDD 0.556 + 0.203 0.965 4+ 0.008 0.000 £ 0.000 0.100 + 0.033
UCE 0.001 + 0.001 0.004 4+ 0.002 0.000 £ 0.000 0.000 =+ 0.000
EraseDiff 0.000 £ 0.000 0.693 + 0.019 0.000 4+ 0.000 0.367 £ 0.033
SHS 0.075 & 0.019 0.893 4+ 0.054 0.000 £ 0.000 0.133 £ 0.033
SalUn 0.363 + 0.082 0.939 4+ 0.056 0.000 £ 0.033 0.100 £ 0.067

(a) Celebrity and Copyright Tasks

Method Object Unsafe

Before FT After FT Before FT After FT
ESD 0.192 + 0.032 0.990 4+ 0.008 0.547 & 0.073 0.840 £ 0.024
MACE 0.045 + 0.005 0.033 & 0.003 0.275 & 0.058 0.319 + 0.042
SDD 0.000 + 0.007 0.355 4+ 0.073 N/A N/A
UCE 0.023 & 0.000 0.030 £+ 0.020 0.649 = 0.010 0.670 £+ 0.013
EraseDiff 0.002 £+ 0.002 0.995 + 0.001 0.317 + 0.181 0.876 4+ 0.017
SHS 0.399 + 0.274 0.999 4+ 0.001 0.403 £ 0.058 0.848 £ 0.024
SalUn 0.831 + 0.531 0.913 & 0.065 0.840 & 0.217 0.872 £ 0.008

(b) Object and Unsafe Tasks

Table 1: Unlearning performance before and after fine-tuning for Stable Diffusion v1.4. Each metric is
task-specific and evaluates the ability to generate the unwanted concept (lower is better; see Section E for
details). Results for SDD on unsafe content are excluded as first-stage unlearning compromises the model’s
ability to generate any images, including retained concepts.

In Table [I, we quantify the degree of resurgence across all four tasks and unlearning algorithms using the
metrics described above. The degree of resurgence varies across the algorithms and tasks. ESD, SDD, SalUn,
SHS, and EraseDiff all exhibit a large degree of concept resurgence across all tasks; in some cases benign
fine-tuning reverses unlearning almost completely. For MACE we see a modest degree of concept resurgence
across all four tasks, and for UCE we see a small amount of resurgence in the celebrity and object erasure
tasks. These findings illustrate that concept resurgence occurs with striking regularity across both algorithms
and domains. We emphasize that in many contexts, even rare concept resurgence presents unacceptable risks.
In the remainder of this work, we characterize the factors that affect the severity of concept resurgence and
investigate the root causes of this phenomenon.

Incidental Concept Resurgence In conducting our object experiments, we uncover an even more concerning
type of concept resurgence — the model will output an unlearned concept when prompted to generate an
image of a retained concept. This means that a user can be prompting the model for an unrelated concept,
and an unlearned concept is generated. We term this incidental concept resurgence. For example, when
generating an image of an airplane that was retained, the model generates an image of an automobile that
was unlearned before fine-tuning (example shown in Figure 3| and in Appendix . Furthermore, we calculate
the percentage of prompts on which this phenomenon occurs across all seven algorithms for our erase-three
and erase-five object tasks. We find that ESD, UCE, MACE, and SDD all share this vulnerability on at least
one of the tasks. Meanwhile, SalUn, SHS, and EraseDiff appear robust (Table .
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(a) Stable Diffusion v1.4 (b) MACE (c) Additional Fine-tuning

Figure 3: Images generated by the prompt “A photo of an airplane." Stable Diffusion v1.4 successfully
generates this image (a), and Mass Concept Erasure (MACE) which unlearned {cat, truck, automobile,
ship, bird}, partially generates this concept with the wing on the ground. However, subsequent fine-tuning
on an unrelated set of randomly selected object images reintroduces the ability to generate the target concept
when prompting with a completely unrelated concept ( (c).

4 Factors Influencing Concept Resurgence Severity

We find two important components of the compositional updating pipeline that influence the severity of
concept resurgence. The first is the number of concepts that were simultaneously unlearned. The second is
the techniques used in the unlearning algorithms.

4.1 Scaling Unlearning Algorithms

A key desideratum for any unlearning algorithm is the ability to scale: ideally, the user can erase many
concepts without retraining the model from scratch. All seven unlearning algorithms we consider report the
ability to simultaneously unlearn many concepts while maintaining utility on unrelated concepts. We analyze
whether increasing the number of concepts unlearned leaves the resulting model more susceptible to concept
resurgence. For the celebrity erasure task, we define four subtasks: erasing 1, 5, 10, and 100 celebrities. For
the object erasure task, we define three subtasks: erase ship, erase three objects (automobile, ship, bird), and
erase five objects (automobile, ship, bird, cat, and truck). We follow the same evaluation setup as described
in Section |3| for both tasks. We omit the copyright task from this analysis because we found that the models
were unable to unlearn more than one character without dramatically degrading performance on retained
charactersﬁ We also omit the unsafe content task, as it cannot be cleanly decomposed into discrete “subtasks"
(e.g., individual celebrities, objects or characters). The impact of increasing the number of unlearned concepts
is only noticeable for ESD. For ESD, there is clear increase in resurgence as the number of concepts unlearned
increases (Figure E[) In contrast, for the other six algorithms, the level of resurgence was not impacted as the
number of concepts increased (see Appendix.

4.2 The Impact of Algorithmic Choices on Resurgence

The seven algorithms we consider perform unlearning through fine-tuning model parameters, closed-form
edits, or a combination of both. Fine-tuning optimizes an unlearning objective via gradient-based methods,
as seen in ESD, which adjusts the model so that the score function conditioned on a concept matches the
unconditional score function. Closed-form edits derive an explicit update for unlearning, as in UCE, which
modifies key and value weights in cross-attention layers to replace concept-specific representations with generic

4In this case, we interpret the algorithm as having failed in the first unlearning step, and thus there is no potential resurgence
to evaluate. Without this requirement, a model which simply outputs random noise would suffice to achieve perfect performance
on any unlearning task.
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or blank ones. MACE combines both approaches: it uses a closed-form edit to adjust word embeddings in
concept-containing prompts and LoRA fine-tuning to suppress concept-related attention in generated images.
We categorize ESD and SDD as fine-tuning methods, UCE as closed-form, and MACE as a hybrid approach.

Finetuning vs. Closed-Form In Table [I, we see a gap in the severity of concept resurgence between
the fine-tuning algorithms and those using closed-form edits. Specifically, UCE is quite robust, exhibiting
very small resurgence across tasks. We conjecture that UCE is the strongest type of closed-form edit, as
it modifies the cross attention weights to directly map the target concept to a higher-level (more abstract)
concept. For example, if the target concept is a particular celebrity, it may be mapped to the more abstract
concept like “a Person" or “a Celebrity". In contrast, MACE modifies the cross-attention weights to map the
embeddings of all the surrounding words in the given prompts to be similar to embeddings of the surrounding
words after replacing the target concept with a more abstract one. This difference means that MACE does
not directly optimize the parameter update to move the target concept embedding towards the abstract
concept embedding. Furthermore, because MACE incorporates unlearning the target concept information via
fine-tuning, this might leave it more vulnerable to concept resurgence than UCE, which is based on a direct
closed-form edit.

Parameter Choice The second algorithmic factor we examine is which subsets of parameters are updated
in the unlearning phase, and which (potentially overlapping) subsets of parameters are further fine-tuned.
We start by showing how these choices potentially explain why UCE is more robust to concept resurgence
than the other three algorithms. As discussed above, UCE only modifies the cross-attention weights with
a closed form edit. As discussed in ([L6]), this approach is very effective for concepts that are localized to
the words themselves (e.g. the name of a celebrity; contrast this to unsafe content, which is a more abstract
concept). Applying LoRA fine-tuning after UCE unlearning, we find no evidence of concept resurgence. We
then instead fine-tune the full set of parameters, which yields a small degree of resurgence. Finally, motivated
by this result, we choose to fully fine-tune the cross-attention layers only. We see that the resurgence is
comparable between the two (Table |3, suggesting that the nature of UCE’s closed-form edit being localized
to the cross-attention layers may make it very robust.

The second difference between the seven algorithms is the subset of model parameters that are updated in
the unlearning step. Section E focuses primarily on modifying the either the cross-attention layers (with
the exception of MACE, which also updates the rest of the model parameters via LoRA fine-tuning) or the
automatically selected parameter subset (i.e. SalUn and SHS). Here, we focus on ESD in the single celebrity
erasure task and the copyright erasure task, which both exhibit very high degrees of concept resurgence. In
each of these tasks, we vary the subset of parameters that are updated in the unlearning step: either all
of the parameters, all of the parameters except those in the cross-attention layers, and only those in the
cross-attention layers. We find that the cross-attention parameters do indeed play the most important role
in unlearning for these tasks and that unlearning on all the parameters only provided marginal gains in
preventing resurgence (Figure .

Finetuning Hyperparameters Finally, we investigate how hyperparameter choices such as dataset size and
number of fine-tuning steps impact the severity of resurgence. In Appendix [J, we show that even with much
smaller amounts of data or smaller amounts of fine-tuning steps that resurgence still occurs. For example, for
MACE on our erase 10 celebrities task, only 20 fine-tuning steps are necessary for resurgence to occur with
250 samples.

5 Why Does Concept Resurgence Occur?

We argue that concept resurgence is a structural vulnerability inherent in the geometric relationship between
the erased concept and the subsequent fine-tuning task. To isolate the conditions under which forgotten
concepts can resurface during fine-tuning, we analyze a linear score-based diffusion model. This simplified,
convex setting allows the geometry of unlearning and fine-tuning to be made explicit. In particular, we
show that any non-zero overlap between the subspace associated with an erased concept and the subspace
spanned by fine-tuning gradients is sufficient to induce concept resurgence. Let W denote the parameters of
the linear score model (vectorized for notational convenience). Unlearning is modeled as an explicit removal
of parameter components associated with a target concept. Formally, let C C R? denote the erased concept
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subspace, defined as the span of parameter directions that encode the concept prior to unlearning. After
unlearning, the parameters satisfy PcW = 0, where P¢ denotes the orthogonal projection onto C. Let Dgr
denote the fine-tuning dataset, and let S C R? denote the subspace spanned by the per-example gradients of
the fine-tuning loss evaluated at the post-unlearning parameters W, i.e., S := span {Vy ¢(W;z) : € Dpr}.
Crucially, S is a gradient-induced subspace: it is determined jointly by the data, the loss, and the current
model state, and does not, in general, coincide with the full parameter space even under nominally full
fine-tuning.

Our central structural assumption is that these two subspaces are not orthogonal, Pz(S) # {0}. This
condition is mild and generically satisfied in high-dimensional models. Even when the fine-tuning task is
conceptually unrelated to the erased concept, the induced gradient directions will generically exhibit incidental
alignment with previously erased directions. In the linear model with a quadratic loss, this overlap condition
is sufficient to guarantee resurgence: fine-tuning generically reintroduces non-zero components of W along C.
For nonlinear models, overlap should instead be interpreted as a structural precondition that makes resurgence
possible, but not inevitable. In practice, the magnitude and observability of resurgence are mediated by
nonlinearity, curvature, and gradient redistribution effects, as reflected in the differing behaviors observed
under full versus constrained fine-tuning regimes (e.g., UCE-AIll versus restricted updates). While overlap
explains why resurgence can occur, it does not explain why it can become substantial. Our goal is therefore to
characterize how this weak geometric interaction can be amplified into meaningful resurgence in our simplified
linear setting. In particular, our analysis identifies two bounds that govern how erased components grow
under fine-tuning in this model

o Gradient resurgence bound. This bound identifies when fine-tuning gradients reappear in the forgotten
subspace C, despite prior unlearning. It shows that nonzero gradient mass arises in C whenever there is
residual alignment between the fine-tuning subspace S and C. Formally:

||PC (VW‘Ct)”F > 2V 1- CC Y 7(53(/’%

where (S, C) = Apin(Ps Pe Ps) measures the worst-case leakage from S into C. This overlap ensures that
even when concepts in C have been suppressed, fine-tuning gradients computed from noise-perturbed data
can reintroduce them if they are not fully orthogonal to the directions encoded in the new task. Notably,
this bound is most active at early diffusion timesteps, where 1 — a4 is large and thus amplifies the residual
error when there is any amount of overlap.

o Curvature-limited sensitivity. This bound captures the model’s geometric sensitivity to reactivation. Even
if gradient mass in C is small, the induced update can be large if the curvature in those directions is low.
Formally, for any update AW supported in C, we have:

2V1—oy - /7(S,0)
Olt>\c —+ (1 — O[t) ’

max
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where AS . = Amax(PeXPe) is the maximum variance in the forgotten subspace. This bound reveals
a key amplification mechanism: low-variance directions are highly sensitive to reactivation, since small

gradients can produce large updates when curvature is shallow.

Proposition 5.1 (Linear diffusion model resurgence). Assume a linear diffusion model with residual of the
form
ew (zg,t) :=Waxy —e

for some matriz W € R where ¢ ~ N(0,1) is independent Gaussian noise. Let C C R be a subspace,
and let Dt be a fine-tuning dataset whose induced gradient directions span a subspace S. Let Pp = UCUJ
and Ps = UsUZJ denote the orthogonal projection matrices onto C and S, respectively. Define the leakage

7(870) = Amin(PSPCPS)
Let xg ~ Dpr have covariance 3, and define the forward-corrupted input as

Ty = Jouxo + V1 — age  so that Xy := E[xta:;r] =X+ (1 —ay)l.
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Let AS . 2 Amax(PeXPe) and suppose PeS # 0. Then if the prior unlearning was successful, i.e. PeW =0,

we obtain bounds characterizing resurgence:

1. Gradient resurgence: The fine-tuning gradient projected into C satisfies:

1Fe (VwLi)llp = 2V1 = ai - v/7(S,0).

2. Curvature-limited sensitivity: The update AW € R¥*¢

subspace C satisfies:
2\/ 1-— Qg+ A/ ’Y(S,C)
Oét>\c + (1 — Oét) '

max

in the weight matrixz supported in the forgotten

[PeAW||p >

We provide a proof of the gradient resurgence bound in Appendix [G] and a proof of the curvature-limited
sensitivity bound in Appendix [H The basic idea behind the gradient bound is to observe that the norm of
the fine-tuning gradient projected onto the erased subspace C is lower bounded by the Frobenius norm of the
matrix A = E[ew (x4, t)x] ] restricted to C, multiplied by the overlap term v(S,C). When exact unlearning
has occurred, i.e., when PcW = 0, this expression simplifies to a term proportional to 1 — a4, reflecting the
contribution of noise-perturbed inputs in the diffusion process. The corresponding bound on the induced
parameter update exploits the fact that, in this linear setting, the loss is quadratic in W, allowing the update
magnitude to be controlled by the inverse curvature along C.

Taken together, these bounds clarify the structural and dynamical factors that govern concept resurgence
after unlearning. First, the gradient resurgence bound characterizes when fine-tuning gradients reappear
in the erased subspace C. The bound depends explicitly on the overlap between C and the fine-tuning
gradient subspace S, as quantified by the leakage term ~(S,C), and scales with /1 — ay, capturing the
increased influence of noise-perturbed inputs at early diffusion timesteps. In the idealized setting where
PeW = 0, this term isolates resurgence driven purely by residual alignment between the new task gradients
and previously erased directions. When unlearning is imperfect and signal remains in W, an additional
contribution proportional to PcW3 appears, which can dominate at later timesteps and further amplify
resurgence. Second, the curvature-limited sensitivity bound governs how strongly the model responds to
gradient mass in C. Even when the projected gradient is small, the induced parameter update can be large if
the loss curvature in those directions is shallow. This amplification is most pronounced when C aligns with
low-variance directions in the data, corresponding to small A, and when «; is large but not too close to
one, so that noise has diminished while curvature remains anisotropic. In contrast, at early timesteps where
oy < 1, the effective curvature is nearly isotropic, suppressing updates and making reactivation less likely.

This analysis also provides intuition for the empirical behavior observed under different fine-tuning strategies.
Restricting fine-tuning to a small subset of parameters concentrates gradient energy into fewer directions,
increasing effective overlap with erased subspaces and exposing low-curvature directions that amplify reacti-
vation. In contrast, broader or full fine-tuning allows gradients to redistribute across the parameter space and
enables the model to adjust curvature more globally, reducing both gradient leakage into C and its subsequent
amplification. This perspective explains why, despite the generic presence of overlap between C and S, full
fine-tuning can empirically mitigate resurgence, as observed in Figure[16] and in the ESD parameter search.

6 Discussion and Limitations

Our investigation opens several important directions for future work. First, our theoretical analysis is
restricted to the linear setting, and it remains an open question whether similar characterizations of concept
resurgence extend to nonlinear models. Exploring such extensions could inform new strategies for mitigating
resurgence and improving the robustness of unlearning procedures. Second, our empirical evaluation is limited
to standard academic benchmarks and synthetic settings. Further research is needed to assess the practical
relevance of concept resurgence in real-world deployments, particularly in scenarios involving long-horizon or
compositional fine-tuning, where interleaved updates may amplify vulnerabilities.

Concept resurgence also raises important questions about responsibility for downstream harms. Despite
a developer’s best efforts to sanitize a model using these techniques, a downstream user who fine-tunes a
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published model might be surprised to discover that guardrails put in place by the developer no longer exist.
This creates a dilemma: is the developer obligated to permanently and irrevocably erase problematic concepts,
or does responsibility shift to the downstream if they (inadvertently) reintroduce them? Despite these
challenges, concept unlearning remains a valuable tool for model developers. By identifying its vulnerabilities,
our work aims to drive the development of erasure techniques that remain robust throughout a model’s
life-cycle or develop tools that can help developers anticipate when concept resurgence is likely to happen.
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