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Abstract

The presence of annotated datasets is crucial to the performance of modern machine learn-
ing algorithms. However, obtaining richly annotated datasets is not always possible, es-
pecially for novel or rare diseases. This becomes especially challenging in the realm of
multi-label classification of chest radiographs, due to the presence of numerous unknown
disease types and the limited information inherent to x-ray images. Ideally, we would like
to develop models that can reliably label such unseen patterns (classes). In this work,
we present a knowledge graph-based approach to predict such novel, unseen classes. Our
method directly injects the semantic relationships between seen and unseen disease classes.
Specifically, we propose a principled approach to parsing and processing a knowledge graph
conditioned on the given task. We show that our method matches the labeling perfor-
mance of the state-of-the-art while outperforming it on unseen classes by a substantial
2% gain on chest X-ray classification. Crucially, we demonstrate that embedding disease-
specific knowledge as a graph provides inherent explainability. (The code is available at
https://github.com/chinmay5/ml-cxr-gzsl-kg)
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1. Introduction

In recent years, deep learning-based computer-aided diagnostic systems have achieved expert-
level performance in some challenging tasks (Rajpurkar et al., 2017; Esteva et al., 2017;
De Fauw et al., 2018). However, existing methods typically rely on large-scale fully anno-
tated datasets, are often single-modal and are limited to the concepts visible during training.
Such limitations magnify in the scenario of novel and rare diseases. This is especially the
case in multi-label x-ray image classification tasks where multiple diagnoses (labels) per
image exist. It is infeasible to collect sufficient paired image and annotation for every
possible combination of disease types during training. Consequently, existing systems are
limited by the expressivity of their training annotations and are unable to predict unseen
diseases. However, holistic predictions are essential to facilitate optimal clinical treatment.
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Therefore clinicians usually integrate diverse information (e.g., literature, prior experience,
symptomatic correlations, etc.) to recognize novel unseen diseases.

Generalized zero-shot learning aims to address this issue of annotation scarcity. The
models are trained to classify certain diseases (i.e., seen classes). During inference, they
are expected to also classify unobserved diseases. In other words, the models are expected
to perform well at classifying new diseases while retaining their performance on the ones
already encountered during the training. One critical step in building models that can work
well on both seen and unseen classes, is to incorporate ’clinical knowledge’ to establish a
relation between the seen and unseen diseases.

Existing methods employ natural language models e.g. Word2Vec (Goldberg and Levy,
2014; Zhang et al., 2019), BERT (Devlin et al., 2018), or the domain-specific BioBERT
(Alsentzer et al., 2019) to bridge this information gap. However, such word embedding
models are trained using a word co-occurrence objective and do not always explicitly en-
code knowledge in a clinical setting (Schick and Schütze, 2020). As an alternative, we
propose to exploit a more explicit knowledge representation in the form of various knowl-
edge graphs of medical ontologies. Such knowledge graphs consist of millions of medical
entities (e.g., diseases, anatomical locations, medicines etc.) and the relationships between
them. However, expressive knowledge graphs in medical domain often constitute an ultra
large database and lack efficient ways of parsing and processing. The size of such knowledge
graphs grow exponentially with the amount of ontological granularity they hold, e.g. the
Unified Medical Language System (UMLS ) (Bodenreider, 2004). Thus, their efficient usage
becomes challenging in practice. Our work aims to efficiently incorporate such medical KG
as a source of rich semantic knowledge.

In this work, we attempt to classify multi-label chest x-rays in a generalized zero shot
learning setting. We build a large knowledge graph from UMLS to bridge the semantic
information gap. Specifically, our contributions are three-folds:

1. We are the first to propose the usage of UMLS as a source of semantic information
in the GZSL setup. We utilize the parsed knowledge from the UMLS for multi-label
disease classification in chest x-rays. We improve upon state-of-the-art methods by a
substantial 2% gain.

2. We validate our approach to two chest x-ray datasets with non-identical disease labels,
thus confirming the generalizability of our proposed method.

3. Since incorporating semantic knowledge as a graph offers inherent explainability, we
explore to use the GNNExplainer (Ying et al., 2019) to draw medical intuitions.

2. Related Work

Generalized zero-shot learning with knowledge graphs. In the natural image do-
main, knowledge graphs can effectively bridge the semantic gap between seen and unseen
classes (Wang et al., 2018; Zhao et al., 2017; Xian et al., 2017; Li et al., 2020). The graphs
are constructed with nodes representing individual classes and edges indicating a semantic
relation between these classes. In the medical domain, Chen et al. (2020a) proposed to
use label co-occurrences that appeared in the training set to generate a knowledge graph.
However, this approach is not applicable in the generalized zero shot learning setting since
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the unseen co-occurrences are not a part of the graph. Instead, we turn to knowledge
graphs (KG). They are semantically rich and contain relationships between a vast range of
medical concepts. Thus, we use KG to construct semantically rich graphs and extend its
applicability to different diagnosis tasks.

Generalized zero-shot learning for multi-label tasks. In the multi-label setting,
the generalized zero shot learning aims to classify a given image associated with multiple
labels, a setup relatively unexplored in chest radiographs. Paul et al. (2021) propose a trait-
guided multi-view semantic embedding strategy but assumes the availability of radiology
reports along with the radiographs. Hayat et al. (2021) propose to create an end-to-end
network that jointly learns visual representations from radiographs and aligns them to the
semantic features by using BioBERT embeddings (Alsentzer et al., 2019). The method
aligns the visual features with their semantic label embeddings. In contrast, we show that
the relational clinical information from KG can be a better embedding than using only
BioBERT.

Figure 1: The proposed training pipeline. First, the vision backbone is trained with samples of the seen
classes. This generates Visual Classifier Weights Wϕ for each of the target labels. In the second
step, the Graph Processing Module (GPM ) is trained using a normalized L2 regression loss (Eq.
2) between the Visual Classifier Weights and weights learned by final layer of GPM (referred
to as GPM Weights WG) using only the seen class’ weights. In the final step, the GPM weights
WG replace the classification head of the Image processing module. We fix these GPM weights
and fine tune the image processing module.

3. Method

Overview. Consider a multi-label set Y consisting of a total of C classes. Of these C
classes, only S are seen during training, and U classes are unseen. Let YS and YU denote
the label sets for the seen and unseen classes, respectively. Thus, YC = YS ∪ YU , where
YS = {y1, y2, ..., yS} and YU = {yS+1, yS+2, ..., yC}. Note that YS ∩ YU = ∅ i.e. training
images contain only seen labels. The label vector yi ∈ {0, 1}S indicates the presence of every
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seen class. During training, images containing only the seen labels YS are given. During
inference, given an image xtest, the model is supposed to correctly predict the labels from
both seen and/or unseen classes.

Figure 2: Parse logic of UMLS for a 1-hop neighbourhood. The target labels (in green) act as seed points.
In the first step, a target label is chosen at random, and its directly connected relations are
extracted from the UMLS. This might produce entities not part of the target labels (in red).
Next, the same process is repeated for the remaining target labels. In the final step, we prune
the resulting graph by retaining the nodes and edges that are part of All Pair Shortest Path
with respect to the target nodes.

Proposed architecture. Our proposed solution consists of two main components, a
Graph processing module (GPM ) and an image processing module. TheGPM is responsible
for processing the knowledge graph (KG) and generating node features for the disease labels.
The GPM is realized using a series of graph convolution layers (Brody et al., 2021). The
image processing module is responsible for processing the input chest radiographs and is a
DenseNet-121 backbone (Huang et al., 2018).

We train the model in two distinct steps (Figure 1). In the first step, the image process-
ing module is trained using instances of seen classes. After training, the classifier weights for
seen classes have semantic knowledge. However, the weights for unseen classes are random.
We want to align the seen class weights with their GPM weight counterpart. The GPM
weights contain semantic knowledge about the seen classes as well as the unseen classes.
The unseen class weight of GPM are semantically richer compared to the random weights
from our image processing module.

In the second step, we train the GPM. The supervision for training the GPM comes
from weights of seen labels from step-1. The seen class weights have a high semantic
knowledge obtained by processing the images. These can be used to enrich the features
for corresponding labels in the GPM. Please note that supervision is provided for only
the seen labels but owing to the nature of graph convolution layers (Kipf and Welling,
2016), the unseen class features are simultaneously enriched. Once converged, the enriched
GPM weights replace the classifier weights in the image processing module. This weight
replacement ensures a transfer of rich semantic knowledge for the unseen classes. Finally,
we fix the classifier weights (which are the GPM weights we copied), and fine-tune the
image processing module layers. This ensures that the classifier weights are semantically
meaningful to the visual features from the vision backbone.

Image processing module. We use DenseNet121 (Huang et al., 2018) with a fully-
connected layer with 1024-dimension. The weights learned by this fully connected layer
Wϕ ∈ R1024×C , are considered to be the image representation of a radiograph. Since the
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k=2 k=3 AUROC
Method p@k r@k f1@k p@k r@k f1@k S U HM

NIH Chest X-ray
CNN 0.28 0.34 0.30 0.23 0.43 0.29 0.80 0.52 0.63
CXR-ML-GZSL 0.33 0.36 0.32 0.28 0.47 0.34 0.79 0.66 0.72
Ours 0.38 0.33 0.35 0.31 0.43 0.36 0.79 ±0.001 0.68 ± 0.002 0.73 ± 0.001

Indiana University Chest X-ray
CNN 0.23 0.25 0.24 0.27 0.34 0.30 0.70 0.68 0.69
CXR-ML-GZSL 0.33 0.26 0.29 0.27 0.35 0.31 0.68 0.79 0.73
Ours 0.28 0.28 0.28 0.28 0.36 0.32 0.68 ±0.001 0.80 ±0.002 0.74 ±0.001

Table 1: Performance Evaluation on the NIH Chest X-ray and Indiana University Chest X-ray dataset. We
report the results using Precision@k, Recall@k , F1@k for k ∈ {2, 3}. We also report AUROC for
seen (S) & unseen (U) classes and the Harmonic Mean (HM). CXR-ML-GZSL refers to (Hayat
et al., 2021) and CNN is DenseNet121 trained on only the seen classes. We report the mean and
standard deviation value across five runs of the model. Please refer to the appendix for more
details.

model sees instances of only the seen classes, the representation is meaningful only for
them (seen classes). The weights are random for the unseen classes. Thus, developing the
capacity to handle unseen diseases can then be expressed as predicting a new set of weights
for each of the unseen classes.

While training the image processing module, a weighted multi-label classification loss
Lcls(Eq. 1) is used to account for the potential data-imbalance (Chen et al., 2020a). The
weights are adjusted to account for a surplus of positive or negative samples in a mini-batch.

Lcls = −ωp

∑
li=1

log(σ(ŷi))− ωn

∑
li=0

log(1− σ(ŷi)) (1)

ŷi is the model logit, li is the corresponding label, |P | and |N | are the total number of

positive and negative samples per mini-batch. Thus, ωp = |P |+|N |+1
|P |+1 and ωn = |P |+|N |+1

|N |+1
are the balancing factors to handle data imbalance.

Graph construction. We use the Unified Medical Language System (UMLS ) (Boden-
reider, 2004) as the KG of our choice to obtain semantic clinical information. Since, the
KG is huge, containing millions of entries, often not directly related to the task at hand, a
naive parsing of the entire KG is neither feasible nor beneficial. Thus, we parse only for a
subset of relations based on prior medical knowledge. These relations include: inverse isa,
finding site of, part of, is associated anatomic site of and has member.

Note that we none of the relationships explicitly encode the co-occurrences between
these diseases. Explicitly introducing such co-occurrences as inductive bias will lead to
data leakage, affecting the generalized zero shot learning paradigm. However, it may be
beneficial for the model to recognize that some diseases often occur together. However, if
such relationships are learnt, it is completely data driven and utilizes the semantic knowledge
from the graph as well as the image information.

Figure 2 summarizes the three steps to parse this subgraph. First, we extract the enti-
ties (nodes) corresponding to the set of target classes (i.e. both seen and unseen diseases).
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Starting from each of these entities, we extract its 5-hop neighbourhood, resulting in a first
noisy subgraph. (Please refer to the appendix for details about parsing a k-hop neigh-
bourhood). This subgraph is then trimmed using all-pair-shortest path between the seen
and unseen labels. After the trimming operation, seen nodes, unseen nodes, and nodes
on the shortest path between them remain. All these nodes are initialized with BioBERT
embeddings creating the graph G (Alsentzer et al., 2019).

Graph processing module (GPM). The GPM aims to enrich features of the parsed
subgraph G. The GPM is realized using a series of graph convolution layers (Brody et al.,
2021). Assume wj

G denotes the BioBert representation of the jth node in the parsed graph.
This representation is enriched using a series of GATv2 layers (Brody et al., 2021) in the
following layout:

wj
G → GATv2 → ReLU → GATv2 → ReLU → GATv2 → ŵj

G ∈ R1024

We concatenate the enriched representations corresponding to the C classes in our dataset,
resulting in WG ∈ R1024×C . These disease representations based on the graph are referred
to as the GPM weights. Next, we align the weights of the seen classes between the GPM
and the image processing module, i.e.

Lreg =
∑

j∈seen
||W j

ϕ −W j
G||

2 (2)

where W j
ϕ is the corresponding representation of the jth disease from the image process-

ing module. The loss is computed only for the seen classes.

The final step involves copying over the GPM weights WG to the image processing
module. With the updated weights, the image processing module has knowledge about both
seen and unseen classes. Please note that the GPM module is not used during inference.
Only the image processing module is required to classify the unseen test samples.

4. Experiment

Dataset We evaluate our method on two public chest X-ray datasets: a) The NIH Chest
X-ray dataset (Wang et al., 2017), and b) The Indiana Univ Chest X-ray dataset (Shin
et al., 2016). Radiographs with multi-label annotations are provided for both datasets.

NIH Chest X-ray. 112,120 frontal X-ray images are split into training (70%), validation
(10%) and test sets (20%). Each image is associated with 14 class labels. We use Atelectasis,
Effusion, Infiltration, Mass, Nodule, Pneumothorax, Consolidation, Cardiomegaly, Pleural
Thickening, and Hernia as the seen classes while Edema, Pneumonia, Emphysema, and
Fibrosis are the unseen classes, resulting in 30,758 training images, 4,474 validation images
and 10,510 test images, same as (Hayat et al., 2021).

Indiana University Chest X-ray. We used a similar setup as the NIH dataset. We split
the frontal X-ray images into training (70%), validation (10%) and test sets (20%). Each im-
age is associated with 17 class labels. We use Cardiomegaly, Scoliosis, Effusion, Thickening,
Pneumothorax,Hernia, Calcinosis, Atelectasis, Cicatrix, Opacity, Lesion,Airspace disease,
and Hypoinflation as the seen classes while Edema, Pneumonia, Emphysema, Fibrosis are
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the unseen classes, resulting in 1014, 145, and 408 for training, validation, and test sets
respectively.

Evaluation metrics. We report overall precision, recall, and f1 scores for the top k
predictions (where k ∈ 2, 3) and the average area under the receiving operating characteristic
curve (AUROC) for seen and unseen classes and their harmonic mean.

4.1. Comparison with state-of-the-art

We summarize the results in comparison with existing methods in Table 1. Our model
performs better than the baseline for unseen classes while performing comparably on the
seen classes. Since our proposed solution relies on a universal knowledge graph (UMLS )
and is not tightly coupled to the dataset we operate on, the extension of our method to
different datasets with different numbers of target labels is almost trivial. Verifying this,
we evaluate the baseline and our proposed method on the Indiana University Chest X-ray
dataset. Note that another UMLS sub-graph has to be created as the label set changes. The
remaining modules, however, remain unchanged. Observe the improvement over baseline
performance, showcasing our methodś extensibility with minimal changes.

Figure 3: Plots of AUROC values vs.
the number of GATv2 lay-
ers in the Graph Processing
Module (GPM). The Har-
monic Mean (HM) of AU-
ROC for seen & unseen
classes tends to increase first
reaching a maximum value of
0.73 for three GATv2 layers
and then decreases.

AUROC
Method S U HM

CNN 0.80 0.52 0.63
BERT 0.78 0.60 0.68
Random Graph -ER + BERT 0.77 0.58 0.66
Random Graph -SBM + BERT 0.78 0.57 0.66
Random Graph -PAM + BERT 0.77 0.51 0.61
UMLS + Word2Vec 0.78 0.61 0.69
UMLS + BERT 0.79 0.68 0.73

Table 2: Ablation study. The CNN model is trained only
based on the seen classes. BERT model used
BioBERT embeddings for the nodes but assumes no
graph structure. Random Graph + BERT +
* uses a graph created from random graph genera-
tion algorithms and uses BioBERT embeddings for
its nodes. UMLS + Word2Vec uses GUMLS but
initializes the node embeddings using Bio-Word2Vec.
UMLS + BERT uses the GUMLS (UMLS parsing
+ BioBERT node embeddings).

4.2. Ablation Study

To hightlight our contributions and evaluate different components, we run the ablation
experiment on the NIH Chest X-ray dataset. Please refer to supplementary for detail
discussions about the CNN baseline method.
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BioBERT embeddings vs. knowledge graph. It is known that BioBERT embed-
dings are semantically rich in text representation. However, they might not sufficiently
capture clinical relation information in the GZSL setting. We ran an experiment using
the BioBERT embeddings but without the graph structure. The nodes are initialized with
BioBERT embeddings and passed through several fully connected layers, processing nodes
independently without any inter-node interaction. The semantic richness ensures decent
performance on the unseen classes (AUROC 0.60), obtaining a HM of 0.68 overall. How-
ever, the performance is still considerably worse than our proposed graph for unseen classes
(0.60 vs. 0.68), indicating that the BioBERT embeddings are insufficient to bridge the
semantic gap.

Learned graph vs. random graph. To analyze the importance of graph structure, we
replace the UMLS graph with different random graphs (Stochastic Block Model, Planted
Partition Model and Erdos Renyi random graph model (Newman et al., 2002)). As can
be seen in Table 2, all random graph models perform worse than the BioBERT embedding
model. We attribute this to an incoherent graph structure in random graphs, leading to a
negative knowledge transfer between the nodes. The decrease in performance is especially
steep in the case of unseen classes. This is expected since the learned graph structure
passes essential semantic knowledge to classify unseen diseases and it indicates that the
graph structure is critical for the overall performance.

The importance of node embeddings. To evaluate the importance of node embed-
dings, we initialize the GUMLS nodes using BioWord2Vec embeddings (Zhang et al., 2019),
instead of BioBERT embeddings. On average, the model performs better than the indepen-
dently processed BioBERT embeddings. Still, the performance is much worse compared to
the proposed solution (0.68 vs. 0.61 for unseen classes). These experiments corroborate the
importance of graph structure and strong feature representation for the node embeddings.
Hence, the proposed solution uses UMLS graph structure and BioBERT embeddings.

The effect of the depth of GAT layers. The GPMmodule uses GATv2 convolutions to
process node embeddings. We experimented with a different number of convolution layers,
and results are shown in Figure 3. As we can observe, the AUROC value is maximum
when using three GATv2 layers with an HM of 0.73. From Table 4 in the supplementary,
we can see that the maximum distance between any two target nodes is four. Hence, with
3 layers, neighbourhood aggregation covers the entire graph and additional layers lead to
performance degradation possibly due to the over-smoothing effect (Chen et al., 2020b).

4.3. Model interpretability

We use the GNNExplainer (Ying et al., 2019) to get more insights about predictions made
by the model. It would produce a subgraph GS by pruning some of the nodes of the
original graph. Nodes important for downstream task are retained while extraneous nodes
are pruned away. Figure 4 shows the result for the node lung mass. We observe that graph
connections are not discarded completely. This shows that individual node features, by
themselves, are insufficient for the downstream prediction. Furthermore, while predicting
lung mass, more importance is given to nodes representing lung morphology and lung disease
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Figure 4: Output from the GNNExplainer. Nodes colored in green are the target seen and unseen labels
for the NIH Chest X-ray dataset, while the nodes in red represent the extra labels obtained by
parsing the UMLS. The graph structure is not discarded completely after pruning. This shows
that the individual node features, by themselves, are insufficient for the downstream task.

while nodes such as Accidents and Injuries (SMQ) are pruned away. (Please refer to the
appendix for more details as well as GradCam (Selvaraju et al., 2017) visualization)

5. Conclusion

We propose a novel solution for parsing, storing and processing medical knowledge graphs
(e.g. UMLS ) to improve generalized zero shot learning. We also show that our method
can be easily extended to multiple datasets with minimal effort. We find that knowledge
graphs provide a very rich source of semantic information that can be used for diseases not
seen during training. A limitation of this work is that we have only used the structural
information from the KG and considered it as a homogeneous graph. As such, we do not
differentiate if two medical concepts are related in distinct ways (e.g. finding-site-of vs. part
of etc). In future work, we aim to treat the KG as heterogeneous (i.e., treating different
relations independently), thereby further enriching the semantic knowledge transfer as well
as to check for different combinations of the seen and unseen disease pairs.
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Appendix A. Model Interpretability

Grad-CAM Figure 5 shows some of the visualizations obtained using Grad-CAM on
samples containing unseen classes in the test set. As we can see, our model focuses on
radiograph regions most likely responsible for the diseases.
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Disease Nearest Neighbour (BioBERT) Nearest Neighbour (GPM)

Atelectasis Lung Problem Pneumonia
Cardiomegaly Chest problem Diaphragmatic Hernia
Pleural effusion Pleural Diseases Thickening of pleura
Pulmonary Infiltrate Lower respiratory tract structure Pneumonia
Lung mass Lung diseases Abnormal pleura morphology
Nodule of lung Lesion of lung Thickening of pleura
Pneumonia Lung Problem Pulmonary Edema
Pneumothorax Pulmonary Emphysema Pulmonary Emphysema
Lung consolidation Lung diseases Interstitial lung disease (SMQ)
Pulmonary Edema Lung Problem Pneumonia
Pulmonary Emphysema Pulmonary Fibrosis Diaphragmatic Hernia
Pulmonary Fibrosis Pulmonary Emphysema Diaphragmatic Hernia
Thickening of pleura Disorder of pleura and pleural cavity Pulmonary Edema
Diaphragmatic Hernia Respiratory Diaphragm Pulmonary Emphysema

Table 3: Comparing the 1-nearest neighbours in the embedding space for BioBERT vs.
GPM feature space embeddings. While BioBERT ’s embedding space is valid
but generic, the GPM feature space is aligned to learn the relationship between
different diseases based on the UMLS structure.

Feature Space Lookup Nearest Neighbour lookup in the feature space is an efficient
way to decipher the predictions made by a Deep Learning model. In Table 3 we explore the
feature space of original BioBERT embeddings and the embeddings produced by GPM. We
use an L2 distance-based 1-Nearest Neighbour (NN ) lookup. The BioBERT feature space
has a lot of semantic information, but it does inherently know the relationship between
different diseases. For instance, in its embedding space, NN of Pleural Effusion is Pleural
disease. Although this is valid but the information does not include relations between
these diseases. The GPM, on the other hand, brings Thickening of Pleura closer to Pleural
Effusion in the embedding space, thereby explicitly learning a relationship between the two.
This demonstrates that a feature space with rich semantic features and efficacious encoding
between diseases is learned by our model.

GNNExplainer Since a graph provides inherent explainability, we determine what nodes
and edges in the graph are considered relevant for predictions using theGNNExplainer (Ying
et al., 2019) framework. The GNNExplainer would produce a subgraph GS by pruning some
of the nodes of the original graph. XF

S are the node features of the resulting subgraph. We
compute the mean square error between the original GPM node features xjd and the re-
sulting subgraph node features x̃S

jd (referred to as the feature regression loss). We define
H(Y |G = GS , X = XF

S ) as the entropy of the subgraph. It encodes how much information
is ”lost” by removing the nodes (& their associated features) from the original graph. We
aim to find such nodes that can be removed with minimal change in the expressivity of the
model. Conversely, these nodes play a minimal role in the model decision and hence, for
understanding the model behavior, we should not focus on them (Ying et al., 2019). Remov-
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Structured Knowledge Graphs for Classifying Unseen Patterns in Radiographs
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Figure 5: Saliency map visualization for the unseen classes. Each row contains one of the
unseen diseases and the Grad-CAM output of the three models. We have included
the original input image in the first column for reference.The model focuses on
regions that are relevant for diagnosis of the individual diseases.

ing such nodes would lead to minimal changes to the entropy & the feature regression loss.
Thus, to select only the consequential nodes in the graph, we optimize

Lexp = λ · 1

D

∑
j

∑
D

(xjd − x̃S
jd)2 +H(Y |G = GS , X = XF

S ) (3)

We empirically set λ to 103 to ensure that all loss terms are approximately of the
same scale. Figure 4 visualizes some nodes in the UMLS graph. We observe that graph
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Figure 6: (Best viewed in zoom) A visualization of the parsed graph. The nodes colored in
green are the target labels for the NIH Chest X-ray dataset, while those colored
in red are the extra labels obtained by parsing the UMLS.

connections are not discarded completely. This shows that individual node features, by
themselves, are insufficient for the downstream prediction. Furthermore, while predicting
lung mass, more importance is given to nodes representing lung morphology and lung disease
while nodes such as Accidents and Injuries (SMQ) are pruned away.

A.1. Shortest Distance between the nodes

Table 4 summarizes the pair-wise distance between all the target labels for the NIH Chest
X-ray dataset. As we can see, there are no self-loops in the graph and the maximum
distance between two target labels is 4. Hence, the GPM should produce the best result
for 3 conv layers. We observe the same in Figure 3.

Appendix B. Implementation Details

The training of our model happens in three steps. In the first step, the vision backbone is
trained for 40 epochs. Next we train the GPM for for 1000 iterations. Finally, we finetune
the model on each dataset in a supervised manner. The experiments are conducted using
the PyTorch Geometric on a NVIDIA GeForce RTX 3090 machine.
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Structured Knowledge Graphs for Classifying Unseen Patterns in Radiographs

Node Node

A C PED PI LM N Pn LC Pt PEdm PEpy PF T D

A 0 2 2 2 2 2 2 2 2 2 2 2 2 2
C 2 0 3 4 3 4 2 3 2 2 2 2 3 3
PED 2 3 0 2 2 2 2 2 2 2 2 2 2 2
PI 2 4 2 0 2 2 2 2 3 2 2 2 2 4
LM 2 3 3 2 0 1 2 2 2 2 2 2 3 2
N 2 4 2 2 1 0 2 2 3 2 2 2 2 3
Pn 2 2 2 2 2 2 0 1 2 2 2 2 2 3
LC 2 3 2 2 2 2 1 0 3 2 2 2 2 4
Pt 2 2 2 3 2 3 2 3 0 2 2 2 2 2
PEdm 2 2 2 2 2 2 2 2 2 0 2 2 2 3
PEpy 2 2 2 2 2 2 2 2 2 2 0 2 2 3
PF 2 2 2 2 2 2 2 2 2 2 2 0 2 2
T 2 3 2 2 3 2 2 2 2 2 2 2 0 2
D 2 3 2 4 2 3 3 4 2 3 3 2 2 0

Table 4: All pair shortest path between the target label nodes for NIH Chest X-ray dataset.
A represents Atelectasis, C represents Cardiomegaly, PED represents Pleural Ef-
fusion Disorder, PI represents Pulmonary Infiltrate, LM represents Lung Mass, N
represents Nodule of lung, Pn represents Pneumonia, LC represents Lung Con-
solidation, Pt represents Pneumothorax, PEdm represents Pulmonary Edema,
PEpy represents Pulmonary Emphysema, PF represents Pulmonary Fibrosis, T
represents Thickening of pleura, D represents Diaphragmatic Hernia. As we can
see, the maximum distance between the target label nodes is 4 and thus, using 4
convolution layers would lead to an oversmoothing effect for the label-set nodes.

Random Graph Generation. In the table we report results for the Erdos-Renyi model
generated using edge-probability value of 0.2. For the Stochastic Block model, we use
a block-size of 1

num classes and an edge-probability of 0.2. (While we report results for
probability value of 0.2, the experiments were repeated for values ranging from 0.1 to 0.5.
Best results were obtained when we set the value to 0.2 though). For the Planted Partition
Model we use the Barabasi- Albert-Graph generation (Barabási and Albert, 1999). In all
the cases, the number of nodes is the same as G. We repeated the graph generation process
10 times with different seed values.

Appendix C. Results

Class-wise AUROC comparison Table 5 shows the per-class AUROC value for the
test-set. As we can see, our method tends to perform better for the unseen classes and is
quite close to the baseline for the samples from seen classes.
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CNN 0.77 0.91 0.83 0.71 0.80 0.77 0.84 0.72 0.74 0.96 0.51 0.51 0.45 0.60
CXR-ML-ZSL 0.76 0.90 0.83 0.70 0.80 0.75 0.83 0.69 0.72 0.90 0.62 0.67 0.74 0.60
Ours 0.79 0.90 0.83 0.71 0.82 0.79 0.85 0.73 0.67 0.81 0.66 0.70 0.80 0.58

Table 5: The Class-wise AUROC comparison across all disease classes in the test set. As
we can see, our method tends to obtain the best results for the unseen classes
(marked in bold) while being comparable to the seen classes.

Appendix D. Graph Construction Process

The knowledge graph is constructed by parsing the Unified Medical Language System
(UMLS) (Bodenreider, 2004). We parse the MRREL.RRF file in order to obtain the dif-
ferent relations between entities. The empty entries are filtered. We also remove entries
of the relation type DEL, XR, RL which denote deleted relations, no-mapping relations
and self-relations. All remaining entries are viable candidate relations. Let us denote these
filtered relationships as Rfiltered

In the next step, we start with the seed labels. These seed labels are the target diseases,
specific to the dataset. We look up these labels in the Rfiltered. We limit the lookup
to only five relation-types, namely inverse is a, finding site of, part of, has member and
is associated anatomic site of.

The entities obtained from the lookup forms the one-hop neighbourhood of our seed
labels. We use the idea of depth first search in order to obtain the k-hop neighbourhood.
We implement depth first search using its recursive formulation (Cormen et al., 2009).
Specifically, we keep track of the concepts visited in the current lookup and use them as
seeds for the next round of lookup. We repeat the process k times.

Finally, we filter away duplicate relationships. We also remove relationships that contain
descriptions in language other than English. Noisy entries such as those containing only
white spaces are removed using a python based regex matcher. Finally, all the remaining
entries form our graph structure.

We initialize the concepts with their BioBERT embeddings. While using BioWord2Vec
model in our ablations, we used UNK token embeddings for the words that did not have a
vocabulary mapping. This forms our graph G. However, the graph is huge and difficult to
process. Hence, we use the all-pair shortest path formulation to further trim the graph.
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