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ABSTRACT

At the heart of time-series forecasting (TSF) lies a fundamental challenge: how
can models efficiently and effectively capture long-range temporal dependencies
across ever-growing sequences? While deep learning has brought notable progress,
conventional architectures often face a trade-off between computational complexity
and their ability to retain accumulative information over extended horizons.

Echo State Networks (ESNs), a class of reservoir computing models, have recently
regained attention for their exceptional efficiency, offering constant memory usage
and per-step training complexity regardless of input length. This makes them
particularly attractive for modeling extremely long-term event history in TSF.
However, traditional ESNs fall short of state-of-the-art performance due to their
limited nonlinear capacity, which constrains both their expressiveness and stability.

We introduce ECHO FLOW NETWORKS (EFNS), a framework composed of a
group of extended Echo State Networks (X-ESNs) with MLP readouts, enhanced
by our novel Matrix-Gated Composite Random Activation (MCRA), which en-
ables complex, neuron-specific temporal dynamics, significantly expanding the
network’s representational capacity without compromising computational effi-
ciency. In addition, we propose a dual-stream architecture in which recent input
history dynamically selects signature reservoir features from an infinite-horizon
memory, leading to improved prediction accuracy and long-term stability.

Extensive evaluations on five benchmarks demonstrate that EFNS achieves up to
4x faster training and 3x smaller model size compared to leading methods like
PatchTST, reducing forecasting error from 43% to 35%, a 20% relative improve-
ment. One instantiation of our framework, EchoFormer, consistently achieves
new state-of-the-art performance across five benchmark datasets: ETTh, ETTm,
DMYV, Weather, and Air Quality.

1 INTRODUCTION

Time-series forecasting (TSF) is a fundamental problem at the core of scientific discovery and
decision-making, powering critical applications in climate science, finance, healthcare, and energy
systems by predicting future trends from historical data. A key challenge in TSF is modeling long-
range temporal dependencies, where the effects of past events unfold gradually. For instance, seasonal
droughts can influence wildfire risk months later, and early market signals may foreshadow shifts in
cryptocurrency prices (Chen et al.|[2023; Ma et al.| [2024).

While capturing long-range dependencies, and ideally learning from the entire history of inputs, is
essential for accurate prediction, fully leveraging such historical context remains an open challenge
due to two critical limitations. First, computational inefficiency: Transformer-based models like
PatchTST (Nie et al.,|2023)) exhibit quadratic complexity in time and memory (Vaswani et al., [2017),
making them impractical for ultra-long sequences. Even with recent efficiency improvements (Jia
et al.,[2024; |Lin et al.| 2023} |Chi, |2024), these models still rely on backpropagation through time,
resulting in high training cost and limited scalability. Second, model limitations: many models
struggle with vanishing gradients and suffer from bifurcation issues, leaving significant room for per-
formance improvement using long history (Lim & Zohren, 2021} Zhou et al.| [2021} [Nie}, [2023)). (Lim
& Zohren, [2021;[Zhou et al., 2021} [N1e}, [2023)).
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Figure 1: EFNS Framework with X-ESNs, and MCRA (W {,W3, o).

Echo State Networks (ESNs) (Jaeger, 20015 Lukosevicius & Jaeger, 2009)), as a kind of reservoir
computing, offer a promising yet underexplored alternative. ESNs are lightweight autoregressive
models with linear time and constant space complexity. Unlike attention-based models that truncate
historical inputs or RNNs that compress past information into fixed-size hidden states, ESNs update
their internal dynamics in a streaming fashion using randomly initialized, fixed weights, without
backpropagation. This design enables a constant O(1) training cost per time step and a constant
O(1) memory footprint, as well as an overall training time complexity of O (V). Furthermore, the
reservoir acts as a denoising temporal encoder that is robust to bifurcations and gradient decay (Bollt,
2021} |Vlachas et al.| 2020), making ESNs ideal for modeling long-sequence patterns.

Yet, despite their theoretical advantages, ESNs have historically underperformed on time-series
forecasting (TSF) tasks and, as a result, are not widely adopted. In this work, we identify three
core limitations contributing to this underperformance and propose solutions to overcome them.
First, ESNs suffer from limited expressiveness in both state updates and readouts. Classical
ESNs typically employ a single nonlinearity (e.g., tanh) in the state update and a linear readout
layer, restricting their ability to capture complex temporal dynamics. This limitation is especially
pronounced when the reservoir is too small or poorly aligned with task-relevant features, leading
to failures in modeling hierarchical, compositional, or multi-scale structures that are challenging to
decode linearly. Second, ESNs are highly sensitive to random initialization: since reservoir weights
are fixed and randomly assigned rather than learned, performance can vary significantly between
runs, often necessitating heuristic tuning or task-specific adjustments for stability (Rodan & Tino}
2011;|Lu et al.,[2017). Third, ESNs lack a dynamic, token-specific weighting mechanism, such
as attention, which hinders their ability to selectively focus on informative inputs, adapt to abrupt
temporal shifts, or model non-smooth and discrete patterns. Together, these limitations constrain the
ability of ESNs to achieve state-of-the-art performance.

In this paper, we propose EFNS (ECHO FLOW NETWORKS ), a novel framework that combines
the efficiency of classical Echo State Networks (ESNs) with the expressive power of modern deep
sequential models. EFNS enhances ESNs with spiking dynamics, grouped Extended ESNs (X-ESNs),
and a dual-stream fusion mechanism for expressiveness, stability, and near token dependency.

As illustrated in Figure[TI] EFNS consists of two main components integrated via masked multi-head
attention: a recent input encoder operating over the k-length short-term window, and a grouped
X-ESN that captures dynamics from the entire input history. EFNS can function as a standalone
forecasting model or be used to boost existing TSF methods in a black-box manner. Specifically, our
approach introduces four key innovations:

1. X-ESNs with MCRA for Expressiveness: Extended ESNs (X-ESNs) augment traditional Echo
State Networks (ESNs) with our proposed Matrix-Gated Composite Random Activation (MCRA).
Unlike the standard single tanh activation, MCRA employs a composition of two nonlinear
activation functions to jointly transform the current input and the previous state, enabling the
modeling of more complex temporal structures. Each activation function is randomly selected
from a predefined set (e.g., ReLU, Leaky ReLU, tanh, and Sigmoid), increasing functional
diversity within the ensemble mechanism of Group X-ESNs for improved accuracy and stability.
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Furthermore, MCRA replaces the scalar leaky integration parameter with matrix-valued gates,
allowing for more expressive and adaptable neuron-specific temporal dynamics.

The conventional ESNG, i.e., LI-ESN (Jaeger et al.,|2007)), evolves the reservoir state x; € RN as:
xt = (1 — a)x4—1 + atanh(Wishy + 0 + Wx;_1), e))

where h; € RN is the input at time ¢, Wy,, W, and 0 are the input, recurrent, and bias parameters,
respectively, and « € [0, 1] is the leaky integration rate controlling memory decay. N, and N,
are reservoir and input dimension, respectively. Weights are drawn from U[—oyy,, 0], and W is
scaled to satisfy the Echo State Property (ESP) (Tino et al.,2007) via the spectral radius condition.

We extend this formulation in X-ESNs by introducing the Matrix-Gated Composite Random
Activation (MCRA), resulting in the following update:

xy = 03 (Wixi—1 + Waoy (Wighy + 6 + Wox_1)),

where W and W, are matrix-valued gates constrained by normalization, and o1, o5 are nonlinear
activation functions randomly selected from a predefined set (e.g., tanh, ReLU, sigmoid).

The MCRA mechanism introduces four key novel elements:

* Nonlinear Activation: emphasizes that nonlinear transformations are applied both before
and after the reservoir update, increasing expressiveness;

* Matrix-Gated: leaky integration is generalized using matrix-valued gates (replacing scalar
«), allowing for more flexible and expressive dynamics;

* Composite: the activation is formed as a nested composition of two nonlinearities, enabling
deeper feature transformations;

* Randomized: the nonlinear functions o, and oy are chosen randomly, encouraging diversity
across the network ensemble.

This formulation allows for neuron-specific, nontrivial temporal dynamics and significantly
enhances the representational capacity of the reservoir. The classical ESNs are recovered as a
special case when o is the identity function and W3, Wy, reduce to scalar weights.

2. Heterogeneous Group X-ESNs for Stability: To address the sensitivity of ESNs to random
initialization, we propose Group X-ESNs: ensembles of independently initialized X-ESN units
whose outputs are aggregated to produce a stable, low-variance memory stream. Specifically,
we employ a heterogeneous group of X-ESNs, each with randomly assigned pair of activation
functions and varying dimensions, to promote diversity. This approach reduces performance
variance and improves robustness without compromising efficiency.

3. Recurrent Dual-Stream for Token Selection: We design a dual-stream architecture that combines
Group X-ESNs (for long-range, non-i.i.d. dependencies) with a short-context base TSF model
(e.g., PatchTST) trained on local, i.i.d. patterns. A cross-attention readout enables token-wise
alignment, allowing the model to selectively attend to relevant historical states. This fusion
effectively captures both persistent trends and local variations. Since the base model operates on
a fixed-length window and X-ESNs are untrained reservoirs (no backpropagation), the overall
training complexity remains linear in sequence length and constant per time step, with only the
MLP readout layer and the cross-attention combiner trained via backpropagation.

4. Standalone or Model Booster: EFNS is a modular framework designed to perform time-series
forecasting (TSF) either as a standalone model or as an enhancement for any baseline model,
regardless of its architecture. We instantiate and evaluate multiple variants: EchoSolo (a standalone
X-ESNs without any base model), EchoFormer (X-ESNs combined with PatchTST), EchoMLP
(X-ESNs paired with an MLP), X-ESNs (X-ESNs integrated with TPGN), and EchoLinear
(X-ESNs alongside DLinear). This flexibility enables the framework to adapt across diverse
modeling paradigms and datasets, consistently delivering improved performance.

Results. EFNS achieves state-of-the-art performance across a range of multivariate TSF benchmarks.
For example, on the DMV dataset, EchoFormer attains up to a 57.1% relative error reduction
compared to PatchTST, a leading Transformer-based model, as well as other state-of-the-art methods.
This demonstrates EFNS’ ability to capture deep temporal dependencies while maintaining linear
computational complexity, with performance gains that increase as the forecasting horizon extends
by leveraging the entire observed history.
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2 ECHO FLOW NETWORKS

We enhance ESNs with scalar-value embedding, group X-ESNs, and a MLP readout with cross-
attention combination. Each component is detailed below, followed by the complete algorithm.

2.1 BACKGROUND: TSF TASK AND BASE MODEL

In a rolling forecasting scenario with fixed context window k, the TSF goal is to predict future values
044 1:44- from a short input sequence u;_j41.¢, here a time series dataset is denoted by u;.7 with
u; € RN« TSF task is expressed as:

ﬁt+1:t+‘r = M(ut7k+1:t) )
Here, M(+) is a TSF base model, such as PatchTST, which serves both as a baseline to generate
Q¢+ 144, for comparison and as a component to generate W'y .44, in EquationE]for improvement.

2.2  SCALAR-VALUE EMBEDDING

Embedding Encoder (EE) To enhance semantic representation in time series forecasting, we adopt
SCaNE (Huang et al., [2024) to map each scalar input 1, € R« into a dense vector, similar to word
embeddings. This allows semantically similar values (e.g., 0°F and 100°F in traffic prediction) to be
closer in the embedding space. The embedding process is defined as:

hy =e(uy), h, € RPN, 3)
where €(+) is the scalar-value embedding function, and F is the embedding dimension.

Embedding Restoration Decoder (ERD) After prediction, a restoration decoder maps the high-
dimensional embedding outputs u’;; 1.1, € R« back to the original scalar space i 1.4, € RV
using a single-layer feedforward network (FFN) with RLEU activation:

s 104r = €W g1i4r) = FEN(W g 1047) 4)

Here, FFN denotes the one-layer feedforward decoder used for dimensionality reduction, and
u/y41.44+ 1s the predictor output before restoring the embedding.

2.3  MATRIX-GATED COMPOSITE RANDOM ACTIVATION IN EXTENDED ESNS

To address the limited expressiveness and instability of classical ESNs, as defined in Equation[T} we
introduce Extended Echo State Networks (X-ESNs), which incorporate a novel mechanism called
Matrix-Gated Composite Random Activation (MCRA), which consists of three key elements:
matrix-valued leaky parameters, cascaded composite activations, and randomized heterogeneous
activation functions.

Matrix-Gated Leaky Integration Classical ESNs use a scalar leaky parameter « to interpolate
between the current input and previous states. We generalize this by replacing o with diagonal
matrices W1 and W, which gate the contribution of the previous state and current input, respectively.
Unlike scalar mixing that only stretches and shrinks in the span, matrix-based gating supports a
broader class of linear transformations, including scaling, rotation, shearing, and reflection, allowing
state updates to move beyond the original span of input vectors, increasing learning capability.

Cascaded Composite Activations Specifically, we apply a pair of nonlinear functions (o7, 02) in a
nested manner to replace the single t anh in ESNs. This cascaded design increases representational
capacity by stacking transformations: similar to how simple LEGO blocks can be stacked to form
complex structures, this design enables neurons to approximate more complex, hierarchical dynamics.
The result is a richer, neuron-specific control over memory decay and update strength.

Randomized and Heterogeneous Nonlinearities To further increase diversity and reduce overfit-
ting, we introduce randomness into the choice of activation functions. Instead of a uniform tanh
across all neurons in ESNs, we randomly assign each X-ESNs unit a pair of nonlinearities (o1, 02)
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drawn from a predefined set (e.g., tanh, sigmoid, ReLU, leaky ReLU). This ensemble of het-
erogeneous reservoirs, each with a unique activation signature, allows the model to capture a broader
range of temporal dynamics and mitigates the risk of neuron inactivation or gradient vanishing. To
bound activations for numerical stability, we apply normalization (i.e., LayerNorm) and clipping.

MCRA State Update Formally, the state update in X-ESNs of Equation 2]is refined as:
X; = 02 (Wlxt_l + Wy - Cllp (0’1 (Norm (Winht + 0+ WXt_l)) , —1, 1)) R 5)

where x; € R™" is the reservoir state, h, € RV is the input embedding, and W;,, W, 8 are
input, recurrent, and bias weights. W1 and W, are matrix-valued leaky gates. The inner and outer
activations (o1, 02) are randomly selected from a set of nonlinearities. The classical ESN is recovered
when W1, W, are scalars and (01, 02) = (tanh, linear).

2.4 MLP READOUT

To enhance expressiveness, we apply an MLP readout to each X-ESNs, transforming its internal
states into fixed-dimensional, standardized representations. This nonlinear mapping captures rich
dynamics while unifying diverse X-ESNs outputs to a fixed dimension for grouping:

Y = ¢MLP(Xt> = U(Wlxt —+ 01)7 v € R™ (6)

Here, ¢ypp is a learnable nonlinear function implemented as a feedforward neural network, which
consists of one fully connected layer with a nonlinear activation function of ReLU o (-). Wy €
R™*Nr is a learnable weight matrix that maps the EFNS with different output dimensions NN, into
one unified dimension m, and 8; € R” is the bias vector.

2.5 GRour X-ESNs

For stability, to mitigate sensitivity to random initialization of X-ESNs state weights, we introduce
Group X-ESNs, an ensemble approach that reduces prediction variance for more stable outputs.
Specifically, we integrate the MLP readouts of multiple independently initialized Group X-ESNs
to improve stability. We consider L X-ESNs, each with distinct decay parameters and output
dimension (p and N,.) as in|Gallicchio et al.|(2017)), leading to a grouped representation o; formed by
concatenating () the outputs of all X-ESNs readouts:

0=y BY;D... 0y )
2.5.1 CROSS ATTENTION COMBINATION

We integrate long-term context from the group X-ESNs outputs o, (Equation [/)) with short-term
context from the k-window input embeddings h;_ ... This fusion uses a cross-attention operator &
that both reads the group X-ESNs states relative to the task and merges them with recent short-term
inputs. Multiple cross-attention layers are applied sequentially to combine h;_j_1.; and oy:

Q\(h WENT
h; ;114 Wos =LN <0t + DO (Softmax <(0tw N \t/_diﬂ'tw ) ) (ht—k+1:twv)>>
k
(®)

Here, LN(-) denotes layer normalization (Ba et al., 2016), which standardizes activations across the
hidden dimension, and DO(-) applies the dropout, a stochastic regularization mask to the attention
output (Srivastava et al., [2014). (WQ, WK , WV) are weights of query, key, and value, and dy,
denotes the dimensionality of the keys. The fused representation, combining k-length context
h;_j41.+ with the X-ESNs states o, is then passed into a base forecasting model My, such as a
Transformer-based model. The effective input length remains fixed at k, consistent with the baseline
input size in Equation [2} and is significantly smaller than the full sequence length (k < T), ensuring
computational efficiency as

Wiitipr = €<Mf (hy—ps1:e & Ot))' 9
After predictions by My, dimensions are restored via € to yield the final outputs (see Equation .
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2.6 TRAINING ALGORITHM

Algorithm 1 Training Algorithm

Algorithm[T|outlines the EFNS training procedure.
The process begins with parameter initialization.
Input sequences are embedded token-wise at each
time step (Step 1). During each training step, ev-

Require: uy.p, Ms(:), €(-), €(-)
Ensure: Initialized M (-)
while epoch < epochs do

S fort €T do
ery X-ESNs updates its internal states over the .
fuﬁ context of lgngth T, on non-i.i.d. data without (D Embedding Encoder [Eq. E]]
backpropagation (Step 2). A fixed MLP readout is for ! € L do
then applied to each X-ESNs’s state (Step 3), and @ EFNs [Eq. %;
the outputs of all L X-ESNs are concatenated to en d@f?)iV[LP Readout [Eq.
form the Group X-ESNs (Step 4), which is then
fused with thepembeddings of the short context @ Gr."“l’ EFN.S [Eq.
with window size k via cross attention (Step 5), ® Joint Attention [Eq.
and are fed into a base model if available (Step 6). ©® Base Model [Eq.

(D Embedding Restoration [Eq.H|]
® Huber Loss Backpropagation
end for

After that, the embeddings are restored (Step 7).
The model is trained end-to-end via backpropaga-
tion (Step 8), by minimizing the standard Huber .
loss (Meyer, 2021) with details in Appendix &] end while

3 EXPERIMENTS

We test five EFNS instantiations without and with different base models: EchoSolo: No base model
is used; EchoFormer: Transformer-based model (PatchTST); EchoMLP: an MLP-based model
(PatchTSTMixer); EchoTPGN: the 2D TSF model (TPGN); and EchoLinear: a decomposition-
linear model (DLinear) base model, which combined the group X-ESNs at the back (see AppendixB].

3.1 EXPERIMENTAL SETTINGS

Evaluation Metrics and Datasets: We evaluate performance using Mean Squared Error (MSE) and
Mean Absolute Error (MAE) (Hastie et al., [2009), where lower values are better. Benchmarks include
representative TSF datasets: four ETT variants (ETTh1, ETTh2, ETTm1, ETTm?2) (Zhou et al., 2021},
Weather and Traffic (Zeng et al.|[2022a)), Air Quality (AQ) (De Vito et al., 2008), and Daily Website
Visitors (DWV) (Nau, 2021)). For ETT, Weather, and Traffic, preprocessing follows (Zeng et al.
2023)), while AQ and DWYV use a 70/10/20 split for training, validation, and testing.

Baselines: We compare EFNS against a range of strong baselines commonly used in TSF, includ-
ing Transformer-based models such as PatchTST (Nie et al., [2022), Seg-RNN (Lin et al., [2023)),
MLP-based models like PatchTSMixer (Ekambaram et al.| 2023)), linear projection models such as
DLinear (Zeng et al.| [2023)), and large pre-trained models like TimeLLM (Jin et al. [2024). The
experimental setup follows the standardized protocol in (Zeng et al., [2023) for fair comparison.

Model Parameters: We adopt the hyperparameter settings from Nie et al.|(2023)); Ekambaram et al.
(2023)); Toner & Darlow| (2024). For PatchTST and PatchTSMixer used as both baselines and base
models in EFNS, we set FFN dimension to 256, dropout to 0.2, LayerNorm for FFN normalization, a
fixed look-back window k = 336, patch length 16, stride 8, and 8 layers. For DLinear, we follow its
original configuration Toner & Darlow| (2024). All models use a learning rate of 1 x 103 as inNie
et al.|(2023). Experiments are conducted on Tesla H100 GPUs using PyTorch |Paszke et al.|(2019) and
HuggingFace [Wolf et al.|(2020). For large datasets like Weather, embeddings are optionally disabled
to reduce memory usage. Full EFNS settings are in Appendix K] and variant details in Appendix [C|

3.2 EVALUATION RESULTS

Results: Table[T|shows the TSF prediction results. Statistical significance is computed by running
the same algorithm 10 times and averaging the results. Each of our EFNS realizations almost always
outperforms its corresponding baselines, on three prediction horizons h € {192,336, 720}. EchoLin-
ear outperforms DLinear, EchoMLP is better than PatchTSMixer, and EchoFormer significantly
improves over PatchTST and other baselines. Table|2|shows that EchoFormer significantly outper-
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Table 1: EFNS family models compared with baselines including relative improvements (Rel. Imp. %).

ETTh1 Dataset DMYV Dataset
Model 192 336 720 192 336 720
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
DLinear 0.405 0416 0439 0443 0472 0437 0.154 0.147 0.168 0208 0412 0.406
PatchTSMixer 0.400 0433 0426 0457 0433 0469 0.138 0.123 0.183 0.226 0.395 0.381
PatchTST 0379 0.256 0435 0462 0447 0472 0.142 0.106 0.172 0212 0427 0.404
EchoFormer 0.331 0.357 0.346 0.362 0.368 0.381 0.058 0.071 0.121 0.205 0.337 0.339
EchoSolo 0.391 0399 0420 0459 0441 0466 0.117 0.104 0.166 0.231 0.393 0.385
EchoLinear 0.407 0409 0426 0430 0436 0428 0.087 0.117 0.142 0222 0.388 0412
EchoMLP 0.382 0403 0408 0419 0417 0452 0.093 0.114 0.162 0253 0.379 0.362
Rel. Imp. % -193 -15.89 -198 -17.3 -150 -13.56 -57.1 -31.5 -20.1 -5 -146  -129
Table 2: EchoFormer outperforms TSF baselines (horizons: {96, 192, 336, 720}).
Methods EchoFormer (Ours) DLinear PatchTST PatchTsMixer Seg-RNN TimeLLM Rel. Imp. %
Metric MSE MAE MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE
96 | 0.331:00225  0.346+0.0163 | 0.376  0.397 | 0.375 0.399 | 0.388 0.425 | 0.377 0.401 | 0.362 0.392 -9.2 -12.8
192 | 0.33800143  0.357=00223 | 0.405 0.416 | 0.413 0421 | 0.400 0.433 | 0422 0441 | 0416 0425 | -16.5 -14.2
ETThl 336 | 0.346:00219  0.362:00152 | 0.439 0.443 | 0435 0462 | 0426 0457 | 0439 0457 | 0.440 0462 | -18.8 -21.7
720 | 0.368:0022r  0.381:00121 | 0.472  0.490 | 0447 0472 | 0433 0.469 | 0434 0447 | 0.450 0.462 | -15.1 -19.8
avg 0.345 0.361 0.422 0437 | 0413 0430 | 0414 0446 | 0418 0436 | 0420 0432 | -17.3 -16.6
96 | 0.273:00us  0.291:00137 | 0.289 0.353 | 0.274 0.336 | 0.334 0355 | 0.263 0.322 | 0.277 0.350 35 9.7
192 | 0.293:00144  0.317200235 | 0.383  0.418 | 0.339 0.379 | 0.341 0.380 | 0.337 0372 | 0.355 0.380 | —14.1 —16.4
ETTh2 336 | 0.301=00222  0.321x0023 | 0.448 0.465 | 0.329 0.380 | 0.368 0.393 | 0.355 0.382 | 0.368 0.409 -8.6 -15.5
720 | 0.327x0021  0.35500126 | 0.605 0.551 | 0.379 0422 | 0.384 0.416 | 0.394 0.424 | 0.500 0.497 | -14.8 -14.7
avg 0.298 0.363 0431 0446 | 0.298 0322 | 0414 0427 | 0.337 0.375 | 0.385 0.398 0 -3.2
96 | 0.283:00214  0.322:00218 | 0.299 0.343 | 0.290 0.342 | 0.312  0.346 | 0.291 0.335 | 0.290 0.331 -2.8 -3.1
192 | 0.331200121 0.361=00115 | 0.335 0.365 | 0.332 0369 | 0.348 0.374 | 0.366 0.381 | 0.347 0.369 -0.5 -1.1
ETTml 336 | 0.358:00142  0.372:00330 | 0.369 0.386 | 0.366 0.392 | 0.410 0.411 | 0.388 0.401 | 0.357 0.385 0.4 -3.7
720 | 0.401:0020  0.425+00m37 | 0.425 0.421 | 0416 0.420 | 0405 0.418 | 0.412 0.418 | 0.409 0.436 -1.0 1.6
avg 0.338 0.368 0.357 0.378 | 0.351 0.380 | 0.400 0.406 | 0.362 0.389 | 0.429 0.425 -3.8 -2.7
96 | 0.180+00213 0.274:00221 | 0.187 0.269 | 0.165 0.255 | 0.167 0.267 | 0.158 0.241 | 0.170 0.277 13.9 124
192 | 0.196:00126  0.254:00132 | 0.224  0.303 | 0.220 0.292 | 0.233  0.275 | 0.215 0.283 | 0.236 0.273 | -11.0 -6.7
ETTm2 336 | 0.279=00147  0.341x00130 | 0.281 0.342 | 0.285 0.329 | 0.305 0.339 | 0.281 0.317 | 0.276 0.388 2.2 7.5
720 | 0.351x0015  0.383z00101 | 0.397 0.421 | 0.362 0.385 | 0.408 0.403 | 0.357 0.391 | 0.362 0.388 2.7 -0.6
avg 0.247 0.315 0.267 0.333 | 0.255 0.315 | 0.278 0.321 | 0.253 0.306 | 0.347 0.293 -2.4 29
96 | 0.193x00210  0.205z00227 | 0.176  0.237 | 0.149 0.198 | 0.172 0.220 | 0.158 0.203 | 0.153 0.281 29.5 35
192 | 0.201<0022¢  0.241-00226 | 0.220 0.282 | 0.213 0.244 | 0.217 0.247 | 0.201 0.247 | 0.196 0.257 -5.7 -1.3
Weather 336 | 0.235:00322  0.257=0030 | 0.265 0.319 | 0.245 0.282 | 0.250 0.274 | 0.237 0.269 | 0.262 0.279 -0.9 -4.5
720 | 0.302:00233  0.337=0021 | 0.333  0.362 | 0.325 0.357 | 0319 0.339 | 0311 0.348 | 0.304 0.356 -0.7 -3.2
avg 0.230 0.257 0.248 0.300 | 0.235 0.264 | 0.259 0.287 | 0.226 0.264 | 0.271 0.334 2.2 -2.7
96 | 0.288:0032s  0.235:00337 | 0.410 0.282 | 0.360 0.249 | 0.367 0.357 | 0.543 0.255 | 0.388 0.264 | —25.0 —6.6
192 | 0.351:00331  0.256=00328 | 0.423  0.287 | 0.379 0.262 | 0.384 0.268 | 0.567 0.281 | 0.374 0.247 -7.4 23
Traffic 336 | 0.362:00328  0.273z00314 | 0.436 0.296 | 0.392 0.269 | 0.393 0.268 | 0.602 0.307 | 0.385 0.271 -7.7 0.1
720 | 0.389:00133  0.281:00023 | 0.466 0.315 | 0.432 0.286 | 0.435 0.286 | 0.671 0.481 | 0.430 0.288 | -10.0 -1.8
avg 0.348 0.262 0.433  0.295 | 0.390 0.263 | 0.372 0.257 | 0.595 0.331 | 0.391 0.267 | -11.5 -0.1
192 | 0.494-00200 0.472+00214 | 0.569 0.601 | 0.541 0.538 | 0.511 0.535 | 0.526 0.566 | 0.519 0.526 -3.5 -11.3
Air Quality 336 | 0.538:00231  0.519z0017s | 0.541 0.524 | 0.598 0.562 | 0.573 0.571 | 0.551 0.591 | 0.551 0.560 -0.4 14
720 | 0.678:00315  0.632:00322 | 0.835 0.862 | 0.728 0.764 | 0.792 0.754 | 0.701 0.681 | 0.681 0.682 -0.5 -14
avg 0.470 0.531 0.648 0.662 | 0.728 0.622 | 0.625 0.620 | 0.592 0.612 | 0.562 0.589 | -16.4 -9.9
192 | 0.061x0.005  0.074=000m1 | 0.154 0.147 | 0.142 0.106 | 0.138 0.123 | 0.135 0.117 | 0.149 0.113 | -54.9 -30.2
DMV 336 | 0.133:00128  0.198-0062s | 0.168 0.205 | 0.172 0.212 | 0.183 0.226 | 0.158 0.201 | 0.201 0.219 | -159 -5.3
720 | 0.352:00219  0.348:0031 | 0.412  0.406 | 0427 0.404 | 0.395 0.381 | 0418 0.355 | 0.388 0.411 9.3 2.0
avg 0.182 0.213 0.244 0.250 | 0.238 0.244 | 0.225 0.243 | 0.291 0.298 | 0.246 0.248 | -28.7 -13.4

forms baseline models across most datasets in different horizons. Notably, EchoFormer achieves a
deduction of MSE on the DMV dataset from 0.138 to 0.061, i.e., -57.1% relatively.
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Figure 2: MSE vs. different initializations. Group
EFNS (e.g., 10 EFNS) improve stability and error Numbers in Group EFNS converge around 10 across
rates over a single EFNS on ETThl. EchoFormer datasets ETTh1, ETTh2, and Weather.
and EchoSolo are not sensitive to initialization.
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Figure 4: MSE vs. horizon length: EchoFormer out- Figure 5: Model training efficiency. EchoFormer and
performs the baseline across all horizons, with widen- EchoMLP converge more quickly and achieve lower
ing margins as the horizon extends, on validation set error rates than baselines on the ETTh1 validation set.
(horizon 720 for all ablations by default).

Table 3: Training time (min) and memory (GB). Memory and Time Complexity Comparison:
Dataset | EchoFormer [ EchoSolo [ PatchTST | DLinear Let N, be the X-ESNSs state size, W the number
T GB  min GB | min_GB | min_GB  of X-ESNS,  the short-term window, 7' the long-
ETTh2 33 12| 9 4| 40 10| 16 4 term inputlength, L the number of layers, r the
ETTml | 57 181 17 6] 60 161 25 7 compression ratio, P the patch size, and d, the em-
ETTm2 | 57 19 20 6| 60 16| 24 8 S X .

Weather | 47 155 | 15 30| 48 130 | 21 34 bedding dimension. The time and memory com-
Traffic | 86 503 | 25 68| 93 453 | 27 88  plexities of X-ESNs are O(T'N?) and O(N?), re-

spectively. For EchoFormer, the added cost from
PatchTST yields time complexity O (T;;?E + NTTk) and memory complexity O (% + LTQ).

Despite its richer architecture, EchoFormer converges faster and achieves lower MSE than PatchTST,
as shown in Figure[5] Training time, GPU usage, and efficiency metrics are summarized in Table 3]

3.3 ABLATION STUDY

Stability of Group X-ESNs: Figure 2] compares EchoFormer and EchoSolo under grouped (10
EFNS) and single (1 EFNS) configurations. Grouped X-ESNs exhibit significantly lower error and
greater stability across runs, indicating reduced sensitivity to initialization.

Effect of Group Size: As shown in Figure[3] increasing the number of X-ESNs in the group leads to
consistent improvements in MSE, with diminishing returns beyond size 10.

Forecast Horizon Robustness: Figure 4] shows our method outperforms baselines across all predic-
tion horizons. The performance gap increases with longer horizons, demonstrating strong long-term

forecasting capabilities. Table 4: Component effectiveness on ETTh].
Component Effectiveness: Table ] reports
. L L Model MSE MAE
ablation results on ETTh1, divided into three
. . PatchTST 0447 0472
sections. The first shows baseline perfor- TPGN 0519 0541
mance of PatchTST and TPGN. The second EchoFormer 0368 0381
analyzes the impact of modifying or remov- Without Embedding 0.465  0.490
ing EchoFormer components. The third starts Cmé;‘;?;"&‘;‘;i; (i‘)"j‘fj‘:::;e"“" 8‘25 8'2?3
from classic ESNs |Jaeger et al.| (2007) and 3 Level Composite 0.371  0.390
incrementally builds up with EFNS. 4 Level Composite 0.368 0384

All MCRA Activation: ReLU 0.392  0.401

. . ANl MCRA Activation: Sigmoid  0.372 0.382
In the second section, removing scalar value All MCRA Activation: tanh 0375 0390

embedding and its restoration causes a sig-

! ! I ESN 0.681 0.657
nificant performance drop. Replacing cross- 2 1+MLP Readout 0.627 0.606
: : : : 3 2+ Group ESNs + Cross Attention 0.507 0.531
attention with concatenation or averaging als’o 1 tarit s Random 0282 0539
degrades results, conﬁrmlng cross-attention’s 5 4+ MCRA (EchoSolo) 0441 0.466
superiority in fusing multi-source information. 6 5+TPGN (EchoTPGN) 0462 0.481
7 5+ PatchTST (EchoFormer) 0.368 0.381

Increasing levels in the cascaded nonlinear ac-
tivation function yields no further gain. Replacing randomized activations in Group X-ESNswith
a single fixed function also reduces performance. Together, these results show each component
contributes uniquely and synergistically to EchoFormer’s improvement.
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The third section uses system IDs in the first column to track incremental additions starting from
classic ESNs (ID 1). The original ESN has high error, while adding an MLP readout (ID 2) reduces
MSE. Further improvements come from Group ESNs and cross-attention, showcasing the power of
the dual-stream and ensemble. Substituting t anh with randomized activations further boosts perfor-
mance. Integrating all X-ESNs components significantly lowers MSE (a 6.6% reduction). Combining
X-ESNs with a moderate backbone like TPGN improves TPGN but is worse than EchoSolo, while a
stronger backbone like PatchTST leads to the best overall performance in EchoFormer.

4 RELATED WORK

Deep Learning for TSF Recent TSF models span CNNs (e.g., MICN (Wang et al.| [2023)), Times-
Net (Wu et al.;|2023)), ModernTCN (Luo & Wang} [2024)) for local patterns; RNNs (e.g., SegRNN (Lin
et al.}2023), WITRAN (Jia et al.}2023)) for sequential modeling but prone to gradient issues; and
linear models (e.g., FITS (Xu et al.|[2024])), SparseTSF (Lin et al.,[2024b), CycleNet (Lin et al.,|2024al))
which are efficient but less expressive. Transformers (e.g., PatchTST (Nie, [2023), TiDE (Huang,
2023), FiLM (Wang] 2023), BasisFormer (Zhoul 2023), iTransformer (Liu et al.,2024), Leddam (Yu
et al., 2024)) achieve high accuracy but with high cost. PatchTST (Niel [2023) and SegRNN (Lin
et al., 2023) perform well but struggle with fine-grained or irregular inputs (Nie, 2023} [Lin et al.,
2023). TimeKAN (Huang et al.| 2025) prioritizes efficiency, while TPGN (Jia et al., [2024) risks
future leakage (Chi, [2024). EFNS mitigates these by learning full history without backpropagation
through time, combining accuracy with scalability.

ESN Efficiency and Stability ESNs avoid vanishing gradients by using fixed recurrent
weights (Jaeger, [2001), requiring no backpropagation through time. They offer constant mem-
ory and optimization costs (O(1)) via lightweight readouts. Approaches such as spectral radius
tuning (Lukosevicius & Jaeger, 2009), regularization (Rodan & Tinol 2011)), and reservoir optimiza-
tion (Lu et al.,|2017) aim to stabilize ESNs but often need careful tuning. EFNS instead aggregates
multiple randomly initialized Group X-ESNs and integrates them via cross-attention—more adaptive
than prior parallel reservoirs (Sun et al., [2024; [Casanova et al., 2023} Rodan & Tino, 2011). Fur-
thermore, ESNs suffer from initialization sensitivity and limited readout expressiveness. Prior work
explores spectral tuning (Jaeger, 2001; Rodan & Tino, [2011), nonlinear readouts (Gauthier et al.,
2021a), attention (Ma et al.| |2022), and graph-based methods (Liao} 2023). EFNS unifies ESNs with
a dual-stream architecture and attention-based readout for improved accuracy and adaptability.

Expressive Readouts and Modular Architectures Classic ESNs use linear readouts (Jaeger et al.,
2007 Jaeger, 2001}, while recent works explore quadratic (Gauthier et al.| 2021b), kernel (Hermans
& Schrauwen, 2010)), or attention-based mappings (Koster & Anandkumar, |2025)), often trading
efficiency for expressiveness. EFNS outperforms in both accuracy and efficiency. Additionally,
although ESNs have been embedded into neural architectures (Sun et al., |2024} Xu et al.| 2025;
Casanova et al.| 2023} |Shen et al.| [2020), they typically serve fixed roles; EFNS’ cross-attention
readout enables flexible model compositions, yielding multiple effective variants.

5 CONCLUSION

EcHO FLOW NETWORKS is a powerful and flexible framework for capturing long-term temporal
dependencies, consistently improving performance both standalone and as an enhancer to existing
TSF models. This work is the first to demonstrate that ESNs can enhance Transformer-based TSF
models, highlighting a promising direction for efficient, scalable sequence modeling. We hope this
advances future research on ESN-based architectures in accuracy and scalability.

6 IMPACT STATEMENT
This work improves TSF with social values.

Reproducibility statement EFNS’ source code is in the supplementary materials. Experimental
details and dataset info are in Section 5 and Appendix [K]
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Appendices

A TRAINING LoOsSS
Our loss function (Meyer, [2021) is as follows:

t+7

) 1 o
‘C(ﬁt+1:t+r7ut+l:t+7—) = = Z f(uhui) (10)
TS
3 (@ —w;)? if |0, — 0] < 6
(ug,0;) = 3(T —1;)°, 1, il S
(1 ) {5 (Ja; — @;| — $6), otherwise

Here, § sets the differentiability threshold; @, is the label and Q; the prediction at time 3.

As an example, we illustrate how X-ESNs outputs are paired with embedded inputs when the
look-back window is set to k = 2. At each step, the X-ESNs state is updated by incorporating the
current input h, into the previous state x;_1, yielding the new state z,. For instance, x; is initialized
from hy, x5 is obtained by reading hs into 1, and x3 is obtained by reading hs into x5. With k = 2,
future predictions {i4.44 - are generated via cross-attention between step-3 states (x3) and the inputs
h2:3~

For the next time step, we read the h,4 value into step 3’s states and generate step 4’s states. By using
the cross attention between step 4’s states after linear transformation and hgs.4, we can make our
future prediction {i5.5 -
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Figure 6: ECHO FLOW NETWORKS Models Structure. The components in red are trainable, and those in blue
are frozen. Meanwhile, the Green arrows for Reservoirs represent the reservoir state updating process, current
reservoir state will be one input for the Reservoir in the next time step. The blue and pink arrow represent the
Front-end (Front) and Back-end Combiner.
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C ECHO FLOW NETWORKS FAMILY DESCRIPTION

* EchoSolo: EchoSolo use the standalone group X-ESNs as a TSF predictor, consisting of
the Scaler-Value Embedding, Group X-ESNs and Front-end (Front) Combiner. EchoSolo
uses a Front-end (Front) Combiner, combining the X-ESNs output with the actual time
series input. Then the outputs are fed into the Embedding Restoration Decoder to restore
their shape back to the input shape before the Scaler-Value Embedding to generate the final
prediction outputs.

* EchoFormer: EchoFormer combines Group X-ESNs and the Transformer-based
PatchTST TSF model. Specifically, EchoFormer consists the Scalar-Value Embedding,
Group X-ESNs and Front-end (Front) Combiner. Following Equation 8] then the results
from the Front-end (Front) Combiner are fed into a PatchTST model following the setting
pointed in the Model Parameters section. Then, the outputs of the PatchTST model are feed
into the Embedding Restoration Decoder to shift the dimension of these outputs back into
their original input dimension to generate the final prediction outputs.

* EchoMLP: EchoMLP combines Group X-ESNs and MLP-based PatchTSTMixer. Specifi-
cally, EchoMLP also include the Scalar-Value Embedding, Group X-ESNs and Front-end
(Front) Combiner, then the results from the Front-end (Front) Combiner are fed into a
PatchTSMixer model following the settings in the Model Parameters section. In the end,
the PatcHTSMixer model predictions are shifted by Embedding Restoration Decoder to the
original input shapes and generate the final outputs.

* EchoLinear: EchoLinear combines Group X-ESNs with decomposition and linear model-
ing method of DLinear. Unlike previous models, EchoLinear model applied the Back-end
(Back) Combiner, the time series inputs first go through the Scaler-Value Embedding layer
to expand the dimension of the inputs, then the embedded inputs are fed into the Dlinear
model to generate the time series predictions. These predictions from Dlinear model are then
corrected and improved by the X-ESNs outputs through the Back-end (Back) Combiner
explained in Equation[8] The Back-end (Back) Combiner here effectively injects long-range
dependencies into Dlinear model’s outputs. Finally, the Embedding Restoration Decoder
reconstructs the combined high-dimensional results back to the original prediction space
and generate the final predictions.

¢ EchoTPGN: EchoTPGN integrates an Extented Echo State Network (EFNS) with a
convolutional network-based TPGN model. Similar to EchoLinear, we employ the Back-
end (Back) Combiner for TPGN. However, to maintain the effectiveness of the convolutional
layers within TPGN, the model inputs are fed directly to TPGN without scaler values
embedding. The future predictions generated by TPGN are then combined with the group
X-ESNs results via cross-attention layers, stabilizing the overall predictions. Crucially,
EchoTPGN preserves the original input shape and structure required by the TPGN model,
maximizing the utility of its internal convolutional layers.

D FRONT AND BACK COMBINER

For cross-attention readout, we consider two distinct settings. For neural network-based base models,
such as PatchTST, we employ a front combiner to leverage the features learned by the X-ESNs groups.
In contrast, frequency analytical base models like DLinear, we use a back combiner that directly
exploits the inherent structure of the input data to extract features, as follows:

me

Mf (htferrl:t ) Ot)) Front

(1D
Mb (ht—k+1:t) (] Ot) Back

wiitiqr =

me

Front We use cross attention to combine & the embedded input h; ¢ 1., and the group X-ESNs out-
put o; and then feed into the base model like PatchTST and generate the prediction u’y 1.4+, through:

li/t+1:t+7 = €<Mf (ht—k'+1:t W Ot)) (12)
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The resulting effective input size to the base model is the same as the baseline input size as in the
baseline model, which is significantly smaller than the all-time history length, & < T'.

Back Unlike the front combiner, the back combiner integrates the output from the base model like
Dlinear, with the Group X-ESNsstates o, following:

Wit tiagr = €(Mb (hy—py1e) W 0t> (13)
The back combiner is designed especially for decomposition-based models like Dlinear etc....

Table 5: Addtional Component Ablation Study

Models MSE MAE

EchoFormer 0.368 0.381
MSE as loss function 0.362 0.395
with Leaky value « 0.372 0.387

E LEAKY WEIGHTS AND VALUES COMPARISON

Table[5]also shows that changing the leaky value mechanism to the leaky weights mechanism yields
significant improvements in our model, from about 0.372 to about 0.368.

F Loss FUNCTION COMPARISON

Table [5] shows that although using MSE as a loss function can reach a slightly lower MSE level, the
MAE performance is not ideal compared to using Huber loss as a loss function, which effectively
ensures the convergence of both MAE and MSE during training.

G EXTENDED ECHO STATE NETWORK SIZE ANALYSIS

Our optimized X-ESNs state size is (100, 105, 110, 115,120, 125, 130, 135, 140, 145, 150) and the
number of X-ESNs is 10 as in Figure [7]and Figure [3|for all ECHO FLOW NETWORKS family
models. The optimized spectral radius values are (0.9, 0.85,0.80,0.75,0.7,0.65,0.6,0.55,0.5,0.45)
for each X-ESNs in the group.

0.48

o 047 Models 0.451
£ 046
2 045 95% CI Mean 0433
5 044 —
5 0.423
0 0413 0.419
: 0.42
S 041
0.392

g 040 0.386
S 03
= 038
S 037
= 0.36

0.35

50-100 100-150 150-200 200-250 250-300 300-350 350-400

X-ESN Size (50-400 Range)
Figure 7: MSE vs. X-ESNs size.

Figure [7shows that X-ESNs size significantly affects performance. Testing sizes from 50 to 100
reveals an optimal range of 100-150, roughly 0.8 ~ 1.0 x E. Smaller X-ESNs lack capacity; larger
ones overfit. Proportional sizing to the embedding dimension is key for stable learning.
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Table 6: Detailed hyperparameter settings for the group X-ESNs

X-ESNs ID X-ESNs Size Spectral Radius Sparsity MCRA

X-ESNs-1 100 0.90 0.60 Tanh
X-ESNs-2 105 0.85 0.55 Sigmoid
X-ESNs-3 110 0.80 0.50 Relu
X-ESNs-4 115 0.75 0.45 Tanh
X-ESNs-5 120 0.70 0.40 Sigmoid
X-ESNs-6 125 0.65 0.35 Relu
X-ESNs-7 130 0.60 0.30 Tanh
X-ESNs-8 135 0.55 0.25 Sigmoid
X-ESNs-9 140 0.50 0.20 Relu
X-ESNs-10 145 0.45 0.15 Tanh

H COMPLEXITY RANKING OF TIME SERIES FORECASTING METHODS

Table 7: Complexity of time series forecasting methods with theoretical training, practical training (frozen
parts), inference, and memory costs. RNN (LSTM/GRU) [Hochreiter & Schmidhuber| (1997);(Cho et al.|(2014)
Transfer Learning (Frozen Base) Borovykh et al.| (2022). Meta-Learning (HyperNet) |von Oswald et al.|(2019).
Foundation Model + Adapter (TimeGPT) Wu| (2023b)). Frozen Transformer Encoder|Li & Wang| (2022)

Rank Method Trainable Part Training Time Complexity Practical Training Time Inference Time

(full model) (frozen parts)
1 ESNJaeger|(2001) Output layer only O(N?T + N3) Same as full O(NT)
2 DLinear|Zeng et al.|(2022b) Entire model O(DTB) Same as full o(DT)
3 RNN (LSTM/GRU) Entire model O(DTB) Same as full O(DT)
4 Transfer Learning (Frozen Base) ~ Head only O(DTB) O(DpeadTB) O(L*H)
5 PatchTSMixer|Song et al.|(2023)  Entire mixer O(DTB) Same as full O(DT)
6 PatchTST|Nie et al.[(2022) Entire transformer O(L?’HB) Same as full O(L*H)
7 Frozen Transformer Encoder Head only O(DhpeadTB) 2 0 (frozen encoder) O(L*H)
8 Meta-Learning (HyperNet) Meta-network O(Dypete TBM) Same as full O(DgyeneratedT)
9 TPGN|Wu|(2023a} Entire GNN + temporal layers  High (graph conv + temporal layers) ~Same as full Moderate-High
10 TimeGPT) Adapter/head only O(DadapterTB) ~ 0 (frozen backbone) O(L*H)
Memory Complexity ~ weights + activations + inputs; typically O(model size + L - dyn0ae;) for deep models

We show complexity in theory in Table [7] with following notations:

* Theoretical training time complexity: Cost when training all trainable parameters.

* Practical training time: Cost when no network part is trained or only small heads/adapters
are trained (frozen backbone).

* Inference time complexity: Cost for forward pass to produce predictions.

* Memory complexity: RAM/GPU memory use to store weights, activations, and inputs.
The variable definitions are as follows:

* T': length of the time series (sequence length)

* B: batch size during training

* L: input context length or window size (for transformers and patch models)

* H: number of layers in deep models (e.g., transformer layers)

¢ N: number of neurons in the reservoir (for ESN)

* D: number of trainable parameters in a model or specific module (head, adapter, etc.)
* M': number of tasks or meta-learning episodes

* dmoder: model hidden dimension size (transformer embedding dimension)
Below are details of each method:
* ESN trains only the output layer, making both training and inference efficient.

* DLinear and RNN train the entire network, so practical training is equal to theoretical.

17



Under review as a conference paper at ICLR 2026

* Transfer learning freezes the backbone and trains a small head, reducing practical training
time.

* Frozen Transformer Encoder and Foundation Models typically have near-zero training
cost since the backbone is frozen and only adapters or heads are trained.

* Meta-learning requires expensive meta-training but fast adaptation at inference.

* TPGN fully trains GNN + temporal components, so practical training is as costly as
theoretical.

I COMPLEXITY ANALYSIS

Model Memory Time
Transformer O(L? + Ld) O(T?d.)
PatchTST O(g—i + Ld) O(T;gle)
Informer O(Ldlog L) O(TdelogT)
Autoformer O(L? + Ld) T2d.
Reformer O(Ldlog L) O(TdclogT)
RNN O(Ld?) O(Td?)
ESN O(N?) O(TN?)
2 2

Echoformer O(% + % O(%

+kNyL) +N,k?)

Table 8: Memory and time complexity comparison.

Table 9: Per-epoch Training Efficiency comparison

Models Training time per Epoch ~ Parameters Disk Usages
PatchTST 1.46 min/epoch 85,169 380GB
EchoFormer 3.24 min/epoch 103,720 407GB
TPGN 4.72 min/epoch 3,004,495 550GB

In Table [§] we compare our methods with several other baseline models on the memory (cache)
footprint and time complexity of different models, and the notations are as follows. N, is the
X-ESNs states output dimension; L is the number of X-ESNs in the group X-ESNs ; & is the
short-term context window length; 7' is the long-term context total input length; ly is the number
of layers; H is the number of attention heads; c is the Compressive Transformer memory size; r is
the compression ratio; p is the number of soft-prompt summary vectors; v is the summary vector
accumulation steps; s is the kernel size; P is the patch size; d. is the embedding model dimension;
dy, is the dimension of keys in attention; and d, is the dimension of values in attention. The
baselines include PatchTST Nie et al.| (2023) which reduces sequence length via patches, significantly
lowering complexity; Informer Zhou et al.| (2021)) which uses ProbSparse self-attention, suitable
for long sequences; AutoformerWu et al.| (2022) which introduces auto-correlation mechanism, but
the attention remains O(Lz); Reformer [Kitaev et al.| (2020) which uses LSH to reduce attention
computation complexity; and RNN model which computes multi-variants time series step-by-step,
holding low complexity but struggles with long-range dependencies. Since we use PatchTST as our
base-model, the memory complexity and time complexity of EchoFormer is O((7/p)?-d. + N, - k?)
and O((T/p)? - de + L - T?) which looks similar with other Transformer-based model with additional
memory and time required for tracking, computing and using X-ESNs states.

The specific training time, GPU usage and efficiency is shown in Table 3] Figure[I5]and Figure [0}
Although EchoFormer’s structure is more complex than PatchTST, our experiments demonstrate its
faster convergence rate. While requiring marginally more time per epoch, EchoFormer achieves
significantly greater loss reduction compared to baseline models (Figure[I5). Consequently, despite
slightly higher GPU memory requirements, the total training time remains comparable to or shorter
than existing approaches.

J  VARIABLE DESCRIPTIONS

We have described the used variables and math notations in Table[I0
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Variable | Description

M(.) Transformer model

R(.) Deep X-ESNs computing

uy Input at ¢ time steps

Xy X-ESNs state at ¢ time steps

Yt Linear output of X-ESNs

h, Embedding of time steps

o, Ensembling of group X-ESNs

T Total time input length

k Look back window

N, X-ESNs size

N, X-ESNs input size

m X-ESNs output size

L Number of X-ESNs in Group

T Forecasting horizons

de Model dimension

dy, Dimension of key in attention

d, Dimension of key in attention

c Compressive Transformer memory size
r Compression ratio

p Number of soft-prompt summary vectors
S Kernel size

P Patch size

OMLP MLP readout layer

W1 and Wy learnable diagonal matrices for X-ESNs
P Transformer’s learnable parameters
W, Queries weights

W, Values weights

Wi Keys weights

Wi, Input-to-X-ESNs weight matrix
L% X-ESNs weight matrix

(7] Bias-to-X-ESNs weight

W out X-ESNs -to-readout weight matrix
0,0t Bias-to-readout weight

Table 10: Descriptions of all variables used in this paper

K X-ESNS SETTINGS

Here we list the X-ESNs  settings for all 10 different X-ESNs in Tabld6]
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Figure 8: Air Quality (Tin OxideFigure 9: ETTml (Low UseFul Figure 10: ETTm2 (Low UseLess
Readings). Load). Load).

Output Examples: Figure[§] Figure[0] and Figure[I0|represent examples on the predicted signal
versus the original signal. The cyan line is ground truth; the red line is the prediction using RT; and
the blue line is the prediction using Transformer as comparison.
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L  ADDITIONAL COMPONENT ABLATION STUDY

Table 11: Addtional Component Ablation Study

Models MSE MAE
ESN 0.681 0.657
with MLP readout 0.627  0.606
with Leaky Matrices 0.621  0.598
with Group on sample 0.619 0.592
with Diverse MCRA Function 0.608 0.575
with Embedding o 0.554  0.527
with Cross-attention combination & (EchoSolo) 0.441  0.466
with Basemodel (EchoFormer) 0.368 0.381

M CHAOTIC DATASET: LORENZ EXTRACTOR

Figure 12: Lorenz with PatchTST. Figure 13: Lorenz with ECHO FLOW

NETWORKS .
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0.7 2 Dt
N —e— RT(ETTh2)
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Figure 14: MSE vs. history length. Figure 15: MSE vs. time.
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