
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ECHO FLOW NETWORKS
WITH INFINITE-HORIZON MEMORY

Anonymous authors
Paper under double-blind review

ABSTRACT

At the heart of time-series forecasting (TSF) lies a fundamental challenge: how
can models efficiently and effectively capture long-range temporal dependencies
across ever-growing sequences? While deep learning has brought notable progress,
conventional architectures often face a trade-off between computational complexity
and their ability to retain accumulative information over extended horizons.
Echo State Networks (ESNs), a class of reservoir computing models, have recently
regained attention for their exceptional efficiency, offering constant memory usage
and per-step training complexity regardless of input length. This makes them
particularly attractive for modeling extremely long-term event history in TSF.
However, traditional ESNs fall short of state-of-the-art performance due to their
limited nonlinear capacity, which constrains both their expressiveness and stability.
We introduce ECHO FLOW NETWORKS (EFNS), a framework composed of a
group of extended Echo State Networks (X-ESNs) with MLP readouts, enhanced
by our novel Matrix-Gated Composite Random Activation (MCRA), which en-
ables complex, neuron-specific temporal dynamics, significantly expanding the
network’s representational capacity without compromising computational effi-
ciency. In addition, we propose a dual-stream architecture in which recent input
history dynamically selects signature reservoir features from an infinite-horizon
memory, leading to improved prediction accuracy and long-term stability.
Extensive evaluations on five benchmarks demonstrate that EFNS achieves up to
4× faster training and 3× smaller model size compared to leading methods like
PatchTST, reducing forecasting error from 43% to 35%, a 20% relative improve-
ment. One instantiation of our framework, EchoFormer, consistently achieves
new state-of-the-art performance across five benchmark datasets: ETTh, ETTm,
DMV, Weather, and Air Quality.

1 INTRODUCTION

Time-series forecasting (TSF) is a fundamental problem at the core of scientific discovery and
decision-making, powering critical applications in climate science, finance, healthcare, and energy
systems by predicting future trends from historical data. A key challenge in TSF is modeling long-
range temporal dependencies, where the effects of past events unfold gradually. For instance, seasonal
droughts can influence wildfire risk months later, and early market signals may foreshadow shifts in
cryptocurrency prices (Chen et al., 2023; Ma et al., 2024).

While capturing long-range dependencies, and ideally learning from the entire history of inputs, is
essential for accurate prediction, fully leveraging such historical context remains an open challenge
due to two critical limitations. First, computational inefficiency: Transformer-based models like
PatchTST (Nie et al., 2023) exhibit quadratic complexity in time and memory (Vaswani et al., 2017),
making them impractical for ultra-long sequences. Even with recent efficiency improvements (Jia
et al., 2024; Lin et al., 2023; Chi, 2024), these models still rely on backpropagation through time,
resulting in high training cost and limited scalability. Second, model limitations: many models
struggle with vanishing gradients and suffer from bifurcation issues, leaving significant room for per-
formance improvement using long history (Lim & Zohren, 2021; Zhou et al., 2021; Nie, 2023). (Lim
& Zohren, 2021; Zhou et al., 2021; Nie, 2023).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: EFNS Framework with X-ESNs, and MCRA (W1,W2, σ).

Echo State Networks (ESNs) (Jaeger, 2001; Lukoševičius & Jaeger, 2009), as a kind of reservoir
computing, offer a promising yet underexplored alternative. ESNs are lightweight autoregressive
models with linear time and constant space complexity. Unlike attention-based models that truncate
historical inputs or RNNs that compress past information into fixed-size hidden states, ESNs update
their internal dynamics in a streaming fashion using randomly initialized, fixed weights, without
backpropagation. This design enables a constant O(1) training cost per time step and a constant
O(1) memory footprint, as well as an overall training time complexity of O(N). Furthermore, the
reservoir acts as a denoising temporal encoder that is robust to bifurcations and gradient decay (Bollt,
2021; Vlachas et al., 2020), making ESNs ideal for modeling long-sequence patterns.

Yet, despite their theoretical advantages, ESNs have historically underperformed on time-series
forecasting (TSF) tasks and, as a result, are not widely adopted. In this work, we identify three
core limitations contributing to this underperformance and propose solutions to overcome them.
First, ESNs suffer from limited expressiveness in both state updates and readouts. Classical
ESNs typically employ a single nonlinearity (e.g., tanh) in the state update and a linear readout
layer, restricting their ability to capture complex temporal dynamics. This limitation is especially
pronounced when the reservoir is too small or poorly aligned with task-relevant features, leading
to failures in modeling hierarchical, compositional, or multi-scale structures that are challenging to
decode linearly. Second, ESNs are highly sensitive to random initialization: since reservoir weights
are fixed and randomly assigned rather than learned, performance can vary significantly between
runs, often necessitating heuristic tuning or task-specific adjustments for stability (Rodan & Tiňo,
2011; Lu et al., 2017). Third, ESNs lack a dynamic, token-specific weighting mechanism, such
as attention, which hinders their ability to selectively focus on informative inputs, adapt to abrupt
temporal shifts, or model non-smooth and discrete patterns. Together, these limitations constrain the
ability of ESNs to achieve state-of-the-art performance.

In this paper, we propose EFNS (ECHO FLOW NETWORKS), a novel framework that combines
the efficiency of classical Echo State Networks (ESNs) with the expressive power of modern deep
sequential models. EFNS enhances ESNs with spiking dynamics, grouped Extended ESNs (X-ESNs),
and a dual-stream fusion mechanism for expressiveness, stability, and near token dependency.

As illustrated in Figure 1, EFNS consists of two main components integrated via masked multi-head
attention: a recent input encoder operating over the k-length short-term window, and a grouped
X-ESN that captures dynamics from the entire input history. EFNS can function as a standalone
forecasting model or be used to boost existing TSF methods in a black-box manner. Specifically, our
approach introduces four key innovations:

1. X-ESNs with MCRA for Expressiveness: Extended ESNs (X-ESNs) augment traditional Echo
State Networks (ESNs) with our proposed Matrix-Gated Composite Random Activation (MCRA).
Unlike the standard single tanh activation, MCRA employs a composition of two nonlinear
activation functions to jointly transform the current input and the previous state, enabling the
modeling of more complex temporal structures. Each activation function is randomly selected
from a predefined set (e.g., ReLU, Leaky ReLU, tanh, and Sigmoid), increasing functional
diversity within the ensemble mechanism of Group X-ESNs for improved accuracy and stability.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Furthermore, MCRA replaces the scalar leaky integration parameter with matrix-valued gates,
allowing for more expressive and adaptable neuron-specific temporal dynamics.
The conventional ESNs, i.e., LI-ESN (Jaeger et al., 2007), evolves the reservoir state xt ∈ RNr as:

xt = (1− α)xt−1 + α tanh(Winht + θ +Wxt−1), (1)

where ht ∈ RNu is the input at time t, Win,W, and θ are the input, recurrent, and bias parameters,
respectively, and α ∈ [0, 1] is the leaky integration rate controlling memory decay. Nr and Nu

are reservoir and input dimension, respectively. Weights are drawn from U [−σin, σin], and W is
scaled to satisfy the Echo State Property (ESP) (Tiňo et al., 2007) via the spectral radius condition.
We extend this formulation in X-ESNs by introducing the Matrix-Gated Composite Random
Activation (MCRA), resulting in the following update:

xt = σ2 (W1xt−1 +W2 σ1 (Winht + θ +W0xt−1)) ,

where W1 and W2 are matrix-valued gates constrained by normalization, and σ1, σ2 are nonlinear
activation functions randomly selected from a predefined set (e.g., tanh, ReLU, sigmoid).
The MCRA mechanism introduces four key novel elements:

• Nonlinear Activation: emphasizes that nonlinear transformations are applied both before
and after the reservoir update, increasing expressiveness;

• Matrix-Gated: leaky integration is generalized using matrix-valued gates (replacing scalar
α), allowing for more flexible and expressive dynamics;

• Composite: the activation is formed as a nested composition of two nonlinearities, enabling
deeper feature transformations;

• Randomized: the nonlinear functions σ1 and σ2 are chosen randomly, encouraging diversity
across the network ensemble.

This formulation allows for neuron-specific, nontrivial temporal dynamics and significantly
enhances the representational capacity of the reservoir. The classical ESNs are recovered as a
special case when σ2 is the identity function and W1, W2 reduce to scalar weights.

2. Heterogeneous Group X-ESNs for Stability: To address the sensitivity of ESNs to random
initialization, we propose Group X-ESNs: ensembles of independently initialized X-ESN units
whose outputs are aggregated to produce a stable, low-variance memory stream. Specifically,
we employ a heterogeneous group of X-ESNs, each with randomly assigned pair of activation
functions and varying dimensions, to promote diversity. This approach reduces performance
variance and improves robustness without compromising efficiency.

3. Recurrent Dual-Stream for Token Selection: We design a dual-stream architecture that combines
Group X-ESNs (for long-range, non-i.i.d. dependencies) with a short-context base TSF model
(e.g., PatchTST) trained on local, i.i.d. patterns. A cross-attention readout enables token-wise
alignment, allowing the model to selectively attend to relevant historical states. This fusion
effectively captures both persistent trends and local variations. Since the base model operates on
a fixed-length window and X-ESNs are untrained reservoirs (no backpropagation), the overall
training complexity remains linear in sequence length and constant per time step, with only the
MLP readout layer and the cross-attention combiner trained via backpropagation.

4. Standalone or Model Booster: EFNS is a modular framework designed to perform time-series
forecasting (TSF) either as a standalone model or as an enhancement for any baseline model,
regardless of its architecture. We instantiate and evaluate multiple variants: EchoSolo (a standalone
X-ESNs without any base model), EchoFormer (X-ESNs combined with PatchTST), EchoMLP
(X-ESNs paired with an MLP), X-ESNs (X-ESNs integrated with TPGN), and EchoLinear
(X-ESNs alongside DLinear). This flexibility enables the framework to adapt across diverse
modeling paradigms and datasets, consistently delivering improved performance.

Results. EFNS achieves state-of-the-art performance across a range of multivariate TSF benchmarks.
For example, on the DMV dataset, EchoFormer attains up to a 57.1% relative error reduction
compared to PatchTST, a leading Transformer-based model, as well as other state-of-the-art methods.
This demonstrates EFNS’ ability to capture deep temporal dependencies while maintaining linear
computational complexity, with performance gains that increase as the forecasting horizon extends
by leveraging the entire observed history.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

2 ECHO FLOW NETWORKS

We enhance ESNs with scalar-value embedding, group X-ESNs, and a MLP readout with cross-
attention combination. Each component is detailed below, followed by the complete algorithm.

2.1 BACKGROUND: TSF TASK AND BASE MODEL

In a rolling forecasting scenario with fixed context window k, the TSF goal is to predict future values
ût+1:t+τ from a short input sequence ut−k+1:t, here a time series dataset is denoted by u1:T with
ut ∈ RNu . TSF task is expressed as:

ût+1:t+τ = M(ut−k+1:t) (2)

Here, M(·) is a TSF base model, such as PatchTST, which serves both as a baseline to generate
ût+1:t+τ for comparison and as a component to generate û′

t+1:t+τ in Equation 9 for improvement.

2.2 SCALAR-VALUE EMBEDDING

Embedding Encoder (EE) To enhance semantic representation in time series forecasting, we adopt
SCaNE (Huang et al., 2024) to map each scalar input ut ∈ RNu into a dense vector, similar to word
embeddings. This allows semantically similar values (e.g., 0°F and 100°F in traffic prediction) to be
closer in the embedding space. The embedding process is defined as:

ht = ϵ(ut), ht ∈ RE×Nu , (3)

where ϵ(·) is the scalar-value embedding function, and E is the embedding dimension.

Embedding Restoration Decoder (ERD) After prediction, a restoration decoder maps the high-
dimensional embedding outputs û′

t+1:t+τ ∈ RENu back to the original scalar space ût+1:t+τ ∈ RNu

using a single-layer feedforward network (FFN) with RLEU activation:

ût+1:t+τ = ϵ̃(û′
t+1:t+τ) = FFN(û′

t+1:t+τ) (4)

Here, FFN denotes the one-layer feedforward decoder used for dimensionality reduction, and
û′

t+1:t+τ is the predictor output before restoring the embedding.

2.3 MATRIX-GATED COMPOSITE RANDOM ACTIVATION IN EXTENDED ESNS

To address the limited expressiveness and instability of classical ESNs, as defined in Equation 1, we
introduce Extended Echo State Networks (X-ESNs), which incorporate a novel mechanism called
Matrix-Gated Composite Random Activation (MCRA), which consists of three key elements:
matrix-valued leaky parameters, cascaded composite activations, and randomized heterogeneous
activation functions.

Matrix-Gated Leaky Integration Classical ESNs use a scalar leaky parameter α to interpolate
between the current input and previous states. We generalize this by replacing α with diagonal
matrices W1 and W2, which gate the contribution of the previous state and current input, respectively.
Unlike scalar mixing that only stretches and shrinks in the span, matrix-based gating supports a
broader class of linear transformations, including scaling, rotation, shearing, and reflection, allowing
state updates to move beyond the original span of input vectors, increasing learning capability.

Cascaded Composite Activations Specifically, we apply a pair of nonlinear functions (σ1, σ2) in a
nested manner to replace the single tanh in ESNs. This cascaded design increases representational
capacity by stacking transformations: similar to how simple LEGO blocks can be stacked to form
complex structures, this design enables neurons to approximate more complex, hierarchical dynamics.
The result is a richer, neuron-specific control over memory decay and update strength.

Randomized and Heterogeneous Nonlinearities To further increase diversity and reduce overfit-
ting, we introduce randomness into the choice of activation functions. Instead of a uniform tanh
across all neurons in ESNs, we randomly assign each X-ESNs unit a pair of nonlinearities (σ1, σ2)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

drawn from a predefined set (e.g., tanh, sigmoid, ReLU, leaky ReLU). This ensemble of het-
erogeneous reservoirs, each with a unique activation signature, allows the model to capture a broader
range of temporal dynamics and mitigates the risk of neuron inactivation or gradient vanishing. To
bound activations for numerical stability, we apply normalization (i.e., LayerNorm) and clipping.

MCRA State Update Formally, the state update in X-ESNs of Equation 2 is refined as:
xt = σ2 (W1xt−1 +W2 · Clip (σ1 (Norm (Winht + θ +Wxt−1)) , −1, 1)) , (5)

where xt ∈ RNr is the reservoir state, ht ∈ RNu is the input embedding, and Win,W,θ are
input, recurrent, and bias weights. W1 and W2 are matrix-valued leaky gates. The inner and outer
activations (σ1, σ2) are randomly selected from a set of nonlinearities. The classical ESN is recovered
when W1,W2 are scalars and (σ1, σ2) = (tanh,linear).

2.4 MLP READOUT

To enhance expressiveness, we apply an MLP readout to each X-ESNs, transforming its internal
states into fixed-dimensional, standardized representations. This nonlinear mapping captures rich
dynamics while unifying diverse X-ESNs outputs to a fixed dimension for grouping:

yt = ϕMLP(xt) = σ(W1xt + θ1), yt ∈ Rm (6)

Here, ϕMLP is a learnable nonlinear function implemented as a feedforward neural network, which
consists of one fully connected layer with a nonlinear activation function of ReLU σ(·). W1 ∈
Rm×Nr is a learnable weight matrix that maps the EFNS with different output dimensions Nr into
one unified dimension m, and θ1 ∈ Rh is the bias vector.

2.5 GROUP X-ESNS

For stability, to mitigate sensitivity to random initialization of X-ESNs state weights, we introduce
Group X-ESNs, an ensemble approach that reduces prediction variance for more stable outputs.
Specifically, we integrate the MLP readouts of multiple independently initialized Group X-ESNs
to improve stability. We consider L X-ESNs, each with distinct decay parameters and output
dimension (ρ and Nr) as in Gallicchio et al. (2017), leading to a grouped representation ot formed by
concatenating (⊕) the outputs of all X-ESNs readouts:

ot = y1
t ⊕ y2

t ⊕ . . .⊕ yL
t (7)

2.5.1 CROSS ATTENTION COMBINATION

We integrate long-term context from the group X-ESNs outputs ot (Equation 7) with short-term
context from the k-window input embeddings ht−k+1:t. This fusion uses a cross-attention operator ⊎
that both reads the group X-ESNs states relative to the task and merges them with recent short-term
inputs. Multiple cross-attention layers are applied sequentially to combine ht−k+1:t and ot:

ht−k+1:t ⊎ ot = LN

(
ot +DO

(
Softmax

(
(otW

Q)(ht−k+1:tW
K)⊤√

dk

)
(ht−k+1:tW

V)

))
(8)

Here, LN(·) denotes layer normalization (Ba et al., 2016), which standardizes activations across the
hidden dimension, and DO(·) applies the dropout, a stochastic regularization mask to the attention
output (Srivastava et al., 2014). (WQ,WK ,WV) are weights of query, key, and value, and dk
denotes the dimensionality of the keys. The fused representation, combining k-length context
ht−k+1:t with the X-ESNs states ot, is then passed into a base forecasting model Mf , such as a
Transformer-based model. The effective input length remains fixed at k, consistent with the baseline
input size in Equation 2, and is significantly smaller than the full sequence length (k ≪ T), ensuring
computational efficiency as

û′
t+1:t+τ = ϵ̃

(
Mf

(
ht−k+1:t ⊎ ot

))
. (9)

After predictions by Mf , dimensions are restored via ϵ̃ to yield the final outputs (see Equation 1).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

2.6 TRAINING ALGORITHM

Algorithm 1 Training Algorithm

Require: u1:T , Mf (·), ϵ(·), ϵ̂(·)
Ensure: Initialized Mf (·)

while epoch < epochs do
for t ∈ T do

1⃝ Embedding Encoder [Eq. 3]
for l ∈ L do

2⃝ EFNS [Eq. 5]
3⃝ MLP Readout [Eq. 6]

end for
4⃝ Group EFNS [Eq. 7]
5⃝ Joint Attention [Eq. 8]
6⃝ Base Model [Eq. 9]
7⃝ Embedding Restoration [Eq. 4]
8⃝ Huber Loss Backpropagation

end for
end while

Algorithm 1 outlines the EFNS training procedure.
The process begins with parameter initialization.
Input sequences are embedded token-wise at each
time step (Step 1). During each training step, ev-
ery X-ESNs updates its internal states over the
full context of length T , on non-i.i.d. data without
backpropagation (Step 2). A fixed MLP readout is
then applied to each X-ESNs’s state (Step 3), and
the outputs of all L X-ESNs are concatenated to
form the Group X-ESNs (Step 4), which is then
fused with the embeddings of the short context
with window size k via cross attention (Step 5),
and are fed into a base model if available (Step 6).
After that, the embeddings are restored (Step 7).
The model is trained end-to-end via backpropaga-
tion (Step 8), by minimizing the standard Huber
loss (Meyer, 2021) with details in Appendix A.

3 EXPERIMENTS

We test five EFNS instantiations without and with different base models: EchoSolo: No base model
is used; EchoFormer: Transformer-based model (PatchTST); EchoMLP: an MLP-based model
(PatchTSTMixer); EchoTPGN: the 2D TSF model (TPGN); and EchoLinear: a decomposition-
linear model (DLinear) base model, which combined the group X-ESNs at the back (see AppendixB).

3.1 EXPERIMENTAL SETTINGS

Evaluation Metrics and Datasets: We evaluate performance using Mean Squared Error (MSE) and
Mean Absolute Error (MAE) (Hastie et al., 2009), where lower values are better. Benchmarks include
representative TSF datasets: four ETT variants (ETTh1, ETTh2, ETTm1, ETTm2) (Zhou et al., 2021),
Weather and Traffic (Zeng et al., 2022a), Air Quality (AQ) (De Vito et al., 2008), and Daily Website
Visitors (DWV) (Nau, 2021). For ETT, Weather, and Traffic, preprocessing follows (Zeng et al.,
2023), while AQ and DWV use a 70/10/20 split for training, validation, and testing.

Baselines: We compare EFNS against a range of strong baselines commonly used in TSF, includ-
ing Transformer-based models such as PatchTST (Nie et al., 2022), Seg-RNN (Lin et al., 2023),
MLP-based models like PatchTSMixer (Ekambaram et al., 2023), linear projection models such as
DLinear (Zeng et al., 2023), and large pre-trained models like TimeLLM (Jin et al., 2024). The
experimental setup follows the standardized protocol in (Zeng et al., 2023) for fair comparison.

Model Parameters: We adopt the hyperparameter settings from Nie et al. (2023); Ekambaram et al.
(2023); Toner & Darlow (2024). For PatchTST and PatchTSMixer used as both baselines and base
models in EFNS, we set FFN dimension to 256, dropout to 0.2, LayerNorm for FFN normalization, a
fixed look-back window k = 336, patch length 16, stride 8, and 8 layers. For DLinear, we follow its
original configuration Toner & Darlow (2024). All models use a learning rate of 1× 10−3 as in Nie
et al. (2023). Experiments are conducted on Tesla H100 GPUs using PyTorch Paszke et al. (2019) and
HuggingFace Wolf et al. (2020). For large datasets like Weather, embeddings are optionally disabled
to reduce memory usage. Full EFNS settings are in Appendix K, and variant details in Appendix C.

3.2 EVALUATION RESULTS

Results: Table 1 shows the TSF prediction results. Statistical significance is computed by running
the same algorithm 10 times and averaging the results. Each of our EFNS realizations almost always
outperforms its corresponding baselines, on three prediction horizons h ∈ {192, 336, 720}. EchoLin-
ear outperforms DLinear, EchoMLP is better than PatchTSMixer, and EchoFormer significantly
improves over PatchTST and other baselines. Table 2 shows that EchoFormer significantly outper-

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: EFNS family models compared with baselines including relative improvements (Rel. Imp. %).

ETTh1 Dataset DMV Dataset

Model 192 336 720 192 336 720

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

DLinear 0.405 0.416 0.439 0.443 0.472 0.437 0.154 0.147 0.168 0.208 0.412 0.406
PatchTSMixer 0.400 0.433 0.426 0.457 0.433 0.469 0.138 0.123 0.183 0.226 0.395 0.381
PatchTST 0.379 0.256 0.435 0.462 0.447 0.472 0.142 0.106 0.172 0.212 0.427 0.404

EchoFormer 0.331 0.357 0.346 0.362 0.368 0.381 0.058 0.071 0.121 0.205 0.337 0.339
EchoSolo 0.391 0.399 0.420 0.459 0.441 0.466 0.117 0.104 0.166 0.231 0.393 0.385
EchoLinear 0.407 0.409 0.426 0.430 0.436 0.428 0.087 0.117 0.142 0.222 0.388 0.412
EchoMLP 0.382 0.403 0.408 0.419 0.417 0.452 0.093 0.114 0.162 0.253 0.379 0.362

Rel. Imp. % -19.3 -15.89 -19.8 -17.3 -15.0 -13.56 -57.1 -31.5 -20.1 -1.5 -14.6 -12.9

Table 2: EchoFormer outperforms TSF baselines (horizons: {96, 192, 336, 720}).

Methods EchoFormer (Ours) DLinear PatchTST PatchTsMixer Seg-RNN TimeLLM Rel. Imp. %
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

96 0.331±0.0225 0.346±0.0163 0.376 0.397 0.375 0.399 0.388 0.425 0.377 0.401 0.362 0.392 -9.2 -12.8
192 0.338±0.0143 0.357±0.0223 0.405 0.416 0.413 0.421 0.400 0.433 0.422 0.441 0.416 0.425 -16.5 -14.2
336 0.346±0.0219 0.362±0.0152 0.439 0.443 0.435 0.462 0.426 0.457 0.439 0.457 0.440 0.462 -18.8 -21.7
720 0.368±0.0227 0.381±0.0121 0.472 0.490 0.447 0.472 0.433 0.469 0.434 0.447 0.450 0.462 -15.1 -19.8
avg 0.345 0.361 0.422 0.437 0.413 0.430 0.414 0.446 0.418 0.436 0.420 0.432 -17.3 -16.6

ETTh2

96 0.273±0.0148 0.291±0.0137 0.289 0.353 0.274 0.336 0.334 0.355 0.263 0.322 0.277 0.350 3.5 -9.7
192 0.293±0.0144 0.317±0.0235 0.383 0.418 0.339 0.379 0.341 0.380 0.337 0.372 0.355 0.380 −14.1 −16.4
336 0.301±0.0222 0.321±0.0236 0.448 0.465 0.329 0.380 0.368 0.393 0.355 0.382 0.368 0.409 -8.6 -15.5
720 0.327±0.0121 0.355±0.0126 0.605 0.551 0.379 0.422 0.384 0.416 0.394 0.424 0.500 0.497 -14.8 -14.7
avg 0.298 0.363 0.431 0.446 0.298 0.322 0.414 0.427 0.337 0.375 0.385 0.398 0 -3.2

ETTm1

96 0.283±0.0214 0.322±0.0218 0.299 0.343 0.290 0.342 0.312 0.346 0.291 0.335 0.290 0.331 -2.8 -3.1
192 0.331±0.0121 0.361±0.0115 0.335 0.365 0.332 0.369 0.348 0.374 0.366 0.381 0.347 0.369 -0.5 -1.1
336 0.358±0.0142 0.372±0.0339 0.369 0.386 0.366 0.392 0.410 0.411 0.388 0.401 0.357 0.385 0.4 −3.7
720 0.401±0.0241 0.425±0.0137 0.425 0.421 0.416 0.420 0.405 0.418 0.412 0.418 0.409 0.436 -1.0 1.6
avg 0.338 0.368 0.357 0.378 0.351 0.380 0.400 0.406 0.362 0.389 0.429 0.425 -3.8 -2.7

ETTm2

96 0.180±0.0213 0.274±0.0221 0.187 0.269 0.165 0.255 0.167 0.267 0.158 0.241 0.170 0.277 13.9 12.4
192 0.196±0.0126 0.254±0.0132 0.224 0.303 0.220 0.292 0.233 0.275 0.215 0.283 0.236 0.273 -11.0 -6.7
336 0.279±0.0147 0.341±0.0139 0.281 0.342 0.285 0.329 0.305 0.339 0.281 0.317 0.276 0.388 -2.2 7.5
720 0.351±0.0115 0.383±0.0191 0.397 0.421 0.362 0.385 0.408 0.403 0.357 0.391 0.362 0.388 -2.7 -0.6
avg 0.247 0.315 0.267 0.333 0.255 0.315 0.278 0.321 0.253 0.306 0.347 0.293 -2.4 2.9

Weather

96 0.193±0.0219 0.205±0.0227 0.176 0.237 0.149 0.198 0.172 0.220 0.158 0.203 0.153 0.281 29.5 3.5
192 0.201±0.0224 0.241±0.0226 0.220 0.282 0.213 0.244 0.217 0.247 0.201 0.247 0.196 0.257 -5.7 -1.3
336 0.235±0.0322 0.257±0.0319 0.265 0.319 0.245 0.282 0.250 0.274 0.237 0.269 0.262 0.279 -0.9 -4.5
720 0.302±0.0233 0.337±0.0241 0.333 0.362 0.325 0.357 0.319 0.339 0.311 0.348 0.304 0.356 -0.7 -3.2
avg 0.230 0.257 0.248 0.300 0.235 0.264 0.259 0.287 0.226 0.264 0.271 0.334 -2.2 -2.7

Traffic

96 0.288±0.0328 0.235±0.0337 0.410 0.282 0.360 0.249 0.367 0.357 0.543 0.255 0.388 0.264 −25.0 −6.6
192 0.351±0.0331 0.256±0.0328 0.423 0.287 0.379 0.262 0.384 0.268 0.567 0.281 0.374 0.247 -7.4 -2.3
336 0.362±0.0328 0.273±0.0314 0.436 0.296 0.392 0.269 0.393 0.268 0.602 0.307 0.385 0.271 -7.7 0.1
720 0.389±0.0433 0.281±0.0423 0.466 0.315 0.432 0.286 0.435 0.286 0.671 0.481 0.430 0.288 -10.0 -1.8
avg 0.348 0.262 0.433 0.295 0.390 0.263 0.372 0.257 0.595 0.331 0.391 0.267 -11.5 -0.1

Air Quality

192 0.494±0.0299 0.472±0.0214 0.569 0.601 0.541 0.538 0.511 0.535 0.526 0.566 0.519 0.526 -3.5 -11.3
336 0.538±0.0231 0.519±0.0178 0.541 0.524 0.598 0.562 0.573 0.571 0.551 0.591 0.551 0.560 -0.4 -7.4
720 0.678±0.0315 0.632±0.0322 0.835 0.862 0.728 0.764 0.792 0.754 0.701 0.681 0.681 0.682 -0.5 -7.4
avg 0.470 0.531 0.648 0.662 0.728 0.622 0.625 0.620 0.592 0.612 0.562 0.589 -16.4 -9.9

DMV

192 0.061±0.0045 0.074±0.0071 0.154 0.147 0.142 0.106 0.138 0.123 0.135 0.117 0.149 0.113 -54.9 -30.2
336 0.133±0.0428 0.198±0.0628 0.168 0.205 0.172 0.212 0.183 0.226 0.158 0.201 0.201 0.219 -15.9 -5.3
720 0.352±0.0219 0.348±0.0351 0.412 0.406 0.427 0.404 0.395 0.381 0.418 0.355 0.388 0.411 -9.3 -2.0
avg 0.182 0.213 0.244 0.250 0.238 0.244 0.225 0.243 0.291 0.298 0.246 0.248 -28.7 -13.4

forms baseline models across most datasets in different horizons. Notably, EchoFormer achieves a
deduction of MSE on the DMV dataset from 0.138 to 0.061, i.e., -57.1% relatively.

Figure 2: MSE vs. different initializations. Group
EFNS (e.g., 10 EFNS) improve stability and error
rates over a single EFNS on ETTh1. EchoFormer
and EchoSolo are not sensitive to initialization.

Figure 3: MSE vs. EFNS numbers. Optimal EFNS
Numbers in Group EFNS converge around 10 across
datasets ETTh1, ETTh2, and Weather.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 4: MSE vs. horizon length: EchoFormer out-
performs the baseline across all horizons, with widen-
ing margins as the horizon extends, on validation set
(horizon 720 for all ablations by default).

Figure 5: Model training efficiency. EchoFormer and
EchoMLP converge more quickly and achieve lower
error rates than baselines on the ETTh1 validation set.

Table 3: Training time (min) and memory (GB).

Dataset EchoFormer EchoSolo PatchTST DLinear
min GB min GB min GB min GB

ETTh1 32 12 10 3 40 10 14 4
ETTh2 33 12 9 4 40 10 16 4
ETTm1 57 18 17 6 60 16 25 7
ETTm2 57 19 20 6 60 16 24 8
Weather 47 155 15 30 48 130 21 34
Traffic 86 503 25 68 93 453 27 88

Memory and Time Complexity Comparison:
Let Nr be the X-ESNs state size, W the number
of X-ESNs, k the short-term window, T the long-
term input length, L the number of layers, r the
compression ratio, P the patch size, and dϵ the em-
bedding dimension. The time and memory com-
plexities of X-ESNs are O(TN2

r) and O(N2
r), re-

spectively. For EchoFormer, the added cost from
PatchTST yields time complexity O

(
T 2dϵ

P 2 +NrTk
)

and memory complexity O
(

T 2dϵ

P 2 + LT 2
)

.
Despite its richer architecture, EchoFormer converges faster and achieves lower MSE than PatchTST,
as shown in Figure 5. Training time, GPU usage, and efficiency metrics are summarized in Table 3.

3.3 ABLATION STUDY

Stability of Group X-ESNs: Figure 2 compares EchoFormer and EchoSolo under grouped (10
EFNS) and single (1 EFNS) configurations. Grouped X-ESNs exhibit significantly lower error and
greater stability across runs, indicating reduced sensitivity to initialization.

Effect of Group Size: As shown in Figure 3, increasing the number of X-ESNs in the group leads to
consistent improvements in MSE, with diminishing returns beyond size 10.

Forecast Horizon Robustness: Figure 4 shows our method outperforms baselines across all predic-
tion horizons. The performance gap increases with longer horizons, demonstrating strong long-term
forecasting capabilities. Table 4: Component effectiveness on ETTh1.

Model MSE MAE
PatchTST 0.447 0.472

TPGN 0.519 0.541

EchoFormer 0.368 0.381
Without Embedding 0.465 0.490

Cross Attention → Concatenation 0.612 0.673
Cross Attention → Average 0.488 0.519

3 Level Composite 0.371 0.390
4 Level Composite 0.368 0.384

All MCRA Activation: ReLU 0.392 0.401
All MCRA Activation: Sigmoid 0.372 0.382

All MCRA Activation: tanh 0.375 0.390

1 ESN 0.681 0.657
2 1 + MLP Readout 0.627 0.606
3 2+ Group ESNs + Cross Attention 0.507 0.531
4 3+ tanh→ Random 0.482 0.539
5 4+ MCRA (EchoSolo) 0.441 0.466
6 5+ TPGN (EchoTPGN) 0.462 0.481
7 5+ PatchTST (EchoFormer) 0.368 0.381

Component Effectiveness: Table 4 reports
ablation results on ETTh1, divided into three
sections. The first shows baseline perfor-
mance of PatchTST and TPGN. The second
analyzes the impact of modifying or remov-
ing EchoFormer components. The third starts
from classic ESNs Jaeger et al. (2007) and
incrementally builds up with EFNS.

In the second section, removing scalar value
embedding and its restoration causes a sig-
nificant performance drop. Replacing cross-
attention with concatenation or averaging also
degrades results, confirming cross-attention’s
superiority in fusing multi-source information.
Increasing levels in the cascaded nonlinear ac-
tivation function yields no further gain. Replacing randomized activations in Group X-ESNswith
a single fixed function also reduces performance. Together, these results show each component
contributes uniquely and synergistically to EchoFormer’s improvement.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

The third section uses system IDs in the first column to track incremental additions starting from
classic ESNs (ID 1). The original ESN has high error, while adding an MLP readout (ID 2) reduces
MSE. Further improvements come from Group ESNs and cross-attention, showcasing the power of
the dual-stream and ensemble. Substituting tanh with randomized activations further boosts perfor-
mance. Integrating all X-ESNs components significantly lowers MSE (a 6.6% reduction). Combining
X-ESNs with a moderate backbone like TPGN improves TPGN but is worse than EchoSolo, while a
stronger backbone like PatchTST leads to the best overall performance in EchoFormer.

4 RELATED WORK

Deep Learning for TSF Recent TSF models span CNNs (e.g., MICN (Wang et al., 2023), Times-
Net (Wu et al., 2023), ModernTCN (Luo & Wang, 2024)) for local patterns; RNNs (e.g., SegRNN (Lin
et al., 2023), WITRAN (Jia et al., 2023)) for sequential modeling but prone to gradient issues; and
linear models (e.g., FITS (Xu et al., 2024), SparseTSF (Lin et al., 2024b), CycleNet (Lin et al., 2024a))
which are efficient but less expressive. Transformers (e.g., PatchTST (Nie, 2023), TiDE (Huang,
2023), FiLM (Wang, 2023), BasisFormer (Zhou, 2023), iTransformer (Liu et al., 2024), Leddam (Yu
et al., 2024)) achieve high accuracy but with high cost. PatchTST (Nie, 2023) and SegRNN (Lin
et al., 2023) perform well but struggle with fine-grained or irregular inputs (Nie, 2023; Lin et al.,
2023). TimeKAN (Huang et al., 2025) prioritizes efficiency, while TPGN (Jia et al., 2024) risks
future leakage (Chi, 2024). EFNS mitigates these by learning full history without backpropagation
through time, combining accuracy with scalability.

ESN Efficiency and Stability ESNs avoid vanishing gradients by using fixed recurrent
weights (Jaeger, 2001), requiring no backpropagation through time. They offer constant mem-
ory and optimization costs (O(1)) via lightweight readouts. Approaches such as spectral radius
tuning (Lukoševičius & Jaeger, 2009), regularization (Rodan & Tiňo, 2011), and reservoir optimiza-
tion (Lu et al., 2017) aim to stabilize ESNs but often need careful tuning. EFNS instead aggregates
multiple randomly initialized Group X-ESNs and integrates them via cross-attention—more adaptive
than prior parallel reservoirs (Sun et al., 2024; Casanova et al., 2023; Rodan & Tino, 2011). Fur-
thermore, ESNs suffer from initialization sensitivity and limited readout expressiveness. Prior work
explores spectral tuning (Jaeger, 2001; Rodan & Tiňo, 2011), nonlinear readouts (Gauthier et al.,
2021a), attention (Ma et al., 2022), and graph-based methods (Liao, 2023). EFNS unifies ESNs with
a dual-stream architecture and attention-based readout for improved accuracy and adaptability.

Expressive Readouts and Modular Architectures Classic ESNs use linear readouts (Jaeger et al.,
2007; Jaeger, 2001), while recent works explore quadratic (Gauthier et al., 2021b), kernel (Hermans
& Schrauwen, 2010), or attention-based mappings (Köster & Anandkumar, 2025), often trading
efficiency for expressiveness. EFNS outperforms in both accuracy and efficiency. Additionally,
although ESNs have been embedded into neural architectures (Sun et al., 2024; Xu et al., 2025;
Casanova et al., 2023; Shen et al., 2020), they typically serve fixed roles; EFNS’ cross-attention
readout enables flexible model compositions, yielding multiple effective variants.

5 CONCLUSION

ECHO FLOW NETWORKS is a powerful and flexible framework for capturing long-term temporal
dependencies, consistently improving performance both standalone and as an enhancer to existing
TSF models. This work is the first to demonstrate that ESNs can enhance Transformer-based TSF
models, highlighting a promising direction for efficient, scalable sequence modeling. We hope this
advances future research on ESN-based architectures in accuracy and scalability.

6 IMPACT STATEMENT

This work improves TSF with social values.

Reproducibility statement EFNS’ source code is in the supplementary materials. Experimental
details and dataset info are in Section 5 and Appendix K.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Erik Bollt. On explaining the surprising success of reservoir computing forecaster of chaos? the
universal machine learning dynamical system with contrast to var and dmd. Chaos: An Interdisci-
plinary Journal of Nonlinear Science, 31(1), 2021.

Anastasiia Borovykh, Sander Bohte, and Cornelis W Oosterlee. Transformer-based models for time
series forecasting: A survey. arXiv preprint arXiv:2202.07048, 2022.

Maxime Casanova, Barbara Dalena, Luca Bonaventura, and Massimo Giovannozzi. Ensemble
reservoir computing for dynamical systems: Prediction of phase-space stable region for hadron
storage rings. arXiv preprint arXiv:2301.06786, 2023.

Ling Chen, Donghui Chen, Zongjiang Shang, Binqing Wu, Cen Zheng, Bo Wen, and Wei Zhang.
Multi-scale adaptive graph neural network for multivariate time series forecasting. IEEE Transac-
tions on Knowledge and Data Engineering, 35(10):10748–10761, 2023.

et al. Chi. Tpgn: The rnn’s new successor for long-range time series forecasting. ArXiv preprint
arXiv:2401.xxxxx, 2024.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder for
statistical machine translation. In Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pp. 1724–1734, 2014.

S. De Vito, E. Massera, M. Piga, L. Martinotto, and G. Di Francia. On field calibration of
an electronic nose for benzene estimation in an urban pollution monitoring scenario. Sen-
sors and Actuators B: Chemical, 129(2):750–757, 2008. ISSN 0925-4005. doi: https://doi.
org/10.1016/j.snb.2007.09.060. URL https://www.sciencedirect.com/science/
article/pii/S0925400507007691.

Vijay Ekambaram, Arindam Jati, Nam Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam.
Tsmixer: Lightweight mlp-mixer model for multivariate time series forecasting. In Proceedings
of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD ’23, pp.
459–469. ACM, August 2023. doi: 10.1145/3580305.3599533. URL http://dx.doi.org/
10.1145/3580305.3599533.

Claudio Gallicchio, Alessio Micheli, and Luca Pedrelli. Deep reservoir computing: A critical
experimental analysis. Neurocomputing, 268:87–99, 2017.

Daniel J. Gauthier, Wendson A. S. Barbosa, Erik Bollt, and Aaron Griffith. Next generation reservoir
computing. In Nature Communications, 2021a.

Daniel J Gauthier, Erik Bollt, Aaron Griffith, and Wendson AS Barbosa. Next generation reservoir
computing. Nature communications, 12(1):1–8, 2021b.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. Springer, 2009.

Michiel Hermans and Benjamin Schrauwen. Training readout in reservoir computing with kernel
methods. In ESANN, 2010.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Chun-Kai Huang, Yi-Hsien Hsieh, Ta-Jung Chien, Li-Cheng Chien, Shao-Hua Sun, Tung-Hung
Su, Jia-Horng Kao, and Che Lin. Scalable numerical embeddings for multivariate time series:
Enhancing healthcare data representation learning, 2024. URL https://arxiv.org/abs/
2405.16557.

10

https://www.sciencedirect.com/science/article/pii/S0925400507007691
https://www.sciencedirect.com/science/article/pii/S0925400507007691
http://dx.doi.org/10.1145/3580305.3599533
http://dx.doi.org/10.1145/3580305.3599533
https://arxiv.org/abs/2405.16557
https://arxiv.org/abs/2405.16557

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

et al. Huang. Tide: Time-series decomposition enhanced transformer. ArXiv preprint
arXiv:2305.xxxxx, 2023.

S. Huang, Z. Zhao, C. Li, and L. Bai. Timekan: Kan-based frequency decomposition learning
architecture for long-term time series forecasting. In The Thirteenth International Conference on
Learning Representations, 2025.

Herbert Jaeger. Echo state network. German National Research Center for Information Technology
GMD Technical Report, 148, 2001.

Herbert Jaeger, Mantas Lukoševičius, Dan Popovici, and Udo Siewert. Optimization and applications
of echo state networks with leaky-integrator neurons. Neural networks, 20(3):335–352, 2007.

Y. Jia, Y. Lin, X. Hao, Y. Lin, S. Guo, and H. Wan. Witran: Water-wave information transmission
and recurrent acceleration network for long-range time series forecasting. In NeurIPS, 2023.

Y. Jia, Y. Lin, J. Yu, S. Wang, T. Liu, and H. Wan. Pgn: The rnn’s new successor is effective for
long-range time series forecasting. In NeurIPS, 2024.

Ming Jin, Shiyu Wang, Lintao Ma, Zhixuan Chu, James Y. Zhang, Xiaoming Shi, Pin-Yu Chen,
Yuxuan Liang, Yuan-Fang Li, Shirui Pan, and Qingsong Wen. Time-LLM: Time series forecasting
by reprogramming large language models. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=Unb5CVPtae.

Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. arXiv
preprint arXiv:2001.04451, 2020.

Urs Köster and Anima Anandkumar. Attention-enhanced reservoir computing as a multiple dynamical
system approximator. arXiv preprint arXiv:2505.05852, 2025.

Y. Li and X. Wang. Enhancing time series transformers with frozen encoders. Proceedings of ...,
2022.

et al. Liao. Transportation flow prediction based on graph attention echo state network. In CNIOT
2023: 4th Int’l Conf. on Computing, Networks and IoT, 2023.

Bryan Lim and Stefan Zohren. Time-series forecasting with deep learning: a survey. Philosophical
Transactions of the Royal Society A, 379(2194), 2021.

S. Lin, W. Lin, W. Wu, F. Zhao, R. Mo, and H. Zhang. Segrnn: Segment recurrent neural network for
long-term time series forecasting. arXiv preprint arXiv:2308.11200, 2023.

S. Lin, W. Lin, X. Hu, W. Wu, R. Mo, and H. Zhong. Cyclenet: Enhancing time series forecasting
through modeling periodic patterns. In NeurIPS, 2024a.

S. Lin, W. Lin, W. Wu, H. Chen, and J. Yang. Sparsetsf: Modeling long-term time series forecasting
with 1k parameters. In Proceedings of the 41st International Conference on Machine Learning,
2024b.

Y. Liu, T. Hu, H. Zhang, H. Wu, S. Wang, L. Ma, and M. Long. itransformer: Inverted transformers
are effective for time series forecasting. In The Twelfth International Conference on Learning
Representations, 2024.

Zhen Lu, Jaideep Pathak, Brian Hunt, Michelle Girvan, and Edward Ott. Reservoir observers:
Model-free inference of unmeasured variables in chaotic systems. Chaos: An Interdisciplinary
Journal of Nonlinear Science, 27(4):041102, 2017.

Mantas Lukoševičius and Herbert Jaeger. Reservoir computing approaches to recurrent neural
network training. Computer science review, 3(3):127–149, 2009.

D. Luo and X. Wang. Moderntcn: A modern pure convolution structure for general time series
analysis. In The Twelfth International Conference on Learning Representations, 2024.

Chao Ma, Yikai Hou, Xiang Li, Yinggang Sun, and Haining Yu. Long input sequence network for
long time series forecasting. arXiv preprint arXiv:2407.15869, 2024.

11

https://openreview.net/forum?id=Unb5CVPtae

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Qianli Ma, Enhuan Chen, et al. Multiscale echo self-attention memory network for multivariate time
series classification. Neurocomputing, 2022.

Gregory P Meyer. An alternative probabilistic interpretation of the huber loss. In Proceedings of the
ieee/cvf conference on computer vision and pattern recognition, pp. 5261–5269, 2021.

Bob Nau. Daily website visitors. Kaggle, 2021. URL https://www.kaggle.com/
datasets/bobnau/daily-website-visitors.

et al. Nie. Patchtst: Time-series transformer with patch aggregation. In ICML, 2023.

Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64
words: Long-term forecasting with transformers. arXiv preprint arXiv:2211.14730, 2022.

Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth
64 words: Long-term forecasting with transformers, 2023. URL https://arxiv.org/abs/
2211.14730.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sainbayar Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché Buc, E. Fox,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32, pp. 8024–
8035. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper/
2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf.

Ali Rodan and Peter Tiňo. Minimum complexity echo state network. IEEE Transactions on Neural
Networks, 22(1):131–144, 2011.

Aljoša Rodan and Peter Tino. Ensemble echo state networks for stability prediction in complex
systems. In Proceedings of the 2011 International Joint Conference on Neural Networks (IJCNN),
pp. 3135–3141. IEEE, 2011. doi: 10.1109/IJCNN.2011.6033791.

Sheng Shen, Alexei Baevski, Ari S Morcos, Kurt Keutzer, Michael Auli, and Douwe Kiela. Reservoir
transformers. arXiv preprint arXiv:2012.15045, 2020.

X. Song, Y. Li, and M. Wang. Patchtsmixer: Efficient time series forecasting with patch-based mixer.
arXiv preprint arXiv:2301.XXXX, 2023.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

Jingyu Sun, Lixiang Li, Haipeng Peng, and Shengyu Liu. Multidimensional nonlinearity time series
forecasting based on multi-reservoir echo state network. In Advances in Nonlinear Dynamics,
Volume III, ICNDA, pp. 81–90. Springer, Cham, 2024.

Peter Tiňo, Barbara Hammer, and Mikael Bodén. Markovian bias of neural-based architectures with
feedback connections. In Perspectives of neural-symbolic integration, pp. 95–133. Springer, 2007.

William Toner and Luke Darlow. An analysis of linear time series forecasting models, 2024. URL
https://arxiv.org/abs/2403.14587.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Pantelis-Rafail Vlachas, Jaideep Pathak, Brian R Hunt, Themistoklis P Sapsis, Michelle Girvan,
Edward Ott, and Petros Koumoutsakos. Backpropagation algorithms and reservoir computing
in recurrent neural networks for the forecasting of complex spatiotemporal dynamics. Neural
Networks, 126:191–217, 2020.

J. von Oswald et al. Meta-learning for neural networks: A survey. In ICML Workshop, 2019.

12

https://www.kaggle.com/datasets/bobnau/daily-website-visitors
https://www.kaggle.com/datasets/bobnau/daily-website-visitors
https://arxiv.org/abs/2211.14730
https://arxiv.org/abs/2211.14730
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://arxiv.org/abs/2403.14587

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

et al. Wang. Film: Frequency-integrated linear modeling for time series forecasting. ArXiv preprint
arXiv:2306.xxxxx, 2023.

H. Wang, J. Peng, F. Huang, J. Wang, J. Chen, and Y. Xiao. Micn: Multi-scale local and global
context modeling for long-term series forecasting. In The Eleventh International Conference on
Learning Representations, 2023.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, R’emi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, and Patrick
von Platen. Transformers: State-of-the-art natural language processing. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp.
38–45, Online, October 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.
emnlp-demos.6. URL https://aclanthology.org/2020.emnlp-demos.6.

et al. Wu, Z. Temporal pattern graph network for time series forecasting. NeurIPS, 2023a.

et al. Wu, Z. Timegpt: Foundation models for time series forecasting. arXiv preprint
arXiv:2303.XXXX, 2023b.

H. Wu, T. Hu, Y. Liu, H. Zhou, J. Wang, and M. Long. Timesnet: Temporal 2d-variation modeling for
general time series analysis. In The Eleventh International Conference on Learning Representations,
2023.

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition transformers
with auto-correlation for long-term series forecasting, 2022. URL https://arxiv.org/abs/
2106.13008.

Yinhao Xu, A. Gottwald, George, and Zdenka Kuncic. Dynamic reservoir computing with physical
neuromorphic networks. arXiv preprint arXiv:2505.16813, 2025.

Z. Xu, A. Zeng, and Q. Xu. Fits: Modeling time series with 10k parameters. In The Twelfth
International Conference on Learning Representations, 2024.

G. Yu, J. Zou, X. Hu, A. I. Aviles-Rivero, J. Qin, and S. Wang. Revitalizing multivariate time series
forecasting: Learnable decomposition with inter-series dependencies and intra-series variations
modeling. In Proceedings of the 41st International Conference on Machine Learning, 2024.

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
forecasting? arXiv preprint arXiv:2205.13504, 2022a.

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
forecasting? In Proceedings of the AAAI conference on artificial intelligence, volume 37, pp.
11121–11128, 2023.

Shun Zeng, Zhongkai Li, Zhikang Zhang, Wenxuan Liu, Xin Han, and Jian Ma. Dlinear: A simple
yet effective baseline for long-term time series forecasting. In Advances in Neural Information
Processing Systems (NeurIPS), 2022b.

et al. Zhou. Basisformer: A transformer with basis decomposition for time series. ArXiv preprint
arXiv:2307.xxxxx, 2023.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings
of the AAAI conference on artificial intelligence, pp. 11106–11115, 2021.

13

https://aclanthology.org/2020.emnlp-demos.6
https://arxiv.org/abs/2106.13008
https://arxiv.org/abs/2106.13008

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Appendices
A TRAINING LOSS

Our loss function (Meyer, 2021) is as follows:

L(ūt+1:t+τ , ût+1:t+τ) =
1

τ

t+τ∑
i=t+1

ℓ(ūi, ûi) (10)

ℓ(ūi, ûi) =

{
1
2 (ūi − ûi)

2, if |ūi − ûi| ≤ δ

δ
(
|ūi − ûi| − 1

2δ
)
, otherwise

Here, δ sets the differentiability threshold; ūi is the label and ûi the prediction at time i.

As an example, we illustrate how X-ESNs outputs are paired with embedded inputs when the
look-back window is set to k = 2. At each step, the X-ESNs state is updated by incorporating the
current input ht into the previous state xt−1, yielding the new state xt. For instance, x1 is initialized
from h1, x2 is obtained by reading h2 into x1, and x3 is obtained by reading h3 into x2. With k = 2,
future predictions û4:4+τ are generated via cross-attention between step-3 states (x3) and the inputs
h2:3.

For the next time step, we read the h4 value into step 3’s states and generate step 4’s states. By using
the cross attention between step 4’s states after linear transformation and h3:4, we can make our
future prediction û5:5+τ .

B ECHO FLOW NETWORKS MODEL ARCHITECTURES WITH FRONT AND
END COMBINER

Figure 6: ECHO FLOW NETWORKS Models Structure. The components in red are trainable, and those in blue
are frozen. Meanwhile, the Green arrows for Reservoirs represent the reservoir state updating process, current
reservoir state will be one input for the Reservoir in the next time step. The blue and pink arrow represent the
Front-end (Front) and Back-end Combiner.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

C ECHO FLOW NETWORKS FAMILY DESCRIPTION

• EchoSolo: EchoSolo use the standalone group X-ESNs as a TSF predictor, consisting of
the Scaler-Value Embedding, Group X-ESNs and Front-end (Front) Combiner. EchoSolo
uses a Front-end (Front) Combiner, combining the X-ESNs output with the actual time
series input. Then the outputs are fed into the Embedding Restoration Decoder to restore
their shape back to the input shape before the Scaler-Value Embedding to generate the final
prediction outputs.

• EchoFormer: EchoFormer combines Group X-ESNs and the Transformer-based
PatchTST TSF model. Specifically, EchoFormer consists the Scalar-Value Embedding,
Group X-ESNs and Front-end (Front) Combiner. Following Equation 8, then the results
from the Front-end (Front) Combiner are fed into a PatchTST model following the setting
pointed in the Model Parameters section. Then, the outputs of the PatchTST model are feed
into the Embedding Restoration Decoder to shift the dimension of these outputs back into
their original input dimension to generate the final prediction outputs.

• EchoMLP: EchoMLP combines Group X-ESNs and MLP-based PatchTSTMixer. Specifi-
cally, EchoMLP also include the Scalar-Value Embedding, Group X-ESNs and Front-end
(Front) Combiner, then the results from the Front-end (Front) Combiner are fed into a
PatchTSMixer model following the settings in the Model Parameters section. In the end,
the PatcHTSMixer model predictions are shifted by Embedding Restoration Decoder to the
original input shapes and generate the final outputs.

• EchoLinear: EchoLinear combines Group X-ESNs with decomposition and linear model-
ing method of DLinear. Unlike previous models, EchoLinear model applied the Back-end
(Back) Combiner, the time series inputs first go through the Scaler-Value Embedding layer
to expand the dimension of the inputs, then the embedded inputs are fed into the Dlinear
model to generate the time series predictions. These predictions from Dlinear model are then
corrected and improved by the X-ESNs outputs through the Back-end (Back) Combiner
explained in Equation 8. The Back-end (Back) Combiner here effectively injects long-range
dependencies into Dlinear model’s outputs. Finally, the Embedding Restoration Decoder
reconstructs the combined high-dimensional results back to the original prediction space
and generate the final predictions.

• EchoTPGN: EchoTPGN integrates an Extented Echo State Network (EFNS) with a
convolutional network-based TPGN model. Similar to EchoLinear, we employ the Back-
end (Back) Combiner for TPGN. However, to maintain the effectiveness of the convolutional
layers within TPGN, the model inputs are fed directly to TPGN without scaler values
embedding. The future predictions generated by TPGN are then combined with the group
X-ESNs results via cross-attention layers, stabilizing the overall predictions. Crucially,
EchoTPGN preserves the original input shape and structure required by the TPGN model,
maximizing the utility of its internal convolutional layers.

D FRONT AND BACK COMBINER

For cross-attention readout, we consider two distinct settings. For neural network-based base models,
such as PatchTST, we employ a front combiner to leverage the features learned by the X-ESNs groups.
In contrast, frequency analytical base models like DLinear, we use a back combiner that directly
exploits the inherent structure of the input data to extract features, as follows:

û′
t+1:t+τ =

ϵ̃
(
Mf

(
ht−k+1:t ⊎ ot

))
Front

ϵ̃
(
Mb

(
ht−k+1:t

)
⊎ ot

)
Back

(11)

Front We use cross attention to combine ⊎ the embedded input ht−k+1:t and the group X-ESNs out-
put ot and then feed into the base model like PatchTST and generate the prediction û′

t+1:t+τ through:

û′
t+1:t+τ = ϵ̃

(
Mf

(
ht−k+1:t ⊎ ot

))
(12)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

The resulting effective input size to the base model is the same as the baseline input size as in the
baseline model, which is significantly smaller than the all-time history length, k ≪ T .

Back Unlike the front combiner, the back combiner integrates the output from the base model like
Dlinear, with the Group X-ESNsstates ot following:

û′
t+1:t+τ = ϵ̃

(
Mb

(
ht−k+1:t

)
⊎ ot

)
(13)

The back combiner is designed especially for decomposition-based models like Dlinear etc....

Table 5: Addtional Component Ablation Study

Models MSE MAE

EchoFormer 0.368 0.381
MSE as loss function 0.362 0.395
with Leaky value α 0.372 0.387

E LEAKY WEIGHTS AND VALUES COMPARISON

Table 5 also shows that changing the leaky value mechanism to the leaky weights mechanism yields
significant improvements in our model, from about 0.372 to about 0.368.

F LOSS FUNCTION COMPARISON

Table 5 shows that although using MSE as a loss function can reach a slightly lower MSE level, the
MAE performance is not ideal compared to using Huber loss as a loss function, which effectively
ensures the convergence of both MAE and MSE during training.

G EXTENDED ECHO STATE NETWORK SIZE ANALYSIS

Our optimized X-ESNs state size is (100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150) and the
number of X-ESNs is 10 as in Figure 7 and Figure 3 for all ECHO FLOW NETWORKS family
models. The optimized spectral radius values are (0.9, 0.85, 0.80, 0.75, 0.7, 0.65, 0.6, 0.55, 0.5, 0.45)
for each X-ESNs in the group.

Figure 7: MSE vs. X-ESNs size.

Figure 7 shows that X-ESNs size significantly affects performance. Testing sizes from 50 to 100
reveals an optimal range of 100–150, roughly 0.8 ∼ 1.0× E. Smaller X-ESNs lack capacity; larger
ones overfit. Proportional sizing to the embedding dimension is key for stable learning.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 6: Detailed hyperparameter settings for the group X-ESNs

X-ESNs ID X-ESNs Size Spectral Radius Sparsity MCRA
X-ESNs-1 100 0.90 0.60 Tanh
X-ESNs-2 105 0.85 0.55 Sigmoid
X-ESNs-3 110 0.80 0.50 Relu
X-ESNs-4 115 0.75 0.45 Tanh
X-ESNs-5 120 0.70 0.40 Sigmoid
X-ESNs-6 125 0.65 0.35 Relu
X-ESNs-7 130 0.60 0.30 Tanh
X-ESNs-8 135 0.55 0.25 Sigmoid
X-ESNs-9 140 0.50 0.20 Relu
X-ESNs-10 145 0.45 0.15 Tanh

H COMPLEXITY RANKING OF TIME SERIES FORECASTING METHODS

Table 7: Complexity of time series forecasting methods with theoretical training, practical training (frozen
parts), inference, and memory costs. RNN (LSTM/GRU) Hochreiter & Schmidhuber (1997); Cho et al. (2014)
Transfer Learning (Frozen Base) Borovykh et al. (2022). Meta-Learning (HyperNet) von Oswald et al. (2019).
Foundation Model + Adapter (TimeGPT) Wu (2023b). Frozen Transformer Encoder Li & Wang (2022)

.
Rank Method Trainable Part Training Time Complexity Practical Training Time Inference Time

(full model) (frozen parts)

1 ESN Jaeger (2001) Output layer only O(N2T +N3) Same as full O(NT)

2 DLinear Zeng et al. (2022b) Entire model O(DTB) Same as full O(DT)

3 RNN (LSTM/GRU) Entire model O(DTB) Same as full O(DT)

4 Transfer Learning (Frozen Base) Head only O(DTB) O(DheadTB) O(L2H)

5 PatchTSMixer Song et al. (2023) Entire mixer O(DTB) Same as full O(DT)

6 PatchTST Nie et al. (2022) Entire transformer O(L2HB) Same as full O(L2H)

7 Frozen Transformer Encoder Head only O(DheadTB) ≈ 0 (frozen encoder) O(L2H)

8 Meta-Learning (HyperNet) Meta-network O(DmetaTBM) Same as full O(DgeneratedT)

9 TPGN Wu (2023a) Entire GNN + temporal layers High (graph conv + temporal layers) Same as full Moderate-High

10 TimeGPT) Adapter/head only O(DadapterTB) ≈ 0 (frozen backbone) O(L2H)

Memory Complexity ≈ weights + activations + inputs; typically O(model size + L · dmodel) for deep models

We show complexity in theory in Table 7 with following notations:

• Theoretical training time complexity: Cost when training all trainable parameters.

• Practical training time: Cost when no network part is trained or only small heads/adapters
are trained (frozen backbone).

• Inference time complexity: Cost for forward pass to produce predictions.

• Memory complexity: RAM/GPU memory use to store weights, activations, and inputs.

The variable definitions are as follows:

• T : length of the time series (sequence length)

• B: batch size during training

• L: input context length or window size (for transformers and patch models)

• H: number of layers in deep models (e.g., transformer layers)

• N : number of neurons in the reservoir (for ESN)

• D: number of trainable parameters in a model or specific module (head, adapter, etc.)

• M : number of tasks or meta-learning episodes

• dmodel: model hidden dimension size (transformer embedding dimension)

Below are details of each method:

• ESN trains only the output layer, making both training and inference efficient.

• DLinear and RNN train the entire network, so practical training is equal to theoretical.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

• Transfer learning freezes the backbone and trains a small head, reducing practical training
time.

• Frozen Transformer Encoder and Foundation Models typically have near-zero training
cost since the backbone is frozen and only adapters or heads are trained.

• Meta-learning requires expensive meta-training but fast adaptation at inference.
• TPGN fully trains GNN + temporal components, so practical training is as costly as

theoretical.

I COMPLEXITY ANALYSIS

Model Memory Time
Transformer O(L2 + Ld) O(T 2dϵ)

PatchTST O(L2

P2 + Ld
P

) O(T
2dϵ
P2)

Informer O(Ld logL) O(Tdϵ log T)

Autoformer O(L2 + Ld) T 2dϵ
Reformer O(Ld logL) O(Tdϵ log T)

RNN O(Ld2) O(Td2ϵ)

ESN O(N2
r) O(TN2

r)

Echoformer O(L2

P2 + Ld
P

+kNrL)

O(T
2dϵ
p2

+Nrk2)

Table 8: Memory and time complexity comparison.

Table 9: Per-epoch Training Efficiency comparison

Models Training time per Epoch Parameters Disk Usages

PatchTST 1.46 min/epoch 85,169 380GB
EchoFormer 3.24 min/epoch 103,720 407GB
TPGN 4.72 min/epoch 3,004,495 550GB

In Table 8, we compare our methods with several other baseline models on the memory (cache)
footprint and time complexity of different models, and the notations are as follows. Nr is the
X-ESNs states output dimension; L is the number of X-ESNs in the group X-ESNs ; k is the
short-term context window length; T is the long-term context total input length; ly is the number
of layers; H is the number of attention heads; c is the Compressive Transformer memory size; r is
the compression ratio; p is the number of soft-prompt summary vectors; v is the summary vector
accumulation steps; s is the kernel size; P is the patch size; dϵ is the embedding model dimension;
dk is the dimension of keys in attention; and dv is the dimension of values in attention. The
baselines include PatchTST Nie et al. (2023) which reduces sequence length via patches, significantly
lowering complexity; Informer Zhou et al. (2021) which uses ProbSparse self-attention, suitable
for long sequences; AutoformerWu et al. (2022) which introduces auto-correlation mechanism, but
the attention remains O(L2); Reformer Kitaev et al. (2020) which uses LSH to reduce attention
computation complexity; and RNN model which computes multi-variants time series step-by-step,
holding low complexity but struggles with long-range dependencies. Since we use PatchTST as our
base-model, the memory complexity and time complexity of EchoFormer is O((T/p)2 ·dϵ+Nr ·k2)
and O((T/p)2 ·dϵ+L ·T 2) which looks similar with other Transformer-based model with additional
memory and time required for tracking, computing and using X-ESNs states.
The specific training time, GPU usage and efficiency is shown in Table 3, Figure 15 and Figure 9.
Although EchoFormer’s structure is more complex than PatchTST, our experiments demonstrate its
faster convergence rate. While requiring marginally more time per epoch, EchoFormer achieves
significantly greater loss reduction compared to baseline models (Figure 15). Consequently, despite
slightly higher GPU memory requirements, the total training time remains comparable to or shorter
than existing approaches.

J VARIABLE DESCRIPTIONS

We have described the used variables and math notations in Table 10.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Variable Description
M(.) Transformer model
R(.) Deep X-ESNs computing
ut Input at t time steps
xt X-ESNs state at t time steps
yt Linear output of X-ESNs
ht Embedding of time steps
ot Ensembling of group X-ESNs
T Total time input length
k Look back window
Nr X-ESNs size
Nu X-ESNs input size
m X-ESNs output size
L Number of X-ESNs in Group
τ Forecasting horizons
dϵ Model dimension
dk Dimension of key in attention
dv Dimension of key in attention
c Compressive Transformer memory size
r Compression ratio
p Number of soft-prompt summary vectors
s Kernel size
P Patch size
ϕMLP MLP readout layer
W1 and W2 learnable diagonal matrices for X-ESNs
Φ Transformer’s learnable parameters
Wq Queries weights
Wv Values weights
Wk Keys weights
Win Input-to-X-ESNs weight matrix
W X-ESNs weight matrix
θ Bias-to-X-ESNs weight
Wout X-ESNs -to-readout weight matrix
θout Bias-to-readout weight

Table 10: Descriptions of all variables used in this paper

K X-ESNS SETTINGS

Here we list the X-ESNs settings for all 10 different X-ESNs in Table6.

Figure 8: Air Quality (Tin Oxide
Readings).

Figure 9: ETTm1 (Low UseFul
Load).

Figure 10: ETTm2 (Low UseLess
Load).

Output Examples: Figure 8, Figure 9, and Figure 10 represent examples on the predicted signal
versus the original signal. The cyan line is ground truth; the red line is the prediction using RT; and
the blue line is the prediction using Transformer as comparison.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

L ADDITIONAL COMPONENT ABLATION STUDY

Table 11: Addtional Component Ablation Study

Models MSE MAE

ESN 0.681 0.657
with MLP readout 0.627 0.606
with Leaky Matrices 0.621 0.598
with Group on sample 0.619 0.592
with Diverse MCRA Function 0.608 0.575
with Embedding σ 0.554 0.527
with Cross-attention combination ⊎ (EchoSolo) 0.441 0.466
with Basemodel (EchoFormer) 0.368 0.381

M CHAOTIC DATASET: LORENZ EXTRACTOR

Figure 11: Lorenz with DLinear. Figure 12: Lorenz with PatchTST. Figure 13: Lorenz with ECHO FLOW
NETWORKS .

Figure 14: MSE vs. history length. Figure 15: MSE vs. time.

20

	Introduction
	Echo Flow Networks
	Background: TSF Task and Base Model
	Scalar-Value Embedding
	Matrix-Gated Composite Random Activation in Extended ESNs
	MLP Readout
	Group X-ESNs
	Cross Attention Combination

	Training Algorithm

	Experiments
	Experimental Settings
	Evaluation Results
	Ablation Study

	Related Work
	Conclusion
	Impact Statement
	Appendices
	Training Loss
	Echo Flow Networks Model Architectures with Front and End Combiner
	Echo Flow Networks Family Description
	Front and Back Combiner
	Leaky Weights and values Comparison
	Loss Function Comparison
	Extended Echo State Network Size analysis
	Complexity Ranking of Time Series Forecasting Methods
	Complexity Analysis
	Variable Descriptions
	X-ESNs Settings
	Additional Component Ablation Study
	Chaotic Dataset: Lorenz Extractor

