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Abstract

Large Language Models (LLMs) perform well across various natural language
processing (NLP) tasks. However, the inference for extensive text generation faces
challenges due to the significant memory demands of the key-value (KV) cache,
which scales with sequence length. In this paper, we introduce a novel, bandwidth-
efficient method for managing the KV cache. Utilizing learning-based techniques,
our method predicts and retrieves only the essential KV entries, thereby eliminating
the need for comprehensive KV pair transfers. Distinct from previous approaches,
our method decouples the prediction phase from the computation phases by stor-
ing low-rank Keys in HBM, drastically reducing bandwidth consumption while
minimally impacting memory usage and maintaining accuracy.

1 Introduction

Large Language Models (LLMs) have demonstrated state-of-the-art performance across various
natural language processing (NLP) tasks, such as question-answering (QA) [16, 31], summarization
[12, 29], and code completion [22, 18], often achieving human-like levels of comprehension and
generation. One of the key components in the model architecture of LLMs is Key-Value (KV) Cache
[15], which stores previous keys and values in memory. This mechanism bypasses the need to
recompute these KV states in future decoding steps, significantly reducing computational cost and
enhancing the overall speed of the inference process.

While the KV cache is crucial for improving efficiency in LLMs, it also introduces significant
challenges when processing requests with long contexts. Due to the auto-regressive nature of LLMs,
generating a single token needs reading the entire KV cache. However, unlike model weights, which
remain constant, the KV cache size scales with the sequence length, often consuming more memory
capacity than the model weights themselves [11]. This scalability issue becomes particularly evident
during inference, as depicted in Figure 1 left, as the sequence length extends, the linear increase in
the size of the KV cache brings pressure to memory capacity and degrades inference performance.

Meanwhile, modern inference systems often allow offloading the KV cache to the CPU’s host memory,
enabling the handling of longer contexts beyond the GPU’s memory capacity [20, 1]. However,
CPU memory scalability is inadequate to support the expanding demands of the KV cache. For
example, when conducting inference with the Llama3.1 405B model [4], at a batch size of 128
and a sequence length of 8192, the KV cache size approaches approximately 4TB, highlighting
significant scalability challenges. In this scenario, Compute Express Link (CXL) memory technology
[7] offers a solution by providing connections between CPUs and external memory devices like
memory expanders. Nevertheless, the bandwidth limitations of the CXL memory pool can struggle
to meet the demands of frequently accessing large volumes of KV cache, which may significantly
increase inference latency.
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Figure 1: (Left) Breakdown of Inference Latency on Llama2-7B [25]. (Right) Illustration of three
different methods to alleviate bandwidth pressure: a) Token eviction, as used in H2O [30] and
StreamingLLM [27], which may lead to information loss due to permanent token removal; b)
Bandwidth (BW)-efficient methods, such as SparQ [17], which perform selective retrieval of KV
pairs from the KV cache and need to copy a K cache; and c) Our method, which decouples the
screening and scoring processes by storing low-rank Keys in HBM, minimizing bandwidth pressure.

One strategy to mitigate this issue involves reducing the number of stored KV pairs, with token
eviction as a notable technique [30, 13, 27, 6]. Although this method can decrease the KV cache
capacity, it assumes a uniform attention pattern across all tokens, potentially leading to significant
information loss, as depicted on the right in Figure 1 right. With the help of CXL memory, kv token
eviction seems unnecessary. Alternatively, another approach keeps KV cache intact and focuses on
selecting only the most critical KV pairs to reduce data transfer [17, 23], aiming to maintain accuracy.
While theoretically promising, these methods frequently require reloading parts of KV pairs from the
KV cache to compute approximate attention, and for SparQ [17], it also needs to store a copy of Key
cache, which may not deliver the expected speed improvements in real-world applications [17].

To develop a method that is both effective and efficient, we propose MAPLE:Memory-Aware Predict
and Load for Efficient LLM Inference. We build on our basic idea that predicts and retrieves only
the essential key-value (KV) entries, thereby minimizing the need for comprehensive transfers. We
enhance the accuracy of these predictions through a learning-based method [26]. Furthermore,
we boost our system’s efficiency and effectiveness by decoupling the computation of approximate
attention from memory access, significantly reducing additional memory overhead.

We conduct initial experiments using the Llama2-7B model [25] across various downstream datasets.
Our algorithm consistently exhibits higher accuracy compared to baseline models. Additionally, our
method demonstrates greater potential for practical implementation.

2 Related Work

This section briefly introduces two mainstream methods designed to alleviate the KV cache’s capacity
issues (Section 2.1) and bandwidth pressure (Section 2.2). However, these methods fail to achieve a
double-win of enhancing both accuracy and bandwidth.

2.1 KV Cache Sparsity

Previous efforts have aimed to compress the KV cache size to minimize memory consumption
based on attention sparsity. Based on the idea that only parts of KV pairs are important for current
token generation, these methods generally discard less critical tokens based on predefined criteria.
For instance, StreamingLLM [27] manages infinitely long texts by utilizing attention sinks and
maintaining a finite KV cache. H2O [30] uses accumulated attention scores to determine token
importance, thereby efficiently reducing cache size by eliminating less significant tokens. Similarly,
Scissorhands [13] identifies key tokens that significantly influence the current and future generations.
FastGen [6] implements an adaptive eviction policy across transformer layers. However, these
methods permanently discard tokens, which, though currently deemed non-essential, could hold value
for subsequent generations, potentially resulting in the loss of crucial information.
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Figure 2: Overview of MAPLE. Before deploying our method, we first conduct an offline distillation
for our low-rank Query and Key weights. Then, (1) During Prefill, we process the prompt for both
high-rank and low-rank QK Projection, offload full KV to the CXL Mem Pool and low-rank Keys
are kept in the HBM. (2) When generating token by token, our method firstly fetch low-rank Keys
from HBM and following a approximate attention computation to get indices for important KV pairs.
After this, send indices to CXL Mem Pool and get selected important KV pairs to do exact attention.

2.2 Bandwidth Efficient Inference

Another line of research related to ours aims to reduce data transfer at the decoding phase. These
approaches typically retain the full KV cache but selectively compute with only a part of the key-value
pairs at a time. SparQ [17] speeds up attention by focusing on the most important query dimensions
and matching them with corresponding key dimensions to get approximate scores. It then selects
the top-k keys based on these scores for full attention computation. Quest [23] retains all of the KV
cache and selects part of the KV cache based on the current query. Both works need to fetch parts
of KV cache to do screening, which is not friendly for KV cache offloading. A recent study Loki
[21] explores the low-rank of keys of each token, the selection process is then performed in low-rank
space to reduce the data transfer of the decoding process. However, this uses an online PCA method
that is computationally unfriendly and does not consider system-level joint optimization.

3 Memory-Aware Predict and Load Methods

In this section, we present MAPLE, an efficient KV cache selection framework. We mainly show the
two stages of our proposed solution (Section 3.1 and Section 3.2). The challenge lies in developing
a prediction method that is both efficient and accurate. Our solution introduces a novel approach,
illustrated in Figure 2. The core of our method lies in decoupling the prediction module from the
full KV cache in CXL memory. This separation allows for more dynamic and precise access to the
necessary KV pairs during the inference process.

3.1 On-Device Predict from Distilled Low-Rank Transformation

We first obtain the query matrix and key matrix in the low-dimensional space by random projection:

Q̃ = XPW̃Q, K̃ = XPW̃K (1)

where W̃Q ∈ Rk×k and W̃K ∈ Rk×k are trainable parameters, P ∈
√

3
k · {−1, 0, 1}

d×k is a sparse
random projection matrix, in which k is much smaller than d. We then incorporate quantization to
decrease the bit-width of approximation parameters to further reduce computation costs. Specifically,
we apply a one-time quantization step on W̃Q, W̃K to the INT8 fixed-point arithmetic.
When it comes to learning the approximation parameters, the trainable parameters W̃Q and W̃K are
learned by minimizing the mean squared error (MSE) as the optimization objective through an offline
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Algorithm 1 KV Cache Access and Exact Attention Calculation
Require: Low-rank attention scores Aapprox, Cached key and value matrices K ′, V ′, Full query

matrix Q
Ensure: Exact attention output

1: function TOP-K-SELECTION(Aapprox, K ′, V ′)
2: K ′

S ← concat(K ′,KS) ▷ Concatenate current and cached keys
3: V ′

S ← concat(V ′, VS) ▷ Concatenate current and cached values
4: indices← topK(Aapprox, k) ▷ Select top-K values based on approximate attention
5: K ′′

S ← K ′
S [indices] ▷ Retrieve selected keys from top-K indices

6: V ′′
S ← V ′

S [indices] ▷ Retrieve selected values from top-K indices
7: return K ′′

S , V
′′
S

8: end function
9: function EXACT-ATTENTION(Q, K ′′

S)

10: Aexact ← softmax
(

Q·K′′
S

T

√
d

)
▷ Compute exact attention with selected top-K keys

11: return Aexact
12: end function
13: function ATTENTION-OUTPUT(Aexact, V ′′

S )
14: output← Aexact · V ′′

S ▷ Multiply attention scores with selected values to get the output
15: return output
16: end function

distillation:
LMSE =

1

B
||QKT − Q̃K̃T ||22 (2)

where B is the mini-batch size. The random projection matrix P is not trainable and stays constant
after initialization. The final fine-tuning process uses the following loss:

Loss = LModel + αLMSE (3)

where α is the hyper-parameters to control the training process.

3.2 Adaptive Load from CXL Memory
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Figure 3: Dataflow illustration and roofline model. Arrows crossing the GPU and CXL memory
pool boundary indicate cross-device communication. a) SparQ dataflow b) Our proposed design,
with a low-rank K cache kept on GPU memory for efficient screening. c) Roofline model showing
throughput improvement in the screening phase.

Here we illustrate our method in Algorithm 1 and dataflow in Figure 3 for KV cache offloading
on CXL memory. SparQ retrieves r dimensions from K cache based on the highest query vector
magnitudes, performs dot product scoring, and fetches selected indices. It stores two K cache copies
to mitigate non-contiguous access. In contrast, our method screens faster with a smaller footprint by
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keeping a low-rank K cache on GPU memory. This eliminates CXL transfer during screening and
avoids additional copies due to efficient contiguous memory access.

4 Evaluation

In this section, we quantitatively evaluate the effectiveness and efficiency of our proposed method for
enhancing LLM inference performance. Section 4.1 provides a brief overview of the experimental
settings. Then, in Section 4.2, we evaluate our method on selected datasets from lm-harness [5]
and two extra datasets of language modeling, comparing it with StreamingLLM [27] and H2O [30].
Section 4.3 is a theoretical analysis of efficiency improvements.

4.1 Methodology

Models and Tasks. In our experiments, we utilize one state-of-the-art model, Llama2-7B [25], which
is known for its robust performance across various tasks. In terms of task selection, we evaluate
zero-shot downstream tasks and language modeling datasets. We use four zero-shot tasks from the
lm-evaluation-harness benchmark [5]: BoolQ [3], SIQA [19], Hellaswag [28] and MathQA [2]. For
language modeling, we choose MMLU [8] for general natural language understanding and Lambada
[14] for token prediction.

Baselines. We compare our method against three baseline approaches, each maintaining a consis-
tent KV cache size across different layers to ensure fairness. H2O [30] and StreamingLLM [27]
represent methods for efficient KV cache management through token eviction strategies. H2O [30]
determines the importance of a token by accumulating historical attention score information, while
StreamingLLM [27] performs token eviction by retaining only a portion of the initial token and
local token. Additionally, we include a comparison with SparQ [17] in terms of efficiency, a recent
approach that optimizes KV access for enhanced bandwidth efficiency.

Training Strategies. We first distill the pretrained Llama2-7B model [25] using the Alpaca dataset
[24], which comprises 52,000 instruction-demonstration pairs generated by OpenAI’s text-davinci-
003 engine. This dataset is specifically designed for instruction tuning of language models to enhance
their ability to follow instructions more accurately. The distillation process continues in three epochs,
with the learning rate decreasing by a factor of ten at the end of each epoch. After distillation, we
conduct the fine-tuning on this dataset for only 1 epoch to get models with different KV cache transfer
budget.

4.2 Accuracy Evaluation

Figure 4 illustrates the accuracy of baselines and our method on Llama2-7B with various zero-shot
tasks. The term relative KV cache size refers to the proportion of the KV cache used in the attention
computation relative to a full-cache baseline. We evaluate five relative KV cache sizes: 50%, 25%,
20%, 15%, and 12.5%.

Lm-evaluation-harness. As shown in the first 4 subfigures in Figure 4. Our method can achieve
better compression while maintaining a higher accuracy than permanent KV cache token eviction
methods, verifying our method’s effectiveness. Our method can achieve almost no accuracy loss
under 25% KV cache. For the SIQA and MathQA datasets, we observe that the dataset used for
distillation and fine-tuning lacks certain key features present in these datasets. As a result, our method
does not perform optimally on SIQA and MathQA. In the future, we plan to identify a more suitable
dataset to enhance generalization and improve performance

Language Modeling. Last two subfigures in Figure 4 are the results of MMLU [8] as well as
Lambada [14]. As illustrated in the figures, our method consistently shows better accuracy across
these two tasks when the relative KV cache size is less than 50%. At the same time, other baselines
show a noticeable accuracy drop because some of the important tokens are evicted permanently.

4.3 Footprint and I/O Complexity Analysis

The Dense method shows a consistent but high KV Cache Footprint and Fetch I/O across both
LLaMA2 models as shown in Table1. SparQ significantly reduces Fetch I/O at the cost of increased
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Figure 4: Accuracy of Llama2-7B on zero-shot tasks in lm-evaluation-harness, MMLU as well as
Lambada.

Footprint, with the largest memory usage among all methods. Our method achieves the lowest Fetch
I/O while maintaining a Footprint only slightly larger than Dense, striking an optimal balance between
memory usage and data transfer efficiency for both 7B and 13B models.

Table 1: Memory Footprint and IO Complexity Comparison

Model Method Footprint (GB) Overhead Data Load (GB) Reduction

LLaMA2-7B Dense 512 - 512 -
SparQ 768 +50% 132 -74.22%

MAPLE 543 +6.05% 128 -75%

LLaMA2-13B Dense 1000 - 1000 -
SparQ 1500 +50% 256.25 -74.38%

MAPLE 1062.5 +6.25% 250 -75%

5 Discussion and Conclusion

In this paper, we present a novel approach named MAPLE to manage the KV cache for large language
models, effectively addressing efficiency and accuracy concerns. By utilizing a learning-based
technique, our method focuses on fetching only the essential KV entries, eliminating the need for
extensive KV pair transfers. Our unique strategy of separating the screening and computing phases by
storing low-rank Keys in GPU device memory not only minimizes the impact on memory footprint
but also preserves the accuracy of the model. We demonstrate the potential of our method to enhance
both the effectiveness and efficiency of language model inference.

MAPLE employs two low-rank learnable matrices and relies on distillation to enhance its general-
ization. In this study, we initially apply a simple and general instruction fine-tuning dataset to test
MAPLE, acknowledging that performance may vary with different datasets. In the future, we intend
to test MAPLE on larger text datasets to enhance its stability and generalization. Moreover, we plan
to extend MAPLE to a broader range of models in terms of size and architecture, including Llama2-
13B [25], Mistral-7B [9] (featuring Group-Query Attention), and Mixtral-8x7B [10] (utilizing MoE
Architecture).
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