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Abstract001

The tendency of Large Language Models002
(LLMs) to generate hallucinations raises con-003
cerns regarding their reliability. Therefore,004
confidence estimations indicating the extent005
of trustworthiness of the generations become006
essential. However, current LLM confidence007
estimations in languages other than English008
remain underexplored. This paper addresses009
this gap by introducing a comprehensive in-010
vestigation of Multilingual Confidence esti-011
mation (MLINGCONF) on LLMs, focusing on012
both language-agnostic (LA) and language-013
specific (LS) tasks to explore the performance014
and language dominance effects of multilin-015
gual confidence estimations on different tasks.016
The benchmark comprises four meticulously017
checked and human-evaluated high-quality018
multilingual datasets for LA tasks and one for019
the LS task tailored to specific social, cultural,020
and geographical contexts of a language. Our021
experiments reveal that on LA tasks English022
exhibits notable linguistic dominance in confi-023
dence estimations than other languages, while024
on LS tasks, using question-related language025
to prompt LLMs demonstrates better linguis-026
tic dominance in multilingual confidence es-027
timations. The phenomena inspire a simple028
yet effective native-tone prompting strategy by029
employing language-specific prompts for LS030
tasks, effectively improving LLMs’ reliability031
and accuracy in LS scenarios.032

1 Introduction033

Large Language Models’ (LLMs) susceptibility to034

generating hallucinated contents incurs concerns035

about unreliability in real-world applications (Ji036

et al., 2023; Rawte et al., 2023). Therefore, it037

becomes increasingly crucial for users to directly038

ascertain how much they can trust a model’s re-039

sponse. Assessing the confidence or uncertainty040

of a model’s output can immediately indicate the041

level of reliability to users, thereby playing a key042

Figure 1: Examples of generations and confidence
scores of Llama-3.1 given the same inputs in three lan-
guages in LA and LS scenarios derived from SciQ and
LSQA datasets respectively.

role in developing trustworthy AI systems (Geng 043

et al., 2023; Kadavath et al., 2022). 044

However, existing research on confidence or un- 045

certainty estimations for LLMs has been predom- 046

inantly limited to English (Kadavath et al., 2022; 047

Lin et al., 2022; Geng et al., 2023; Tian et al., 048

2023b). The dearth of confidence estimations in 049

languages other than English hinders users from 050

assessing the reliability of LLMs in non-English 051

scenarios, restricting the LLMs’ global deployment. 052

Due to the variations in the quantity and domain 053

coverage of pre-training corpora across different 054

languages, the confidence estimation ability may 055

also presumably vary. Therefore, the performance 056

of confidence estimation methods primarily devel- 057

oped for English remains a crucial subject for ex- 058

plorations when applied to other languages. 059

Additionally, to finely-grained investigate mul- 060

tilingual confidence estimations over various fine- 061

grained tasks, we divide the tasks into language- 062
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agnostic (LA) (Zhao et al., 2020) and language-063

specific (LS) scenarios as in Figure 1 considering064

the effects of linguistic dominance. Linguistic dom-065

inance refers to that one language holds a superior066

status over others within a specific social or cultural067

context (Blommaert, 2010; Treffers-Daller, 2019;068

Heller, 2007), can also exist in confidence estima-069

tion ability on different languages. In this study,070

the LS refers to the tasks that hold linguistic domi-071

nance caused by the knowledge domain coverage072

varying in different language training corpora, such073

as questions pertaining to social, cultural, or geo-074

graphical contexts for a specific language, while the075

LA involves linguistic dominance mainly caused by076

the quantities of training corpora, such as general077

knowledge, common sense, and reasoning (Basaj078

et al., 2018; Sánchez et al., 2024).079

To this end, we propose a benchmark called080

MLINGCONF (Multilingual Confidence) to inves-081

tigate the performance of several LLM confidence082

estimation methods on five languages including En-083

glish, Japanese, Chinese, French, and Thai. First,084

we meticulously constructed a high-quality mul-085

tilingual dataset called the MlingConf dataset for086

the benchmark including five datasets of different087

tasks in LA and LS scenarios respectively. The LA088

involves four different tasks that are widely used089

in confidence estimation in English (Kuhn et al.,090

2023; Xiong et al., 2024) are translated into other091

four languages. We also create a language-specific092

QA (LSQA) dataset for the LS scenario, including093

five subsets for the investigated five languages re-094

spectively. Each subset comprises QA pairs about095

social culture, history, geography, and celebrity096

pertaining to the specific language. To ensure the097

data quality, we conduct rigorous translation consis-098

tency checks to filter the failed samples and finally099

employ linguistic experts for human evaluations.100

Experiments are conducted on three major101

LLM confidence estimation methods including102

probability-based (Vazhentsev et al., 2023; Varsh-103

ney et al., 2023) and prompt-based confidence esti-104

mations (p(True) (Kadavath et al., 2022) and self-105

verbalize (Lin et al., 2022; Xiong et al., 2024)) us-106

ing the curated five multilingual datasets on several107

LLMs. We evaluate the confidence estimation abil-108

ity and calibration using AUROC and ECE. Results109

on LA tasks suggest that prompt-based confidence110

estimations are preferable on LLMs with stronger111

instruction-following abilities, and English exhibits112

linguistic dominance. Results on the LS task reveal113

a pronounced phenomenon of language dominance,114

indicating that, for questions related to specific lin- 115

guistic contexts, utilizing the respective languages 116

yields the highest accuracy and confidence esti- 117

mation performance. This observation inspires a 118

native-tone prompting strategy: whereby, in the 119

LS task, the relevant linguistic background of the 120

question is first assessed, and then the correspond- 121

ing language is employed to generate the response. 122

Compared to the use of any single language, this 123

approach leads to significant improvements in both 124

accuracy and confidence estimations. Furthermore, 125

we employ and generalize on extended confidence 126

estimation methods and languages for both LS and 127

LA tasks. The results further complete and enhance 128

the above findings and analysis to the benchmark. 129

The contributions are summarized as follows: 130

• To the best of our knowledge, the MLING- 131

CONF first propose to investigate multilingual con- 132

fidence estimations with intricately constructed and 133

expert-checked MlingConf datasets for both LA 134

and LS scenarios, serving as a valuable benchmark 135

for future works of reliable multilingual LLMs 1. 136

• Experiments conducted on MlingConf datasets 137

present valuable findings about confidence estima- 138

tion uses in multilingual scenarios, language dom- 139

inance effects of English on LA tasks, and query- 140

related languages on LS tasks respectively. 141

• Based on the observed linguistic dominance 142

on LS tasks, we propose a native-tone prompting 143

strategy, which significantly enhances the reliabil- 144

ity and accuracy compared to the use of any single 145

language prompts for LS tasks. 146

2 MlingConf Dataset 147

Owing to the lack of multilingual resources to com- 148

prehensively exhibit confidence estimation across 149

diverse languages, we construct a high-quality mul- 150

tilingual dataset called MlingConf dataset encom- 151

passing five languages: English (en), Japanese (ja), 152

Chinese (zh), French (fr), and Thai (th). Specifi- 153

cations of the language selection in consideration 154

of language family and resource level are demon- 155

strated in Appendix A. The MlingConf dataset in- 156

cludes four tasks for the language-agnostic (LA) 157

scenario and one task for the language-specific (LS) 158

scenario. We specify the data source and construc- 159

tion process of the MlingConf dataset in Sec. 2.1 160

and 2.2 respectively. Further dataset details and 161

statistics can be referred to Appendix B. 162

1The codes and the MlingConf datasets will be released.
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Figure 2: Three stages of MlingConf dataset construction.

2.1 Data Source163

Language-Agnostic (LA) Tasks For LA tasks,164

we employ the following four datasets that are165

widely used for confidence estimations in English166

(Kuhn et al., 2023; Xiong et al., 2024). The datasets167

include 1) TriviaQA (TVQA) (Joshi et al., 2017)168

of closed-book trivia question-answering pairs to169

gauge models’ factual knowledge; 2) GSM8K170

(Cobbe et al., 2021) for arithmetic reasoning task171

of math problems; 3) CommonsenseQA (CSQA)172

(Talmor et al., 2019) of multiple-choice QA pairs173

requiring different types of commonsense knowl-174

edge; 4) SciQ (Johannes Welbl, 2017) requiring175

scientific professional knowledge. All the datasets176

are pre-processed in standard QA format.177

Language-Specific (LS) Tasks We create178

Language-Specific QA (LSQA) dataset pertain-179

ing to language-dominant knowledge covering180

specific social, geographical, and cultural language181

contexts for the UK & US, France, China, Japan,182

and Thailand respectively. We prompt GPT-4183

(OpenAI, 2023) 2 to generate 200 questions184

pertaining to only one specific language contexts185

as a language-specific subset. As demonstrated in186

Figure 11, for example, all questions in Japanese187

subset pertain to Japanese social culture, history,188

geography, celebrities, etc.189

2https://platform.openai.com/docs/api-reference

2.2 Dataset Construction 190

The construction of the MlingConf dataset in this 191

study follows an elaborate three-stage procedure as 192

delineated in Figure 2. 193

Stage 1 : The QA samples derived from the 194

above datasets are translated into four languages 195

(ja, th, zh, and fr) through GPT-4 (OpenAI, 2023). 196

Stage 2 : We check the consistency of five trans- 197

lated results by comparing the semantic equiva- 198

lence in pairs in C2
5 = 10 times for each sample. 199

The samples with more than 2 times semantic in- 200

equivalence are treated as noisy data and then fil- 201

tered. The changes of samples before and after con- 202

sistency check and filter are in Table 5 and more 203

clean multilingual datasets are obtained. More- 204

over, we present the number of samples for each 205

language-specific LSQA subset as in Table 6. 206

Stage 3 : Finally, we employ several experts ma- 207

joring in linguistics to examine the translation per- 208

formance across 50 randomly selected samples as 209

shown in Table 1. Human evaluation results sug- 210

gest the obtained multilingual datasets are high- 211

quality for further experiments. 212

For all generations of MlingConf dataset con- 213

struction, the temperature T is set to 0. The transla- 214

tion and semantic equivalence comparison prompts 215

are presented in Appendix C. 216
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Lang. TVQA GSM8K CSQA SciQ LSQA
zh 96% 100% 100% 98% 100%
ja 98% 100% 98% 96% 100%
fr 100% 100% 100% 98% 100%
th 96% 100% 98% 94% 100%

Table 1: Translation accuracy evaluated by linguistic
experts on 50 randomly selected samples.

3 Experimental Settings217

3.1 Confidence Estimation Methods218

In this part, we investigate three confidence estima-219

tion methods primarily used in English for LLMs220

as in Figure 14. These methods will be also con-221

ducted in our multilingual settings. Specifically, we222

denote Conf(x,y) as the confidence score associ-223

ated with the output sequence y = [y1, y2, . . . , yN ]224

given the input context x = [x1, x2, . . . , xM ].225

Probability-based Confidence (Prob.): The226

probability-based confidence is estimated by cal-227

culating the joint token-level probabilities over y228

conditioned on x. As longer sequences are sup-229

posed to have lower joint likelihood probabilities230

that shrink exponentially with length, we calcu-231

late the geometric mean by normalizing the output232

token probabilities which are represented as:233

Conf(x,y) =

(
N∏
i

p(yi|y<i,x)

) 1
N

(1)234

p(True)-based Confidence (p(True)): The235

p(True) confidence score is implemented by236

simply asking the model itself if its first proposed237

answer y to the question x is true (Kadavath et al.,238

2022), and then obtaining the probability p(True),239

which can implicitly reflect self-reflected certainty.240

Self-verbalized Confidence (Verb.): As LLMs241

possess good self-reflection and instruction-242

following abilities, recent works pay particular243

attention to linguistic confidence via prompting244

LLMs to express certainty in verbalized numbers245

or words (Lin et al., 2022; Xiong et al., 2024). We246

adopt verbalized numerical probability in token-247

level space as LLM’s confidence estimation.248

The multilingual prompts for p(True) and Verb.249

are in Appendix C.250

3.2 Evaluation Metrics251

Accuracy (Acc.) We employ a string-matching252

approach to evaluate the accuracy of generated an-253

swers y and compare them with the ground truth ŷ.254

Although exact matching (EM) of y ≡ ŷ is widely 255

used on GSM8K and CSQA, it always misjudges 256

some correct answers with slight differences on 257

closed-book QA tasks, to better assess the result 258

accuracy (Accu.), we replace EM with a variant 259

called positive-recall exact matching (PREM) of 260

y ∈ ŷ ∨ ŷ ∈ y. Comparisons of several EM vari- 261

ants we tested as well as human evaluations are 262

presented in Appendix D. 263

Area Under the Receiver Operator Character- 264

istic Curve (AUROC) AUROC assesses the ef- 265

fectiveness of confidence estimation (Filos et al., 266

2019) by quantifying how likely a randomly chosen 267

correct answer possesses a higher confidence score 268

than an incorrect one, yielding a score in range of 269

[0, 1], implemented by sklearn toolkit 3. 270

Expected Calibration Error (ECE) ECE 271

gauges the calibration performance which indi- 272

cates how well a model’s predicted confidence 273

matches its actual accuracy (Guo et al., 2017a). For 274

an expected well-calibrated AI system, samples 275

x with confidence of q should also have an 276

average accuracy of q on predictions y where 277

P (y = ŷ|Conf(x,y) = q) = q with ECE=0. 278

ECE is essential for reliable AI systems on 279

prediction tasks like weather forecasting. The 280

smaller the ECE value, the better. Details of the 281

ECE calculation are presented in Appendix D. 282

3.3 Implementation Details 283

Experiments are conducted on GPT-3.5-Turbo- 284

0125 (GPT-3.5) and Llama-3.1-8B-Instruct (Llama- 285

3.1) 4 (AI@Meta, 2024). We only present the 286

results of the current most commonly used com- 287

mercial GPT-3.5 and open-source Llama-3.1 in the 288

main part and leave the results on some other LLMs 289

in Appendix E. Few-shot prompts containing Nf 290

examples are utilized for answer generation with 291

greedy decoding which outperforms temperature 292

decoding on knowledge tasks (Song et al., 2024). 293

Nf is set to 8 for GSM8K and 4 for others. 294

4 Experiments on LA Tasks 295

To comprehensively investigate LLMs’ multilin- 296

gual confidence estimations on LA tasks, as pre- 297

sented in Table 2 and Figure 3, experiments are con- 298

ducted to observe performances varying in different 299

3https://github.com/scikit-learn/scikit-
learn/blob/main/sklearn/metrics/_ranking.py

4https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
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Conf. en zh ja fr th Avg.
ARC. ↑ ECE ↓ ARC. ↑ ECE ↓ ARC. ↑ ECE ↓ ARC. ↑ ECE ↓ ARC. ↑ ECE ↓ ARC. ↑ ECE ↓

TVQA on GPT-3.5
Prob. 76.51 24.36 78.39 32.95 76.90 28.14 72.14 27.39 74.30 40.17 75.65 30.60

p(True) 79.64 18.25 82.34 22.94 84.50 29.06 80.59 20.90 81.22 40.87 81.66 26.40
Verb. 80.32 16.52 81.76 24.32 84.61 34.49 83.47 26.53 86.72 38.19 83.38 28.01

TVQA on Llama-3.1
Prob. 80.74 10.72 80.41 40.39 88.75 26.24 79.05 20.38 89.59 36.77 83.71 26.90

p(True) 68.98 18.35 68.10 38.19 52.69 37.85 62.00 22.04 60.55 37.01 62.66 30.69
Verb. 77.18 24.73 63.50 37.64 68.91 34.27 69.90 25.44 73.22 40.19 70.54 32.45

GSM8K on GPT-3.5
Prob. 54.79 26.48 58.49 27.19 57.09 29.46 57.38 37.29 61.73 41.77 57.90 32.44

p(True) 65.25 31.88 62.74 28.65 69.75 19.03 60.14 39.08 61.45 49.88 63.87 33.70
Verb. 62.34 22.17 59.25 28.91 58.34 26.71 66.65 25.14 54.02 45.63 60.12 29.71

GSM8K on LLama-3.1
Prob. 65.69 22.33 66.37 21.92 69.73 35.69 61.07 29.56 63.22 28.51 65.22 27.60

p(True) 61.64 14.49 65.83 17.39 71.40 11.26 57.04 8.02 57.31 12.90 62.64 12.81
Verb. 57.00 50.05 63.04 42.89 58.93 45.33 54.45 35.31 55.30 34.94 57.75 41.70

CSQA on GPT-3.5
Prob. 59.06 24.45 55.92 38.30 48.01 50.60 55.33 31.12 48.21 41.71 53.31 48.18

p(True) 67.13 19.65 58.64 27.08 65.23 19.24 66.33 23.43 59.96 34.47 63.46 24.77
Verb. 69.60 16.84 54.30 21.54 68.34 19.84 61.87 21.81 68.93 21.71 64.73 24.35

CSQA on Llama-3.1
Prob. 78.06 13.64 64.91 36.33 75.65 30.11 66.12 19.72 77.65 42.18 72.47 28.40

p(True) 56.25 34.04 64.24 36.82 66.60 40.32 59.34 27.72 58.07 29.91 60.90 33.76
Verb. 62.42 28.16 54.61 28.84 61.06 37.85 57.97 23.96 71.91 37.15 61.39 31.19

SciQ on GPT-3.5
Prob. 69.50 32.23 71.29 35.63 78.28 47.06 72.66 34.85 75.13 56.17 73.37 41.19

p(True) 72.06 23.15 76.18 30.44 80.16 36.18 71.30 37.85 68.29 41.25 73.60 33.77
Verb. 70.18 20.80 75.50 37.59 77.89 30.33 69.31 32.47 74.85 41.15 73.55 32.47

SciQ on Llama-3.1
Prob. 74.14 13.40 72.09 32.26 74.48 34.21 77.45 22.76 77.61 36.10 75.15 27.75

p(True) 62.38 19.28 64.89 37.01 58.92 36.47 61.01 10.72 51.90 41.06 59.82 28.91
Verb. 62.65 24.10 52.90 32.94 69.10 39.15 59.30 24.92 65.93 40.67 61.98 38.36

Avg. (TVQA, GSM8K, CSQA, SciQ) on GPT-3.5
Prob. 64.96 26.88 66.02 33.51 65.07 38.71 64.37 32.66 64.88 44.95 65.06 35.34

p(True) 70.38 23.23 69.97 27.27 74.91 25.87 69.59 30.31 67.73 41.61 70.65 29.66
Verb. 70.61 19.01 67.70 28.09 72.29 27.84 70.32 26.48 71.13 36.67 70.45 28.64

Overall 68.68 23.04 67.90 29.65 70.75 30.84 68.10 29.82 67.90 41.08 68.66 30.89
Avg. (TVQA, GSM8K, CSQA, SciQ) on Llama-3.1

Prob. 74.88 15.02 70.94 32.72 77.15 31.56 70.92 23.10 77.01 35.89 74.14 27.66
p(True) 62.31 21.54 65.76 32.21 62.40 31.47 59.59 17.12 56.95 30.22 61.51 26.54

Verb. 64.81 31.76 58.51 35.57 64.50 39.15 60.40 27.40 66.59 38.23 62.92 35.93
Overall 67.26 22.77 65.10 33.55 67.97 34.06 63.72 22.58 66.85 34.78 66.19 29.38

Table 2: Experimental results of AUROC (ARC.) and ECE of three confidence estimation methods on four LA
datasets on GPT-3.5 and Llama-3.1.

confidence estimation methods and languages in300

Sec. 4.1 and 4.2 respectively.301

4.1 Results regarding Different Confidence302

Estimations on LA Tasks303

Findings: Applying prompt-based confidence304

estimations is preferable in multilingual tasks305

for LLM with stronger instruction-following306

ability. The probability method performs better307

confidence estimations on relatively weak LLM.308

The findings provide a direct takeaway about se-309

lecting optimal confidence estimations of LLMs310

in multilingual scenarios. In Table 2, we high-311

light the supreme performance in bold among the312

three methods for each column of each dataset. On313

GPT-3.5, both p(True) and Verb. yield the supe-314

rior performances than Prob. across all languages315

averaged on four datasets (ARC.: 70.65, 70.45316

vs. 66.02; ECE: 29.66, 28.64 vs. 35.34). p(True)317

and Verb. have comparable performance in ARC. 318

scores, while Verb. is better calibrated. In contrast, 319

Prob. shows superior performance than p(True) 320

and Verb. and performs more stable on Llama-3.1 321

(ARC.: 74.14 vs. 61.51 and 62.92; ECE: 27.66 322

vs. 26.54 and 35.93). p(True) demonstrates better 323

calibration results on languages other than English. 324

Analysis: In Table 2, the performance differ- 325

ences between two LLMs can be attributed to 326

that GPT-3.5’s strong instruction-following abil- 327

ities benefit the prompt-based multilingual confi- 328

dence estimation methods Verb. and p(True), but 329

leading to over-confidence in output token probabil- 330

ities. In contrast, Llama-3.1 cannot stably generate 331

verbalized confidence scores and perform relatively 332

weak instruction-following abilities, but maintain 333

well-calibrated likelihood probabilities during the 334

pre-training stage for all languages. 335
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Figure 3: Experimental results of Accuracy on four LA datasets on GPT-3.5 and Llama-3.1.

4.2 Results regarding Different Languages on336

LA Tasks337

Findings: Linguistic dominance is manifested338

in English with superior confidence estima-339

tion performances on LA tasks for multilin-340

gual LLMs. Prior works only validate the effi-341

cacy of prompt-based confidence estimations in342

English. Our findings indicate that the methods343

are also preferable in other languages and perfor-344

mances fluctuate in different languages. In Table345

2, ARC. scores are less fluctuating across differ-346

ent languages while ECE in English (23.04 and347

22.77) performs better than in other languages on348

both GPT-3.5 and Llama-3.1. We also report the349

accuracy on LA datasets in Figure 3. English con-350

sistently performs better across all datasets exclu-351

sively GSM8K. Generally, prompting in English352

outperforms others, hence responding in English on353

LA tasks can be adequately credible and accurate354

where linguistic dominance is leading in English.355

Analysis: Despite the powerful multilingual ca-356

pacity of LLMs, discrepancies exist in the quantity357

of distinct linguistic training corpora available for358

each language. Results in Table 2 suggest that ARC.359

is a metric not significantly related to language us-360

age in LLMs, while the strong performance of ECE361

in English can be attributed to the extensive training362

corpus or calibrations conducted during training in363

English. As the only middle-resource language,364

Thai exhibits a notably lower level of reliability365

compared to the other high-resource languages.366

Considering consistency check in Table 5, the 367

lowest filter rate in GSM8K translation indicates 368

that mathematical reasoning tasks are minimally af- 369

fected by language bias. As a result, accuracy fluc- 370

tuations across different languages on GSM8K are 371

relatively small. For that Chinese exhibits slightly 372

superior mathematical capabilities compared to En- 373

glish on GSM8K on both GPT-3.5 and Llama-3.1 374

(Accu. 48.09 and 63.96), it is hypothesized that 375

pre-training corpora contain a substantial amount 376

of Chinese mathematical problems. 377

5 Experiments on LS Task 378

For the LS task, we present the confidence esti- 379

mation results on five language-specific subsets 380

of LSQA in Figure 4 and 5 in Sec. 5.1. Based 381

on the findings, we then propose a Native-Tone 382

Prompting (NTP) strategy to better leverage lin- 383

guistic dominance to improve the LLMs’ reliability 384

and accuracy on LS task in Sec. 5.2. 385

5.1 Results of Different Language-specific 386

Subsets on LS Task 387

Findings: Applying prompts in query-related 388

language demonstrates linguistic dominance 389

with better multilingual confidence estimations 390

on LS task. In Figure 4, the diagonal values of the 391

ECE and ARC. heatmaps of Prob. are more pro- 392

nounced, indicating that when using Prob. confi- 393

dence, linguistic dominance is more apparent com- 394

pared to p(True) and Verb.. Consequently, we have 395

opted Prob. for subsequent experiments in Sec. 5.2. 396
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Figure 4: Experimental results of AUROC and ECE of three confidence estimation methods on five language-specific
subset of LSQA using Llama-3.1.

Figure 5: Experimental results of Accuracy on five
language-specific LSQA subsets using Llama-3.1.

Additionally, in Figure 5, although prompting in397

English performs well and stable across different398

subsets, there is a noticeable improvement in ac-399

curacy when prompts are related to each subset’s400

language. In comparison with the LA tasks in Sec.401

4.1 where linguistic dominance is primarily mani-402

fested in English, on LSQA, linguistic dominance403

is determined by specific language of the subset.404

Analysis: The linguistic dominance on LSQA405

can be conjectured to stem from the fact that such406

data pertaining to the language-specific cultural, ge-407

ographical, or social contexts are already included408

in the pre-training corpora of their respective lan-409

guages with higher certainty or confidence, thereby410

achieving optimal performance when prompting in411

their respective specific languages.412

5.2 Results of Native-Tone Prompting (NTP) 413

Strategy on LS Task 414

Confidence estimation performance differences 415

caused by linguistic dominance phenomena on 416

the LS task motivate us to explore the improv- 417

ing method. Inspired by results in Sec. 5.1 on 418

each language-specific LSQA subset, we propose a 419

simple yet effective Native-Tone Prompting (NTP) 420

strategy to achieve better confidence estimation per- 421

formance on the LS task. NTP first prompts LLMs 422

to identify the language context of the question, and 423

then uses that query-related language to answer the 424

question, effectively exhibiting a “native tone” that 425

is more familiar in that language-related context. 426

We present the results of prompting by any single 427

language versus NTP on LSQA in Table 3. The 428

prompt of NTP is presented in the Appendix C. 429

Prompt en zh ja fr th NTP
Acc. ↑ 77.68 60.16 44.64 60.90 35.18 79.46
ARC. ↑ 73.07 72.44 76.87 71.92 74.60 77.25
ECE ↓ 12.15 30.93 32.31 20.50 40.69 10.28

Table 3: Experimental results of overall Accu., ARC.,
and ECE on the LSQA dataset by prompting using dif-
ferent languages and our proposed NTP method.

Findings: Prompting LLMs using the query- 430

related language can enhance the reliability 431

of confidence estimations and accuracy on LS 432

tasks, which provides an insight to improve LLMs’ 433
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reliability regarding the prompt language usage.434

In Table 3, the experiments demonstrate that NTP435

better leverages the inherent linguistic dominance,436

thereby yielding more reliable and accurate results437

than any single language prompt, validating the438

effectiveness of NTP on the LS task.439

Analysis: Results in Table 3 indicate that the mul-440

tilingual capabilities and reliability of LLMs are441

still constrained by the imbalanced training corpus442

among diverse languages. The reliability and ac-443

curacy on English, serving as the primary training444

corpora, have not been adequately generalized to445

other languages. Even for semantically equivalent446

queries in different languages, the reliability of re-447

sponses cannot be consistently maintained.448

6 Discussion449

Extended Confidence Estimations In Appendix450

E.2, we further investigate three other confidence451

estimation methods including 1) paraphrasing the452

questions; 2) sampling multiple responses (Xiong453

et al., 2024); and 3) introducing Chain-of-Thought454

(CoT) (Wei et al., 2022) on both LS and LA tasks.455

As presented in Table 10 and Figure 13, all find-456

ings on extended three confidence estimations457

are consistent with previous analysis across all458

languages. The questions after paraphrasing still459

maintain semantic equivalence without obvious per-460

turbations for all languages, and LLMs are robust461

in multilingual confidence estimations to different462

questions with similar meanings. p(True) and Verb.463

methods outperform sampling-based methods as464

the high temperature may incur variability in out-465

put spaces which undermines the reliability of QA466

tasks for all languages. LLMs’ CoT ability can be467

generalized to multilingual domains, thus benefit-468

ing multilingual confidence estimations.469

Extended Languages In Appendix E.3, we also470

extend the investigations on other five languages471

derived and translated from TriviaQA into Korean,472

Arabic, German, Indonesian, and Italian as in Sec.473

2. As in Table 11, linguistic dominance is still per-474

formed in English than other languages on the LA475

task. Low-resource languages demonstrate poor476

performance in ECE. For the LS task, we also de-477

velop a small-size LSQA subset for the above five478

languages in Table 8 to conduct the NTP method.479

Experiments suggest that NTP can also generalize480

and improve the reliability and accuracy in such481

middle- or low-resource languages.482

7 Related Works 483

Confidence Estimation for LLMs Previous con- 484

fidence estimation methods can be categorized into 485

five classes, as illustrated in Figure 14 and Ap- 486

pendix F. ➀ Probability-based: Vazhentsev et al. 487

(2023) intermediately quantifies sentence uncer- 488

tainty over token probabilities; ➁ p(True)-based: 489

Kadavath et al. (2022) instructs the LLM to self- 490

evaluate the correctness of the generated answer by 491

directly accessing p(True); Both ➀ and ➁ require 492

access to token probabilities and thus are limited 493

to white-box LLMs. ➂ Self-verbalized: LLMs’ 494

remarkable instruction-following ability provides a 495

view of expressing confidence in words (Lin et al., 496

2022; Zhou et al., 2023; Tian et al., 2023a; Xiong 497

et al., 2024); ➃ Sampling-based: By sampling 498

multiple responses to a given question, Xiong et al. 499

(2024) aggregates all the confidence scores as the 500

indicator. ➄ Training-based: Lin et al. (2022); 501

Kadavath et al. (2022) propose to train an external 502

module to improve confidence estimations. 503

Multlingual LLMs Most recent LLMs primarily 504

pre-trained on English corpora have showcased 505

remarkable capabilities (Pires et al., 2019; Shi 506

et al., 2023; OpenAI, 2023). However, their ef- 507

ficacy in other low-resource languages remains lim- 508

ited. Many research works have extended various 509

tasks in multilingual domains such as claim fact- 510

checking (Pikuliak et al., 2023) and jailbreak prob- 511

lem (Deng et al., 2024). Prior studies have also 512

explored diverse cross-lingual applications (Wang 513

et al., 2023a,b; Qin et al., 2022). 514

8 Conclusion 515

This study underscores the necessity of advanc- 516

ing multilingual confidence estimation methods 517

for LLMs to ensure their reliability across diverse 518

linguistic contexts. The proposed MLINGCONF 519

serves as a valuable and noteworthy benchmark 520

to address the gap in multilingual confidence es- 521

timation research. Our findings demonstrate the 522

variability of multilingual confidence estimations 523

on both LA and LS scenarios, revealing the in- 524

fluence of linguistic dominance on different tasks. 525

This leads to the NTP strategy, improving accuracy 526

and reliability by aligning the response language 527

with the linguistic context of the query for LS tasks. 528

These insights and the introduction of MlingConf 529

datasets pave the way for future research, enhanc- 530

ing the global applicability and reliability of LLMs. 531
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Limitations532

The limitations and prospects for future research533

are outlined as follows:534

Expensive Costs to Obtain High-Quality Low-535

Resource Languages The present study is con-536

strained by the substantial cost associated with the537

API cost using GPT-4 for translation as well as538

linguistic verification. This multilingual research539

is restricted to five languages in the first version.540

This initial phase aims to delve into confidence es-541

timation within multilingual domains. Our future542

endeavors will involve the expansion of the bench-543

mark dataset, encompassing additional languages544

and data points to enrich our investigations.545

Native-Tone Prompting is a Primary Version546

Although the proposed Native-Tone Prompting547

method can enhance the accuracy and reliability of548

LS tasks, it still relies on external prompts to de-549

termine which language domain the query pertains550

to. Moving forward, it is promising to broaden the551

scope of developing a cross-lingual method that can552

directly transfer the specific language dominance553

to other language contexts, thereby facilitating mul-554

tilingual confidence estimation abilities for LLMs.555

Ethics Statement556

In this paper, we introduce several self-constructed557

multilingual datasets derived from the publicly558

available dataset. The selection of investigated lan-559

guages in this work depends on whether we can em-560

ploy appropriate linguistic experts. Most linguistic561

specialists are M.Phil. or Ph.D. students majoring562

in linguistics and others are from crowd-sourcing563

platforms. We meticulously adhered to legal and564

ethical standards throughout the data collection pro-565

cess, prioritizing privacy and obtaining informed566

consent. Linguistic experts were furnished with567

comprehensive details regarding the study’s ob-568

jectives, data collection methodologies, and asso-569

ciated risks or benefits. They were afforded the570

opportunity to seek clarifications and voluntarily571

provide consent before their involvement. All col-572

lected data were exclusively utilized for research573

purposes.574
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A Language Information894

The basic information of ISO codes and the lan-895

guage family of the investigated languages is pre-896

sented in Table 4. The investigated languages from897

widely spoken to lesser-known ones in this work898

are selected following three principles.899

1) Following (Lai et al., 2023; Deng et al., 2024)900

which determines the resource levels for each lan-901

guage by utilizing the data ratio from the Common-902

Crawl corpus 5, we select three languages (Chinese,903

Japanese, and French) in high-resource category904

whose data ratio exceeds 1%, and one language905

(Thai) from medium-resource class that falls be-906

tween 0.1% and 1%. To ensure the confidence es-907

timation ability can be observed, the low-resource908

5http://commoncrawl.org/

languages less than 0.1% are omitted and left for 909

future works. 910

2) This selection ensures coverage of a wide 911

range of linguistic characteristics from different 912

language families as in Table 4. A language family 913

represents a collective of cognate languages stem- 914

ming from a common ancestral source, serving as 915

a focal point within the domain of linguistics 6. 916

3) For each selected language, we can employ 917

one linguistic expert for the human check to ensure 918

the data quality; 919

ISO 639-1 Family
English en Indo-European
French fr Indo-European
Chinese zh Sino-Tibetan
Japenese ja Japanese-Ryukyuan

Thai th Kra–Dai
Indonesian id Indo-European

German de Indo-European
Arabic ar Afro-Asiatic
Korean ko Koreanic
Italian it Indo-European

Table 4: List of International Standard Organization
(ISO) 639-1 codes and language family information.

B Dataset Details 920

TriviaQA The TriviaQA dataset (Joshi et al., 921

2017) is a realistic text-based reading comprehen- 922

sion question-answering dataset containing 650K 923

question-answer-evidence triples from 95K docu- 924

ments collected from Wikipedia and the websites, 925

served as a benchmark for evaluating machine com- 926

prehension and question-answering systems, which 927

is more challenging than standard QA benchmark 928

datasets where the answer spans can be directly 929

retrieved and copied. 930

GSM8K GSM8K (Grade School Math 8K) 931

(Cobbe et al., 2021) is a dataset of 8.5K high qual- 932

ity linguistically diverse grade school math word 933

problems. The dataset was created to support the 934

task of question answering on basic mathematical 935

problems that require multi-step reasoning to solve. 936

CommonsenseQA CommonsenseQA (Talmor 937

et al., 2019) is a new multiple-choice question an- 938

swering dataset that requires different types of com- 939

monsense knowledge to predict the correct answers. 940

The dataset consists of 12,247 questions with 5 941

choices each. 942

6https://en.wikipedia.org/wiki/Language_family
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Figure 6: Translation prompt.

SciQ The SciQ dataset (Johannes Welbl, 2017)943

contains 13,679 crowdsourced science exam ques-944

tions about Physics, Chemistry and Biology, among945

others. The questions are in multiple-choice format946

with 4 answer options each. For the majority of the947

questions, an additional paragraph with supporting948

evidence for the correct answer is provided.949

LSQA We present two examples of the LSQA950

dataset in English- and Japanese- specific subsets951

in Figure 11.952

TVQA GSM8K CSQA SciQ LSQA
Before 2000 1319 1221 1000 1000
After 1238 1318 1152 640 857

Table 5: Number of samples before and after consis-
tency check and filter.

LSQA en zh ja fr th Total
185 172 167 179 154 857

Table 6: Statistics of samples for each language-specific
subset of the LSQA dataset.

C Prompt Details953

The translation prompt for multilingual dataset954

construction and semantic equivalence compari-955

son prompt for consistency check in Sec, 2 are956

presented in 6 and 7 respectively. Standard multi-957

lingual Question-Answering prompts are in 8. Mul-958

tilingual confidence estimations of P(True) and959

Verb. are presented in Fig. 9 and 10. Notably,960

the prompts for self-reflected true probability con-961

fidence estimation are followed by previous work962

(Kadavath et al., 2022; Kuhn et al., 2023).963

D Metric Details964

Expected Calibration Error (ECE) We par-965

tition the inference results into M disjoint966

bins {Bm}Mm=1 based on the confidence scores967

{qi}, compute the average confidence score in968 (
m−1
M , m

M

]
for the m-th bin Bm, and compare it969

with the average true accuracy acc(Bm) of the an- 970

swers within Bm. The ECE is calculated by: 971

ECE =
M∑

m=1

|Bm|
n

|acc(Bm)− conf(Bm)| (2) 972

The average accuracy acc(Bm) and confidence 973

conf(Bm) of the answers in Bm is obtained by: 974

acc(Bm) =
1

|Bm|
∑
ai∈m

I(b̂i = bi) (3) 975

conf(Bm) =
1

|Bm|
∑
ai∈m

qi (4) 976

where ai, bi, b̂i, and qi indicate the input data, label, 977

prediction result, and confidence score respectively 978

for the i-th sample. 979

Accuracy For closed-book QA evaluation, we 980

observe that simply applying EM may misjudge 981

the correct answers. We compare several variants 982

of EM as in Table 7 and report their successful 983

judgments on responses of 20 selected samples 984

that are misjudged using EM, where PEM, RRM, 985

and PREM indicate Positive-EM, Recall-EM, and 986

Positive-Recall-EM and the mathematical explana- 987

tions are presented in Table 7. Upon human dis- 988

crimination, EMPR exhibits the lowest failure rate 989

and is therefore selected as the evaluation metric 990

for this work. 991

Variant Explanation # Fail
EM y ≡ ŷ 20

PEM y ∈ ŷ 16
REM ŷ ∈ y. 6

PREM y ∈ ŷ ∨ ŷ ∈ y. 2

Table 7: Number of failed judgments by human check
for different EM variants.
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Figure 7: Semantic equivalence comparison prompt.

Figure 8: Multilingual Question-Answering prompts.

E Appendix Experiments992

E.1 Experiments on Llama-2 and Vicuna993

We present the experimental results on Llama-994

2-13B-Chat (Llama-2) 7 (Touvron et al., 2023),995

and Vicuna-7B-v1.5 (Vicuna-v1.5) 8 (Zheng et al.,996

2023) in Table 9. Results suggest that confidence997

estimation abilities are relatively weak in both998

Llama-2 and Vicuna-1.5 across three methods.999

E.2 Experiments of Extended Confidence1000

Estimations1001

E.2.1 Experiments of Multilingual Confidence1002

Estimations with Paraphrasing1003

Following Xiong et al. (2024), we investigate the1004

prompt sensitivity for multilingual confidence es-1005

timation by introducing perturbations in the ques-1006

7https://huggingface.co/meta-llama/Llama-2-13b-chat
8https://huggingface.co/lmsys/vicuna-7b-v1.5

tions. We utilize GPT-3.5 to paraphrase the ques- 1007

tions in different ways to generate different re- 1008

sponses. We sample 200 questions from SciQ and 1009

prompt GPT-3.5 to paraphrase these questions. We 1010

also employ GPT-3.5 to check the semantic equiv- 1011

alence before and after paraphrasing to ensure the 1012

meaning is not changed. The AUROC and ECE re- 1013

sults are presented in Table 10 and Figure 13. The 1014

findings and analysis are in Sec. 4.1. 1015

E.2.2 Experiments of Multilingual Confidence 1016

Estimations of Sampling 1017

To make comparisons, we also present the AUROC 1018

and ECE results of sampling-based confidence esti- 1019

mation methods on 200 samples from our multilin- 1020

gual SciQ datasets by setting Temperature T=0.8 1021

on GPT-3.5. We cluster the sampled responses 1022

in semantic spaces and calculate the consistency 1023

score as Xiong et al. (2024) to represent the confi- 1024
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Figure 9: Multilingual p(True)-based Confidence Estimation Prompt.

dence. As presented in Table 10 and 13, the results1025

demonstrate that our employed p(True) and Verb.1026

methods outperform sampling-based methods as1027

the high temperature may incur variability in out-1028

put spaces which undermines the reliability of QA1029

tasks.1030

E.2.3 Experiments of Multilingual Confidence1031

Estimations using CoT1032

We supply the Chain-of-Thought (CoT) (Wei et al.,1033

2022) for prompt-based confidence estimations of1034

p(True) and Verbalized methods as in Table 10 and1035

Figure 10. We present the AUROC and ECE results1036

of p(True) and Verb. using CoT on 400 samples1037

from SciQ and LSQA on GPT-3.5. Results suggest1038

that CoT can marginally enhance the reliability1039

of prompt-based confidence estimations in various 1040

languages. 1041

Lang. ko id it ar de
Prompt in English

Accu. ↑ 24.39 40.60 34.58 22.64 54.78
ARC. ↑ 72.40 70.12 75.45 68.22 76.18
ECE ↓ 33.55 36.78 33.16 46.78 27.14

NTP Method
Accu. ↑ 28.60 46.54 39.20 27.44 59.65
ARC. ↑ 74.66 78.52 77.23 70.17 79.60
ECE ↓ 28.10 32.44 30.50 42.76 23.18

Table 8: Experimental results of overall Accu., ARC.,
and ECE on the LSQA dataset by prompting using En-
glish and NTP method on other five investigated lan-
guages.
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Figure 10: Self-verbalized confidence estimation prompt.

E.3 Experiments on Extended Languages1042

To further validate the observed linguistic domi-1043

nance in multilingual confidence estimations, we1044

employ five subsets derived and translated from1045

TriviaQA into Korean (ko), Arabic (ar), German1046

(de), Indonesian (id), and Italian (it) as in Sec.1047

2. The LA experiments are conducted on dataset1048

translated from TriviaQA in all investigated lan-1049

guages in Table 11. We also develop small-size1050

LSQA subsets for such languages and conduct LS1051

experiments in 8.1052

F Uncertainty Estimations1053

Both confidence and uncertainty estimations indi-1054

cate the level of assurance of a response generated1055

by LLMs given a query and are occasionally re-1056

garded interchangeably (Geng et al., 2023). To1057

alleviate over-confidence and enhance the reliabil-1058

ity of LLMs, reliable uncertainty estimation is es-1059

sential to determine whether a question is known1060

or not to the LLM (Geng et al., 2023). Both Un-1061

certainty and Confidence estimations can indicate1062

the reliability degree of the responses generated1063

by LLMs, and are generally used interchangeably1064

(Xiao et al., 2022; Chen and Mueller, 2023; Geng1065

et al., 2023). In this part, we investigate several1066

commonly used confidence & uncertainty estima-1067

tion methods for generative LLMs as mentioned1068

in Sec. 7. Specifically, we denote Conf(x,y) as1069

the confidence score associated with the output1070

sequence y = [y1, y2, . . . , yN ] given the input con-1071

text x = [x1, x2, . . . , xM ]. We also illustrate the1072

summarized estimation methods as well as their1073

disadvantages in Fig. 14.1074

Likelihood-based Methods: Following model1075

calibration on classification tasks (Guo et al.,1076

2017b), Vazhentsev et al. (2023); Varshney et al.1077

(2023); Wang et al. (2024) intermediately quan-1078

tify sentence uncertainty over token probabili-1079

ties. In traditional discriminative models, except1080

likelihood-based methods, confidence estimations 1081

also include ensemble-based and Bayesian methods 1082

(Lakshminarayanan et al., 2017; Gal and Ghahra- 1083

mani, 2016; Xue et al., 2022; Wang and Yeung, 1084

2020; Gal et al., 2016; Abdar et al., 2021), and 1085

density-based methods (Lee et al., 2018). How- 1086

ever, this likelihood-based method requires access 1087

to token probabilities and thus being limited to 1088

white-box LLMs. The likelihood-based confidence 1089

is estimated by calculating the joint token-level 1090

probabilities over y conditioned on x. As longer se- 1091

quences are supposed to have lower joint likelihood 1092

probabilities that shrink exponentially with length, 1093

the product of conditional token probabilities of 1094

the output should be normalized by calculating the 1095

geometric mean by the sequence length (Murray 1096

and Chiang, 2018; Malinin and Gales, 2021), and 1097

the confidence score can be represented as: 1098

Conf(x,y) =

(
N∏
i

p(yi|y<i,x)

) 1
N

(5) 1099

Similarly, the arithmetical average of the token 1100

probabilities is adopted in Varshney et al. (2023): 1101

Conf(x,y) =
1

N

N∑
i

p(yi|y<i,x) (6) 1102

Furthermore, a low probability associated with 1103

even one generated token may provide more in- 1104

formative evidence of uncertainty (Varshney et al., 1105

2023). Hence, the minimum of token probabilities 1106

is also employed. 1107

Conf(x,y) = min {p(y1|x), . . . , p(yN |y<N ,x)}
(7)

1108

1109

Prompting-based Methods: Recently, LLMs’ 1110

remarkable instruction-following ability (Brown 1111

et al., 2020) provides a view of instructing LLMs 1112
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Figure 11: Examples of the LSQA ataset in English and Japanese specific subsets.

to self-estimate their confidence level to previous1113

inputs and outputs including expressing uncertainty1114

in words (Lin et al., 2022; Zhou et al., 2023; Tian1115

et al., 2023a; Xiong et al., 2024), or instructing the1116

LLM to self-evaluate its correctness on p(True)1117

(Kadavath et al., 2022). The P (True) confidence1118

score is implemented by simply asking the model1119

itself if its first proposed answer y to the question1120

x is true (Kadavath et al., 2022), and then obtain-1121

ing the probability p(True) assigned by the model,1122

which can implicitly reflect self-reflected certainty1123

as follows.1124

Conf(x,y) = p(True) = p(y is True?|x) (8)1125

Another method is to prompt LLMs to linguis-1126

tically express tokens of confidence scores in ver-1127

balized numbers or words (Lin et al., 2022; Mielke1128

et al., 2022; Zhou et al., 2023; Tian et al., 2023b;1129

Xiong et al., 2024).1130

The sampling-based method refers to randomly1131

sampling multiple responses given a fixed input x 1132

using beam search or temperature sampling strate- 1133

gies (Manakul et al., 2023; Xiong et al., 2024; 1134

Lyu et al., 2024). Various aggregation methods 1135

are adopted on sampled responses to calculate the 1136

consistency level as the confidence score. Kuhn 1137

et al. (2023) proposes semantic entropy to quantify 1138

uncertainty for sequences with shared meanings 1139

at the semantic level. Moreover, some uncertainty 1140

quantification methods are used to calculate the 1141

entropy indicating the dispersion level of multiple 1142

outputs (Kuhn et al., 2023; Lin et al., 2023). 1143

Training-based Methods: For training methods, 1144

an external evaluator trained on specific datasets 1145

is introduced to output a confidence score given 1146

an input and an output. The evaluator can be a 1147

pre-trained NLI model (Mielke et al., 2022), or a 1148

value head connected to the LLM output layer (Lin 1149

et al., 2022; Kadavath et al., 2022), or the LLM 1150

itself (Han et al., 2024). 1151
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Figure 12: Native-tone prompting (NTP).

Figure 13: Experimental results of AUROC and ECE of three confidence estimation variants of paraphrasing,
sampling, and CoT on LSQA for LS task on GPT-3.5.
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Conf. en zh ja fr th
ARC. ↑ ECE ↓ ARC. ↑ ECE ↓ ARC. ↑ ECE ↓ ARC. ↑ ECE ↓ ARC. ↑ ECE ↓

TVQA on Llama-2
Prob. 51.92 20.56 51.24 34.12 51.92 32.04 49.51 29.33 49.63 48.72

p(True) 55.89 17.09 82.65 46.11 81.76 43.47 65.79 29.59 70.62 55.99
Verb. 59.78 21.10 53.20 45.71 51.95 39.33 61.66 38.98 54.23 59.80

GSM8K on Llama-2
Prob. 42.72 32.18 50.46 33.59 50.35 51.67 43.60 36.25 55.11 52.87

p(True) 60.82 49.30 59.86 58.87 62.89 67.39 59.51 62.36 47.91 75.22
Verb. 59.39 43.65 53.29 54.59 53.40 49.27 53.26 37.61 54.53 56.96

CSQA on Llama-2
Prob. 49.30 30.40 49.95 31.72 50.28 43.28 49.72 27.40 50.23 40.84

p(True) 56.53 26.05 55.34 45.65 53.46 46.01 59.76 25.49 50.21 63.09
Verb. 53.64 19.54 51.74 24.06 50.36 34.03 52.93 15.08 50.73 62.01

SciQ on Llama-2
Prob. 55.40 24.65 76.39 44.42 74.97 45.56 62.32 39.76 51.93 59.05

p(True) 48.60 32.18 52.02 40.44 51.60 30.19 49.53 32.50 45.26 43.75
Verb. 56.34 19.89 55.17 41.36 55.58 37.20 60.27 39.14 71.17 54.95

TVQA on Vicuna-1.5
Prob. 45.45 35.34 48.43 47.07 51.75 36.63 46.13 35.19 53.17 40.73

p(True) 47.45 23.58 78.96 42.86 79.71 42.40 60.38 28.89 76.58 53.43
Verb. 55.74 21.41 52.98 57.36 50.94 54.89 55.46 42.76 45.86 71.83

GSM8K on Vicuna-1.5
Prob. 50.90 53.91 51.07 49.00 50.51 53.73 50.42 49.08 50.19 55.40

p(True) 65.40 68.30 67.28 59.33 51.09 60.70 66.78 55.69 52.86 60.83
Verb. 55.66 46.26 53.90 48.75 54.60 48.03 53.70 45.62 61.81 51.87

CSQA on Vicuna-1.5
Prob. 48.88 26.04 50.01 43.65 49.67 45.64 45.94 31.53 49.78 51.78

p(True) 65.00 27.06 57.39 35.80 57.62 38.54 48.21 25.95 50.53 55.54
Verb. 52.32 29.80 52.29 38.59 51.08 44.49 58.68 35.15 51.90 61.77

SciQ on Vicuna-1.5
Prob. 38.10 50.94 48.69 44.44 50.07 42.19 38.65 37.26 49.75 49.70

p(True) 45.78 31.29 73.55 40.17 66.85 45.15 59.20 42.18 74.16 58.34
Verb. 55.13 36.47 51.66 55.27 51.92 56.98 56.33 57.93 52.89 57.74

Table 9: Experimental results of AUROC (ARC.) and ECE of three confidence estimation methods on four LA
datasets on Llama-2 and Vicuna-1.5 .

Conf. en zh ja fr th
ARC. ↑ ECE ↓ ARC. ↑ ECE ↓ ARC. ↑ ECE ↓ ARC. ↑ ECE ↓ ARC. ↑ ECE ↓

SciQ on GPT-3.5
Prob. 69.58 30.04 67.14 36.77 81.44 45.40 74.35 36.98 72.55 51.34

p(True) 72.80 23.86 77.56 31.99 82.44 38.27 72.00 40.13 63.45 40.80
Verb. 71.43 22.18 72.50 36.47 72.95 31.43 74.16 31.97 73.40 42.34

Re-Prob. 67.47 28.16 72.86 33.43 75.69 41.05 71.40 34.88 80.37 48.96
Re-p(True) 74.14 25.14 82.66 32.04 76.96 36.70 71.48 42.13 64.44 42.05

Re-Verb. 73.80 21.96 73.40 35.13 79.49 30.60 66.16 32.65 73.19 40.44
Sampling 67.55 27.40 71.69 37.97 74.07 42.09 67.94 40.04 66.50 48.65

CoT-p(True) 73.65 22.95 80.05 29.90 82.16 37.10 71.92 30.86 65.90 40.19
CoT-Verb. 73.64 20.60 75.73 32.79 74.61 27.50 72.62 31.26 74.96 40.33

Table 10: Experimental results of AUROC and ECE of several confidence estimation variants of paraphrasing the
questions, sampling multiple responses, and adding CoT on SciQ for LA task on GPT-3.5.

Conf. en ko it ar de id
ARC. ↑ ECE ↓ ARC. ↑ ECE ↓ ARC. ↑ ECE ↓ ARC. ↑ ECE ↓ ARC. ↑ ECE ↓ ARC. ↑ ECE ↓

TriviaQA on GPT-3.5
Prob. 69.58 30.04 73.21 46.37 73.08 28.60 71.51 46.78 72.48 33.74 77.37 50.12

p(True) 72.80 23.86 63.19 40.66 70.67 35.47 63.24 50.55 78.49 26.16 66.08 49.81
Verb. 71.43 22.18 72.41 34.80 72.19 41.54 76.65 28.68 68.75 47.14

Table 11: Experimental results of AUROC and ECE of confidence estimations on other languages on TriviaQA for
LA task on GPT-3.5.
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Figure 14: An illustration of several confidence estimation methods as well as their drawbacks. Note that sampling-
and training-based methods are omitted in this work as they are cost-expensive and time-consuming for multilingual
confidence estimations. All complete multilingual prompts used in this work are presented in Appendix C. In
addition, although confidence and uncertainty are always used interchangeably, the former confidence pertains
to the model’s certainty regarding a specific generation, while the latter uncertainty denotes the "dispersion" of
potential predictions for a given context. In this work, the semantically equivalent inputs in various languages
are thoroughly distinct in token space. Therefore, we utilize confidence estimation in this work albeit specific
uncertainty quantification methodologies are still applicable.
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