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ABSTRACT

In the context of modern machine learning, models deployed in real-world sce-
narios often encounter various forms of data shifts, leading to challenges in both
out-of-distribution (OOD) generalization and detection. While these two aspects
have received significant attention individually, they lack a unified framework
for theoretical understanding and practical usage. This paper bridges the gap by
formalizing a graph-based framework tailored for both OOD generalization and
detection. In particular, based on our graph formulation, we introduce spectral
learning with wild data (SLW) and show the equivalence of minimizing the ob-
jective and performing spectral decomposition on the graph. This equivalence
allows us to derive provable error quantifying OOD generalization and detection
performance. Empirically, SLW demonstrates competitive performance against
existing baselines, aligning with the theoretical insight. Our code is available at
https://anonymous.4open.science/r/Anonymous—6074.

1 INTRODUCTION

While modern machine learning methods have made substantial strides in recent years, most learning
algorithms have been limited to closed-world scenarios, assuming the distribution of training data
and labels perfectly aligns with that of the testing data. In reality, models deployed in real-world
applications often confront data that deviates from the training distribution in unforeseen ways. As
depicted in Figure 1, a model trained on in-distribution (ID) data (e.g., seabirds) may encounter data
exhibiting covariate shifts, such as birds in forest environments or birds in the cage. In this scenario,
the model must retain its ability to accurately classify these covariate-shifted out-of-distribution
(OOD) samples as birds—an essential capability known as OOD generalization (Gulrajani & Lopez-
Paz, 2021; Koh et al., 2021; Ye et al., 2022). Alternatively, the model may encounter data with novel
semantics, like deer or sea lions, which it has not seen during training. In this case, the model
must recognize these semantic-shifted OOD samples and abstain from making incorrect predictions,
underscoring the significance of OOD detection (Yang et al., 2021; Salehi et al., 2022). Thus, for a
model to be considered robust and reliable, it must excel in both OOD generalization and detection,
tasks that are often addressed separately in current research.

Recently, Bai et al. (2023) introduced a promising direction that addresses both OOD generalization
and detection simultaneously. The problem setting leverages unlabeled wild data naturally arising
in the model’s operational environment, representing it as a composite distribution: Py;q := (1 —
s — Te) Py + POV 4 psemantic  Hepe [Py - [PoOVariale  apd Psemantic renresent the marginal
distributions of ID, covariate-shifted OOD, and semantic-shifted OOD data, respectively. While
such data is ubiquitously available in many real-world applications, harnessing the power of wild
data is challenging due to the heterogeneity of the wild data distribution. Moreover, a formalized

understanding of how wild data impacts OOD generalization and detection is still lacking.

In this paper, we formalize a new graph-based framework tailored for understanding OOD general-
ization and detection problems jointly. We begin by formulating a graph, where the vertices are all
the data points and edges connect similar data points. These edges are defined based on a combina-
tion of supervised and self-supervised signals, incorporating both labeled ID data and unlabeled wild
data. Importantly, this graph provides a basis for understanding OOD generalization and detection
from a spectral analysis perspective, enabling a theoretical characterization of performance through
graph factorization. Within this framework, we derive a formal linear probing error, quantifying the
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misclassification rate on covariate-shifted OOD data. Furthermore, our framework yields a closed-
form solution that quantifies the distance between ID and semantic OOD data, directly impacting
OOD detection performance.

Our .graph-bas?d frameyvork also .illuminates D Covariate OOD Semantic OOD
practical algorithm design. Specifically, we —

present a spectral contrastive loss derived from
the spectral decomposition of the graph’s adja-
cency matrix. This loss facilitates joint learn-
ng from both la.beled 1D .data and unlabeled Figure 1: Nlustration of three types of data in the wild:
wild data, allowing meaningful structures to (1) ID (e.g., seabird), (2) covariate OOD (e.g., bird in

emerge for.OOD 'generalization apd detection e forest and bird in the cage), and (3) semantic OOD
(e.g., covariate-shifted OOD data is embedded (e.g., deer and sea lion).

closely to the ID data, whereas semantic-shifted

OOD data is distinguishable from ID data). The algorithm has both practical and theoretical
values—(1) it enables end-to-end training in the context of modern neural networks and can be
effectively optimized using stochastic gradient descent, making it desirable for real-world applica-
tions; (2) it allows drawing a theoretical equivalence between learned representations and spectral
decomposition on the graph. Such equivalence facilitates theoretical understanding of the OOD gen-
eralization and OOD detection, especially because minimizing the loss is equivalent to performing
spectral decomposition on the graph.

s
e

Empirical results demonstrate the effectiveness of our learning algorithm, showcasing substantial
improvements in both OOD generalization and detection performance. In comparison to the state-
of-the-art method SCONE (Bai et al., 2023), our approach achieves a significant reduction in FPR95
by an average of 8.34% across five OOD datasets. We summarize our main contributions below:

1. We propose a novel graph-based framework for understanding both OOD generaliza-
tion and detection, formalizing it by spectral decomposition of the graph containing ID,
covariate-shift OOD data, and semantic-shift OOD data.

2. We provide theoretical insight by analyzing closed-form solutions for the OOD generaliza-
tion and detection error, based on spectral analysis of the graph.

3. We evaluate our model’s performance through a comprehensive set of experiments, provid-
ing empirical evidence of its robustness and its alignment with our theoretical analysis. Our
model consistently demonstrates strong OOD generalization and OOD detection capabili-
ties, achieving competitive results when benchmarked against the existing state-of-the-art.

2 PRELIMINARIES

Bai et al. (2023) proposed to jointly tackle the OOD generalization and OOD detection problems via
unlabeled wild data. Inspired by this, we introduce the data setup and learning goal as preliminaries.

Data setup. Consider the empirical training set D; U D,, as a union of labeled and unlabeled data.

* The labeled set D; = {Z;, y; } I ,, where y; belongs to known class space ;. Let Py, denote
the marginal distribution over input space, which is referred to as the in-distribution (ID).

* The unlabeled set D,, = {Z;}", consists of ID, covariate OOD, and semantic OOD data,
where each sample Z; is drawn from the following mixture distribution:

R covariate semantic
]Pwild = (1 — Te — 7Ts)HDin + 7Tc]P)out + 7-"S]P)out )

where 7., 75, . + 75 € [0, 1]. This mathematical characterization is meaningful since it
encapsulates representative distributional shifts that a deployed model may encounter in
practice. In particular, PSY¥3 shares the same label space as the ID data, yet the input
space undergoes covariate shift such as styles and domains, which necessitates OOD gen-
eralization (i.e., predicting the samples correctly into one of the classes in };). On the
other hand, PMantic represents semantically shifted OOD distribution arising from novel
classes outside ); and therefore should not be predicted by the classification model. Han-

dling Psemantic requires OOD detection, which enables obtaining from a prediction.
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Learning goal. Our learning framework is centered around the construction of two key components,
an OOD detector gg: X — {IN,OUT} and a multi-class classifier fy, by leveraging data from both
Py, and Pyig. Let 5(fo(T)) := argmaxyfe(y) (Z), where féy)(f) denotes the y-th element of fy(T),
corresponding to label y. We notate gy and fy with parameters 6 to indicate that these functions share
neural network parameters. In our model evaluation, we are interested in the following metrics:

( ) TID-Acc(fg) == Ez y)~p, (LH{U(fo(Z)) = y}),
( ) 1 00D-Acc(fg) := Ez ) wpeowine (1{Y(fo(2)) = y}),
( ) L FPR(gg) := Bz premuc (1{go () = IN}),

where 1{-} represents the indicator function, while the arrows indicate the directionality of im-
provement (higher/lower is better). For OOD detection, ID samples are considered positive and
FPR signifies the false positive rate.

3 METHODOLOGY

In this section, we present a new graph-based framework for tackling both OOD generalization
and detection problems. This framework enables us to gain theoretical insight into the learned
embedding space by spectral decomposition on a graph, where the vertices are the combination
of wild data and the labeled ID data, and edges connect similar data points. In what follows, we
first introduce the graph-based formulation (Section 3.1). Then, we introduce a loss that performs
spectral decomposition on the graph, which can be reformulated as a contrastive learning objective
on neural net representations (Section 3.2).

3.1 GRAPH FORMULATION

We use x to denote the set of all natural data (raw inputs without augmentation). Given an &, we use
T (z|Z) to denote the probability of = being augmented from Z, and 7 (:|Z) to denote the distribution
of its augmentation. For instance, when Z represents an image, 7 (-|Z) can be the distribution of
common augmentations (Chen et al., 2020a) such as Gaussian blur, color distortion, and random
cropping. We define X as a general population space, which contains the set of all augmented data.
In our case, X is composed of augmented samples from both labeled data X; and unlabeled data &,
with cardinality |X'| = N.

We define the graph G(X', w) with vertex set X’ and edge weights w. Given our data setup, edge
weights w can be decomposed into two components: (1) self-supervised connectivity w™) by treat-
ing all points in X as entirely unlabeled, and (2) supervised connectivity w® by incorporating
labeled information from A to the graph. We proceed to define these two types of connectivity.

Edge connectivity. First, by treating all points as unlabeled, we can define self-supervised connec-
(u)

zx!

tivity. For any two augmented data z,z’ € X, w
the positive pair:

denotes the marginal probability of generating

w'™ 2B, T (2|2)T (2'|7) (1)

where z and 2’ are augmented from the same image T ~ P, and PP is the marginal distribution of
both labeled and unlabeled data.

Different from self-supervised learning (Chen et al., 2020a;b;c), we have access to the labeled infor-
mation for a subset of nodes, which allows adding additional supervised connectivity to the graph.
In particular, we consider (z,z’) a positive pair when x and 2’ are augmented from two labeled
samples Z; and Z; with the same known class i € ;.

Considering both self-supervised and supervised connectivities, the overall similarity for any pair of
data (z, 2’) is formulated as:

u l l _ _
Wag! = Uuw;x)/ + mw;;,, where wg(mz, £ Z E@NP”EJE;NP”T($|$l)T($/|$E) ) (2)

LISRY]
where P, is the distribution of labeled samples with class label ¢ € ), and the coefficients 7, n;
modulate the relative importance between the two terms. w, = Zz,e v Wz denotes the total edge
weights connected to a vertex x.
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Adjacency matrix. Having established the notion of connectivity, we now introduce the adjacency
matrix A € RV*N with entries A,,» = w,,. The adjacency matrix can be decomposed into the
summation of self-supervised adjacency matrix A(*) and supervised adjacency matrix A®):

A=, A 4 A0, 3)
As a standard technique in graph theory (Chung, 1997), we use the normalized adjacency matrix:
AL D 3AD 3, (4)

where D € RV*N i a diagonal matrix with D,, = w,. The normalization balances the degree
of each node, reducing the influence of vertices with very large degrees. The normalized adjacency
matrix defines the probability of = and x’ being considered as the positive pair, which helps connect
to the representation learning loss as we show next.

3.2 SPECTRAL CONTRASTIVE LEARNING WITH WILD DATA

We present a spectral contrastive loss that can be derived from a spectral decomposition of the graph
adjacency matrix A defined above. The loss learns feature representation jointly from both labeled
ID data and unlabeled wild data, so that meaningful structures emerge for both OOD generaliza-
tion and detection (e.g., covariate-shifted OOD data is embedded closely to the ID data, whereas
semantic-shifted OOD data is distinguishable from ID data). The algorithm has both practical and
theoretical values—it (1) enables end-to-end training in the context of modern neural networks and
(2) allows drawing a theoretical equivalence between learned representations and the top-k singular
vectors of A. Such equivalence facilitates theoretical understanding of the OOD generalization and
0OOD detection capability encoded in A. Specifically, we consider low-rank matrix approximation:

B 2
min  Log(F, A) 2 HA ~FFT H )
FERN Xk F
According to the Eckart—Young-Mirsky theorem (Eckart & Young, 1936), the minimizer of this loss
function is F}, € RV>* such that F},F}| contains the top-k components of A’s SVD decomposition.

Now, if we view each row f;'— of I as a scaled version of learned feature embedding f : X — RF,
the L,¢(F, A) can be written as a form of the contrastive learning objective. This connection is
formalized in Theorem 3.1 below, with full proof in the Appendix A.

Theorem 3.1. Let f, = \/w,f(x) for some function f. Recall n,,mn; are coefficients defined in
Eq. 1. Then, the loss function L¢(F, A) is equivalent to the following loss function for f, which we
term Spectral Learning with Wild Data (SLW):

Lsiw(f) £ =20 L1 (f) = 2mLa(f) + i Ls(f) + 2numLa(f) + 07 Ls(f), (0)

where

L= B - [f@f@N)] L) = E, [f@)7f (=1)],
)t T () T (a2 T 15)

L= B U@ )]
W T (e ~T )

ain=3 _E (0@ sn=  E (@ 6)].
Y T () ~T(|70) o T (|Za) e ~T(17,)

Interpretation of loss. At a high level, the loss components £; and Lo contribute to pulling the
embeddings of positive pairs closer, while L3, £4 and L5 push apart the embeddings of negative
pairs. For positive pairs, £; samples two random augmentation views from two images sharing the
same class label, and £ samples two augmentation views from the same image in X'. For negative
pairs, L3 samples two augmentation views from two images in X; with any class label; £, samples
two views of one image in A} and another one in X’; L5 samples two views from two random images
in X. In particular, our loss components on the positive pairs can pull together samples sharing the
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same classes, thereby helping OOD generalization. At the same time, our loss components on the
negative pairs can help separate semantic OOD data in the embedding space, thus benefiting OOD
detection. The loss is inspired by pioneering works on spectral contrastive learning (HaoChen et al.,
2021; Shen et al., 2022; Sun et al., 2023), which analyzed problems such as unsupervised learn-
ing, unsupervised domain adaptation, and novel category discovery—all of which assume unlabeled
data has homogeneous distribution (e.g., either entirely from PS043 in case of unsupervised do-
main adaptation, or entirely from P51 jn case of novel category discovery). However, our paper
focuses on the joint problem of OOD generalization and detection, which has fundamentally dif-
ferent data setup and learning goals (cf. Section 2). In particular, we are dealing with unlabeled
data with heterogeneous mixture distribution, which is more general and challenging than previous
works. We are interested in leveraging labeled data to classify some unlabeled data correctly into
the known categories while rejecting the remainder of unlabeled data from new categories, which
was not considered in the above works. Accordingly, we derive novel theoretical analysis uniquely
tailored to our problem setting, which we present next.

4 THEORETICAL ANALYSIS

In this section, we present a theoretical analysis based on the spectral loss. Our formal investigation
is centered around the understanding of both OOD generalization and detection.

4.1 ANALYTIC FORM OF LEARNED REPRESENTATIONS

To obtain the representations, one can train the neural network f : X — R* using the spectral loss
defined in Equation 6. Minimizing the loss yields representation Z € R™** where each row vector
2; = f(x;)". According to Theorem 3.1, the closed-form solution for the representations is equiv-
alent to performing spectral decomposition of the adjacency matrix. Thus, we have Fj, = V/DZ,
where F, Fk—r contains the top-k components of A’s SVD decomposition and D is the diagonal ma-
trix. We further define the top-k singular vectors of A as Vi € RVN*k 50 we have Fi, = VivVZg,
where X, is a diagonal matrix of the top-k singular values of A. By equalizing the two forms of Fy,
the closed-formed solution of the learned feature space is given by Z = [D]~ 2V, N

4.2 ANALYSIS TARGET

Linear probing evaluation. We assess OOD generalization performance based on the linear prob-
ing error, which is commonly used in self-supervised learning (Chen et al., 2020a). Specifically, the
weight of a linear classifier is denoted as M € R**:l which is learned with ID data to minimize
the error. The class prediction for an input Z is given by h(z; f,M) = argmax,y, (f(z) " M);. The
linear probing error measures the misclassification of linear head on covariate-shifted OOD data:

E(f) 2 By pouncL[y(7) # h(z; £, M), @)

where y(Z) indicates the ground-truth class of Z. £(f) = 0 indicates perfect OOD generalization.

Separability evaluation. Based on the closed-form embeddings, we can also quantify the distance
between the ID and semantic OOD data:

S(f) £ By, opy,z;~psmmnic | £(Z:) — f(Z5)]13- 8)

The magnitude of S(f) reflects the extent of separation between ID and semantic OOD data. Larger
S(f) suggests better OOD detection capability.

4.3 AN ILLUSTRATIVE EXAMPLE

Setup. We use an illustrative example to explain our theoretical insights. In Figure 2, the training
examples come from 5 types of data: angel in sketch (ID), tiger in sketch (ID), angel in painting
(covariate OOD), tiger in painting (covariate OOD), and panda (semantic OOD). The label space );
consists of two known classes: angel and tiger. Class Panda is considered a novel class. The goal is
to classify between images of angels and tigers while rejecting images of pandas.



Under review as a conference paper at ICLR 2024

Augmentation Transformation Probability. Based on the data
setup, we formally define the augmentation transformation, which
encodes the probability of augmenting an original image Z to the

augmented view x: —\y \
cp s ] (@]
) a if y&) =ylx),d=z T); )
TEID=9 "5 it y@) #y@).da) = da); O ==y
v it y(@) # y(x),d(z) # d(x). o BE
Here d(Z) is the domain of sample Z, and y(Z) is the class label o

of sample Z. « indicates the augmentation probability when two
samples share the same label but different domains, and /3 indicates . .
the probability when two samples share different class labels but Figure 2: IHlustration of the
with the same domain. It is natural to assume the magnitude order graph ?I,ld the augmentation
that follows p > max(a, 8) > min(«, 8) > v > 0. probability.

Adjacency matrix. With Eq. 9 and the definition in Section 3.1,
we can derive the analytic form of adjacency matrix A.

0% + B2 + a? 4 242 208 + 72 + 27a 2pa + 72 + 298 20 +~% + 2vp Yy +a+ B +2p)
(w) 208 + 7% + 2va p% + B2 + a? 4 242 208 + 72 + 2vp 2pa + 42 + 298 Yy + o+ B+ 2p)
N AN = | 2pa+42 +298 208 +72+2vp PP +B2 4l +297 20847 f2va Ay +a+B+2p)
208 + 7% + 29p 2pa + 7% + 278 208+77 +2va PP+ B2+ a’+297 (v +a+B+2p)
(v +a+ B+ 2p) YOy + o+ B+ 2p) (v +a+ B+ 2p) Yy + a+ B+ 2p) p? + 472
(10)
) ) 02 + B2 2°B . pataB  aBtap e+ )
2pB8 p°+ B aB+vp  pat+B  ~(p+B)
AZ*(UIA(I)—&-UUA(U)):—( pa+y8 aB+yp o447 2va (e +7) —l—’l]uA(u)),
C C a+vp pa+qs 2va a? ++2 V(e £ )
Yo +B) v +8) ety Alat) 2v?
11

where C'is the normalization constant to ensure the summation of weights amounts to 1. Each row
or column encodes connectivity associated with a specific sample, ordered by: angel sketch, tiger
sketch, angel painting, tiger painting, and panda. We refer readers to Appendix D.1 for the detailed
derivation.

Main analysis. We are primarily interested in analyzing the representation space derived from A.

We mainly put analysis on the top-3 eigenvectors V € R5*3 and measure both the linear probing
error and separability.

Theorem 4.1. Assume n,, = 5,7 = 1, we have:

S U TR U I

VeI SR I

0 0 0o 0 1 Lif fa > fB;

1 1 1 1 .

. - B "% % O 0 . ifga>p;

V= . E(f) = . (12)
[ L 1 L 1 ] 2 Lifza<p.
IR L e
1 111 g se<p
5 TV Vs VB

Interpretation. The discussion can be divided into two cases: (1) %a > B. (2) %a < (. In the
first case when the connection between the class (multiplied by %) is stronger than the domain, the
model could learn a perfect ID classifier based on features in the first two rows in V and effectively
generalize to the covariate-shifted domain (the third and fourth row in V'), achieving perfect OOD
generalization with linear probing error £(f) = 0. In the second case when the connection between
the domain is stronger than the connection between the class (scaled by %), the embeddings of
covariate-shifted OOD data are identical, resulting in high OOD generalization error.

Theorem 4.2. Denote o = % and ' = % and assume 1, = 5,n;, = 1, we have:

) (r+ 128 120 (A (175'—§ NZ+1) L if2a>B;
S(f)_{ (T+ 128 +120/) (322 (1 ﬁ/—% ?+1) ,if§a</3. (13
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Interpretation. We analyze the function S(f) under dif-
ferent o and 3’ values in Figure 3. Overall the distance
between semantic OOD data and ID data displays a large
value, which facilitates OOD detection. Note that a clear
boundary in Figure 3 indicates 3a = f3.

More analysis. Building upon the understanding of both
OOD generalization and detection, we further discuss the
influence of different semantic OOD data in Appendix B,
and the impact of ID labels in Appendix C. Figure 3: Value of function S(f)

)
&

5 EXPERIMENTS

Beyond theoretical insights, we show empirically that SLW is competitive. We present the experi-
mental setup in Section 5.1, results in Section 5.2, and further analysis in Section 5.3.

5.1 EXPERIMENTAL SETUP

Datasets and benchmarks. Following the setup of Bai et al. (2023), we employ CIFAR-
10 (Krizhevsky et al., 2009) as P, and CIFAR-10-C (Hendrycks & Dietterich, 2018) with Gaussian
additive noise as the POyt For Psemantic e Jeverage SVHN (Netzer et al., 2011), LSUN (Yu
et al., 2015), Places365 (Zhou et al., 2017), Textures (Cimpoi et al., 2014). To simulate the wild dis-
tribution Py;1q, we adopt the same mixture ratio as in SCONE (Bai et al., 2023), where 7. = 0.5 and
s = 0.1. Detailed descriptions of the datasets and data mixture can be found in the Appendix E.1.
Large-scale results on the ImageNet dataset can be found in Appendix E.2. Additional results on the
Office-Home (Venkateswara et al., 2017) can be found in Appendix E.3.

Implementation details. We adopt Wide ResNet (Zagoruyko & Komodakis, 2016) with 40 layers
and a widen factor of 2. We use stochastic gradient descent with Nesterov momentum (Duchi et al.,
2011), with weight decay 0.0005 and momentum 0.09. We divide CIFAR-10 training set into 50%
labeled as ID and 50% unlabeled. And we mix unlabeled CIFAR-10, CIFAR-10-C, and semantic
OOD data to generate the wild dataset. Starting from random initialization, we train the network
with the loss function in Eq. 6 for 1000 epochs. The learning rate is 0.03 and the batch size is
512. n, is selected within {1.00, 2.00} and »; is within {0.02, 0.10, 0.50, 1.00}. Subsequently, we
follow the standard approach (Shen et al., 2022) and use labeled ID data to fine-tune the model with
cross-entropy loss for better generalization ability. We fine-tune for 20 epochs with a learning rate
of 0.005 and batch size of 512. The fine-tuned model is used to evaluate the OOD generalization
and OOD detection performance. We utilize a distance-based method for OOD detection, which
resonates with our theoretical analysis. Specifically, our default approach employs a simple non-
parametric KNN distance (Sun et al., 2022), which does not impose any distributional assumption
on the feature space. The threshold is determined based on the clean ID set at 95% percentile. For
further implementation details, hyper-parameters, and validation strategy, please see Appendix F.

5.2 RESULTS AND DISCUSSION

Competitive empirical performance. The main results in Table 1 demonstrate that our method not
only enjoys theoretical guarantees but also exhibits competitive empirical performance compared to
existing baselines. For a comprehensive evaluation, we consider three groups of methods for OOD
generalization and OOD detection. Closest to our setting, we compare with strong baselines trained
with wild data, namely OE (Hendrycks et al., 2018), Energy-regularized learning (Liu et al., 2020),
Woods (Katz-Samuels et al., 2022), and Scone (Bai et al., 2023).

The empirical results provide interesting insights into the performance of various methods for OOD
detection and generalization. (1) Methods tailored for OOD detection tend to capture the domain-
variant information and struggle with the covariate distribution shift, resulting in suboptimal OOD
accuracy. (2) While approaches for OOD generalization demonstrate improved OOD accuracy,
they cannot effectively distinguish between ID data and semantic OOD data, leading to poor OOD
detection performance. (3) Methods trained with wild data emerge as robust OOD detectors, yet
display a notable decline in OOD generalization, highlighting the confusion introduced by covariate
OOD data. In contrast, our method excels in both OOD detection and generalization performance.
Our method even surpasses the latest method SCONE by 25.10% in terms of FPR95 on the Textures
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SVHN Pieantic, CIFAR-10-C Pgoyeriate LSUN-C Pipantic, CIFAR-10-C Pggyariate Textures Py, CIFAR-10-C Poyriate
Method i * ! il 1 1 1 il 1 1 ! 1
OOD detection
MSP 75.05 94.84 48.49 91.89 75.05 94.84 30.80 95.65 75.05 94.84 59.28 88.50
ODIN 75.05 94.84 3335 91.96 75.05 94.84 15.52 97.04 75.05 94.84 49.12 84.97
Energy 75.05 94.84 35.59 90.96 75.05 94.84 8.26 98.35 75.05 94.84 52.79 85.22
Mahalanobis 75.05 94.84 12.89 97.62 75.05 94.84 39.22 94.15 75.05 94.84 15.00 97.33
ViM 75.05 94.84 21.95 9548 75.05 94.84 5.90 98.82 75.05 94.84 29.35 93.70
KNN 75.05 94.84 28.92 95.71 75.05 94.84 28.08 95.33 75.05 94.84 39.50 92.73
ASH 75.05 94.84 40.76 90.16 75.05 94.84 239 99.35 75.05 94.84 53.37 85.63
00D generalization
IRM 77.92 90.85 63.65 90.70 77.92 90.85 36.67 94.22 77.92 90.85 59.42 87.81
GroupDRO 71.27 94.97 23.78 94.93 71.27 94.97 6.90 98.51 77.21 94.97 62.08 84.60
Mixup 79.17 93.30 97.33 18.78 79.17 93.30 52.10 76.66 79.17 93.30 58.24 75.70
VREx 76.90 91.35 55.92 91.22 76.90 91.35 51.50 91.56 76.90 91.35 65.45 85.46
EQRM 75.71 92.93 51.86 90.92 75.71 92.93 21.53 96.49 75.71 92,93 57.18 89.11
SharpDRO 79.03 94.91 21.24 96.14 79.03 94.91 5.67 98.71 79.03 94.91 42.94 89.99
Learning w. Piq
OE 37.61 94.68 0.84 99.80 41.37 93.99 3.07 99.26 4471 92.84 29.36 93.93
Energy (w. outlier) 20.74 90.22 0.86 99.81 32.55 92.97 233 99.93 49.34 94.68 16.42 96.46
Woods 52.76 94.86 2.11 99.52 76.90 95.02 1.80 99.56 83.14 94.49 39.10 90.45
Scone 84.69 94.65 10.86 97.84 84.58 93.73 1023 98.02 85.56 93.97 37.15 90.91
SLW (Ours) 86.62.05 93.10401 003100 9998i00 | 858802 92.6lig1 176105 9975i04 | 814007 9250401 120505 98.25.02

Table 1: Main results: comparison with competitive OOD generalization and OOD detection methods on
CIFAR-10. Additional results for the Places365 and LSUN-R datasets can be found in Table 2. Bold=best.
(*Since all the OOD detection methods use the same model trained with the CE loss on P, they display the
same ID and OOD accuracy on CIFAR-10-C.)

dataset. Methodologically, SCONE uses constrained optimization whereas our method brings a
novel graph-based perspective. More results can be found in the Appendix E.

5.3 FURTHER ANALYSIS

Visualization of OOD detection score distributions. In Figure 4 (a), we visualize the distribu-
tion of KNN distances. The KNN scores are computed based on samples from the test set after
contrastive training and fine-tuning stages. There are two salient observations: First, our learning
framework effectively pushes the semantic OOD data (in ) to be apart from the ID data (in

) in the embedding space, which benefits OOD detection. Moreover, as evidenced by the small
KNN distance, covariate-shifted OOD data (in ) is embedded closely to the ID data, which
aligns with our expectations.

Semantic OOD
ID Data
Covariate OOD

emantic 00D
ID Data
Covariate OOD

0.0 0.2 0.4 O 1.2 1.4 1.6

.6 0.8 1.0
KNN Score
(a) KNN distance distribution (b) Embedding distribution

Figure 4: (a) Distribution of KNN distance. (b) t-SNE visualization of learned embeddings. We employ
CIFAR-10 as Pin, CIFAR-10-C as Py, and SVHN as Py ™.

Visualization of embeddings. Figure 4 (b) displays the t-SNE (Van der Maaten & Hinton, 2008)
visualization of the normalized penultimate-layer embeddings. Samples are from the test set of ID,
covariate OOD, and semantic OOD data, respectively. The visualization demonstrates the alignment
of ID and covariate OOD data in the embedding space, which allows the classifier learned on the ID
data to extrapolate to the covariate OOD data and thereby benefiting OOD generalization.

6 RELATED WORKS

Out-of-distribution detection. OOD detection has gained soaring research attention in recent years.
The current research track can be divided into post hoc and regularization-based methods. Post hoc
methods derive OOD scores at test-time based on a pre-trained model, which can be categorized
as confidence-based methods (Bendale & Boult, 2016; Hendrycks & Gimpel, 2017; Liang et al.,
2018), energy-based methods (Liu et al., 2020; Wang et al., 2021a; Sun et al., 2021; Sun & Li,
2022; Morteza & Li, 2022; Djurisic et al., 2023), distance-based methods (Lee et al., 2018; Zhou
et al., 2021b; Sehwag et al., 2021; Sun et al., 2022; Du et al., 2022; Ming et al., 2022a; 2023),
and gradient-based method (Huang et al., 2021). On the other hand, regularization-based methods
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aim to train the OOD detector by training-time regularization. Most approaches require auxiliary
OOD data (Bevandic et al., 2018; Geifman & El-Yaniv, 2019; Mohseni et al., 2020; Hendrycks
et al., 2018; Ming et al., 2022b). However, a limitation of existing methods is the reliance on clean
semantic OOD datasets for training. To address this challenge, Katz-Samuels et al. (2022) first
explored the use of wild data, which includes unlabeled ID and semantic OOD data. Building upon
this idea, Bai et al. (2023) extended the characterization of wild data to encompass ID, covariate
OOD, and semantic OOD data, providing a more generalized data mixture in practice. In our paper,
we provide a novel graph-based approach for understanding both OOD generalization and detection
based on the setup proposed by Bai et al. (2023).

Out-of-distribution generalization. OOD generalization aims to learn domain-invariant represen-
tations that can effectively generalize to unseen domains, which is more challenging than classic
domain adaptation problem (Ganin & Lempitsky, 2015; Chen et al., 2018; Zhang et al., 2019; Cui
et al., 2020), where the model has access to unlabeled data from the target domain. OOD generaliza-
tion and domain generalization (Wang et al., 2023) focus on capturing semantic features that remain
consistent across diverse domains, which can be categorized as reducing feature discrepancies across
the source domains (Li et al., 2018b;c; Arjovsky et al., 2019; Zhao et al., 2020; Ahuja et al., 2021),
ensemble and meta learning (Balaji et al., 2018; Li et al., 2018a; 2019; Zhang et al., 2021; Bui et al.,
2021), robust optimization (Cha et al., 2021; Krueger et al., 2021; Sagawa et al., 2020; Shi et al.,
2022; Ramé et al., 2022), augmentation (Zhou et al., 2020; Nam et al., 2021; Nuriel et al., 2021;
Zhou et al., 2021a), and disentanglement (Zhang et al., 2022). Distinct from prior literature about
generalization, Bai et al. (2023) introduces a framework that leverages the wild data ubiquitous in
the real world, aiming to build a robust classifier and a reliable OOD detector simultaneously. Based
on the problem setting introduced by Bai et al. (2023), we contribute novel theoretical insights into
the understanding of both OOD generalization and detection.

Spectral graph theory. Spectral graph theory is a classic research field (Chung, 1997; McSherry,
2001; Kannan et al., 2004; Lee et al., 2014; Cheeger, 2015), concerning the study of graph parti-
tioning through analyzing the eigenspace of the adjacency matrix. The spectral graph theory is also
widely applied in machine learning Shi & Malik (2000); Blum (2001); Ng et al. (2001); Zhu et al.
(2003); Argyriou et al. (2005); Shaham et al. (2018). Recently, HaoChen et al. (2021) presented un-
supervised spectral contrastive loss derived from the factorization of the graph’s adjacency matrix.
Shen et al. (2022) provided a graph-theoretical analysis for unsupervised domain adaptation based
on the assumption of unlabeled data entirely from P4, Sun et al. (2023) first introduced the la-
bel information and explored novel category discovery, considering unlabeled data covers Pscmantic,
All of the previous literature assumed unlabeled data has a homogeneous distribution. In contrast,
our work focuses on the joint problem of OOD generalization and detection, tackling the challenge
of unlabeled data characterized by a heterogeneous mixture distribution, which is a more general
and complex scenario than previous works.

Contrastive learning. Recent works on contrastive learning advance the development of deep neu-
ral networks with a huge empirical success (Chen et al., 2020a;b;c; Grill et al., 2020; Hu et al., 2021;
Caron et al., 2020; Chen & He, 2021; Bardes et al., 2022; Zbontar et al., 2021). Simultaneously,
many theoretical works establish the foundation for understanding representations learned by con-
trastive learning through linear probing evaluation (Saunshi et al., 2019; Lee et al., 2021; Tosh et al.,
2021a;b; Balestriero & LeCun, 2022; Shi et al., 2023). HaoChen et al. (2021; 2022); Sun et al.
(2023) extended the understanding and providing error analyses for different downstream tasks. Or-
thogonal to prior works, we provide a graph-based framework tailored for the wild environment to
understand both OOD generalization and detection.

7 CONCLUSION

In this paper, we present a new graph-based framework to jointly tackle both OOD generalization
and detection problems. Specifically, we learn representations through Spectral Learning with Wild
Data (SLW). The equivalence of minimizing the loss and factorizing the graph’s adjacency matrix
allows us to draw theoretical insight into both OOD generalization and detection performance. We
analyze the closed-form solutions of linear probing error for OOD generalization, as well as sepa-
rability quantifying OOD detection capability via the distance between the ID and semantic OOD
data. Empirically, our framework demonstrates competitive performance against existing baselines,
closely aligning with our theoretical insights. We believe our theoretical framework and findings will
inspire the community to further union and understand both OOD generalization and detection.
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A TECHNICAL DETAILS OF SPECTRAL LEARNING WITH WILD DATA

Theorem A.1. (Recap of Theorem 3.1) Let f, = \J/wy f(x) for some function f. Recall n,,,n; are
coefficients defined in Eq. 1. Then, the loss function Lun¢(F, A) is equivalent to the following loss
function for f, which we term Spectral Learning with Wild Data (SLW):

Lsiw(f) £ =20, L1(f) = 2mLa(f) + 1 Ls(f) + 2numLa(f) + 17 Ls(f), (14)
where

L=% L E @),
O T ()t ~T ()

Lo(f) = EI}E&P [f(@)" f (zM)],
xNT(~|a’cu),x+7N7—('\iu)

LH=Y B |(f@TfE)],
hIEW IR TIEL

o~ T (|21),2~ ~T (|2])

E4(f):Z

i€V

(@ 7r @)

le]P’li,iuNP,
T (1Z0),2" ~T(|Tu)
N\ 2
o=, &, 0@

o~ T (3u)2” ~T(|2,)

Proof. We can expand L,¢(F, A) and obtain

2
Lulht)= 3 (21l 1)

z,x'€X

—const + Z (—merf(;c)Tf (gg/) + WaWyr (f(x)Tf (m/))Q) )

where f, = \/w,f(z) is a re-scaled version of f(z). At a high level, we follow the proof in
HaoChen et al. (2021), while the specific form of loss varies with the different definitions of posi-
tive/negative pairs. The form of Lsiw(f) is derived from plugging w,,s and w,.

Recall that w,,- is defined by

Wag' = Ty Z Ezynry, Bajor, T(2|20) T (2'12]) + mEgz, T (2|24)T (2'|24)
i€V

and w,, is given by

Wy = Z Wy
z/
= MNu Z EE[NIP’HEE;NIPI $|.’El ZT ‘xl + nleuNPT -/L"xu ZT /|ju>
€M
=10 Y Bay, T (@) + mEe,~pT (|Z0).
i€V

Plugging in w,,- we have,
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-2 Z Weo f(x) T f (')

z,x’'€X

=-2 Z zz*f +)

rz,xteXx

= =20, Y Baper Eapr, > Tlalz)T (@12) f() f (')

[IShY] z,x' €X

By e 3 Tl (12, £(2) F (@)

x,x’

SR E [f(@)" f (a7)]

— =/
z~P T~

T ()t ~T ()
— 2 E_ [f(@)Tf (ah)]

xNT(‘|§T1L)7x+NT("iu)
== 2nuL1(f) = 2mL2(f).

Plugging w, and w,s we have,

N wewe (F(2)7 f ()"

z,x'eX
S wew (F@)f (27))°
r,x”€X
= Z (nu ZEa:lN]P’l '7;|33l +77l]Ea:u~IP’T(x|xu)>
z,x’' €X 1EY]
(nu > Eajer, T(x|7) + mEay~p T (@ |$L)) (F@)"f (7))’
JEM
:772 Z Z EileliT(l’ﬁz) Z Eff“‘ﬂplj T(a™[2;) (f(z)Tf (Ii))2
r,x” €X 1€V JEN

o YN Ear, T(@|2)Ee, T (@ |2,) (f(2) f (7))

z, 2~ €EX IEY]

tp S EapsT(2l50)Eay s T (@ |7,) (F(2) T (7))

r,x—eX

23> E [(F@7f ())’]

T ~Py T ~P L
1€V JEW ! _l"’ L N ,
T (|Z0),a™ ~T (-] 2))

+mmy, E (@77 (7))

, L TunP,
o T 7)™ ~T(|70)
i B, [uerrey]

e~T (| Zu),x ™ ~T(-|Z,)
=n2L3(f) + 2numLa(f) + 07 Ls(f).
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B IMPACT OF SEMANTIC OOD DATA

In our main analysis in Section 4, we @

consider semantic OOD to be froma P a [} o P
different domain. Alternatively, in- ]

stances of semantic OOD data can Y Y

come from the same domain as co- B 7Ty B 8 e B
variate OOD data. In this section, we SB ;

provide a complete picture by con- \4

trasting these two cases. a ¢ a g
Setup. In Figure 5, we illustrate two e v
scenarios where the semantic OOD (a) d(panda) # painting (b d(panda) = painting

data has either a different or the same
domain label as covariate OOD data. Figure 5: Illustration of 5 nodes graph and the augmentation
Other setups are the same as Sec. 4.3.  probability defined by classes and domains. Figure (a) illus-
trates the scenario where semantic OOD data has a differ-
ent domain from covariate OOD. Figure (b) depicts the case
where semantic OOD and covariate OOD share the same
domain.

Adjacency matrix. The adjacency
matrix for scenario (a) has been de-
rived in Eq. 11. For the alternative
scenario (b) where semantic OOD
shares the same domain as the covari-
ate OOD, we can derive the analytic form of adjacency matrix A;.

0% + B2 + a2 + 242 208 + 72 + 2va 2pa + 378 208 + 8 + 2vp aB+2v(B+p)
(u) 208 + 2 + 2va p% + B2+ a? 4 242 2aB + B + 2vp 2pa + 378 aB +2v(B + p)
NuAy " = 2pa + 37 228 +98+2vp  pP+28% +a® +97 208+ 6%+ 290 208482 +92 +va
208 + 7B + 27p 2ap + 378 208 + B2 + 2va P2 +28° +a®+4% 208+ 8% 9%+ a
af +2v(B8 + p) aB+2v(B+p) 2B+ B+ +va 208487+ e pP 287 £297
(15)
1 1 p? + B2 22PB , P +v8  aB+vp  v(B+p)
2ppB pe+ B aB+yp  pa+yB  Y(B+p)
A= —(mAgl) + nuA§“)) =—(|pa+v8 aB+vp oZ+42 2o v +ea)| + ﬂuAgu)%
Ch Ci |aB+vp pa+8 2va a2 +4% Ny +a)
YB+p) vB+p) vv+a) v+ 22
(16)

where C} is the normalization constant to ensure the summation of weights amounts to 1. Each
row or column encodes connectivity associated with a specific sample, ordered by: angel sketch,
tiger sketch, angel painting, tiger painting, and panda. We refer readers to the Appendix D.2 for the
detailed derivation.

Main analysis. Following the same assumption in Sec. 4.3, we are primarily interested in analyzing
the difference of the representation space derived from A and A; and put analysis on the top-3

eigenvectors V; € R5%3,

Theorem B.1. Denote o/ = S and g = % and assume n,, = 5,m; = 1, we have:
T

R V2 V2 1 11
Vi=la(X2) a(r2) b(A2) b(A2) 1| -R, E(f1)=0ifa>0,6>0. a7

C()\3) *C(Ag) —1 1 0
where a(\) = 2SN p(n) = S o)) = V2S00
that normalizes the eigenvectors to unit norm and }:2, Xg are the 2nd and 3rd highest eigenvalues.

. R is a diagonal matrix

Interpretation. When semantic OOD shares the same domain as covariate OOD, the OOD gen-
eralization error £(f1) can be reduced to 0 as long as « and /3 are positive. This generalization
ability shows that semantic OOD and covariate OOD sharing the same domain could benefit OOD
generalization. We empirically verify our theory in Section E.4.

Theorem B.2. Denote o/ = S and g = % and assume 1,, = 5,m; = 1, we have:

>0 ,ifd,B € black area in Figure 6 (b);

S(f) = S8(f) { <0 ,ifd,p" € white area in Figure 6 (b). (18)
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(a) Heatmap of S(f) — S(f1) (b) Heatmap of 1(S(f) — S(f1))

Figure 6: Visualization of the separability difference between two cases defined in Figure 5 (a) and
Figure 5 (b). Figure 6 (a) utilizes a heatmap to depict the distribution, while Figure 6 (a) uses the
indicator function.

Interpretation. If o/, 3’ € black area in Figure 6 (b) and semantic OOD comes from a different
domain, this would increase the separability between ID and semantic OOD, which benefits OOD
detection. If o/, 8’ € white area in Figure 6 (b) and semantic OOD comes from a different domain,
this would impair OOD detection.

C IMPACTS OF ID LABELS ON OOD GENERALIZATION AND DETECTION

Compared to spectral contrastive loss proposed by HaoChen et al. (2021), we utilize ID labels in
the pre-training. In this section, we analyze the impacts of ID labels on the OOD generalization and
detection performance.

Following the same assumption in Sec. 4.3, we are primarily interested in analyzing the difference
of the representation space derived from A and A™) and put analysis on the top-3 eigenvectors
V() ¢ R5%3 Detailed derivation can be found in the Appendix D.3.

Theorem C.1. Assume 1, = 5,1, = 1, we have:

(101 1 1 0]
ilo 0o 0 0 2 Jifa > B;
-1 1 -1 1 0 .
(v — - - wy_ ) 0 Lifa>p;
e e ={5 0z g a
ilo 0 0 0 2 Jifa < .
-1 -1 1 1 0]

Interpretation. By comparing the eigenvectors V' in the supervised case (Theorem 4.1) and the
eigenvectors V® in the self-supervised case, we find that adding ID label information transforms
the performance condition from o« = (5 to %a = f. In particular, the discussion can be divided
into two cases: (1) @ > . (2) a < (. In the first case when the connection between the class is
stronger than the domain, the model could learn a perfect ID classifier based on features in the first
two rows in V() and effectively generalize to the covariate-shifted domain (the third and fourth
row in 17(“)), achieving perfect OOD generalization with £(f(*)) = 0. In the second case when the
connection between the domain is stronger than the connection between the class, the embeddings
of covariate-shifted OOD data are identical, resulting in high OOD generalization error.

Theorem C.2. Assume 1, = 5,1 = 1, we have:

S(f) = S(f™)>0,ifa>0,8>0 (20)

Interpretation. After incorporating ID label information, the separability between ID and semantic
OOD in the learned embedding space increases as long as « and 3 are positive. This suggests that
ID label information indeed helps OOD detection. We empirically verify our theory in Section E.4.
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D TECHNICAL DETAILS OF DERIVATION

D.1 DETAILS FOR FIGURE 5 (A)

Augmentation Transformation Probability. Recall the augmentation transformation probability,
which encodes the probability of augmenting an original image Z to the augmented view x:

p it y(@) =y(x),d(z) = d(z);
T(x|z)= «Q %f y(T) = y(z),d(z) # d(z);
Bt y(z) # y(z),d(z) = d(z);
v it y(@) # y(),d(z) # d(2).

Thus, the augmentation matrix 7 of the toy example shown in Figure 5 (a) can be given by:

p B a v v
B p v a v
T=|a v p B v
vy a B p v
B e B B

Each row or column encodes augmentation connectivity associated with a specific sample, ordered
by: angel sketch, tiger sketch, angel painting, tiger painting, and panda.

Details for A(“) and A)., Recall that the self-supervised connectivity is defined in Eq. 1. Since we

have a 5-nodes graph, A(*) would be %T’TT. If we assume 7,, = 5, we can derive the closed-form
self-supervised adjacency matrix:

0% + B2 + a? 4 242 208 + 72 + 27va 2pa + 72 + 298 2af + % + 2vp Yy +a+ B+ 2p)

(w) 2B+ 4270 PP+ B274at+297 208497420 2patyl 4298 A(y+atB+2p)

N AV = | 2pa+42+248 208 +72 +2vp  p* + 8% +a® +2v 208 +7% +2v0 (v +a+ B+ 2p)

208 + 7 + 2vp 2pa + 7% + 278 208477 +2va PP +82+a’+29°  v(y+a+B+2p)
Y(v+a+B+2p) Yy +a+B+2p) Yy +a+B+2p) Y(v+a+B+2p) p? +4v?

Then, according to the supervised connectivity defined in Eq. 2, we only compute ID-labeled data.
Since we have two known classes and each class contains one sample, A() = 77,17?1 + 7'27’T2
Then if we let 75; = 1, we can have the closed-form supervised adjacency matrix:

p?+ B2 208  pa+B aB+yp v(p+B)

208 pPP+B af+p pa+yB8 A(p+B)

mAY = | pa+v8 aB+vp o +9* 2y« )
af+yp pa+yB 2ya P 44? )

Yp+B8) vp+B) va+y) va+y) 29

Details of eigenvectors V. We assume p > max(a, ) > min(a,8) > v > 0, and denote
o = 2 B = %. A can be approximately given by:

2 48 3¢/ 0 O
R 48 2 0 3d 0
Ax~A==1{3 0 1 28 0
0

1

)

SN

0 3o 28 1
0 0 0 0

where C is the normalization term and equals to 7 4+ 123" + 12a/. The squares of the minimal term
(e.g. aff azfé _ 7. a ay

DT = etc) are approximated to 0.

T = o ay
P a p?p27

~ 1
D= Ediag[Q + 48 43,2+ 48 +3d/,1+ 28" + 3,1+ 28 + 3d, 1]

D= \/Ediag[%(l . go/)7 %(1 . %0/), 14 — go/, 1- 4 - go/, 1]
1-28"—3d 26’ o 0 0
) L — 24 1-28"—3d 0 %o/ 0
D 2AD 2~ D 2AD = = %a' 0 1-28" —3d 24’ 0
0 %a’ 28 1-28 -3d" 0
0 0 0 0 1
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Let A1, 5 and vy, 5 be the eigenvalues and their corresponding eigenvectors of D=3 AD~%. Then
the concrete form of Ay . 5 and v; . 5 can be approximately given by:

B = 2=[v2,v2,1,1,0" =1

7y =[0,0,0,0,1]7 52 =1

U3 = %[f\/i, Vv2,-1,1,0]" A3 =1—4p

0= J5l-1,-1,v2,v2,0]7 §4=1—ga’

U5 = %[1, —1,—v2,v2,0]" As=1—48" — 2o

Since o/, 8’ > 0, we can always have //\\1 = /):2 > /)\\3 > X5 and :\\1 = //\\2 > X4 > 3\\5. Then, we let
k=3and V € R5*3 is given by:

T o1 1 1 g7
33 6 o
0 0 0 0 1 Jif ol > B
1 1 _1 1
. |=Va V3 6 7]
V:
T o1 1 1 g7
3B Ve 6 o
0 0 0 0 1 ,if 20/ < f3'.
1 _1o1 1 8
V6 V6 V3 VB

Details of linear probing and separability evaluation. Recall that the closed-form embedding

Z = [D]~ 3 Viv/ 2. Based on the derivation above, closed-form features for ID sample Z;, € R2x3
can be approximately given by:

(1-p'—0.750)VE |1 0 —/1—47 9./ y
% 10 Jioag ifgal> 5

9
(1—8'—0.750" )V C V2 0 - l=3a
9

2v3 V2 0 —/1- 2

Based on the least error method, we can derive the weights of the linear classifier M &€ R3%2,

Zip =
e 9
,1f§a'<ﬂ’.

]/\4\ = (ZiIZin)TZi?;yin

where (-)T is the Moore-Penrose inverse and ;, is the one-hot encoded ground truth class labels. So
when %a > (3, the predicted probability Yeovariae Can be given by:

! 3./
fjcovariate __ Zycovariate | por (1 - B8 - 2@ ) .
yout - “out - 1— B/ o QO/

4

where Z € R2%2 is an identity matrix. We notice that when %a < B, the closed-form features for
ID samples are identical, indicating the impossibility of learning a clear boundary to classify classes
angel and tiger. Eventually, we can derive the linear probing error:

0 ,if 3a > B;
E(f) =

2 ,if%a<ﬁ.

The separability between ID data and semantic OOD data can be computed based on the closed-form
embeddings Z;, and Zcmantic

77semantic _ \/5 . [07 1 0}

out

a)?+1) ,if%a>6;
o)2+1) Lif o< B.

EN[SVEN 9N

) (7128 F 1200 (222 (1 - -
S(f) = { (7T+128" + 1204’)(2*23&’ (1-p -
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D.2 DETAILS FOR FIGURE 5 (B)

Augmentation Transformation Probability. Illustrated in Figure 5 (b), when semantic OOD and
covariate OOD share the same domain, the augmentation matrix can be slightly different from the
previous case:

p B a v v
B p v a v
T=la v p B B
v a B p B
Yy B B p

Each row or column represents augmentation connectivity of a specific sample, ordered by: angel
sketch, tiger sketch, angel painting, tiger painting, and panda.

Details for Aﬁ“) and Agl). After the assumption 7,, = 5,7; = 1, we can have nuAgu) =TT":

PP+ 8% +a?+292 208497+ 27a 2pa + 376 208 + 78 + 27p aB+2v(8 + p)

(u) 208 + 72 + 2va p% + B2 + a? 4 242 2apB + B + 2vp 2pa + 378 aB +2y(B + p)
nA 7 = 2pa + 373 208 +8+2vp  p2+28%+a?+97 28+ 82 +2va 208+ 82 +42 + e
208 + B + 2vp 2ap + 38 208 + % + 2va P2 +282+a? 4+ 208+ B2 +4% + 0

aB+2v(B +p) aB+2v(B +p) 208+ 8% +7% +va 208+ 8% ++% +7a p? +28% + 277

And the supervised adjacency matrix Agl) = 7'17'—'; + ’7'27'; can be given by:

p?+ B2 208 pa+B aB+yp A )

" 208 pP+B° aB+yp pa+yB A(B+p)
mAy = |pa+8 aB+vp o ++? 2va A )
aft+yp pat+yBf  2va P49 y(v+a)

YB+p) vB+p) Y(v+a) y(y+a) 29

Details for 171 Following the same assumption, the adjacency matrix can be approximately given
by:
2 48" 3« 0 0
e 1 45" 2 0 3 0
A1 ~ A1 = = 3o’ 0 1 26/ 26/
Cilo 3¢ 28 1 28
0 0 258 28 1
— 1
D, = ol diag[2 + 48" + 3,2+ 48"+ 3a/,1 + 48" +3a’,1 + 48" + 3a’,1 + 45']
1

—

_1 —~ 1 3 1 3 3 3
D2 =4/C; -diag[—=(1—f —2d/), —=(1—-8' —2a/),1-28' —2a/,1—28 — 2o/, 1 — 28’
1P =G diagl (16 o), S5 (1= = ), 1-2 = Sl 128 = Sl 128
1-28" — 3o’ 28’ %a/ 0 0
T 1 28’ 1-28" - 3a’ 0 %a, 0
D;2A1D{?~D;?AD,? = S 0 1- 48" —3a/ 26’ 28’
0 %a/ 28’ 1—48" —3a’ 28’
0 0 23’ 28’ 1—4p8'

where 6’1 is the normalization term and 61 =T+ 208" + 12a’. After eigendecomposition, we can
derive ordered eigenvalues and their corresponding eigenvectors:

azﬁ[ﬂ,\ﬁm,u A=1

=~ N N N T T 1 V/34/(27a2 —40ab+48b%) —9a
2= \/Qa(32)2+2b(X2 +1 [a( 2) ( ) b()‘Q)vb(AQ)v 1] A2 =1-3b+ o 4 .

~ 5 T /81a?124ab 11662 —9a
= g o9 ~e0a), 11,07 R = 1 5 + YSITEZIG IO 0

~ 1 \ 3 T X —1_3p— V34/(27a2 —40ab+48b2)+9a
e \/Qa(k4)2+2b(/\4)2+1 o 4) ( 4),b( 4) ( 4),1] 4 3 . 4 _

~ T 81a2+24ab+166249a

Vs = %[ ( ) c( 5) 1,1, ]T s =1—5b— 81 +244b+16b +9

vV 20(A5)2+2
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where :\\1 > 3\\2 > 3\\3 > :\\4 > :\\5 and CL()\) = %,b()\) =

V2(1-3a’—
3a’
R V2 V2
Vi= la(X2) a(X2)
c(Az)  —c(A3)

T

1 1
b(A2) b(A2) 1
-1 1

0

- diag[

1
VT V/2a(32)?

65=X  We can get closed-form eigenvectors:

1

157

1

T e

+2b(X0)2 + 1 \/2c(X3)2 +2

Details for linear probing and separability evaluation. Following the same derivation, we can

—

~ _ 1 ~ ~
derive closed-form embedding for ID samples Z;, = D, *Vj;\/ X, and the linear layer weights

M= (Z] Zin)' ZT yin. Eventually, we can derive the approximately predicted probability

~covariate

Yout

_lar+b
B alfbl

aq —b1
a1+b1

~covariate .

Yout

where a1,b; € R and b; > 0. This indicates that linear probing error £(f1) = 0 as long as « and 3

are positive.

Having obtained closed-form representation Z;, and Z5$mi¢, we can compute separability S(f1)

and then prove:

in —

, — [ a(2) Vs c(a)VAs
3 A —
= (1=p =501 | V7 V2a(32)2+42b(32)2+1 V2c(Rs)2+2
V2 V2 a(32)V/3s c(Go)VAs
VT \2a(30)2+26(R0)2+1  \/2¢(R3)2+2
o — 1 Py
Zgmanie = (1 - 281/ i : 0]

st - s

>0
<0

V7 \/Qa(X2)2 +26(A0)2 + 1

,if o/, 8" € black area in Figure 6 (b);
,if o/, 3’ € white area in Figure 6 (b).

D.3 CALCULATION DETAILS FOR SELF-SUPERVISED CASE

Our analysis for the self-supervised case is based on Figure 5 (a), the adjacency matrix is exactly the
same as Eq. 10. After approximation, we can derive:

/\—l
DW * = .\/5+83 8 -diag[ll -5 —a/,1-8 —a,1 -8 —d/,1— 8 —d,1]

1
28’

AW~ A — L 5y
C(uw) 0

0

28/ 2/ 0 0
1 0 22 0
0 1 28 0

2/ 268 1 0
0 0 0 1

1-28" —2d/ 28/ 20/
28’ 1-28 — 2/ 0
20/ 0 1-28" —2a’

0 20/ 28’

0 0 0
=101,1,1,1,0]7 =1
=10,0,0,0,1]T No=1
=10-1,1,-1,1,07 53 =1-48'
=1[-1,-1,1,1,0]" A =1—4d

%[17 _]-7 _]-7 13 O]T

s =1—4a’ — 48’

0
2a/
28
1-28" — 2
0

Following the same procedure presented above, we can prove Theorem C.1 and C.2.
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E MORE EXPERIMENTS

E.1 DATASET STATISTICS

We provide a detailed description of the datasets used in this work below:

CIFAR-10 (Krizhevsky et al., 2009) contains 60, 000 color images with 10 classes. The training set
has 50, 000 images and the test set has 10, 000 images.

ImageNet-100 consists of a subset of 100 categories from ImageNet-1K (Deng et al., 2009). This
dataset contains the following classes: n01498041, n01514859, n01582220, n01608432, n01616318,
n01687978, n01776313, n01806567, n01833805, n01882714, n01910747, n01944390, n01985128,
n02007558, n02071294, n02085620, n02114855, n02123045, n02128385, n02129165, n02129604,
n02165456, n02190166, n02219486, n02226429, n02279972, n02317335, n02326432, n02342885,
n02363005, n02391049, n02395406, n02403003, n02422699, n02442845, n02444819, n02480855,
n02510455, n02640242, n02672831, n02687172, n02701002, n02730930, n02769748, n02782093,
n02787622, n02793495, n02799071, n02802426, n02814860, n02840245, n02906734, n02948072,
n02980441, n02999410, n03014705, n03028079, n03032252, n03125729, n03160309, n03179701,
n03220513, n03249569, n03291819, n03384352, n03388043, n03450230, n03481172, n03594734,
n03594945, n03627232, n03642806, n03649909, n03661043, n03676483, n03724870, n03733281,
n03759954, n03761084, n03773504, n03804744, n03916031, n03938244, n04004767, n04026417,
n04090263, n04133789, n04153751, n04296562, n04330267, n04371774, n04404412, n04465501,
n04485082, n04507155, n04536866, n04579432, n04606251, n07714990, n07745940.

CIFAR-10-C is generated based on Hendrycks & Dietterich (2018), applying different corruptions
on CIFAR-10 including gaussian noise, defocus blur, glass blur, impulse noise, shot noise, snow,
and zoom blur.

ImageNet-100-C is generated with Gaussian noise added to ImageNet-100 dataset (Deng et al.,
2009).

SVHN (Netzer et al., 2011) is a real-world image dataset obtained from house numbers in Google
Street View images. This dataset 73,257 samples for training, and 26, 032 samples for testing with
10 classes.

Places365 (Zhou et al., 2017) contains scene photographs and diverse types of environments encoun-
tered in the world. The scene semantic categories consist of three macro-classes: Indoor, Nature,
and Urban.

LSUN-C (Yu et al., 2015) and LSUN-R (Yu et al., 2015) are large-scale image datasets that are
annotated using deep learning with humans in the loop. LSUN-C is a cropped version of LSUN and
LSUN-R is a resized version of the LSUN dataset.

Textures (Cimpoi et al., 2014) refers to the Describable Textures Dataset, which contains a large
dataset of visual attributes including patterns and textures. The subset we used has no overlap
categories with the CIFAR dataset (Krizhevsky et al., 2009).

iNaturalist (Horn et al., 2018) is a challenging real-world dataset with iNaturalist species, captured
in a wide variety of situations. It has 13 super-categories and 5,089 sub-categories. We use the subset
from Huang & Li (2021) that contains 110 plant classes that no category overlaps with IMAGENET-
1K (Deng et al., 2009).

Office-Home (Venkateswara et al., 2017) is a challenging dataset, which consists of 15500 images
from 65 categories. It is made up of 4 domains: Artistic (Ar), Clip-Art (Cl), Product (Pr), and
Real-World (Rw).

Details of data split for OOD datasets. For datasets with standard train-test split (e.g., SVHN),
we use the original test split for evaluation. For other OOD datasets (e.g., LSUN-C), we use 70% of
the data for creating the wild mixture training data as well as the mixture validation dataset. We use
the remaining examples for test-time evaluation. For splitting training/validation, we use 30% for
validation and the remaining for training. During validation, we could only access unlabeled wild
data and labeled clean ID data, which means hyper-parameters are chosen based on the performance
of ID Acc. on the ID validation set (more in Section F).
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Places365 Pscmantic  CIFAR-10-C [Peoyariate LSUN-R Pscmantic/ C[FAR-10-C P<oyariate
Model 1 1 1 1| i 1 ! 1
0OD detection
MSP 75.05 94.84 57.40 84.49 75.05 94.84 52.15 91.37
ODIN 75.05 94.84 57.40 84.49 75.05 94.84 26.62 94.57
Energy 75.05 94.84 40.14 89.89 75.05 94.84 27.58 94.24
Mabhalanobis 75.05 94.84 68.57 84.61 75.05 94.84 42.62 93.23
ViM 75.05 94.84 21.95 95.48 75.05 94.84 36.80 93.37
KNN 75.05 94.84 42.67 91.07 75.05 94.84 29.75 94.60
ASH 75.05 94.84 44.07 88.84 75.05 94.84 22.07 95.61
00D generalization
IRM 77.92 90.85 53.79 88.15 77.92 90.85 34.50 94.54
GroupDRO 77.27 94.97 32.81 91.85 77.27 94.97 14.60 97.04
Mixup 79.17 93.30 58.24 75.70 79.17 93.30 32.73 88.86
VREx 76.90 91.35 56.13 87.45 76.90 91.35 44.20 92.55
EQRM 75.71 92.93 51.00 88.61 75.71 92.93 31.23 94.94
SharpDRO 79.03 94.91 34.64 91.96 79.03 94.91 13.27 97.44
Learning w. Py
OE 35.98 94.75 27.02 94.57 46.89 94.07 0.70 99.78
Energy (w/ outlier) 19.86 90.55 23.89 93.60 3291 93.01 0.27 99.94
Woods 54.58 94.88 30.48 93.28 78.75 95.01 0.60 99.87
Scone 85.21 94.59 37.56 90.90 80.31 94.97 0.87 99.79
SLW (Ours) 87.04. 035 9340103 4097111 91.82400 7938408 9244101 0.06100 99.99.00

Table 2: Additional results: comparison with competitive OOD generalization and OOD detection
methods on CIFAR-10. To facilitate a fair comparison, we include results from Bai et al. (2023)
and set 7. = 0.5, 75 = 0.1 by default for the mixture distribution Pyjq := (1 — 74 — 7)Pin +
T [psemantic 1 7 peovariate - Bold=best. (*Since all the OOD detection methods use the same model

trained with the CE loss on P, they display the same ID and OOD accuracy on CIFAR-10-C.)

E.2 RESULTS ON IMAGENET-100

In this section, we present results on the large-scale dataset ImageNet-100 to further demonstrate our
empirical competitive performance. We employ ImageNet-100 as I}, ImageNet-100-C as [peovariate.
and iNaturalist (Horn et al., 2018) as P{™°, Similar to our CIFAR experiment, we divide the
ImageNet-100 training set into 50% labeled as ID and 50% unlabeled. Then we mix unlabeled
ImageNet-100, ImageNet-100-C, and iNaturalist to generate the wild dataset. We include results
from Bai et al. (2023) and set 7. = 0.5, 75 = 0.1 for consistency. We pre-train the backbone
ResNet-34 (He et al., 2016) with SLW and then use ID data to fine-tune the model. We set the
pre-training epoch as 100, batch size as 512, and learning rate as 0.01. For fine-tuning, we set
the learning rate to 0.01, batch size to 128, and train for 10 epochs. Empirical results in Table 3
indicate that our method effectively balances OOD generalization and detection while achieving
strong performance in both aspects. While Wood (Katz-Samuels et al., 2022) displays strong OOD
detection performance, the OOD generation performance (44.46%) is significantly worse than ours
(72.58%). More detailed implementation can be found in Appendix F.

Method 0 T 1l 0
Woods 44.46 86.49 10.50 98.22
Scone 65.34 87.64 27.13 95.66
SLW (Ours) 72.58 86.68 21.00 96.52

Table 3: Results on ImageNet-100. We employ ImageNet-100 as Py, ImageNet-100-C with Gaus-
sian noise as POy and iNaturalist as PSemantic Bold=Best.

E.3 RESULTS ON OFFICE-HOME

In this section, we present empirical results on the Office-Home (Venkateswara et al., 2017), a
dataset comprising 65 object classes distributed across 4 different domains: Artistic (Ar), Clipart
(Cl), Product (Pr), and Real-World (Rw). Following Saito et al. (2018), we separate 65 object classes
into the first 25 classes in alphabetic order as ID classes and the remainder of classes as semantic
OOD classes. Subsequently, we construct the ID data from one domain (e.g., Ar) across 25 classes,
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and the covariate OOD from another domain (e.g., Cl) to carry out the OOD generalization task
(e.g., Ar — CI). The semantic OOD data are from the remainder of classes, in the same domain as
covariate OOD data. We consider the following wild data, where Pyq = m [PCovariate 4 7 psemantic
and 7. + 7 = 1. This setting is also known as open-set domain adaptation (Panareda Busto & Gall,

2017), which can be viewed as a special case of ours.

For a fair empirical comparison, we include results from Li et al. (2023), containing comprehen-
sive baselines like STA (Liu et al., 2019), OSBP (Saito et al., 2018), DAOD (Fang et al., 2021),
OSLPP (Wang et al., 2021b), ROS (Bucci et al., 2020), and Anna (Li et al., 2023). Following pre-
vious literature, we use OOD Acc. to denote the average class accuracy over known classes only in
this section. We employ ResNet-50 (He et al., 2016) as the default backbone. As shown in Table 4,
our approach strikes a balance between OOD generalization and detection, even outperforming the
state-of-the-art method Anna in terms of FPR by 11.3% on average. This demonstrates the effec-
tiveness of our method in handling the complex OOD scenarios present in the Office-Home dataset.
More detailed implementation can be found in Appendix F.

Ar — Cl Ar — Pr Ar — Rw Cl — Ar Cl — Pr Cl - Rw Pr — Ar
Method
4 4 4 4

STAqum 50.8 36.6 68.7 40.3 811 49.5 53.0 36.1 61.4 36.5 69.8 36.8 554 26.3
STA max 46.0 27.7 68.0 51.6 78.6 39.6 51.4 35.0 61.8 40.9 67.0 333 54.2 27.6
OSBP 50.2 38.9 71.8 40.2 79.3 325 59.4 29.7 67.0 37.3 72.0 30.8 59.1 31.9
DAOD 72.6 482 55.3 421 78.2 374 59.1 383 70.8 474 71.8 43.0 713 49.5
OSLPP 559 32.9 72.5 26.9 80.1 30.6 49.6 21.0 61.6 26.7 67.2 26.1 54.6 23.8
ROS 50.6 25.9 68.4 29.7 75.8 22.8 53.6 345 59.8 284 65.3 27.8 57.3 35.7
Anna 61.4 21.3 68.3 20.1 74.1 20.3 58.0 26.9 64.2 26.4 66.9 19.8 63.0 29.7
SLW (Ours) 54.2 14.1 68.7 12.7 78.6 15.8 51.1 14.8 61.0 8.8 68.0 10.5 58.3 9.2
Method Pr— Cl Pr — Rw Rw — Ar Rw — CI Rw — Pr Average

1 4 T 4 T 4 T 4 T 4 T 4
STAqum 44.7 28.5 78.1 36.7 67.9 37.7 51.4 42.1 719 420 63.4 374
STA pmax 442 32.9 76.2 35.7 67.5 333 499 38.9 71.1 44.6 61.8 36.7
OSBP 445 33.7 76.2 28.3 66.1 32.7 48.0 37.0 76.3 314 64.1 33.7
DAOD 58.4 57.2 81.8 49.4 66.7 56.7 60.0 63.4 84.1 65.3 69.6 49.8
OSLPP 53.1 329 77.0 28.8 60.8 25.0 54.4 35.7 78.4 29.2 63.8 28.3
ROS 46.5 28.8 70.8 21.6 67.0 29.2 51.5 27.0 72.0 20.0 61.6 27.6
Anna 54.6 25.2 74.3 21.1 66.1 22.7 59.7 26.9 76.4 19.0 65.6 23.3
SLW (Ours) | 48.1 134 | 76.9 8.00 | 64.8 9.5 | 56.1 1.8 | 80.9 145 | 63.9 120 |

Table 4: Results on Office-Home. Bold=Best.

E.4 ABLATION STUDY

Impacts of ID labels. As shown in Table 5, we contrast performance by pre-training with and with-
out ID labels. The wild data follows the same setting as our main paper, which is a composition of
CIFAR-10, CIFAR-10-C, and one of the five semantic OOD datasets. By comparing OOD accuracy
and FPR, we find that the use of ID labels during pre-training significantly improves both OOD
generalization and OOD detection, which aligns with our theoretical analysis.

Piemantic | 1D labels 1 1 I 1
SVHN X 62.02 8026  20.64  96.44
v 86.62 93.10 0.13 99.98
LSUN.C X 67.59 8335 5770  88.83
v 85.88 92.61 1.76 99.75
TEXTURES X 64.47 7678  75.66 78.32
v 81.40 9250  12.05  98.25
PLACES365 X 70.76 81.48 6640  83.15
v 87.04 93.40 4097 9182
LSUN.R X 63.09 7425 4050  90.24
v 79.68 92.44 0.06 99.99

Table 5: Impact of ID labels during pre-training. We employ CIFAR-10 as P;, and CIFAR-10-C

with Gaussian noise as P02 Bold=Best.
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Impact of semantic OOD data. Table 6 empirically verifies the theoretical analysis in Section B.
We follow Cao et al. (2022) and separate classes in CIFAR-10 into 50% known and 50% unknown
classes. To demonstrate the impacts of semantic OOD data on generalization, we simulate scenar-
ios when semantic OOD shares the same or different domain as covariate OOD. Empirical results
in Table 6 indicate that when semantic OOD shares the same domain as covariate OOD, it could
significantly improve the performance of OOD generalization.

Corruption Type of Pcoyariate [psemantic 0
Gaussian noise SVHN 85.48
Gaussian noise LSUN-C 85.88
Gaussian noise Places365 83.28
Gaussian noise Textures 86.84
Gaussian noise LSUN-R 80.08
Gaussian noise Gaussian noise 88.18

Table 6: The impact of semantic OOD data on generalization. Classes in CIFAR-10 are divided
into 50% known and 50% unknown classes. The experiment in the last line uses known classes in
CIFAR-10-C with Gaussian noise as P5/*"® and novel classes in CIFAR-10-C with Gaussian noise
as Psemantic Bold=best.

F IMPLEMENTATION DETAILS

Training settings. We conduct all the experiments in Pytorch, using NVIDIA GeForce RTX 2080Ti.
We use SGD optimizer with weight decay 5e-4 and momentum 0.9 for all the experiments. In
CIFAR-10 experiments, we pre-train Wide ResNet with SLW loss for 1000 epochs. The learning
rate (Ir) is 0.030, batch size (bs) is 512. Then we use ID-labeled data to fine-tune for 20 epochs with
Ir 0.005 and bs 512. In ImageNet-100 experiments, we train ImageNet pre-trained ResNet-34 with
SLW loss for 100 epochs. The Ir is 0.01, bs is 512. Then we fine-tune for 10 epochs with Ir 0.01
and bs 128. In Office-Home experiments, we use ImageNet pre-trained ResNet-50 with Ir 0.001 and
bs 64. We use the same data augmentation strategies as SimSiam (Chen & He, 2021). We set K in
KNN as 50 in CIFAR-10 experiments and 100 in ImageNet-100 experiments, which is consistent
with Sun et al. (2022). And 7, is selected within {1.00, 2.00} and #; is within {0.02, 0.10, 0.50,
1.00}. In Office-Home experiments, we set K as 5, 1, as 3, and n; within {0.01, 0.05}. 7,7, are
summarized in Table 7.

ID/Covariate OOD Semantics OOD n Nu
CIFAR-10/CIFAR-10-C SVHN 0.50 2.00
CIFAR-10/CIFAR-10-C LSUN-C 0.50 2.00
CIFAR-10/CIFAR-10-C Textures 0.50 1.00
CIFAR-10/CIFAR-10-C Places365 0.50 2.00
CIFAR-10/CIFAR-10-C LSUN-R 0.10 2.00

ImageNet-100/ImageNet-100-C iNaturalist 0.10 2.00
Office-Home Ar/Cl, Pr, Rw Cl, Pr, Rw 0.01 3.00
Office-Home Cl/Ar, Pr, Rw Ar, Pr, Rw 0.01 3.00
Office-Home Pr/Ar, ClI, Rw Ar, Cl, Rw 0.05 3.00
Office-Home Rw/Ar, Cl, Pr Ar, Cl, Pr 0.05 3.00

Table 7: Selection of hyper-parameters 1;, 7,

Validation strategy. For validation, we could only access to unlabeled mixture of validation wild
data and clean validation ID data, which is rigorously adhered to Bai et al. (2023). Hyper-parameters
are chosen based on the performance of ID Acc. on the ID validation set. We present the sweeping
results in Table 8.
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Mmoo N T T T | T
0.02 2.00 88.52 87.12 70.31 52.16 90.03
0.10 2.00 95.36 91.72 77.98 20.20 96.85
0.50 2.00 95.72 91.79 78.23 17.66 97.26
1.00 2.00 94.96 90.91 81.92 24.99 94.82
0.02 1.00 89.04 87.44 60.60 46.01 92.01
0.10 1.00 93.92 90.70 74.58 21.50 96.83
0.50 1.00 96.76 92.50 81.40 12.05 98.25
1.00 1.00 94.24 90.77 65.58 14.00 97.27

Table 8: Sensitivity analysis of hyper-parameters 7;, n,,. We employ CIFAR-10 as Py, CIFAR-10-C

as Peovanate “and Textures as P52, Bold=best.
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