
Improve Agents without Retraining: Parallel Tree
Search with Off-Policy Correction

Assaf Hallak ∗
NVIDIA Research

ahallak@nvidia.com

Gal Dalal ∗
NVIDIA Research

gdalal@nvidia.com

Steven Dalton
NVIDIA Research

sdalton@nvidia.com

Iuri Frosio
NVIDIA Research

ifrosio@nvidia.com

Shie Mannor
NVIDIA Research

smannor@nvidia.com

Gal Chechik
NVIDIA Research

gchechik@nvidia.com

Abstract

Tree Search (TS) is crucial to some of the most influential successes in reinforce-
ment learning. Here, we tackle two major challenges with TS that limit its usability:
distribution shift and scalability. We first discover and analyze a counter-intuitive
phenomenon: action selection through TS and a pre-trained value function often
leads to lower performance compared to the original pre-trained agent, even when
having access to the exact state and reward in future steps. We show this is due to a
distribution shift to areas where value estimates are highly inaccurate and analyze
this effect using Extreme Value theory. To overcome this problem, we introduce
a novel off-policy correction term that accounts for the mismatch between the
pre-trained value and its corresponding TS policy by penalizing under-sampled
trajectories. We prove that our correction eliminates the above mismatch and
bound the probability of sub-optimal action selection. Our correction significantly
improves pre-trained Rainbow agents without any further training, often more than
doubling their scores on Atari games. Next, we address the scalability issue given
by the computational complexity of exhaustive TS that scales exponentially with
the tree depth. We introduce Batch-BFS: a GPU breadth-first search that advances
all nodes in each depth of the tree simultaneously. Batch-BFS reduces runtime by
two orders of magnitude and, beyond inference, enables also training with TS of
depths that were not feasible before. We train DQN agents from scratch using TS
and show improvement in several Atari games compared to both the original DQN
and the more advanced Rainbow.

1 Introduction

Tree search (TS) is a fundamental component of Reinforcement Learning (RL) [46] used in some
of the most successful RL systems [42, 44]. For instance, Monte-Carlo TS (MCTS) [10] achieved
superhuman performance in board games like Go [44], Chess [45], and Bridge [5]. MCTS gradually
unfolds the tree by adding nodes and visitation counts online and storing them in memory for future
traversals. This paradigm is suitable for discrete state-spaces where counts are aggregated across

∗Equal contribution (random order)

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

multiple iterations as the tree is built node-by-node, but less suitable for continuous state-spaces or
image-based domains like robotics and autonomous driving 1. For the same reason, MCTS cannot be
applied to improve pre-trained agents without collecting their visitation statistics in training iterations.

Instead, in this work, we conduct the TS “on-demand” by expanding the tree up to a given depth at
each state. Our approach handles continuous and large state-spaces like images without requiring any
memorization. This on-demand TS can be performed both at training or inference time. Here, we
focus our attention on the second case, which leads to score improvement without any re-training.
This allows one to better utilize existing pre-trained agents even without having the ability or resources
to train them. For example, a single AlphaGo training run is estimated to cost 35 million USD [1]. In
other cases, even when compute budget is not a limitation, the setup itself makes training inaccessible.
For example, when models are distributed to end-clients with too few computational resources to
train agents in their local custom environments.

We run TS for inference as follows. For action selection, we feed the states at the leaves of the
spanned tree to the pre-trained value function. We then choose the action at the root according
to the branch with the highest discounted sum of rewards and value at the leaves. Our approach
instantly improves the scores of agents that were already trained for long periods (see Sec. 5.1).
Often, such improvement is possible because the value function is not fully realizable with a function
approximator, e.g., a deep neural network; TS can then overcome the limitation of the model. In
practice, TS requires access to a forward model that is fed with actions to advance states and produce
rewards. Here, we build on the recently published CuLE [11] – an Atari emulator that runs on GPU.
This allows us to isolate the fundamental properties of TS without the added noise of learned models
such as those described in Sec.6.

Performing TS on-demand has many benefits, but it also faces limitations. We identify and analyze
two major obstacles: distribution shift and scalability.

First, we report a counter-intuitive phenomenon when applying TS to pre-trained agents. As TS looks
into the future, thus utilizing more information from the environment, one might expect that searching
deeper should yield better scores. Surprisingly, we find that in many cases, the opposite happens:
action selection based on vanilla TS can drastically impair performance. We show that performance
deteriorates due to a distribution shift from the original pre-trained policy to its corresponding tree-
based policy. We analyze this phenomenon by quantifying the probability of choosing a sub-optimal
action when the value function error is high. This occurs because for values of out-of-distribution
states, larger variance translates to a larger bias of the maximum. Our analysis leads to a simple,
computationally effective off-policy correction term based on the Bellman error. We refer to the
resulting TS as the Bellman-Corrected Tree-Search (BCTS) algorithm. BCTS yields monotonically
improving scores as the tree depth increases. In several Atari games, BCTS even more than doubles
the scores of pre-trained Rainbow agents [22].

The second limitation is scalability: the tree grows exponentially with its depth, making the search
process computationally intensive and limiting the horizon of forward-simulation steps. To overcome
this limitation, we propose Batch-BFS: a parallel GPU adaptation of Breadth-First Search (BFS),
which brings the runtime down to a practical regime. We measured orders-of-magnitude speed-up
compared to alternative approaches. Thus, in addition to improving inference, it also enables training
tree-based agents in the same order of training time without a tree. By combining Batch-BFS with
DQN [32] and training it with multiple depths, we achieve performance comparable or superior to
Rainbow – one of the highest-scoring variants of the DQN-based algorithm family.

Our Contributions. (1) We identify and analyze a distribution-shift that impairs post-training TS.
(2) We introduce a correction mechanism and use it to devise BCTS: an efficient algorithm that
improves pre-trained agents, often doubling their scores or more. (3) We create Batch-BFS, an
efficient TS on GPU. (4) We use Batch-BFS to train tree-based DQN agents and obtain higher scores
than DQN and Rainbow.

1In the case of continuous state-spaces or image-based domains, MCTS can be used by reconstructing
trajectories from action sequences only in deterministic environments. Also, MCTS requires a fixed initial state
because the root state has to either exist and be found in the MCTS tree or alternatively a new tree has to be built
and reiterated for that initial state.

2

2 Preliminaries

Our framework is an infinite-horizon discounted Markov Decision Process (MDP) [39]. An MDP is
defined as the 5-tuple (S,A, P, r, γ), where S is a state space, A is a finite action space, P (s′|s, a)
is a transition kernel, r(s, a) is a reward function, γ ∈ (0, 1) is a discount factor. At each step
t = 0, 1, . . . , the agent observes the last state st, performs an action at and receives a reward rt. The
next state is then sampled by st+1 ∼ P (·|st, at). For brevity, we denote A := |A|.
Let π : S → A be a stationary policy. Let Qπ : S × A → R be the state-action value of a policy
π, defined in state s as Qπ(s, a) ≡ Eπ

[∑∞
t=0 γ

tr(st, π(st))
∣∣s0 = s, a0 = a

]
, where Eπ denotes

expectation w.r.t. the distribution induced by π. Our goal is to find a policy π∗ yielding the optimal
value Q∗ such that Q∗(s, a) = maxπ r(s, a) + γEs′∼P (·|s,a) maxa′ Q

π(s′, a′). It is well known that

Q∗(s, a) = r(s, a) + γEs′∼P (·|s,a) max
a′

Q∗(s′, a′), π∗(s) = arg max
a

Q∗(s, a).

Vanilla tree search. To ease notations and make the results concise, we limit the analysis to deter-
ministic transitions2, i.e., an action sequence (a0, . . . , ad−1), starting at s0 leads to a corresponding
trajectory (s0, . . . , sd). Nonetheless, the results can be extended to a stochastic setup by working
with the marginal probability over the trajectory. Then, for a policy πo, let the d-step Q-function

Qπo

d (s, a) = max
(ak)dk=1∈A

[
d−1∑
t=0

γtr(st, at) + γdQπo(sd, ad)

]
s0=s,a0=a

, (1)

and similarly let Q̂πo

d (s, a) be the d-step Q-function estimator that uses an estimated Q-function Q̂πo

instead of Qπo . Finally, denote by πd the d-step greedy policy

πd(s) := arg max
a∈A

Q̂πo

d (s, a). (2)

3 Solving the Tree Search Distribution Shift

In this section, we show how to leverage TS to improve a pre-trained policy. We start by demonstrating
an intriguing phenomenon: The quality of agents degrades when using vanilla TS. We then analyze
the problem and devise a solution. The core idea of our approach is to distinguish between actions
that are truly good, and those that are within the range of noise. By quantifying the noise using
the Bellman error and problem parameters, we find the exact debiasing that yields the optimal
signal-to-noise separation.

3.1 Performance degradation with vanilla tree search

We focus on applying TS at inference time, without learning. We begin with a simple experiment that
quantifies the benefit of using TS given a pre-trained policy.

A TS policy has access to future states and rewards and, by definition, is optimal when the tree depth
goes to infinity. Hence, intuitively, one may expect a TS policy to improve upon πo for finite depths
as well. To test this, we load Rainbow agents Q̂πo , pre-trained on 50M frames; they are publicly
available in [24] and achieve superhuman scores as in [22]. We use them to test TS policies πd
with multiple depths d on several Atari benchmarks. Surprisingly, the results (red curves in Fig. 5,
Sec. 5.1) show that TS reduces the total reward, sometimes to scores of random policies, in various
games and depths. The drop is particularly severe for TS policies with d = 1 — a fact later explained
by our analysis in Thm. 3.5.

We find the reason for this performance drop to be the poor generalization of the value function to
states outside the stationary πo’s distribution. Fig. 1 shows a typical, bad action selection in Atari
Breakout by a depth-1 TS. The table on the right reports the estimated Q-values of the root state
(first column) and of every state at depth 1 (last four columns). Since the ball is dropping, ‘Left’
is the optimal action. Indeed, this corresponds with the Q-values at the root. However, at depth 1,

2The Atari environments we experiment on here are indeed close to deterministic. Their source of randomness
is the usage of a random number of initial noop actions [33].

3

𝑄"(𝑠!, 𝑎) 𝑄"(𝑠", 𝑎) 𝑄"(𝑠", 𝑎) 𝑄"(𝑠", 𝑎) 𝑄"(𝑠", 𝑎)𝑎

Figure 1: A failure of vanilla tree search. Left: An Atari Breakout frame. Right: Q-values of TS
for the frame on the left. Rows correspond to the action taken at the considered depth, which is d = 0
for the first column and d = 1 for the four others. The action at the root of the tree is color-coded:
Red for ‘Right’, and blue for ‘Left’.

the Q-values of the future state that corresponds to choosing ‘Left’ (second column) are the lowest
among all depth-1 future states. Subsequently, the depth-1 TS policy selects ‘Right’.

During training, towards convergence, the trained policy mostly selects ‘Left’ while other actions are
rarely sampled. Therefore, expanding the tree at inference time generates states that have been hardly
observed during training and are consequently characterized by inaccurate Q-value estimates. In the
case of Fig. 1, the Q-value for ‘Left’ should indeed be low because the agent is about to lose the game.
As for the other, poorly sampled states, regression towards a higher mean leads to over-estimated
Q-values. Similar poor generalization has been observed in previous studies [16] and is interpreted as
an off-policy distribution shift [35].

Beyond the anecdotal example in Fig. 1, additional evidence supports our interpretation regarding
the distribution shift. We first consider the error in the value estimate captured by the Bellman error
minimized in training. We compare the average Bellman error of the action chosen by πo to all other
actions at the tree root. When averaging over 200 episodes, we find that the error for actions chosen
by πo is consistently lower than for other actions: ×1.5 lower for Breakout, and ×2 for Frostbite.
We also measure the off-policy distribution shift between πo and the TS policy (that utilizes πo) by
counting disagreements on actions between the two policies. In Breakout, πo and π1 agreed only in
18% of the states; in Frostbite, the agreement is only 1.96%. Such a level of disagreement between a
well-trained agent and its one-step look-ahead extension is surprising. On the other hand, it accounts
for the drastic drop in performance when applying TS, especially in Frostbite (Fig. 5).

3.2 Analysis of the degradation

We analyze the decision process of a policy πd, given a pre-trained value function estimator, in a
probabilistic setting. Our analysis leads to a simple correction term given at the end of the section. We
also show how to compute this correction from the TS. Formally, we are given a policy represented as
a value function Q̂πo , which we feed to the d-step greedy policy (2) for each action selection. Policy
training is a stochastic process due to random start states, exploration, replay buffer sampling, etc.
The value estimator Q̂πo can thus be regarded as a random variable, with an expectation that is a
deterministic function Qπo with a corresponding policy πo, where ‘o’ stands for ‘original’.

In short, we bound the probability that a sub-optimal action falsely appears more attractive than the
optimal one. We thus wish to conclude with high probability whether a0 = arg maxa Q̂

πo

d (s, a) is
indeed optimal, i.e., Qπo

d (s, a0) ≥ Qπo

d (s, a) ∀a ∈ A.

As we have shown in Sec. 3.1 that states belonging to trajectories that follow πo have lower value
estimation noise, we model this effect via the following two assumptions. Here, we denote by t = 0
the time when an agent acts and not as the time step of the episode.

Assumption 1. Let σo, σe ∈ R+ s.t. 0 < σo < σe. For action sequence (a0, . . . , ad−1) and
corresponding state trajectory (s0, . . . , sd),

Q̂πo(sd, ad) ∼
{N (Qπo(sd, ad), σ

2
o) if a0 = πo(s0)

N (Qπo(sd, ad), σ
2
e) otherwise.

4

Assumption 1 presumes that a different choice of the first action a0 yields a different last state sd. This
is commonly the case for environments with large state spaces, especially when stacking observations
as done in Atari. While assuming a normal distribution is simplistic, it still captures the essence of
the search process. Regarding the expectation, recall that πo is originally obtained from the previous
training stage via gradient descent with a symmetric loss function L. Due to the symmetric loss,
the estimate Q̂πo

θ is unbiased, i.e., E[Q̂πo

θ] = Qπo . Regarding the variance, towards convergence,
the loss is computed on replay buffer samples generated according to the stationary distribution of
πo. The estimate of the value function for states outside the stationary distribution is consequently
characterized by a higher variance, i.e. σo < σe. We also show that this separation of variance occurs
in the data, as detailed in the last paragraph of Sec. 3.1.

After conditioning the variance on whether πo was followed, we similarly split the respective sub-
trees. To split, we assume the cumulative reward along the tree and values at the leaves depend only
on (i) the root state and (ii) whether πo was selected at that state.
Assumption 2. For action sequence (a0, . . . ad−1) and corresponding trajectory (s0, . . . , sd),

d−1∑
t=0

γtr(st, at) =

{
Ro(s0) if a0 = πo(s0)

Re(s0) otherwise,
Qπo(sd, ad) =

{
µo(s0) if a0 = πo(s0)

µe(s0) otherwise,

with Ro, Re, µo, µe being functions of s.

Assumption 2 could be replaced with a more detailed consideration of each trajectory, but we make
it for simplicity. This assumption considers the worst-case scenario: the rewards are unhelpful in
determining the optimal policy, and all leaves are equally likely to mislead the d-step greedy policy.
That is, there is no additional signal to separate between the Ad leaves besides the initial action.

Assuming from now on that Assumptions 1 and 2 hold, we can now explicitly express the distribution
of the maximal value among the leaves using Generalized Extreme Value (GEV) theory [9].

Lemma 3.1. The estimates Q̂πo

d (s, πo(s)) and maxa6=πo(s) Q̂
πo

d (s, a) are GEV-distributed with
parameters given in Appendix A.1.

All proofs are deferred to Appendix A. Using the GEV distribution, we can now quantify the bias
stemming from the maximization in each of two sub-trees corresponding πo vs. all other actions.
Lemma 3.2. It holds that

E
[
Q̂πo

d (s, πo(s))
]

= Qπo

d (s, πo(s)) + γdBo(σo, A, d)

E
[

max
a 6=πo(s)

Q̂πo

d (s, a)

]
= max
a6=πo(s)

Qπo

d (s, a) + γdBe(σe, A, d),

where the biases Bo, Be are given in Appendix A.2, and satisfy 0 ≤ Bo(σo, A, d) < Be(σe, A, d).

Lemma 3.2 conveys the main message of our analysis: the variance of terms being maximized
translates to a positive shift in the expectation of the maximum. Hence, even if µo(s) > µe(s) for a
certain s, a different action than πo(s) can be chosen with non-negligible probability as the bias in
µe(s) is greater than the one in µo(s). To compensate for this bias that gives an unfair advantage to
the noisier nodes of the tree, we introduce a penalty term that precisely cancels it.

3.3 BCTS: Bellman Corrected Tree Search

Instead of selecting actions via (2), in BCTS we replace Q̂πo

d with the corrected QBCTS
d defined by

Q̂BCTS,πo

d (s, a) :=

{
Q̂πo

d (s, a) if a0 = πo(s0),

Q̂πo

d (s, a)− γd (Be(σe, A, d)−Bo(σo, A, d)) otherwise,
(3)

and we denote the BCTS policy by

πBCTS
d := arg max

a
Q̂BCTS,πo

d (s, a). (4)

In the following result, we prove that BCTS indeed eliminates undesirable bias.

5

𝑆!

𝑆"!

𝑆#!#𝑆#!"𝑆#!!

𝑆""

𝑆#"#𝑆#""𝑆#"!

𝑆"#

𝑆###𝑆##"𝑆##!

The max is over-estimated à
Penalize by γ!𝐵(𝛿%", 𝛿%#, 𝐴, 𝑑) (Eq. (6))

frequently
observed
during
training

rarely
observed

during
training

𝜋$

Figure 2: BCTS Algorithm. Exploring the
full tree reveals out-of-distribution states (red).
These were less visited during training and
tend to have highly variable scores, leading to
high overestimation error. The penalty term
B(δ̂e, δ̂o, A, d) (see (6)) cancels the excess bias.
The Bellman errors δ̂e, δ̂o are extracted from the
tree at depth 1.

Theorem 3.3. The relation E

[
Q̂BCTS,πo

d (s, πo(s))

]
> E

[
maxa6=πo(s) Q̂

BCTS,πo

d (s, a)

]
holds if and

only if Qπo

d (s, πo(s)) > maxa6=πo(s)Q
πo

d (s, a).

The biases Bo, Be include the inverse of the cumulative standard normal distribution Φ−1 (Ap-
pendix A.2). We now approximate them with simple closed-form expressions that are highly accurate
for d ≥ 2 (Appendix A.7). These approximations help revealing how the problem parameters dictate
prominent quantities such as the correction term in (3) and the probability in Thm. 3.5 below.

Lemma 3.4. When Ad−1 � 1, the correction term in (3) can be approximated with

Be(σe, A, d)−Bo(σo, A, d) ≈
√

2 logA
(
σe
√
d− σo

√
d− 1

)
− (σe − σo)/2. (5)

The bias gap in (5) depends on the ratio between σe and σo; this suggests that TS in different
environments will be affected differently. As σe > σo, the bias gap is positive. This is indeed
expected, since the maximum over the sub-trees of a0 6= πo(s) includes noisier elements than those
in the sub-tree of a0 = πo(s). Also, in (5), σe

√
d dominates σo

√
d− 1, making the bias gap grow

asymptotically with
√
d logA. This rate reflects how the number of elements being maximized over

affects the bias of their maximum.

Next, we bound the probability of choosing a sub-optimal action when using BCTS. In Appendix A,
Thm. A.1, we give an exact bound to that probability without assuming Ad−1 � 1. Here, we apply
Lemma. 3.4 to give the result in terms of σo, σe.

Theorem 3.5. When Ad−1 � 1, the policy πBCTS
d (s) (see (4)) chooses a sub-optimal action with

probability bounded by:

Pr
(
πBCTS
d (s) /∈ arg max

a
Qπo

d (s, a)
)
≤
(

1 +
6d logA

(
Qπo

d (s, πo(s))−maxa6=πo(s)Q
πo

d (s, a)
)2

γ2dπ2 (σ2
o + σ2

e)

)−1
.

The fraction in the above bound is a signal-to-noise ratio: The expected value difference in the
numerator represents the signal, while the variances in the denominator represent the noise. In
addition, the signal is “amplified” by d logA because, after applying the correction from (3), a larger
number of tree nodes amount to a more accurate maximum estimator. A similar amplification also
occurs due to nodes being deeper and is captured by γd in the denominator.

The factor γd also appears in the correction term from (3). This correction is the bias gap from (5),
scaled by γd. Hence, asymptotically, while the bias gap grows with

√
d, the exponential term is more

dominant; so, overall, this product decays with d. This decay reduces the difference between the
vanilla and BCTS policies for deeper trees by lowering the portion of the estimated value compared to
the exact reward. As we show later, this phenomenon is consistent with our experimental observations.

Computing the correction term requires estimates of σo and σe. As a surrogate for the error, we use
the Bellman error. To justify it, let us treat the values of Q̂πo

d at different depths as samples of Q̂πo .
Then, the following result holds for its variance estimator. Note that we do not need Assumptions 1
and 2 to prove the following result.

6

Algorithm 1 Batch-BFS
Input: GPU environment G, value network Qθ, depth d
Init tensors: state S̄ = [s0], action Ā = [0, 1, 2, .., A− 1], reward R̄ = [0]
for id = 0 to d− 1 do
S̄ ← S̄ ×A, R̄← R̄×A // Replicate state and reward tensors A times
r̄, S̄′ = G([S̄, Ā]) // Feed [S̄, Ā] to simulator and advance
R̄← R̄+ γid r̄, S̄ ← S̄′ // Accumulate discounted reward
Ā← Ā×A // Replicate action tensor A times

end for
R̄← R̄+ γd maxaQθ(S̄, a) // Accumulate discounted value of states at depth d
Return b(arg max R̄)/Ad−1c // Return optimal action at the root

Proposition 3.6. Let v̂arn[X] be the variance estimator based on n samples of X. Then,

v̂arn=2[Q̂πo(s, a)] =
(
Q̂πo

1 (s, a)− Q̂πo
0 (s, a)

)2
/2 = δ2(s, a)/2,

where δ(s, a) is the Bellman error.

Note that during a TS, at depth 1 we have access to δ(s0, a) of all a ∈ A without additional
computation. For depths 2 and above, the Bellman error is defined only for actions chosen by πo,
corresponding to a single trajectory down the tree. For these reasons, we base the above result on
samples from depths 0 and 1.

Thanks to Prop. 3.6, we can estimate the bias correction term in Lemma 3.4 directly from the TS
operation. Specifically, we substitute δ̂o/

√
2 instead of σo and the same for σe, where δ̂o is the

Bellman error corresponding to a = πo(s) at the root, and δ̂e is the average Bellman error of all other
actions. Hence, the correction term is

B(δ̂e, δ̂o, A, d) =
√

logA
(
δ̂e
√
d− δ̂o

√
d− 1

)
− (δ̂e − δ̂o)/

√
8. (6)

A visualization of the resulting BCTS algorithm is in Fig. 2.

4 Solving Scalability via Batch-BFS

The second drawback of TS is scalability: exhaustive TS is impractical for non-trivial tree depths
because of the exponential growth of the tree dimension. As TS requires generating |A|d leaves
at depth d, it has been rarely considered as a viable solution. To mitigate this issue, we propose
Batch-BFS, an efficient, parallel, TS scheme based on BFS, built upon the ability to advance
multiple environments simultaneously; see Alg. 1. It achieves a significant runtime speed-up when a
forward model is implemented on a GPU. Such GPU-based environments are becoming common
nowadays because of their advantages (including parallelization and higher throughput) over their
CPU counterparts. E.g., Isaac-Gym [37] provides a GPU implementation robotic manipulation
tasks [46], whereas Atari-CuLE [11] is a CUDA-based version of the AtariGym benchmarks [4].
Batch-BFS is not limited to exact simulators and can be applied to learned deep forward models, like
those in [36, 23]. Since Batch-BFS simultaneously advances the entire tree, it enables exhaustive
tree expansion to previously infeasible depths. It also allows access to the cumulative reward and
estimated value over all the tree nodes. Such access to all future values paves a path to new types
of algorithms for, e.g., risk reduction and early tree-pruning. Efficient pruning can be done by
maintaining an index array of unpruned states which are updated with each pruning step. These
indices are then used for tracing the optimal action at the root. We leave such directions to future
work. In addition to Alg. 1, we also provide a visualization of Batch-BFS in Fig. 3.

4.1 Runtime experiments

To showcase the efficacy of Batch-BFS, we compare it to a CPU-based BFS and to non-parallel TS,
i.e., Depth-First-Search (DFS). We measure the duration of an average single TS operation on two
environments: Atari-CuLE [11] and a Deep NN (DNN) mimicking a learned forward model. The

7

batch

St

St a0

state duplication

S0
t+1

S00
t+2 S01

t+2 S02
t+2 S10

t+2 S11
t+2 S12

t+2 S20
t+2 S21

t+2 S22
t+2

batch

state duplication

[q00, q01, q02, q10, q11, q12, q20, q21, q22]

St a1 St a2

S0
t+1 a0 S0

t+1 a1 S0
t+1 a2

S1
t+1 a0 S1

t+1 a1 S1
t+1 a2

S2
t+1 a0 S2

t+1 a1 S2
t+1 a2

S1
t+1 S2

t+1

a0 a1 a2

a0 a1 a2 a0 a1 a2 a0 a1 a2

Figure 3: Visualization of Batch-BFS. The tree expansion is illustrated on the left, with the corre-
sponding batch GPU operations on the right. In every tree expansion, the state St is duplicated and
concatenated with all possible actions. The resulting tensor is fed into the GPU forward model to
generate the tensor of next states (S0

t+1, . . . , S
A−1
t+1). The next-state tensor is then duplicated and

concatenated again with all possible actions, fed into the forward model, etc. This procedure is
performed until the final depth is reached, in which case the Q-function is applied per state.

101 102 103 104

Number of leaves

101

102

103

104

Ti
m

e
pe

r s
te

p
[m

s]

Atari-CuLE environment

DFS, A=4 (Breakout)
DFS, A=6 (Pong)
DFS, A=9 (Pinball)
BFS[CPU], A=4 (Breakout)
BFS[CPU], A=6 (Pong)
BFS[CPU], A=9 (Pinball)
BFS[GPU], A=4 (Breakout)
BFS[GPU], A=6 (Pong)
BFS[GPU], A=9 (Pinball) 101 103 105

Number of leaves

10 3

10 2

10 1

100

Ti
m

e
pe

r s
te

p
[m

s]

Deep forward model

DFS (A=2)
DFS (A=10)
BFS[CPU] (A=2)
BFS[CPU] (A=10)
BFS[GPU] (A=2)
BFS[GPU] (A=10)

Figure 4: Average tree-search time per action selection. Left: Atari-CuLE Breakout, Pong, and
VideoPinball. Right: A randomly generated neural network to mimic a learned forward-model with
A ∈ {2, 10}. Note that x and y axes are in log-scale.

DNN is implemented in pytorch and uses cudnn [8]. It consists of three randomly-initialized hidden
layers of width 100 with input size 100 for the state and 2 or 10 for the actions. The results are
given in Fig. 4. We run our experiments on a 8 core Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz
equipped with one NVIDIA Tesla V100 16GB. Although we used a single GPU for our experiments,
we expect a larger parallelization (and thus computational efficiency) to be potentially achieved in the
future through a multi-GPU implementation. As expected, DFS scales exponentially in depth and is
slower than BFS. When comparing BFS on CPU vs. GPU, we see that CPU is more efficient in low
depths. This is indeed expected, as performance of GPUs without parallelization is inferior to that of
CPUs. This issue is often addressed by distributing the simulators across a massive number of CPU
cores [15]. We leverage this phenomenon in Batch-BFS by finding the optimal “cross-over depth”
per game and swap the compute device in the middle of the search from CPU to GPU.

5 Experiments

In this section, we report our results on two sets of experiments: the first deals solely with TS for
inference, without learning, whereas the second includes the case of TS used in training. In all Atari
experiments, we use frame-stacking together with frame-skipping of 4 frames, as conducted in [31].

8

0 1 2 3
Depth

0

2000

4000

6000

8000

10000

12000

Re
wa

rd

Frostbite
Vanilla TS
BCTS
Rainbow

0 1 2 3 4
Depth

0

200

400

600

800

Breakout
Vanilla TS
BCTS
Rainbow

0 1 2 3
Depth

10000

20000

30000

40000

50000

60000
BeamRider

Vanilla TS
BCTS
Rainbow

0 1 2 3 4
Depth

2000

4000

6000

8000

10000
SpaceInvaders
Vanilla TS
BCTS
Rainbow

0 1 2 3
Depth

4000

6000

8000

10000

Asteroids
Vanilla TS
BCTS
Rainbow

Figure 5: Inference only: Vanilla TS vs. BCTS. Median scores with lower (0.25) and upper (0.75)
quantiles over 200 episodes, as a function of the tree depth. Surprisingly, vanilla TS often degrades
the performance of the pretrained Rainbow agent. BCTS (blue) improves upon vanilla TS (red) for
all depths, except for Asteroids. The improvement grows monotonically with the tree depth.

5.1 Inference with tree search

Using the pre-trained Rainbow agents in [24] (see Sec. 3), we test vanilla TS and show (Fig. 5, red
plots) that it leads to a lower score than the baseline πo. The largest drop is for d = 1 as supported by
our analysis. The game that suffered the most is Frostbite. This can be explained from it having the
largest number of actions (A = 18), which increases the bias in (5). As for BCTS, we found that
multiplying its correction term (see (6)) by a constant that we sweep over can improve performance;
we applied this method for the experiments here. Recall that BCTS is a TS applied on the pre-trained
Rainbow baseline; i.e., the case of d = 0 is Rainbow itself. The results in Fig. 5 show that BCTS
significantly improves the scores, monotonically in depth, in all games. It improves the Rainbow
baseline already for d = 1, while for d = 4, the score more than doubles. For BeamRider, BCTS
with d = 4 achieves roughly ×5 improvement. Notice that without the computationally efficient
implementation of Batch-BFS, the results for deeper trees would not have been obtainable in a
practical time. We provide timing measurements per game and depth in Appendix B.1. Finally, notice
that the advantage provided by BCTS is game-specific. Different games benefit from it by a different
amount. In one of the games tested, Asteroids, vanilla TS was as useful as BCTS. Our findings
reported in the last paragraph of Sec. 3.1 hint why certain games benefit from BCTS more than others.
Nonetheless, a more thorough study on how the dynamics and state distribution in different games
affect TS constitutes an interesting topic for future research.

5.2 Training with tree search

To further demonstrate the potential benefits of TS once a computationally efficient implementation
(Section 4) is available, we show how it affects training agents from scratch on CuLE-Atari environ-
ments. We extend classic DQN [32] with TS using Batch-BFS for each action selection. Notice that
training with TS does not suffer from the distribution shift studied in Sec. 3. Hence, the experiments
below use vanilla TS and not BCTS.

Our experiment is even more significant considering that Efroni et al. [14] recently proved that the
Bellman equation should be modified so that contraction is guaranteed for tree-based policies only
when the value at the leaves is backed. However, this theory was not supported by empirical evidence
beyond a toy maze. As far as we know, our work is the first to adopt this modified Bellman equation
to obtain favorable results in state-of-the-art domains, thanks to the computationally efficient TS
implementation achieved by Batch-BFS. We find this method to be beneficial in several of the games
we tested. In the experiments below, we treat the Bellman modification from [14] as a hyper-parameter
and include ablation studies of it in Appendix B.3.

We show the training scores in Table 1 and convergence plots in Appendix 9. For a fair comparison
of different TS depths, we stop every run after two days on the same hardware (see Appendix D),
not considering the total iteration count. To compare our results against classic DQN and Rainbow,
we measure the number of iterations completed in two days by DQN with TS, d = 0. In Table 1 we
report the corresponding intermediate results for DQN and Rainbow reported by the original authors
in [40]. In most games, it amounts to roughly 30 million iterations. Note that DQN and Rainbow
do not utilize the model of the environment while DQN with TS does; the former are brought as a
reference for assessing the potential of using a TS with identical computation budget. As already
shown in the case of inference with no training, the achieved score increases monotonically with

9

Table 1: Atari scores after two days of training. We follow the evaluation method in [22]: Average
of 200 testing episodes, from the agent snapshot that obtained the highest score during training.

Game DQN with TS, depth d DQN [32] Rainbow [22]
d = 1 d = 2 d = 3 d = 4

Asteroids 2, 093 2, 613 4, 794 17,929 1, 664 1, 594
Breakout 385 581 420 620 377 327
MsPacman 1, 644 2, 923 3, 498 4,021 2, 398 3, 600
SpaceInvaders 675 1, 602 2, 132 2,550 1, 132 2, 162
VideoPinball 229, 129 244, 052 442, 347 345, 742 163, 720 641,235

the tree depth. In four of the five games, DQN with TS even surpasses the more advanced Rainbow.
Since all results were obtained for identical runtime, improvement per unit of time is higher for higher
depths. This essentially translates to better efficiency of compute resources. Convergence plots as a
function of wall-clock time are shown in Appendix C. We also tested TS on two additional games
not included in Table 1: Boxing and Pong. Interestingly, TS with d = 4 immediately obtained the
highest possible scores in both these games already in the first training iteration.

6 Related work
The idea of searching forward in time has been employed extensively in control theory via methods
such as A* [20], RRT [28], and MPC [2]. The latter is quite popular in the context of efficient planning
in RL [36, 47, 48]. MPC-based controllers rely on recourse planning by solving an optimization
program given the continuous structure of the dynamics. In our setup, the controls are discrete and
the forward model is a black-box that cannot be directly used in an optimization scheme.

We leverage an efficient GPU simulator to conduct the look-ahead search. When such a simulator
is out of reach, it can be learned from data. There is vast literature regarding learned deep forward
models without optimizing a policy [26, 38, 27]. Other works [25, 23, 19, 41] used the learned
model for planning but not with a TS. Few considered roll-outs of learned dynamics [6, 17] but
only for evaluation purposes. Additional relevant works are MuZero [42] and “MuZero Unplugged”
[43] which utilized a learned forward-model for prediction in an MCTS-based policy. In [34], the
trade-off between learning and planning using a TS was empirically tested. Look-ahead policies for
RL were also studied theoretically; bounds on the suboptimality of the learned policy were given in
[12, 13, 14]. There, the focus was on the effect of planning on the learning process.

Finally, our distribution-shift analysis and approach draw connections to similar challenges in the
off-policy [21, 18] and offline [29] RL literature. These address the issue of overestimation in RL due
to the ‘max’ operation in the Bellman equation in various ways. In our work, we show that with TS
the overestimation problem is exacerbated, and can lead to counter-intuitive performance degradation.
Our analysis is different from previous papers, but intuitively the core solution is similar: “be careful”
of states and actions not seen during training, and penalize them accordingly.

7 Discussion
Our study of the degradation with vanilla TS implies that the learned value function is not representa-
tive of the actual states that can be visited. This conclusion can be helpful in debugging RL systems.
It can also be used to improve robustness, tune the approximation architecture, or guide exploration.

Our solution to the above performance degradation is an off-policy correction that penalizes high-error
trajectories. It can be further improved with different notions of uncertainty for the value function,
e.g., Bayesian or bootstrapped models. Also, while some simulators are available on GPU, such as
Atari [11] and robotic manipulation [30], in other cases, a learned model can be used. In these cases,
one could include the simulator quality in the off-policy penalty term. Finally, a limitation of our
work is that we focus on problems with a discrete action space. Handling problems with continuous
action tasks is a challenging direction for future work.

Broader Impact. The paper proposes a method to improve existing RL algorithms. As such, its main
impact is to make RL more easily and widely deployable. Since our method can be applied to policies
trained with any algorithm, it can be viewed as a generic “policy booster”, and find applications with
access to the environment model or its approximation.

10

References
[1] How much did alphago zero cost? https://www.yuzeh.com/data/agz-cost.html. Ac-

cessed: 2021-05-20.

[2] Paul Serban Agachi, Mircea Vasile Cristea, Alexandra Ana Csavdari, and Botond Szilagyi. 2.
Model predictive control. De Gruyter, 2016.

[3] JM Blair, CA Edwards, and JH Johnson. Rational chebyshev approximations for the inverse of
the error function. Mathematics of Computation, 30(136):827–830, 1976.

[4] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[5] Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I Cowling,
Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis, and Simon Colton.
A survey of monte carlo tree search methods. IEEE Transactions on Computational Intelligence
and AI in games, 4(1):1–43, 2012.

[6] Jacob Buckman, Danijar Hafner, George Tucker, Eugene Brevdo, and Honglak Lee. Sample-
efficient reinforcement learning with stochastic ensemble value expansion. arXiv preprint
arXiv:1807.01675, 2018.

[7] Francesco Paolo Cantelli. Sui confini della probabilita. In Atti del Congresso Internazionale dei
Matematici: Bologna del 3 al 10 de settembre di 1928, pages 47–60, 1929.

[8] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John Tran, Bryan
Catanzaro, and Evan Shelhamer. cudnn: Efficient primitives for deep learning, 2014. cite
arxiv:1410.0759.

[9] Stuart Coles, Joanna Bawa, Lesley Trenner, and Pat Dorazio. An introduction to statistical
modeling of extreme values, volume 208. Springer, 2001.

[10] Rémi Coulom. Efficient selectivity and backup operators in monte-carlo tree search. In
International conference on computers and games, pages 72–83. Springer, 2006.

[11] Steven Dalton, Iuri Frosio, and Michael Garland. Accelerating reinforcement learning through
gpu atari emulation. arXiv preprint arXiv:1907.08467, 2019, BSD 3-Clause "New" or "Revised"
License.

[12] Yonathan Efroni, Gal Dalal, Bruno Scherrer, and Shie Mannor. Beyond the one-step greedy
approach in reinforcement learning. In International Conference on Machine Learning, pages
1387–1396. PMLR, 2018.

[13] Yonathan Efroni, Gal Dalal, Bruno Scherrer, and Shie Mannor. Multiple-step greedy policies in
approximate and online reinforcement learning. In NeurIPS, 2018.

[14] Yonathan Efroni, Gal Dalal, Bruno Scherrer, and Shie Mannor. How to combine tree-search
methods in reinforcement learning. Proceedings of the AAAI Conference on Artificial Intelli-
gence (AAAI 2019), 2019.

[15] Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl
with importance weighted actor-learner architectures. In International Conference on Machine
Learning, pages 1407–1416. PMLR, 2018.

[16] Jesse Farebrother, Marlos C Machado, and Michael Bowling. Generalization and regularization
in dqn. arXiv preprint arXiv:1810.00123, 2018.

[17] Vladimir Feinberg, Alvin Wan, Ion Stoica, Michael I Jordan, Joseph E Gonzalez, and Sergey
Levine. Model-based value estimation for efficient model-free reinforcement learning. arXiv
preprint arXiv:1803.00101, 2018.

11

https://www.yuzeh.com/data/agz-cost.html

[18] Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. In International Conference on Machine Learning, pages 1587–1596.
PMLR, 2018.

[19] David Ha and Jürgen Schmidhuber. World models. arXiv preprint arXiv:1803.10122, 2018.

[20] Peter Hart, Nils Nilsson, and Bertram Raphael. A formal basis for the heuristic determination
of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics, 4(2):100–107,
1968.

[21] Hado Hasselt. Double q-learning. Advances in neural information processing systems, 23:2613–
2621, 2010.

[22] Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney,
Dan Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining improve-
ments in deep reinforcement learning. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32, 2018.

[23] Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H Campbell, Konrad
Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, et al. Model-
based reinforcement learning for atari. arXiv preprint arXiv:1903.00374, 2019.

[24] Kaixhin. Rainbow Pre-trained Agents v1.3, 2019, MIT License.

[25] Gabriel Kalweit and Joschka Boedecker. Uncertainty-driven imagination for continuous deep
reinforcement learning. In Conference on Robot Learning, pages 195–206. PMLR, 2017.

[26] Seung Wook Kim, Yuhao Zhou, Jonah Philion, Antonio Torralba, and Sanja Fidler. Learning to
simulate dynamic environments with gamegan. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 1231–1240, 2020.

[27] Rahul G Krishnan, Uri Shalit, and David Sontag. Deep kalman filters. arXiv preprint
arXiv:1511.05121, 2015.

[28] Steven M LaValle et al. Rapidly-exploring random trees: A new tool for path planning. Technical
Report. Computer Science Department, Iowa State University, 1998.

[29] Jongmin Lee, Wonseok Jeon, Byung-Jun Lee, Joelle Pineau, and Kee-Eung Kim. Optidice:
Offline policy optimization via stationary distribution correction estimation. arXiv preprint
arXiv:2106.10783, 2021.

[30] Jacky Liang, Viktor Makoviychuk, Ankur Handa, Nuttapong Chentanez, Miles Macklin, and
Dieter Fox. Gpu-accelerated robotic simulation for distributed reinforcement learning. In
Conference on Robot Learning, pages 270–282. PMLR, 2018.

[31] Marlos C Machado, Marc G Bellemare, Erik Talvitie, Joel Veness, Matthew Hausknecht, and
Michael Bowling. Revisiting the arcade learning environment: Evaluation protocols and open
problems for general agents. Journal of Artificial Intelligence Research, 61:523–562, 2018.

[32] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

[33] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

[34] Thomas M Moerland, Anna Deichler, Simone Baldi, Joost Broekens, and Catholijn M Jonker.
Think too fast nor too slow: The computational trade-off between planning and reinforcement
learning. arXiv preprint arXiv:2005.07404, 2020.

[35] Remi Munos, Tom Stepleton, Anna Harutyunyan, and Marc Bellemare. Safe and efficient off-
policy reinforcement learning. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett,
editors, Advances in Neural Information Processing Systems, volume 29. Curran Associates,
Inc., 2016.

12

[36] Anusha Nagabandi, Gregory Kahn, Ronald S Fearing, and Sergey Levine. Neural network
dynamics for model-based deep reinforcement learning with model-free fine-tuning. In 2018
IEEE International Conference on Robotics and Automation (ICRA), pages 7559–7566. IEEE,
2018.

[37] NVIDIA. Isaac Gym preview release, 2021.

[38] Junhyuk Oh, Xiaoxiao Guo, Honglak Lee, Richard Lewis, and Satinder Singh. Action-
conditional video prediction using deep networks in atari games. arXiv preprint
arXiv:1507.08750, 2015.

[39] Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming.
John Wiley & Sons, 2014.

[40] John Quan and Georg Ostrovski. DQN Zoo: Reference implementations of DQN-based agents,
2020, Apache License 2.0.

[41] Sébastien Racanière, Théophane Weber, David P Reichert, Lars Buesing, Arthur Guez, Danilo
Rezende, Adria Puigdomenech Badia, Oriol Vinyals, Nicolas Heess, Yujia Li, et al. Imagination-
augmented agents for deep reinforcement learning. In Proceedings of the 31st International
Conference on Neural Information Processing Systems, pages 5694–5705, 2017.

[42] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Si-
mon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering
atari, go, chess and shogi by planning with a learned model. Nature, 588(7839):604–609, 2020.

[43] Julian Schrittwieser, Thomas Hubert, Amol Mandhane, Mohammadamin Barekatain, Ioannis
Antonoglou, and David Silver. Online and offline reinforcement learning by planning with a
learned model. arXiv preprint arXiv:2104.06294, 2021.

[44] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driess-
che, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mas-
tering the game of go with deep neural networks and tree search. nature, 529(7587):484–489,
2016.

[45] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur
Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. Mastering
chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint
arXiv:1712.01815, 2017.

[46] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,
2018.

[47] Grady Williams, Nolan Wagener, Brian Goldfain, Paul Drews, James M Rehg, Byron Boots, and
Evangelos A Theodorou. Information theoretic mpc for model-based reinforcement learning.
In 2017 IEEE International Conference on Robotics and Automation (ICRA), pages 1714–1721.
IEEE, 2017.

[48] Mario Zanon and Sébastien Gros. Safe reinforcement learning using robust mpc. IEEE
Transactions on Automatic Control, 2020.

13

	Introduction
	Preliminaries
	Solving the Tree Search Distribution Shift
	Performance degradation with vanilla tree search
	Analysis of the degradation
	BCTS: Bellman Corrected Tree Search

	Solving Scalability via Batch-BFS
	Runtime experiments

	Experiments
	Inference with tree search
	Training with tree search

	Related work
	Discussion

