
RealCity3D: A Large-scale Georeferenced 3D Shape
Dataset of Real-world Cities

Congcong Wen 1∗ Wenyu Han 1∗ Lazarus Chok 1† Yan Liang Tan 1†

Sheung Lung Chan 1† Hang Zhao 2 Chen Feng 1‡

1New York University 2Tsinghua University
https://github.com/ai4ce/RealCity3D

Abstract

Existing 3D shape datasets in the research community are generally limited to1

objects or scenes at the home level. City-level shape datasets are rare due to the dif-2

ficulty in data collection and processing. However, such datasets uniquely present a3

new type of 3D data with a high variance in geometric complexity and spatial layout4

styles, such as residential/historical/commercial buildings and skyscrapers. This5

work focuses on collecting such data, and proposes city generation as new tasks for6

data-driven content generation. Thus, we collect over 1,000,000 geo-referenced 3D7

building models from New York City and Zurich. We benchmark various baseline8

performances on two challenging tasks: (1) city layout generation, and (2) building9

shape generation. Moreover, we propose an auto-encoding tree neural network for10

2D building footprint and 3D building cuboid generation. The dataset, tools, and11

algorithms will be released to the community.12

1 Introduction13

Figure 1: Overview of New York and Zurich cities in our RealCity3D dataset.

As an important arena for human activities, cities have been a focal point of research. Alongside14

the rapid advancement of image/video generation, data-driven 3D city generation has become more15

feasible and appealing because of 1) the increasing availability of city-level remote sensing, and16

∗Equal contributions.
†Equal contributions.
‡The corresponding author is Chen Feng cfeng@nyu.edu.

Submitted to the 35th Conference on Neural Information Processing Systems (NeurIPS 2021) Track on Datasets
and Benchmarks. Do not distribute.

https://github.com/ai4ce/RealCity3D

2) the intensification of data-driven methods in architecture and urban planning. Urban planners17

increasingly rely on city-level simulations to make planning decisions; game designers use city18

generation tools to automatically generate virtual city environments; and more recently, there is19

a surging demand from the autonomous driving industry to conduct road testing in simulated 3D20

environments. All of these potential applications have increased demand for realistic city generation.21

While deep generative models are successful for various data modalities, including language, audio,22

image, video, and even point clouds, several difficulties prevent deep generation from being applied23

towards city-level geometric generation. First, cities are a set of complex geometrically parameterized24

objects with irregular layouts. Second, these objects usually live on a high-dimensional complex data25

manifold. For example, a building object records as a set of 3D polygons, each contains a variable26

number of 3D vertices. More importantly, there are few publicly available 3D real-world city datasets,27

which are essential for developing data-driven methods, particularly deep generative models.28

Existing public datasets for geometric data generation can be categorized at the object-level [5],29

home-level [1, 27], and city-level [7, 2]. However, it is difficult to achieve city-level generation by30

training models on object/room-level datasets due to their limited scale. Moreover, it is unrealistic31

for trained models to generate 3D cities on existing city-level datasets due to the restriction of data32

dimension, as they mostly contain 2D data such as polylines and polygons. To overcome these33

challenges, some researchers [6] have developed their own synthetic datasets since no public datasets34

are available from real-world city buildings. To a large extent, the lack of viable, real-world 3D city35

datasets have hindered the development of deep generative models for city-level generation.36

To this end, we propose the RealCity3D dataset, a real-world, city-level 3D dataset for New York37

City and Zurich (Figure 1). The dataset consists of over 1,000,000 georeferenced objects covering38

a total area of more than 871.7 square kilometers. Four different representations are provided per39

object: polygon mesh, triangle mesh, point cloud, and voxel grid. Semantic information of objects40

are preserved in polygon meshes. Based on RealCity3D, we explore the possibility of city generation.41

Considering the difficulty of the problem and the absence of applicable methods, we split the city42

generation task into two subtasks: Task 1 City layout generation and Task 2 Building shape generation.43

Our contributions are three-fold: (1) We open-source a large-scale georeferenced 3D shape dataset44

RealCity3D, in multiple forms including polygon meshes, triangular meshes, point clouds and voxel45

grids; (2) We perform city/building scale generation benchmarks to explore the research directions46

RealCity3D can support; (3) We propose a simple but efficient tree neural network that encodes and47

generates spatial data hierarchically for 2D building footprint and 3D building cuboid generation.48

2 Related work49

2.1 Datasets for Geometric Generation50

Current art in city-level geometric generation are mostly based on synthetic datasets that do not51

have the same geometric complexity and diversity that real-world cities have. Publicly available,52

city-level object datasets that are georeferened to real world cities are rare; they can be divided into53

three categories according to its scale: 1) Object-level Datasets: ShapeNet [5] contains over three54

million 3D models with a core dataset of about 51,300 unique 3D models across 55 common object55

categories. Though some studies [10, 3, 16] achieve promising single object generation performance,56

it will be difficult to extend trained models on this synthetic dataset to a large-scale, real-world dataset.57

On the contrary, RealCity3D deals exclusively with city-scale building objects georeferenced to the58

real world. 2) Room-level Datasets: LIFULL HOME’s database [1] contains five million floor plans.59

RPLAN [27] consists of 80,000 floor plans from real-world residential buildings. HouseGAN [17]60

and Graph2Plan [13] perform indoor layout generation on these two datasets respectively. However,61

Table 1: Comparison with representative datasets

Datasets Year Spatial extent Objects Format Generation Task
Object-level ShapeNet [5] 2015 - 3,000,000+ Mesh 3D Object Generation

Room-level LIFULL HOME [1] 2015 - 5,300,000+ Imagery 2D Indoor Layout Generation
RPLAN [27] 2019 - 80,000+ Imagery 2D Indoor Layout Generation

City-level
RoadNet [7] 2019 1.7× 108m2 - Imagery/Polylines 2D Road Network Generation

SpaceNet v2 [2] 2018 30.11× 108m2 685,000 Imagery/Polygons 2D City Layout Generation
RealCity3D 2021 8.71× 108m2 1,000,000+ Mesh/Point Cloud/Voxels 3D Object and 2D/3D City Generation

2

the number of rooms in each floor plan rarely exceeds thirteen, limiting the extensive ability of trained62

models from being applied to city-scale generation tasks. 3) City-level Datasets: RoadNet [7] is a63

real-world road network dataset collected from OpenStreetMap (OSM) of 17 cities; SpaceNet [9]64

offers over 685,000 building footprints across 5 cities. These two datasets only involve 2D polyline65

or polygon data, which are limited to a certain extent considering the complexity of 3D real-world66

applications. By contrast, RealCity3D is a city-level dataset that consists of not only 2D city layout67

information, but also building facade details. This enables more complex, large-scale city generation68

tasks. We compare the statistics of RealCity3D with some existing datasets in Table 1.69

2.2 City Generation Methods70

Existing work on city generation focuses on non-data-driven methods, i.e., procedural modeling.71

Due to the lack of high-quality 3D city training data, few techniques have been proposed to achieve72

data-driven 3D city generation. RealCity3D changes this: we demonstrate in our benchmarks how73

deep generative neural networks can benefit from our enriched, multi-format 3D city-level datasets.74

Procedural modeling, such as L-systems, create geometric structures based on handcrafted shape75

grammar [15, 26, 31, 8], a set of Euclidean shape transformation rules. However, handcrafted76

modeling becomes extremely intensive when urban designs become more complex and diverse. To77

automatically learn these rules, inverse procedural modeling uses deep neural nets to extract shape78

grammar from existing 2/3D datasets [25, 22, 18, 11]. The ESRI CityEngine, popular with the79

urban planning community, is a commercially available generation engine to create and apply shape80

grammars to generate large-scale city layouts. However, these procedural generation engines require81

experts to manually adjust the rules and parameters. Data-driven methods which can automatically82

learn the features and rules of city generation, with limited human input, are more appealing.83

Data-driven generation methods have gained popularity in recent years as it enables the generation84

of complex geometric structures (vertices/lines/surfaces) with minimal human input. 1) For single85

object generation, [16] proposed PolyGen to generate 3D polygon meshes with an autoregressive86

transformer model. PolyGen’s code is not open-sourced and cannot be benchmarked. Instead, we87

perform building shape generation using Raw-GAN and Latent-GAN [3] on our RealCity3D point88

cloud dataset. 2) For layout generation, House-GAN by [17] is a GAN-based indoor layout generator.89

However, this graph-based method cannot be directly performed on our dataset. Other city-level90

layout generators like [7]’s Neural Turtle Graphics (NTG) for road network generation, and [32]’s91

image-based supervised architecture reconstruction are incompatible with RealCity3D’s object-type92

dataset. For generating sequential sketch strokes, [12] proposed SketchRNN, an RNN model with a93

VAE structure. By converting each city layout to a sequential list of points (like a sketch), SketchRNN94

could be used as a city layout generation benchmark on RealCity3D.95

3 Task Definition and Data Processing96

3.1 Task Definition97

RealCity3D is a large-scale georeferened 3D shape dataset of real-world city buildings represented98

in four common formats, i.e. polygon mesh, triangular mesh, point clouds, and voxels. This is the99

first-of-its-kind dataset that will enable the research community to develop new data-driven techniques100

for large-scale city generation tasks. The ideal dataset for city generation should be georeferenced,101

have comprehensive coverage of whole cities, be available in common geometric representations (e.g.102

meshes, point clouds, voxels) to allow for a variety of training approaches, and contain geometric103

complexity (or architectural LoD - Level of Detail, see Figure 2). Such a dataset will enable 3D city104

generation, containing both realistic city layouts and building shapes/facades. However, considering105

the difficulty of problem and that no existing methods have been developed for 3D city generation,106

we simplify the city layout generation at LoD2 complexity to LoD1 complexity by transforming each107

building polygon into a footprint in 2D space and minimum bounding cuboid in 3D space. We treat108

LoD1 city layout and LoD2 building shape generations as separate tasks; the former focusing on the109

spatial distribution of 2/3D polygons, and the latter focusing on 3D object geometry:110

Task 1: City layout generation. City layouts refer to the spatial distribution and shapes of 2D111

building footprints or 3D buildings in urban space. Generating new city layouts with reference to112

existing urban forms is a complex but valuable task within the urban planning and game design113

3

Figure 2: Examples of the 3D building object ranging from LoD1 to LoD4. LoD4 sketch retrieved
from SketchUp 3D Warehouse.

Figure 3: Overview of RealCity3D dataset creation and data transformation on a single LoD2 building.
(a) Polygon mesh and (b) triangle mesh visualised in MeshLab, (c) point cloud in CloudCompare
with colorized z-values, (d) voxel grid in viewvox.

communities. In urban planning, city layouts affect urban microclimates, land-use patterns and urban114

transportation networks. RealCity3D allows for the development of new deep learning approaches115

that can generate large-scale city layouts with greater LoD complexity, efficiently and accurately.116

Task 2: Building shape generation. Building shapes refer to the external 3D facade of each building117

polygon. Modelling the 3D building envelope with high architectural detailing (i.e. LoD2 and above)118

is a challenging task due to its geometric complexity, but essential for generating realistic 3D cities.119

3.2 Data Standard and Collection120

In our dataset, 3D building objects data are extracted from 3D city models in CityGML format,121

a XML-based format widely used by the AEC community for efficient storage of city-scale data.122

CityGML extends XML by adding sets of primitives, including topology, features, and geometry,123

as well as city-specific constraints. Examples of 3D object classes in CityGML include buildings,124

tunnels, and bridges. CityGML has a hierarchical model complexity system to mark the complexity125

of each object class from LoD1 (Levels of Detail) to LoD4, as shown in Figure 2.126

We collected CityGML data of New York City and Zurich from The New York City Department of127

Information Technology [24] and Stadt Zurich [23] respectively. Since CityGML data from publicly128

available 3D geospatial datasets contain building models mostly with LoD2 complexity, we store129

all building objects in our dataset in LoD2 format. Besides, the CityGML data quality of different130

cities in our datasets vary considerably, presenting technical difficulties for scalable data processing.131

For example, only 76% of Zurich buildings have valid CityGML surfaces, and the other 24% have132

non-planar duplicated surfaces which violate the CityGML format standard. Our data processing133

pipeline, described below, can be scaled across cities where CityGML data are available.134

3.3 Dataset Processing135

3.3.1 Parsing CityGML Files136

From each CityGML file, we extract building polygons and their semantic information as dictionaries.137

Only exterior components (i.e. polygon surfaces) are conserved. Recurring polygon vertices are138

removed, ensuring triangulation can be performed without error. Each building surface is categorized139

4

Figure 4: Detailed views of 3D building shapes in New York

Figure 5: Detailed views of 3D building shapes in Zurich

as “GroundSurface”, “RoofSurface”, and “WallSurface” based on its CityGML building semantic140

information. Each semantically labelled polygon is output as an .obj file for further transformations.141

3.3.2 Polygon Triangulation142

Taking each polygon mesh building data, we apply polygon triangulation to decompose each polygon143

area P into a maximal set of non-intersecting triangles on a continuous surface. The union of these144

non-intersecting triangles is P, with each diagonal line segment connecting two vertices of P. The145

triangulation of each polygon with n vertices consists of exactly n-2 triangles.146

3.3.3 Point Sampling147

We acquire 3D point clouds from each triangular mesh using Poisson disk sampling, a sequential,148

bias-free process for selecting points in each triangular subdomain. Poisson disk sampling has149

been used to achieve approximately uniform distance between adjacent points, yielding good visual150

resolution for rendering 3D buildings [29]. By uniformly sampling these points on a continuous mesh151

surface, we reduce the amount of noise/outliers that may come with conventional LiDAR scans of152

city buildings. Our uniformly dense point clouds suit deep learning approaches such as voxel-based153

convolution neural networks and deep learning on unstructured point clouds (e.g. PointNet) [4].154

3.3.4 Voxelization155

To provide greater geometric structure, we organise the 3D point cloud into a discrete voxel repre-156

sentation. Voxelization is a common method for downsampling and facilitating rapid retrieval of157

large-scale point cloud data [28], as would be essential in real-world city planning applications. We158

use the open source binvox program to efficiently rasterize the point cloud into a 3D voxel grid, which159

uses a variation of the ray-stabbing method described in [19]. The ray-stabbing method classifies160

voxels as either as an interior or exterior voxel by imagining a ray stabbing through the mesh model.161

Voxels at the two extreme depth samples of the ray (i.e. when the ray first penetrates the model, and162

when it leaves the model) are classified as exteriors; otherwise, they are classified as interiors.163

5

Figure 6: The number of data
for each urban area

Figure 7: Building Mesh Statistics.

3.4 Data Statistics164

New York City is an amalgamation of five different boroughs which have their own unique architecture165

due to its rich architectural history and land-use patterns. We divided the NYC dataset into its166

five boroughs: Manhattan, Brooklyn, Queens, Bronx and Staten Island. In total, we extracted167

1, 133, 813 individual building models with polygon meshes, triangular meshes, point clouds and168

voxels representations. The number of models in different boroughs is shown in Figure 6. Building169

mesh statistics are shown in Figure 7 to demonstrate the geometric complexity and variance expressed170

in one dataset. As can be seen from the number of vertices and faces, some building shapes are highly171

complex with thousands of faces, while others have far fewer, adding learning challenges.172

4 Dataset Benchmarks173

4.1 Task 1: City Layout Generation174

We first evaluate the existing methods on the 2D city layout generation. Here, we benchmark two175

types of methods: procedural modeling via CityEngine and several well-characterized data-driven176

methods. Using CityEngine, an urban planner manually tuned the rules and parameters to generate177

city layouts based on RealCity3D data. As we can always make the results quantitatively perfect after178

time-consuming, hand-tuning of parameters, we decided that it is unfair to quantitatively compare179

the CityEngine-derived layouts with other data-driven benchmarks. These data-driven methods can180

be summarized into: (1) point clouds set-based methods, such as PointNet [20] and PointNet++181

[21], which treat the city layout data as a set of point clouds; (2) sequence-based methods, such as182

SketchRNN [12], which regard the layout data as a sequence. In addition, we propose a tree-based183

method for constructing the layout data as a hierarchical tree. In the experiments, 45,487 buildings184

in Manhattan borough are selected and batched into sets of 32 neighboring buildings. 70% of185

the data are taken as training sets, 10% as valiation sets and 20% as test sets. The learning rates186

for SketchRNN-R2 method, SketchRNN-R5 method, PointNet-MLP method, PointNet2-MLP, and187

AETree are 0.001, 0.0001, 0.001, 0.001, 0.001 respectively, and the batch sizes for these methods are188

100, 100, 500, 500, 50 separately. All the baseline methods run on an NVIDIA GeForce GTX 1080189

Ti GPU. The model that achieves the best 2D generation performance is selected for 3D building190

cuboid generation to further demonstrate the results of 3D city layout generation.191

4.1.1 Evaluation Metrics192

We use three popular metrics proposed in [3] to evaluate generation. Jensen-Shannon Divergence193

(JSD) measures the similarity of marginal distributions between reference and generated sets. The194

distribution of data is calculated by counting the points in each discretized grid cell. Coverage195

(COV) measures the fraction of points in generated data that are matched to the corresponding closest196

neighbor points in the reference data. Minimum Matching Distance (MMD) measures the fidelity197

of a generated set with respect to a reference set by matching each generated point to the point in198

reference data with the minimum distance. MMD is the average of distances in the matching.199

6

For COV and MMD, we only select Chamfer Distance (CD) to compute the distance between two200

point clouds. We leave out Earth Mover’s Distance (EMD) as it requires the number of instances in201

two sets to be equal, which is not suitable for our generation evaluation.202

We introduce Overlapping Area Ratio (OAR) to measure the extent of overlapping in generated203

layouts. Different from Intersection over Union (IoU), OAR measures the ratio of objects’ area that204

have overlapped with others to all objects’ area, instead of the ratio of intersection area among objects205

to the union of all objects’ area, which can be defined as:206

OAR(O) =

∑
o∈O A(o), if(o ∩ ô),∀ô ∈ {O − o}∑

o′∈O A(o′)
, (1)

where A(·) is the object o area, ∩ indicates two overlapping objects, O is the set of generated objects.207

4.1.2 Baselines208

CityEngine. ESRI CityEngine is a commercial software that uses a procedural modeling approach209

based on L-systems to create large-scale city models. This approach is different from deep generative210

models that are data-driven. By creating road networks and dividing the parcels into lots, it generates211

buildings on the allotments using predefined rules and parameters. The building footprint is generated212

using default rules with some manual adjustment of parameters.213

SketchRNN-R2. SketchRNN is a generative model to generate sketch drawings [12]. This model214

seems intuitively suitable to solve our problem. We convert each city layout data to a list of points as215

a sketch with x,y coordinates according to the input of SketchRNN. Specifically, for a batch with 32216

building footprints, the converted sketch consists of 128 points by taking all corners.217

SketchRNN-R5. Based on vanilla SketchRNN, we explore replacing the parameter of a city layout218

data (i.e. the center coordinates, length, width, height and orientation angle) with x,y coordinates219

of a sketch. So we transform a batch of data to a sketch with 32 high dimension points, which220

incorporates 5 elements: (∆x, ∆y, ∆l, ∆l, ∆a). The first five elements are the offset parameters221

from the previous box. Different from [12], we use 1D to represent the binary state of the pen (at its222

end or not), since we assume that the pen draws 32 points in succession.223

PointNet-MLP. In addition, we benchmark a simple baseline model, which adopts PointNet [20] as224

the encoder by regarding a city layout (corner points) as a point cloud. By reference to the decoder of225

SketchRNN, we employ MLP to decode the latent representations to parameters for a probability226

distribution of points. Meanwhile, the loss function aims to maximize the log-likelihood of the227

generated probability distribution to explain the training data.228

PointNet2-MLP. Moreover, we replace the PointNet with PointNet++ [21] as model encoder while229

keeping the same experimental settings as PointNet-MLP.230

AETree. Lastly, we propose AETree, a tree structured neural network that efficiently encodes and231

generates areal spatial data hierarchically. A tree encoder with LSTMCell learns to extract and232

merge spatial information from bottom-up iteratively. The resulting global representation is reversely233

decoded for reconstruction or generation. More details can be found in the Appendix.234

4.1.3 Results235

Table 2: Quantitative comparisons of city layout generation performance with various data-driven
baseline methods. The first four columns represent the results of models under four generation
evaluation metrics and the last two columns measure the complexity of models.

Methods JSD(↓) COV(%, ↑) MMD(↓) OAR(%, ↓) #params FLOPs/sample
SketchRNN-R2 0.0089 33.62 0.0050 1.83 2.19M 243.13M
SketchRNN-R5 0.0101 28.76 0.0047 95.41 2.37M 402.46M
PointNet-MLP 0.0417 4.60 0.0219 87.47 1.84M 3.67M
PointNet2-MLP 0.0407 22.36 0.0086 56.39 2.03M 31.55M

AETree 0.0033 39.53 0.0044 1.66 2.91M 31.86M

7

Non
data-driven

methods
CityEngine

Data-driven
methods

SketchRNN-R2

SketchRNN-R5

PointNet-MLP

PointNet2-MLP

AETree

Figure 8: City layout generation results of the models trained on NYC dataset.

We quantitatively compare the city layout generation results in Table 2. Baseline models do not236

perform well across the four evaluation metrics, in comparison with the proposed AETree model. To237

intuitively show model performance, we randomly select some generation results of each model, as238

shown in Figure 8. Generated layouts from the SketchRNN and AEtree model are more regular than239

the other three data-driven methods. CityEngine is able to generate well-ordered city layouts, but240

loses style variance due to its rigid set of predetermined parameters and rules.241

4.1.4 Discussion242

The results demonstrate that most data-driven baseline models do not perform well on our city layout243

generation dataset. While the proposed AETree model generates reasonable city layout results,244

there is still significant room for improvement on 3D minimum bounding cuboid data (see Figure245

9). Furthermore, both 2D building footprints and 3D minimum bounding cuboids are generated by246

simplifying the original LoD2 to LoD1. We expect that it will be difficult to achieve detailed city247

generation based on existing methods, thus we divided this problem into two sub-tasks. We invite the248

research community to develop novel city layout generation methods using RealCity3D.249

4.2 Task 2: Building Shape Generation250

One unique property of building object of RealCity3D is being geometrically highly constrained. For251

example, most buildings have vertical walls and planar surfaces, but some involve highly intricate252

facade details (e.g. the Empire State Building compared to a town house). This would be challenging253

for existing 3D deep learning models to learn features from building objects. To demonstrate this,254

8

Table 3: Benchmark of point cloud generation on two datasets.

RealCity3D JSD Coverage MMD
Raw-GAN 0.068 47.6 0.061

Latent-GAN [3] 0.024 57.3 0.088
ShapeNet [5] JSD Coverage MMD

Raw-GAN 0.176 52.3 0.0020
Latent-GAN [3] 0.020 68.9 0.0018

Figure 9: 3D generation results of AETree trained on the NYC Dataset

we train FoldingNet on the point cloud representations of RealCity3D, and qualitatively show the255

challenges it faces in reconstructing the 3D building shapes (Appendix Figure 16).256

To quantitatively evaluate the difficulty of this task, we choose to train Raw-GAN and Latent-GAN257

for building shape generation on the point cloud representation of our datasets. We also perform258

the same experiments on ShapeNet [5], a simpler object-level dataset, and compare the generation259

results using JSD, COV, and MMD metrics (metric descriptions in Section 4.1.1). We report results260

in Table 3. The same generative models perform differently on the two datasets, indicating the two261

datasets have different properties relating to 3D shapes generation. The visualized generation results262

of Latent-GAN are shown in Appendix Figure 15. It can be seen that the reconstructions lost many263

important geometric details and variations of the 3D building shapes. Hence, the uniqueness of264

RealCity3D and the additional learning challenge it poses to 3D computer vision community are265

further demonstrated.266

5 Conclusions267

In this paper, we introduce RealCity3D, a large-scale georeferenced 3D shape dataset of real-world268

cities, including New York City and Zurich. The dataset covers more than 871.7 square kilometers269

and consists of over 1,000,000 georeferenced objects, which are represented in polygon meshes,270

triangle meshes, point clouds, and voxel grids. The polygon meshes also contain semantic information271

of objects. Based on RealCity3D, we explore city-level generation and perform two benchmarks272

including building footprint and building shape generation. Through these benchmarking experiments,273

we demonstrate that our dataset poses novel challenges to existing data-driven generation methods274

on a city-scale scene. In the near future, we will extend our dataset to include more cities and more275

shape categories, such as roads, bridges, etc. We hope the RealCity3D dataset can accelerate the276

research community’s work in developing deep generative models for large-scale generation.277

9

References278

[1] Lifull home’s dataset. https://www.nii.ac.jp/dsc/idr/lifull/. 2279
[2] Spacenet dataset. https://spacenetchallenge.github.io/. 2280
[3] Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and Leonidas Guibas. Learning representations and281

generative models for 3d point clouds. In International conference on machine learning, pages 40–49.282

PMLR, 2018. 2, 3, 6, 9, 16283
[4] Saifullahi Aminu Bello, Shangshu Yu, Cheng Wang, Jibril Muhammad Adam, and Jonathan Li. Review:284

Deep learning on 3d point clouds. Remote Sensing, 12(11):1729, 2020. 5285
[5] Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li, Silvo286

Savarese, Manolis Savva, Shuran Song, and Hao et al. Su. Shapenet: An information-rich 3d model287

repository. 2015. 2, 9288
[6] Kai-Hung Chang, Chin-Yi Cheng, Jieliang Luo, Shingo Murata, Mehdi Nourbakhsh, and Yoshito289

Tsuji. Building-gan: Graph-conditioned architectural volumetric design generation. arXiv preprint290

arXiv:2104.13316, 2021. 2291
[7] Hang Chu, Daiqing Li, David Acuna, Amlan Kar, Maria Shugrina, Xinkai Wei, Ming-Yu Liu, Antonio292

Torralba, and Sanja Fidler. Neural turtle graphics for modeling city road layouts. In Proceedings of the293

IEEE International Conference on Computer Vision, pages 4522–4530, 2019. 2, 3294
[8] Ilke Demir, Daniel G Aliaga, and Bedrich Benes. Proceduralization of buildings at city scale. In 2014 2nd295

International Conference on 3D Vision, volume 1, pages 456–463. IEEE, 2014. 3296
[9] Adam Van Etten, Dave Lindenbaum, and Todd M. Bacastow. Spacenet: A remote sensing dataset and297

challenge series, 2019. 3298
[10] Thibault Groueix, Matthew Fisher, Vladimir G Kim, Bryan C Russell, and Mathieu Aubry. A papier-mâché299

approach to learning 3d surface generation. In Proceedings of the IEEE conference on computer vision300

and pattern recognition, pages 216–224, 2018. 2301
[11] Jianwei Guo, Haiyong Jiang, Bedrich Benes, Oliver Deussen, Xiaopeng Zhang, Dani Lischinski, and Hui302

Huang. Inverse procedural modeling of branching structures by inferring l-systems. ACM Transactions on303

Graphics (TOG), 39(5):1–13, 2020. 3304
[12] David Ha and Douglas Eck. A neural representation of sketch drawings. arXiv preprint arXiv:1704.03477,305

2017. 3, 6, 7306
[13] Ruizhen Hu, Zeyu Huang, Yuhan Tang, Oliver Van Kaick, Hao Zhang, and Hui Huang. Graph2plan:307

Learning floorplan generation from layout graphs. ACM Transactions on Graphics (TOG), 39(4):118–1,308

2020. 2309
[14] Stephen C Johnson. Hierarchical clustering schemes. Psychometrika, 32(3):241–254, 1967. 12310
[15] Paul Merrell, Eric Schkufza, and Vladlen Koltun. Computer-generated residential building layouts. In311

ACM SIGGRAPH Asia 2010 papers, pages 1–12. 2010. 3312
[16] Charlie Nash, Yaroslav Ganin, SM Eslami, and Peter W Battaglia. Polygen: An autoregressive generative313

model of 3d meshes. arXiv preprint arXiv:2002.10880, 2020. 2, 3314
[17] Nelson Nauata, Kai-Hung Chang, Chin-Yi Cheng, Greg Mori, and Yasutaka Furukawa. House-gan:315

Relational generative adversarial networks for graph-constrained house layout generation. arXiv preprint316

arXiv:2003.06988, 2020. 2, 3317
[18] Gen Nishida, Ignacio Garcia-Dorado, Daniel G Aliaga, Bedrich Benes, and Adrien Bousseau. Interactive318

sketching of urban procedural models. ACM Transactions on Graphics (TOG), 35(4):1–11, 2016. 3319
[19] Fakir Nooruddin and Greg Turk. Simplification and repair of polygonal models using volumetric techniques.320

IEEE Transactions on Visualization and Computer Graphics, 9(2):191–205, 2003. 5321
[20] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets for 3d322

classification and segmentation. In Proceedings of the IEEE conference on computer vision and pattern323

recognition, pages 652–660, 2017. 6, 7324
[21] Charles R Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical feature learning on325

point sets in a metric space. arXiv preprint arXiv:1706.02413, 2017. 6, 7326
[22] Daniel Ritchie, Anna Thomas, Pat Hanrahan, and Noah Goodman. Neurally-guided procedural models:327

Amortized inference for procedural graphics programs using neural networks. In Advances in neural328

information processing systems, pages 622–630, 2016. 3329
[23] Stadt Zurich. Zurich 3-d building model. https://www.stadt-zuerich.ch/ted/de/index/330

geoz/geodaten_u_plaene/3d_stadtmodell.html, 2018. 4331
[24] The New York City Department of Information Technology. NYC 3-d building model. https://332

www1.nyc.gov/site/doitt/initiatives/3d-building.page, 2019. 4333
[25] Carlos A Vanegas, Ignacio Garcia-Dorado, Daniel G Aliaga, Bedrich Benes, and Paul Waddell. Inverse334

design of urban procedural models. ACM Transactions on Graphics (TOG), 31(6):1–11, 2012. 3335
[26] Carlos A Vanegas, Tom Kelly, Basil Weber, Jan Halatsch, Daniel G Aliaga, and Pascal Müller. Procedural336

generation of parcels in urban modeling. In Computer graphics forum, volume 31, pages 681–690. Wiley337

Online Library, 2012. 3338
[27] Wenming Wu, Xiao-Ming Fu, Rui Tang, Yuhan Wang, Yu-Hao Qi, and Ligang Liu. Data-driven interior339

plan generation for residential buildings. ACM Transactions on Graphics (TOG), 38(6):1–12, 2019. 2340
[28] Yusheng Xu, Xiaohua Tong, and Uwe Stilla. Voxel-based representation of 3d point clouds: Methods,341

applications, and its potential use in the construction industry. Automation in Construction, 126, 2021. 5342
[29] Shu Yanai, Ryohei Umegaki, Kyoko Hasegawa, Liang Li, Hiroshi Yamgushi, and Tanaka Satoshi. Improv-343

ing transparent visualization of large-scale laser-scanned point clouds using poisson disk sampling. In344

10

https://www.nii.ac.jp/dsc/idr/lifull/
https://spacenetchallenge.github.io/
https://www.stadt-zuerich.ch/ted/de/index/geoz/geodaten_u_plaene/3d_stadtmodell.html
https://www.stadt-zuerich.ch/ted/de/index/geoz/geodaten_u_plaene/3d_stadtmodell.html
https://www.stadt-zuerich.ch/ted/de/index/geoz/geodaten_u_plaene/3d_stadtmodell.html
https://www1.nyc.gov/site/doitt/initiatives/3d-building.page
https://www1.nyc.gov/site/doitt/initiatives/3d-building.page
https://www1.nyc.gov/site/doitt/initiatives/3d-building.page

2017 International Conference on Culture and Computing (Culture and Computing), pages 13–19, 2017. 5345
[30] Yaoqing Yang, Chen Feng, Yiru Shen, and Dong Tian. Foldingnet: Point cloud auto-encoder via deep grid346

deformation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages347

206–215, 2018. 17348
[31] Yong-Liang Yang, Jun Wang, Etienne Vouga, and Peter Wonka. Urban pattern: Layout design by349

hierarchical domain splitting. ACM Transactions on Graphics (TOG), 32(6):1–12, 2013. 3350
[32] Fuyang Zhang, Nelson Nauata, and Yasutaka Furukawa. Conv-mpn: Convolutional message passing neural351

network for structured outdoor architecture reconstruction. In Proceedings of the IEEE/CVF Conference352

on Computer Vision and Pattern Recognition, pages 2798–2807, 2020. 3353

Checklist354

1. For all authors...355

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s356

contributions and scope? [Yes] See last paragraph in Section 1.357

(b) Did you describe the limitations of your work? [Yes] We discuss the limitation of state358

of the art data-driven methods on our dataset in Section 4.1.4.359

(c) Did you discuss any potential negative societal impacts of your work? [N/A]360

(d) Have you read the ethics review guidelines and ensured that your paper conforms to361

them? [Yes]362

2. If you are including theoretical results...363

(a) Did you state the full set of assumptions of all theoretical results? [N/A]364

(b) Did you include complete proofs of all theoretical results? [N/A]365

3. If you ran experiments (e.g. for benchmarks)...366

(a) Did you include the code, data, and instructions needed to reproduce the main experi-367

mental results (either in the supplemental material or as a URL)? [Yes] See Section A.1.368

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they369

were chosen)? [Yes] See Section 4.1.370

(c) Did you report error bars (e.g., with respect to the random seed after running experi-371

ments multiple times)? [No]372

(d) Did you include the total amount of compute and the type of resources used (e.g., type373

of GPUs, internal cluster, or cloud provider)? [Yes] See Section 4.1.374

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...375

(a) If your work uses existing assets, did you cite the creators? [Yes] See Section 3.2 and376

Section 4.2.377

(b) Did you mention the license of the assets? [Yes] See Section A.3 and A.2378

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]379

See Section A.1.380

(d) Did you discuss whether and how consent was obtained from people whose data you’re381

using/curating? [Yes] See Secton A.2.382

(e) Did you discuss whether the data you are using/curating contains personally identifiable383

information or offensive content? [Yes] See Secton A.2.384

5. If you used crowdsourcing or conducted research with human subjects...385

(a) Did you include the full text of instructions given to participants and screenshots, if386

applicable? [N/A]387

(b) Did you describe any potential participant risks, with links to Institutional Review388

Board (IRB) approvals, if applicable? [N/A]389

(c) Did you include the estimated hourly wage paid to participants and the total amount390

spent on participant compensation? [N/A]391

11

