
K∗ and Partial Order Reduction for Top-Quality Planning

Michael Katz, Junkyu Lee
IBM T.J. Watson Research Center

1101 Kitchawan Rd, Yorktown Heights, NY 10598, USA
{michael.katz1, junkyu.lee}@ibm.com

Abstract

Partial order reduction techniques are successfully used for
various settings in planning, such as classical planning with
A∗ search or with decoupled search, fully-observable non-
deterministic planning with LAO∗, planning with resources,
or even goal recognition design. Here, we continue this trend
and show that partial order reduction can be used for top-
quality planning with K∗ search. We discuss the possible pit-
falls of using stubborn sets for top-quality planning and the
guarantees provided. We perform an empirical evaluation that
shows the proposed approach to significantly improve over
the current state of the art in unordered top-quality planning.
The code is available at https://github.com/IBM/kstar.

Introduction
The need for producing a set of top-quality plans is well
established by many real-life applications, including plan
recognition (Sohrabi, Riabov, and Udrea 2016), malware de-
tection (Boddy et al. 2005), business process automation
(Chakraborti et al. 2020), and automated machine learning
(Katz et al. 2020). Top-quality planning supplies the de-
mand, generating all high-quality plans up to a certain bound
(Katz, Sohrabi, and Udrea 2020). If some plans are consid-
ered equivalent from an application perspective, as is of-
ten the case with plans that are equivalent if operator or-
derings are ignored, it can be sufficient to cover the equiva-
lence classes instead of all plans (Katz, Sohrabi, and Udrea
2020; Katz and Sohrabi 2022). This so-called unordered top-
quality planning serves, among other, as a basis for solving
additional computational problems, such as quality-aware
diverse planning (Nguyen et al. 2012; Vadlamudi and Kamb-
hampati 2016; Katz, Sohrabi, and Udrea 2022). While this
is clearly an important computational problem of high prac-
tical value, the selection of available planners is quite lim-
ited. The two existing approaches are based on Forbid Itera-
tive (Katz et al. 2018), an approach that iteratively solves a
modified planning problem with classical planners, decreas-
ing the set of solutions in each iteration, and SymK (Speck,
Mattmüller, and Nebel 2020), a symbolic search based ap-
proach. While in top-k planning, a K∗ search-based ap-
proach (Aljazzar and Leue 2011) was recently shown to pro-

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

duce competitive results (Lee, Katz, and Sohrabi 2023), it
was not applied to unordered top-quality planning.

In this work, we propose a competitive unordered top-
quality planner based on K∗ search and partial order re-
duction. Partial order reduction was successful for vari-
ous settings in planning, such as classical planning with
A∗ search or with decoupled search (Gnad, Hoffmann, and
Wehrle 2019), fully-observable non-deterministic planning
with LAO∗ (Winterer et al. 2017), planning with resources
(Wilhelm, Steinmetz, and Hoffmann 2018), or even goal
recognition design (Keren, Gal, and Karpas 2018). They
were never, however, applied in the setting of unordered top-
quality planning, arguably among the more naturally fitting
problem, where different orderings of the same plan are of
no added value. Focusing on stubborn sets (Valmari 1989),
we show that K∗ search over the space reduced with strong
stubborn sets (Wehrle and Helmert 2012; Alkhazraji et al.
2012; Wehrle and Helmert 2014) is safe to use for unordered
top-quality planning. We show that no adaptation to these
techniques is needed if a single-goal planning task transfor-
mation is used. Such transformations are required for K∗
search and must be performed anyway. We point out the
weaknesses of the transformation used in previous imple-
mentations of K∗ (Katz et al. 2018) and suggest using a re-
cently proposed transformation for symmetry pruning vari-
ant (Katz and Lee 2023), which preserves the pruning power
of the original planning task. We perform an experimental
evaluation that shows a significant increase in performance
over the current state of the art and establishes our approach
as the new state of the art for unordered top-quality planning.

Background
We introduce the necessary concepts in top-quality plan-
ning, K∗ search, as well as partial order reduction.

Top-quality Planning
We consider classical planning tasks in the well-known
SAS+ formalism (Bäckström and Nebel 1995), extended
with action costs. Such planning tasks Π = 〈V ,O, s0, s?〉
consist of a finite set of finite-domain state variables V , a fi-
nite set of actionsO, an initial state s0, and the goal s?. Each
variable v ∈ V is associated with a finite domain dom(v)
of variable values. A partial assignment p maps a subset of



variables vars(p) ⊆ V to values in their domains. For a vari-
able v ∈ V and partial assignment p, the value of v in p is
denoted by p[v] if v ∈ vars(p) and we say p[v] is undefined
if v /∈ vars(p). A partial assignment s with vars(s) = V ,
is called a state. State s is consistent with partial assign-
ment p if they agree on all variables in vars(p), denoted
by p ⊆ s. s0 is a state and s? is a partial assignment. A
state s is called a goal state if s? ⊆ s and the set of all
goal states is denoted by Ss? . Each action o in O is a pair
〈pre(o), eff (o)〉 where pre(o) and eff (o) are partial assign-
ments called precondition and effect, respectively. Further, o
has an associated cost C(o) ∈ R0+. An action o is appli-
cable in state s if pre(o) ⊆ s. Applicable in s actions are
denoted by O(s). Applying o in s results in a state denoted
by sJoK where sJoK[v] = eff (o)[v] for all v ∈ vars(eff )
and = sJoK[v] = s[v] for all other variables. An action se-
quence π = 〈o1, · · · , on〉 is applicable in state s if there
are states s0, · · · , sn such that oi is applicable in si−1 and
si−1JoiK = si for 0 ≤ i ≤ n. We denote sn by sJπK. An
action sequence with s0JπK ∈ Ss? is called a plan. The cost
of a plan π, denoted by C(π) is the summed cost of the ac-
tions in the plan. The set of all plans is denoted by PΠ. A
plan is optimal if its cost is minimal among all plans in PΠ.
Cost-optimal planning deals with finding an optimal plan or
proving that no plan exists (the task is unsolvable).

Extending cost-optimal planning, top-quality planning
(Katz, Sohrabi, and Udrea 2020) deals with finding all plans
of up to a specified cost. Formally, the top-quality planning
problem is as follows. Given a planning task Π and a number
q ∈ R0+, find the set of plans P ={π ∈ PΠ | cost(π) ≤ q}.
In some cases, an equivalence between plans can be spec-
ified, allowing to possibly skip some plans, if equivalent
plans are found. The corresponding problem is called quo-
tient top-quality planning and it is formally specified as
follows. Given a planning task Π, an equivalence relation
N over its set of plans PΠ, and a number q ∈ R0+, find
a set of plans P ⊆ PΠ such that

⋃
π∈P N [π] is the solu-

tion to the top-quality planning problem. The most com-
mon case of such an equivalence relation is when the or-
der of actions in a valid plan is not significant from the
application perspective. In other words, when you can re-
order some of the actions in a plan and still get a valid
plan. The corresponding problem is called unordered top-
quality planning and is formally specified as follows. Given
a planning task Π and a number q ∈ R0+, find a set of
plans P ⊆ PΠ such that P is a solution to the quotient
top-quality planning problem under the equivalence relation
UΠ = {(π, π′) | π, π′ ∈ PΠ,MS(π) = MS(π′)}, where
MS(π) is the multi-set of the actions in π

K∗ Search for Top-quality Planning
Given a top-quality planning problem 〈Π, q〉, K∗ first per-
forms A∗ until the cost bound is reached, and then applies
Eppstein’s Algorithm (EA) to the search graph revealed by
A∗. We omit here the details ofEA as they are not necessary
for this paper and refer a curious reader to Aljazzar and Leue
(2011) and Eppstein (1998) for details. One important prop-
erty that we emphasize is that EA can enumerate all paths
in the search graph in the order of their costs.

One of the limitations of K∗ is its restriction to graphs
with a single goal state. In planning, however, tasks can
have many goal states. In cases when the partial assignment
s? is not a full state, it is possible to transform Π into a
planning task with a single goal state. One way to achieve
that is to add one binary variable vg to indicate whether a
goal was reached. Further, we add one zero-cost action og
with precondition pre(og) = s? ∪ {vg = 0} and effect
eff (og) = {vi = t[vi]|vi ∈ vars(t)} ∪ {vg = 1} for an
arbitrary full state t over the original variables. Addition-
ally, each original action precondition, as well as the initial
state are extended with {vg = 0}. Finally, the goal is set to
eff (og), making it a full variable assignment. For a planning
task Π, we denote its single goal transformation by Πg . In
words, the additional goal-achieving zero-cost action can be
applied once (and only once) the original goal was achieved,
changing the state to the new goal state. No action is appli-
cable in the new goal state, and therefore there is one-to-one
correspondence between the plans of Π and those of Πg .
The transformation was used, albeit not described by Katz
et al. (2018), in their implementation of K∗. It is worth not-
ing that domain independent heuristics for planning can be
quite sensitive to such transformations.

Partial Order Reduction
A central to partial order reduction techniques is the no-
tion of safe successor pruning (Wehrle and Helmert 2014).
A successor pruning function succ for a planning task Π is
safe, if for every state s, the cost of an optimal solution for
s is the same when using the pruned state space induced by
succ as when using the full state space. When using safe
successor pruning, it is possible to search the pruned state
space instead when searching for cost-optimal plans. Stub-
born sets (Wehrle and Helmert 2012; Alkhazraji et al. 2012)
induce safe successor pruning functions by helping identify-
ing actions that can safely be ignored at node expansion. It
is done by specifying a set, such that if an applicable action
is not in the set, it can be safely ignored (e.g., Wehrle and
Helmert 2014).

At the core of these partial order reduction techniques is
the idea that, for each non-goal state s, if a goal is reachable
from s, then at least one strongly optimal (an optimal plan
with a minimal number of 0-cost actions among all optimal
plans) is preserved in the pruned state space.

Two main notions in stubborn sets are interference
and necessary enabling sets (NES). Interference dictates
whether two actions disable each other or conflict. Neces-
sary enabling sets for an action o and a set of paths from the
initial state is a set of actions that appear on the paths that
include o before its first appearance.

Definition 1 (GSSS) Let Π be a planning task and s be a
solvable non-goal state. Let S be the states along strongly
optimal plans for s. A set S ⊆ O is a GSSS for s if:

(i) S contains at least one action from at least one strongly
optimal plan for s.

(ii) For every o ∈ S \ O(s), S contains a NES for o.
(iii) For every o ∈ S ∩ O(s), S contains all o′ ∈ O that

interfere with a in any state s ∈ S.



Stubborn Sets for Top-quality Planning
In this section, we show thatK∗ search can be used for solv-
ing the unordered top-quality planning problem. To do that,
we need to ensure that the stubborn sets are well-defined for
all states expanded by the search algorithm. For non-goal
states, this is true. For goal states, however, stubborn sets
may prune all plans. Therefore, it is crucial that the search
algorithm does not expand goal states. For K∗ this is indeed
the case, since it solves the single-goal transformation Πg of
the input planning task Π, and in the single goal transforma-
tion of Katz et al. (2018), the (only) goal state does not have
successors, so plans do not traverse through the goal state.
Therefore, from now on, we focus on non-goal states only.

We start with an observation that existing work (e.g., Alk-
hazraji et al. 2012) proves a stronger property than pre-
serving at least one optimal plan. Let us state the property
explicitly. Let Π be a planning task, s be some state and
πs = o1, . . . , on be some plan for s. Let f : S 7→ P (O)
be a strong stubborn set and Of (s) := O(s) ∩ f(s) be the
corresponding subset of applicable actions. If o1 6∈ Of (s),
let i be the smallest index such that oi ∈ Of (s). Then,
π′s = oi, o1, . . . , oi−1, oi+1, . . . , on obtained from πs by
moving the action oi to the front, is also a plan for s.

It is worth noting that this property is also strongly related
to the operator shifting property (Sievers and Wehrle 2021).

We use this observation to prove the following theorem.

Theorem 1 Let T be the transition system of Πg , f : S 7→
P (O) be a strong stubborn set, and Tf be the correspond-
ing reduced transition system. For each plan π of Πg , there
exists a reordering π′ that corresponds to a goal path in Tf .

Proof: We construct a plan π′ from π = o1, . . . , on itera-
tively applying the observation above. We start with π′ be-
ing an empty sequence. Let s be the current state, starting
with the initial state s0 and let πs be a plan for the current
state, starting with π. While πs is not an empty sequence,
we find the next action to add to π′ as follows. Let o be the
first action from πs. If o is in Of (s), then we add o to π′
and update the current state to be sJoK. We remove the first
action from πs, maintaining πs to be a plan for s. If o is not
in Of (s), we use the observation to find oi ∈ Of (s) and a
plan π′s for s that is a reordering of πs that starts with oi. We
then add oi to π′ and update the current state to be sJoiK. We
replace πs with π′s and then remove the first action from πs,
maintaining πs to be a plan for s.

Every iteration, the length of πs is reduced by 1 action,
moving the action to π′. Thus, the concatenation of π′ and
πs at each step is a plan, a reordering of the plan π. �

A corollary from Theorem 1 is that we can solve un-
ordered top-quality planning by finding plans in the reduced
transformed transition system, using strong stubborn sets for
pruning the search.

Next, we question whether the stubborn sets applied to the
single-goal transformation have the same pruning power as
if they were applied to the original task. Looking closer at
the transformation, since the goal state may include variable
values that are achieved by original actions, these actions

50

100

150

200

250

300

350

400

450

500

550

600

650

700

200 400 600 800 1000 1200 1400 1600 1800

nu
m

be
ro

ft
as

ks

time (s)

SymK
FI

K∗-LMcut
RK∗-LMcut
K∗-M&S

RK∗-M&S

K∗-CEGAR
RK∗-CEGAR

K∗-iPDB
RK∗-iPDB
K∗-blind

RK∗-blind

Figure 1: Anytime performance of tested configurations.

(and therefore some other) may be added to the stubborn
set, making it unnecessarily large. The issue can be avoided
if a different transformation is used. Recently, such a trans-
formation was proposed for a similar purpose, to preserve
the pruning power of symmetries (Katz and Lee 2023). Their
transformation differs in the goal state (and consequently the
effect of the goal achieving action), defining new goal val-
ues for all original variables. With that, the issue mentioned
above disappears. The issue still persists in the states of Πg

that correspond to goal states of Π. There, the action og will
be added to the stubborn set, and so will all other actions of
Πg , since they interfere with og . For any other non-goal state
s of the transformed problem Πg , such that a goal is reach-
able from s, let s′ be the corresponding (non-goal) state of
the original problem Π. Strong stubborn set algorithms ap-
plied to Πg will produce the same applicable action set for
s as the set obtained for s′ when applied to Π. To see that,
observe that og is the only action that achieves the goal in
Πg . It interferes with all other actions of Πg and its pre-
condition, except for on vg agrees precisely with the goal
of Π. All original actions interact with each other in Πg in
precisely the same way as in Π. Once any applicable action
is added to the stubborn set of s, so will og (interference).
Since og is not applicable, this will trigger adding the neces-
sary enabling set for og . Assuming that the choice of finding
an unsatisfied goal and of finding an unsatisfied precondition
of og are resolved the same way, we get the same behavior.

Experimental Evaluation
We have integrated the existing implementation of partial
order reduction techniques into an existing implementation
of K∗ algorithm (Lee, Katz, and Sohrabi 2023), built on
top of the Fast Downward planning system (Helmert 2006).
All experiments were performed on Intel(R) Xeon(R) Gold
6248 CPU @ 2.50GHz machines, with the timeout of 30
minutes and memory limit of 8GB per run. The bench-
mark set consists of all benchmarks from optimal tracks
of International Planning Competitions 1998-2018, a to-
tal of 1827 tasks in 65 domains. We have experimented
with four admissible heuristics, LMcut (Helmert and Domsh-
lak 2009), merge-and-shrink abstraction (denoted by M&S)



LMcut M&S CEGAR iPDB blind
SymK FI K∗ RK∗ K∗ RK∗ K∗ RK∗ K∗ RK∗ K∗ RK∗

SymK 0 31 5 5 7 7 6 6 3 3 17 16
FI 12 0 6 2 7 3 7 3 7 3 7 3

LMcut K∗ 39 43 0 1 14 13 12 13 6 6 31 29
RK∗ 41 48 12 0 25 18 23 18 18 11 39 34

M&S
K∗ 35 41 7 6 0 1 11 10 0 0 27 25
RK∗ 37 45 14 6 10 0 19 14 9 4 34 30

CEGAR
K∗ 32 40 4 4 12 12 0 1 5 5 27 25
RK∗ 34 45 14 4 22 14 10 0 15 6 34 29

iPDB
K∗ 44 43 17 15 19 19 19 19 0 0 35 33
RK∗ 46 47 26 16 29 21 28 21 10 0 42 37

blind K∗ 23 38 2 1 6 6 2 1 1 1 0 0
RK∗ 25 42 8 2 13 7 8 2 8 1 10 0

Overall Coverage 421 341 536 636 489 582 521 609 558 647 447 525

Table 1: Pair-wise domain level comparison of (unordered) top-quality planners. Each entry in the table represents the number
of domains where the row configuration achieves better coverage than the column one. The last row depicts the overall coverage.

(Helmert, Haslum, and Hoffmann 2007), counterexample-
guided Cartesian abstraction refinement (denoted by CE-
GAR) (Seipp and Helmert 2018), and pattern database
heuristic iPDB (Haslum et al. 2007). As planning heuris-
tics can be sensitive to task formulation, we follow the sug-
gestion of Lee, Katz, and Sohrabi (2023) and evaluate the
heuristics on the original task. The found plans are added
to the solution, checking duplicates as de-ordered multi-
sets. Vanilla K∗ is compared to K∗, pruned by atom-centric
stubborn sets (Röger et al. 2020), denoted by RK∗. We
also compare to the existing unordered top-quality planners,
ForbidIterative (FI) (Katz et al. 2018) and SymK (Speck,
Mattmüller, and Nebel 2020). Importantly, all planners per-
form the same translation from PDDL to SAS+, solving the
same SAS+ planning problem. In our experiments, we dis-
abled the writing of plans to disk, excluding the write time
from our evaluation. All experiments are using the cost mul-
tiplier q=1: find all cost-optimal plans, modulo reorderings.

We measure coverage, giving the score of 1 to each task if
the unordered top-quality solution was found withing the 30
minutes time bound. Additionally, we measure the time until
the solution was found. Figure 1 depicts the any-time overall
coverage performance of the tested planners. The lines for
the same heuristic are depicted with the same color, solid
for RK∗ and dashed for K∗. For very small timeouts, up
to 4s, the best performing overall configuration isRK∗ with
the LMcut heuristic. From 4s to 60s,RK∗ with CEGAR takes
the lead. Starting from 60s an onwards, RK∗ with iPDB be-
comes the best performer. It is worth noting that it reaches
its almost maximal coverage of 646 out of 647 tasks already
at 540s and the maximal coverage by 995s.

Switching now to domain-level coverage, Table 1 shows
the pairwise comparison of the tested approaches. Each en-
try denotes the number of domains where the row planner
achieves a better summed coverage than the column planner.
Additionally, the last row denotes the overall coverage for
each planner. The winners are marked in bold. For the pair-
wise comparison, the value in (x,y) is bolded if it is larger
than the value in (y,x), that is planner x excelled over plan-
ner y in more domains than planner y excelled over planner

x. Observe that RK∗ consistently outperforms K∗, with the
difference in the number of domains with superior perfor-
mance being between 9 and 11. RK∗ with iPDB is the abso-
lute per-domain winner, as well as overall winner, achieving
the overall coverage of 647.

At per-domain level, as expected, RK∗ with iPDB
does not absolutely dominate other approaches. There are
17 domains where the configuration does not achieve
maximal coverage, including AIRPORT and LOGISTICS-
IPC2, where FI excels, and BLOCKSWORLD and VISIT-
ALL where SymK achieves the largest coverage. Other
heuristics also exhibit superior performance: LMcut in
DRIVERLOG, ORGANIC-SYNTHESIS-SPLIT, PATHWAYS-
NN, PIPESWORLD-NOTANKAGE, SATELLITE, TRUCKS,
and WOODWORKING, M&S in PSR-SMALL and WOOD-
WORKING, and CEGAR in FREECELL, MPRIME, MYS-
TERY, PIPESWORLD-NOTANKAGE, and TRUCKS. Interest-
ingly, the highest coverage in ORGANIC-SYNTHESIS-SPLIT
is achieved by K∗ with LMcut, while RK∗ loses coverage
due to the overhead of the partial order reduction used.

Conclusions and Future Work
In this work, we exploit partial order reduction techniques to
improve the performance of K∗ search. For that, we show
that no adaptation to these techniques is required if a single-
goal planning task transformation is used. We point out the
weaknesses of the transformation used in previous imple-
mentations of K∗ and suggest using a recently proposed for
the purpose of symmetry pruning variant, which preserves
the pruning power of the original planning task. We perform
an experimental evaluation that establishes our approach as
the new state of the art for unordered top-quality planning.

In the future work, we intend to improve top-k planning
with partial order reduction. To do so, an efficient recon-
struction of pruned reorderings must be derived. A previ-
ously suggested naive exhaustive DFS search (Katz et al.
2018) was found to be too slow to be competitive. Efficient
methods can exploit the information on which actions were
actually pruned at each state.



Acknowledgements
We express our gratitude to Malte Helmert for his invaluable
contributions through multiple discussions, which greatly
contributed to shaping this paper.

References
Aljazzar, H.; and Leue, S. 2011. K*: A Heuristic Search
Algorithm for Finding the K Shortest Paths. AIJ, 175(18):
2129–2154.
Alkhazraji, Y.; Wehrle, M.; Mattmüller, R.; and Helmert, M.
2012. A Stubborn Set Algorithm for Optimal Planning. In
Proc. ECAI 2012, 891–892.
Bäckström, C.; and Nebel, B. 1995. Complexity Results for
SAS+ Planning. Computational Intelligence, 11(4): 625–
655.
Boddy, M.; Gohde, J.; Haigh, T.; and Harp, S. 2005. Course
of Action Generation for Cyber Security Using Classical
Planning. In Proc. ICAPS 2005, 12–21.
Chakraborti, T.; Isahagian, V.; Khalaf, R.; Khazaeni, Y.;
Muthusamy, V.; Rizk, Y.; and Unuvar, M. 2020. From
Robotic Process Automation to Intelligent Process Automa-
tion. In Proc. BPM 2020: Blockchain and RPA Forum, 215–
228.
Eppstein, D. 1998. Finding the k shortest paths. SICOMP,
28(2): 652–673.
Gnad, D.; Hoffmann, J.; and Wehrle, M. 2019. Strong Stub-
born Set Pruning for Star-Topology Decoupled State Space
Search. JAIR, 65: 343–392.
Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; and Koenig,
S. 2007. Domain-Independent Construction of Pattern
Database Heuristics for Cost-Optimal Planning. In Proc.
AAAI 2007, 1007–1012.
Helmert, M. 2006. The Fast Downward Planning System.
JAIR, 26: 191–246.
Helmert, M.; and Domshlak, C. 2009. Landmarks, Critical
Paths and Abstractions: What’s the Difference Anyway? In
Proc. ICAPS 2009, 162–169.
Helmert, M.; Haslum, P.; and Hoffmann, J. 2007. Flexible
Abstraction Heuristics for Optimal Sequential Planning. In
Proc. ICAPS 2007, 176–183.
Katz, M.; and Lee, J. 2023. K∗ Search Over Orbit Space for
Top-k Planning. In Proc. IJCAI 2023.
Katz, M.; Ram, P.; Sohrabi, S.; and Udrea, O. 2020. Ex-
ploring Context-Free Languages via Planning: The Case for
Automating Machine Learning. In Proc. ICAPS 2020, 403–
411.
Katz, M.; and Sohrabi, S. 2022. Who Needs These Oper-
ators Anyway: Top Quality Planning with Operator Subset
Criteria. In Proc. ICAPS 2022, 179–183.
Katz, M.; Sohrabi, S.; and Udrea, O. 2020. Top-Quality
Planning: Finding Practically Useful Sets of Best Plans. In
Proc. AAAI 2020, 9900–9907.
Katz, M.; Sohrabi, S.; and Udrea, O. 2022. Bounding Qual-
ity in Diverse Planning. In Proc. AAAI 2022, 9805–9812.

Katz, M.; Sohrabi, S.; Udrea, O.; and Winterer, D. 2018. A
Novel Iterative Approach to Top-k Planning. In Proc. ICAPS
2018, 132–140.
Keren, S.; Gal, A.; and Karpas, E. 2018. Strong Stubborn
Sets for Efficient Goal Recognition Design. In Proc. ICAPS
2018, 141–149.
Lee, J.; Katz, M.; and Sohrabi, S. 2023. On K∗ Search for
Top-k Planning. In Proc. SoCS 2023.
Nguyen, T. A.; Do, M. B.; Gerevini, A.; Serina, I.; Srivas-
tava, B.; and Kambhampati, S. 2012. Generating diverse
plans to handle unknown and partially known user prefer-
ences. AIJ, 190: 1–31.
Röger, G.; Helmert, M.; Seipp, J.; and Sievers, S. 2020. An
Atom-Centric Perspective on Stubborn Sets. In Proc. SoCS
2020, 57–65.
Seipp, J.; and Helmert, M. 2018. Counterexample-Guided
Cartesian Abstraction Refinement for Classical Planning.
JAIR, 62: 535–577.
Sievers, S.; and Wehrle, M. 2021. On Weak Stubborn Sets
in Classical Planning. In Proc. IJCAI 2021, 4167–4174.
Sohrabi, S.; Riabov, A. V.; and Udrea, O. 2016. Plan Recog-
nition as Planning Revisited. In Proc. IJCAI 2016, 3258–
3264.
Speck, D.; Mattmüller, R.; and Nebel, B. 2020. Symbolic
Top-k Planning. In Proc. AAAI 2020, 9967–9974.
Vadlamudi, S. G.; and Kambhampati, S. 2016. A Combina-
torial Search Perspective on Diverse Solution Generation. In
Proc. AAAI 2016, 776–783.
Valmari, A. 1989. Stubborn sets for reduced state space gen-
eration. In Proc. APN 1989, 491–515.
Wehrle, M.; and Helmert, M. 2012. About Partial Order
Reduction in Planning and Computer Aided Verification. In
Proc. ICAPS 2012, 297–305.
Wehrle, M.; and Helmert, M. 2014. Efficient Stubborn Sets:
Generalized Algorithms and Selection Strategies. In Proc.
ICAPS 2014, 323–331.
Wilhelm, A.; Steinmetz, M.; and Hoffmann, J. 2018. On
Stubborn Sets and Planning with Resources. In Proc. ICAPS
2018, 288–297.
Winterer, D.; Alkhazraji, Y.; Katz, M.; and Wehrle, M. 2017.
Stubborn Sets for Fully Observable Nondeterministic Plan-
ning. In Proc. ICAPS 2017, 330–338.


