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ABSTRACT

Transformers have demonstrated remarkable success across various applications.
However, the success of transformers have not been understood in theory. In this
work, we give a case study of how transformers can be trained to learn a clas-
sic statistical model with “group sparsity”, where the input variables form multi-
ple groups, and the label only depends on the variables from one of the groups.
We theoretically demonstrate that, a one-layer transformer trained by gradient de-
scent can correctly leverage the attention mechanism to select variables, disre-
garding irrelevant ones and focusing on those beneficial for classification. We
also demonstrate that a well-pretrained one-layer transformer can be adapted to
new downstream tasks to achieve good prediction accuracy with a limited number
of samples. Our study sheds light on how transformers effectively learn structured
data.

1 INTRODUCTION

The Transformer architecture (Vaswani et al., 2017) has emerged as one of the most popular models
in the modern deep learning, demonstrating remarkable success across a wide range of real-world
applications, including language processing and language modeling(Vaswani et al., 2017; Radford
et al., 2019; OpenAI, 2023), computer vision(Dosovitskiy et al., 2020; Rao et al., 2021), and rein-
forcement learning(Jumper et al., 2021; Chen et al., 2021; Janner et al., 2021). Despite its empirical
achievements, the underlying mechanisms of transformers remain poorly understood due to their
complex architecture, especially the mechanism of the self-attention layers.

As the core of the Transformer architecture, the attention mechanism has consistently been the pri-
mary focus of research aimed at understanding how Transformers work. Some empirical research
(Xu et al., 2019; Vig & Belinkov, 2019; Rao et al., 2021; Yao et al., 2021; Chen et al., 2022) demon-
strated that the attention layer can effectively extract structure information by assigning different
weights to different input tokens. To fully understand such property theoretically, researchers ex-
plore the expressive power of transformers across various aspects (Edelman et al., 2022; Bai et al.,
2024). Edelman et al. (2022) study the capacity of single-head attention to approximate sparse
function by presenting the covering-number of attention function class. Bai et al. (2024) demon-
strate that the transformers can implement a broad class of standard machine learning algorithms in
context with various data distributions.

In addition to examining the expressive power of Transformers with custom-designed parameters,
some recent studies have focused on analyzing the training dynamics of Transformers to determine
whether these favorable properties can be attained using popular optimization algorithms in the deep
learning community. Zhang et al. (2024) provide a global convergence analysis of gradient flow on
the linear regression in-context tasks, where they consider a linear layer for attention calculation.
Huang et al. (2024); Siyu et al. (2024) extend this result to one-layer transformers with a softmax
attention layer. Wang et al. (2024); Chen et al. (2024) study the capacities of transformers to learn
sparse linear regression tasks. Specifically, by exploring the optimization trajectory, Wang et al.
(2024) show that one-layer transformers can effectively extract the positional information, and pro-
vide a rigorous convergence analysis. At the same time, fully-connected neural networks fail in the
worst case. Chen et al. (2024) study the mechanisms of multi-head attention, revealing that multi-
head attention will exhibit a sparsity in multiple-layer transformers. All the preceding works focus
on the regression tasks, and for the classification task, Jelassi et al. (2022) theoretically demonstrate
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that the one-layer vision transformer trained by gradient descent can converge on spatially structured
data and the attention map exhibit patch association. Tarzanagh et al. (2023a;b) prove that one-layer
attention can converge in direction to the hard margin solution of SVM. Li et al. (2023a) provide a
generalization error bound for vision transformers trained by stochastic gradient descent. Although
these papers provide some insights into mechanisms of one-layer attention for classification tasks,
their theoretical results rely on some specific initialization which is practically infeasible, or strong
assumptions that input data follows some particular patterns or certain parameters of attention ar-
chitecture remain fixed throughout the training.

To further explore how transformers extract structure information in classification tasks, we consider
a classic statistical problem with “group sparsity”. In this setting, input variables are generated from
multiple groups, while the true label of this input is determined by variables from a single group. We
investigate the properties of one-layer transformers trained by gradient descent on this data model.
The major contributions of this paper can be summarized as follows:

1. We establish a tight global convergence analysis with a matching lower and upper bound for
the population cross-entropy loss of a one-layer transformer trained by gradient descent (Theo-
rem 2.2). All parameters in the one-layer transformer are jointly trained with the same learning
rate from zero initialization, without imposing any prior knowledge of the desirable patterns of
the parameters. Specifically, by precisely characterizing the global optimization trajectories of
all trainable parameters, we decrypt the working mechanism of each component of the one-layer
transformer for learning the “group sparse” data model. Our results theoretically verify that
transformers can learn the optimal variable selections.

2. We demonstrate that the well pre-trained one-layer transformers on “group-sparse” inputs can be
efficiently transferred to a downstream task sharing the same group sparsity pattern. Specifically,
denote the number of variable groups as D, the dimension of variables in each group as d, and the
downstream sample size as n. Then we show that the one-layer transformers fine-tuned by online-
SGD on the downstream task can achieve Õ

(
d+D
n

)
generalization error bound (Theorem 3.2).

3. We conduct numerical experiments, empirically show that training loss will converge, and verify
our conclusions regarding the optimization trajectories of trainable parameters. Specifically, the
sparsity of the attention score matrix empirically demonstrates that one-layer transformers can ef-
fectively learn the optimal variable selection. Additionally, we transfer the pre-trained one-layer
transformers to downstream tasks, and empirically show that it can achieve a good generalization
performance with a small sample size. All these empirical observations back up our theoretical
findings.

Notation. Given two sequences {xn} and {yn}, we denote xn = O(yn) if there exist some absolute
constant C1 > 0 and N > 0 such that |xn| ≤ C1|yn| for all n ≥ N . Similarly, we denote
xn = Ω(yn) if there exist C2 > 0 and N > 0 such that |xn| ≥ C2|yn| for all n > N . We
say xn = Θ(yn) if xn = O(yn) and xn = Ω(yn) both holds. Besides, we denote xn = o(yn)
if, for any ϵ > 0, there exists some N(ϵ) > 0 such that |xn| ≤ ϵ|yn| for all n ≥ N(ϵ), and we
denote xn = ω(yn) if yn = o(xn). We use Õ(·), Ω̃(·), and Θ̃(·) to hide logarithmic factors in
these notations respectively. Moreover, we denote xn = poly(yn) if xn = O(yDn ) for some positive
constant D, and xn = polylog(yn) if xn = poly(log(yn)). For two scalars a and b, we denote
a ∨ b = max{a, b} and a ∧ b = min{a, b}. Finally, for any n ∈ N+, we use [n] to denote the set
{1, 2, · · · , n}.

2 TRANSFORMERS LEARN “GROUP SPARSE” DATA

In this section, we present our theoretical findings that one layer transformer can learn “group
sparse” data by implementing an optimal variable selection. We first introduce the definition of
“group-sparse” data distributions and the one-layer transformer we study in this paper.

Group sparse learning problem. Assume the feature vector x̂ ∈ Rp, the label y of feature vector
x̂ is determined by a labeling function ϕ(·) : R → R as y = ϕ(⟨x̂,β∗⟩), where β∗ ∈ Rp is a
pre-defined ground truth. Furthermore, we assume there exists a predefined D disjoint partitions of
[p], specifically, [p] = ∪Dj=1Gj and Gi ∩ Gj = ∅ for any i ̸= j. Then we refer to this learning
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problem as “group sparse” if the ground truth vector β∗ satisfies that

supp(β∗) := {k : β∗
k ̸= 0; k ∈ [p]} ⊂ Gj

for some j ∈ [D]. In particular, if the labeling function ϕ(x) = x, we denote this learning problem
as group sparse linear regression. If the labeling function ϕ(x) = sign(x), we denote this learning
problem as group sparse linear classification.

The definition above regarding group learning problem is motivated by Huang & Zhang (2010);
Li et al. (2023b). In this paper, we focus on a binary group sparse linear classification problem.
For simplicity, We consider the setting where all Gj’s are of the same size d, implying p = dD.
Besides, we convert the feature vector x̂ ∈ RdD into a matrix X ∈ Rd×D, where each column
xj is the collection of the variables from Gj . Let j∗ be the index of the label-relevant group, i.e.
supp(β∗) ⊂ Gj∗ . Then we can denote v∗ the d-dimensional vector obtained by restricting β∗

on Gj∗ , so that ⟨β∗, x̂⟩ = ⟨v∗,xj∗⟩. Lastly, we assume the features are generated from Gaussian
distribution. We provide a formal definition of the data model as follows:

Definition 2.1 (Group sparse inputs following Gaussian distribution). Let v∗ ∈ Rd be a fixed vector
representing the parameters of the labeling function, and j∗ ∈ [D] be the index of the label-relevant
group. The binary classification data input pair (X, y) ∈ Rd×D × {1,+1} is generated from the
following distribution D:

1. The features are generated from Gaussian distribution, i.e., X = [x1,x2, . . . ,xD] while each col-
umn xj , j ∈ [D] represents a group of variables and is independently generated from N(0, σ2

xId).

2. The label of this input X is determined by the features from the label-relevant group indexed by
j∗, defined as y = sign(⟨xj∗ ,v∗⟩).

Notice that the label y is determined solely by the direction of v∗, while the norm of v∗ does not
affect the data distribution. For simplicity of expression, we assume that ∥v∗∥2 = 1 in the following.

One-layer self-attention transformer. For each xj with j ∈ [D] from data distribution D defined
in Definition 2.1, we define the corresponding positional encoding pj as

pj =

[
sin
(
j

π

D + 1

)
, sin

(
2j

π

D + 1

)
, · · · , sin

(
Dj

π

D + 1

)]⊤
(2.1)

The definition above is motivated by the fact that pj , j ∈ [D] form an orthogonal basis. We generate
our new training input by concatenating the Gaussian feature X with positional encoding matrix
P, which is defined as P = [p1,p2, · · · ,pD]. Specifically, we define the new training input as
Z = [z1, z2, · · · , zD] ∈ R(d+D)×D with zj = [x⊤

j ,p
⊤
j ]

⊤ for all j ∈ [D]. Now we introduce the
one-layer self-attention architecture applied to the input Z as:

f(Z,W,v) =

D∑
j=1

v⊤ZS(Z⊤Wzj) = v⊤ZS1D. (2.2)

Here S(·) : RD 7→ RD denote the softmax mapping as S(h)j = ehj∑D
j′=1

e
h′
j

and S =

[S(Z⊤Wz1),S(Z⊤Wz2), · · · ,S(Z⊤WzD)] ∈ RD×D. Besides, we denote the entry in the j′-
th row and j-th column of S as Sj′,j . Compared to the classical single-head, one-layer self-
attention structure in Vaswani et al. (2017); Dosovitskiy et al. (2020), we make some mild re-
parameterizations on the architecture:

1. We combine the query and key matrices into one trainable matrix W ∈ R(d+D)×(d+D).

2. We replace the value matrix with one trainable value vector v ∈ Rd+D.

The consolidation of query matrix and key matrix is commonly considered in recent theoretical
analyses of attention structure (Tian et al., 2023; Wang et al., 2024; Huang et al., 2024; Zhang et al.,
2024). The simplification of the value matrix into a vector is because only one parameter vector v∗

needs to be studied, and the value vector v could be regarded as a combination of the value matrix
and a second layer with uniform weight. Similar simplification is also considered in some recent
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studies about understanding the attention mechanisms in classification tasks. (Jelassi et al., 2022;
Tarzanagh et al., 2023a).

Loss function and training algorithm. We consider minimizing the population cross-entropy loss
to train the above one-layer attention transformer in (2.2). Specifically, the loss function is

L(v,W) = E(X,y)∼D
[
ℓ(y · f(Z,W,v))

]
,

where ℓ(a) = log(1+exp(−a)) is the cross-entropy loss function for binary classification. Although
the choice of population loss implicitly assuming an infinite number training set is not feasible in
practice. It can significantly simplify the training dynamics and enable us to focus on an analysis of
the global optimization trajectories. This objective loss is considered in a large number of recent the-
oretical works (Jelassi et al., 2022; Zhang et al., 2024; Huang et al., 2024; Wang et al., 2024; Nichani
et al., 2024; Chen et al., 2024) focusing on the optimization analysis of transformers. Besides, as
one of the most popular loss functions classification tasks, cross-entropy loss is widely considered
in recent theoretical works concerning transformers on classification tasks (Jelassi et al., 2022; Tian
et al., 2023; 2024). Compared to the hinge loss considered in Li et al. (2023a), it is more common
and general in practice. We utilize the gradient descent algorithm to optimize the preceding loss
function. We consider the joint training regime, where all trainable parameters v, W are updated
simultaneously with the same learning rate η, i.e.,

v(t+1) = v(t) − η∇vL(W(t),v(t)); (2.3)

W(t+1) = W(t) − η∇WL(W(t),v(t)). (2.4)

Besides, we consider zero initialization v(0),W(0) = 0.

Tight convergence bounds. Following the preliminaries, the next theorem presents our main results
regarding convergence bounds.

Theorem 2.2. For any ϵ > 0, suppose that D ≥ ω(log2(1/ϵ)), d ≤ O
(
poly(D)

)
, σx, η = Θ(1)

with σx ≤ 1/3 and let T ∗ = Θ
(
D3 ∨ 1

D3ϵ3

)
. Under these conditions, it holds that

1. The self-attention extracts the variables from the label-relevant group: for any new sample
(X, y) ∼ D with the corresponding softmax output matrix S(T∗) at the T ∗-th iteration, with
probability at least 1− exp

(
−Θ(

√
D)
)
, it holds that

S
(T∗)
j∗,j ≥ 1− exp

(
−Θ(D)

)
for all j ∈ [D].

2. The first block of value vector aligns with the ground truth: v(T∗) = [v
(T∗)
1 ,0⊤

D]
⊤ with v

(T∗)
1 ∈

Rd, where ∥∥∥∥∥ v
(T∗)
1∥∥v(T∗)
1

∥∥
2

− v∗

∥∥∥∥∥
2

≤ ϵD exp
(
−Θ

(√
D
))

.

3. The loss is sufficiently minimized:

C1

(
ϵ ∧ 1

D2

)
≤ L(v(T∗),W(T∗)) ≤ ϵ ∧ 1

D2
,

where C1 is a positive constant solely depending on η and σx with C1 ≤ 1.

Theorem 2.2 implies that one-layer attention model (D.4) can learn the group-sparse data with an
assumption of an infinite number of training data. It can achieve arbitrary small loss by imposing a
mild assumption concerning the scale of sparsity in our data model D. Specifically, for any given
loss tolerance ϵ, we need the number of variables group to be larger than the logarithm squared of the
reciprocal for loss tolerance, i.e., log2(1/ϵ). Based on this assumption, Theorem 2.2 can establish a
tight upper and lower bound on the convergence rate of population loss.

In addition to providing a tight convergence bound, Theorem 2.2 decrypts how each component
of one-layer self-attention (2.2) takes effect when learning sparse group data, by precisely identi-
fying the scale of the parameters at T ∗-th iteration. Specially, for any new sample (X, y) ∼ D,
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the attention score regarding the label-relevant group at T ∗-th iteration, i.e. S(T∗)
j,j is approximately

1 with high probability. This observation indicates that the self-attention layer almost attends to
the label-relevant group, effectively selecting the variables mostly beneficial for classification while
disregarding all other irrelevant variables. Besides, the second block of v(T∗) retains 0, implying
positional encoding is only involved in the calculation of attention weight. Following the proce-
dure of optimal variable selections, positional embedding is never presented in the final output of
one-layer attention. This observation benefits our learning tasks as positional embedding can not
provide additional beneficial information for classification. Finally, v(t)

1 is almost aligned with the
ground truth direction v∗, verifying that the value vector learns the optimal direction for the binary
classification problem. These observations collectively guarantee that the one-layer transformer 2.2
can correctly implement the classification task on the “group sparse” data 2.1.

Notablely, a recent work Wang et al. (2024) studies the sparse token selection of transformers on
a similar data model to ours. By characterizing the entire training dynamics, they demonstrate a
global convergence of transformers on the sparse token selection task without further assumptions
on initialization. Besides, they do not impose fixed positions on target tokens, which is more general
than our settings. However, they assume the positional encoding of the next token an average of
target tokens, which alleviates the technical challenges, is somewhat impractical. What matters
most is that they consider the l2 loss function in their settings, making their learning problem more
akin to a regression task, which significantly distinguishes our optimization analysis from theirs.

3 DOWNSTREAM TASKS

The variable selection mechanism of one-layer self-attention enables it to be efficiently transferred
to a downstream task sharing a similar structure. In this section, we provide a generalization er-
ror bound for the downstream task to theoretically verify this conclusion. We first introduce the
definition of downstream task data distribution we study as follows:

Definition 3.1. Consider a downstream task with training data (X(i), y(i)) ∈ Rd×D × {1,+1},
i ∈ [n] generated from a new distribution D̃ satisfying:

1. Linear separability with a margin: maxv:∥v∥2≤1 y
(i) ·

〈
v,x

(i)
j∗

〉
≥ γ almost surely for all i ∈ [n].

Besides, the label-relevant group index j∗ is the same as the distribution D in Definition 2.1.

2. Each entry of X(i) is independent sub-Gaussian, with
∥∥x(i)

j,k

∥∥
ψ2

≤ σ̃x for all i ∈ [n], k ∈ [d] and
j ∈ [D].

Compared to the data distribution for pre-training in Definition 2.1, we make downstream task distri-
bution more general by relaxing the Gaussian data to sub-Gaussian data. Besides, the assumption of
linear separability with a margin is commonly considered in the analysis concerning generalization
risk bounds of classification tasks (Wu et al., 2024; Ji & Telgarsky, 2020; Cao & Gu, 2019).

Fine-tuning with online stochastic gradient descent. Similarly, we concatenate each x
(i)
j with

positional encoding pj as defined in (2.1), and generate the new training raining data (Z(i), y(i)),
for i ∈ [n]. Then, we consider fine-tuning a one-layer attention model with the same structure
defined in (2.2), and denote the new parameters as ṽ and W̃. We fine-tune the new parameters by
online SGD, i.e.,

ṽ(i+1) = ṽ(i) − η̃∇vL̃i(W̃(i), ṽ(i)); (3.1)

W̃(i+1) = W̃(i) − η̃∇WL̃i(W̃(i), ṽ(i)) (3.2)

for all i ∈ [n], where L̃i(W̃(i), ṽ(i)) = ℓ(y(i) · f(Z(i),W̃(i), ṽ(i))). The initialization are set as
ṽ(0) = 0 and W̃(0) = W(T∗), which is obtained from the pre-trained model in Section 2. In the
following theorem, we present a generalization error bound on this downstream task, which concerns
an average of all iterates {(W̃(i), ṽ(i))}ni=1 of online SGD.
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Theorem 3.2. Suppose that D ≥ ω(log2(n)), d ≤ O
(
poly(D)

)
, σ̃x ≤ O(1), and η̃ =

Θ( 1
(d∨D)D2 ). Under these conditions and for any δ > 0, it holds that

1

n

n∑
i=1

P(X,y)∼D̃

(
y · f(Z,W̃(i), ṽ(i)) ≤ 0

)
≤ O

(
(d+D) log2 n

γ2n

)
+O

(
log(1/δ)

n

)
.

with probability at least 1− δ − n exp(−Θ(
√
D)) over the randomness of {(X(i), y(i))}ni=1.

Theorem 3.2 establish a generalization error bound composed of two terms. The first term concerns
the ratio between the practical dimension d + D and sample size n. Here we consider d + D
as the practical dimension since the positional encoding is also involved in the learning process.
The second term is a standard large-deviation error term. If we take γ = Θ(1) as most literature
assumes, we can obtain a sample complexity on the order of Ω̃(d+Dϵ + 1

ϵ log(
1
δ )). In comparison,

the existing lower bound for the sample complexity of linear logistic regression on vectorized X is
Ω(dDϵ + 1

ϵ log(
1
δ )), according to the classical PAC learning (Long, 1995). This superiority in sample

complexity theoretically demonstrates that one-layer transformers trained on “group data” can be
effectively transferred to a similar downstream task.

4 PROOF SKETCH

In this section, we provide a comprehensive explanation of how a one-layer transformer implements
variable selection on group sparse data. Furthermore, we share insights into the reasoning that led
to the conclusions presented in Theorem 2.2, along with a proof sketch for the convergence bound.

For a clear illustration of each component in the one-layer self-attention, we first separate v(t) and
W(t) into the following blocks,

v(t) = [(v
(t)
1 )⊤, (v

(t)
2 )⊤]⊤; W(t) =

[
W

(t)
1,1 W

(t)
1,2

W
(t)
2,1 W

(t)
2,2

]
,

where v
(t)
1 ∈ Rd,v(t)

2 ∈ RD,W(t)
1,1 ∈ Rd×d,W(t)

1,2 ∈ Rd×D,W(t)
2,1 ∈ RD×d, and W

(t)
2,2 ∈ RD×D.

In the following, we will show that a precise characterization of all these blocks at T ∗-th iteration
plays a key role in our theoretical convergence analysis.

A low-rank structure of W(T∗) beneficial for attending to label-relevant group j∗. The con-
clusion that the attention score S

(T∗)
j∗,j ≈ 1 with high probability for any new sample (X, y) ∼ D

serves as a foundation for transformers to correctly implement classification on group-sparse data
distribution D. Without such a guarantee, the loss cannot converge regardless of the direction in
which the value vector converges, since the product of the label and variables from irrelevant groups
still follow a Gaussian distribution.

The following lemma accurately characterizes each block of W(T∗), providing insights into the
rational of S(T∗)

j∗,j ≈ 1

Lemma 4.1. Under the same condition with Theorem 2.2, W(T∗) satisfies that

W
(T∗)
1,2 ,W

(T∗)
2,1 = 0;

W
(T∗)
1,1 = β1v

∗v∗⊤ +W
(T∗)
1,1,error;

W
(T∗)
2,2 = β2

( ∑
j ̸=j∗

(
pj∗ − pj

))( D∑
j=1

p⊤
j

)
+W

(T∗)
2,2,error,

where |β1| ≤ O(
√
D), β2 = Θ( 1

D2 ). The error terms W(T∗)
1,1,error and W

(T∗)
2,2,error are small such that∥∥W(T∗)

1,1,error

∥∥
2
,
∥∥W(T∗)

2,2,error

∥∥
2
≤ exp

(
−Θ(

√
D)
)
.

Lemma 4.1 indicates that W(T∗) exhibits a particular pattern: (i). the off-diagonal blocks W
(T∗)
1,2

and W
(T∗)
2,1 remain 0; (ii). the leading component of left-top block W

(T∗)
1,1 aligns directionally

6
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with the projection matrix v∗v∗⊤; (iii). the leading component of the right bottom block aligns
directionally with

(∑
j ̸=j∗(pj∗ − pj)

)(∑D
j=1 pj

)⊤
. In the following, we explain why this pattern

implies that Sj∗,j ≈ 1 for all j with high probability, which benefits the label-relevant variable
selection.

First, W(T∗)
1,2 ,W

(T∗)
2,1 = 0 suggests that the features xj’s, do not engage with the positional em-

bedding pj’s when calculating the attention scores. Besides, due to the orthogonality among the
positional embedding pj’s, the position-position interaction term p⊤

j′W
(T∗)
2,2 pj takes a large value

only when j′ = j∗. Furthermore, by standard concentration inequalities, it can be shown that
x⊤
j′W

(T∗)
1,1 xj ≪ p⊤

j∗W
(T∗)
2,2 pj for all j, j′ ∈ [D] with high probability. All these observations col-

lectively conclude that p⊤
j∗W

(T∗)
2,2 pj will eventually dominate the softmax calculation, which finally

implies that ST
∗

j∗,j ≈ 1.

Accurate characterization of the alignment between v(T∗) and ground truth v∗. Based on
Lemma 4.1 and preceding discussions, we have shown that one-layer attention can effectively extract
the features from the label-relevant group. The remaining challenge is to accurately characterize the
alignment between v(T∗) and ground truth v∗ in terms of both direction and scale. The following
lemma presents this result.
Lemma 4.2. Under the same condition with Theorem 2.2, it holds that,

v
(T∗)
1 = α(T∗)v∗ + v

(T∗)
1,error; v

(T∗)
2 = 0,

where the error term v
(T∗)
1,error satisfies that ⟨v(T∗)

1,error,v
∗⟩ = 0 and

∥∥v(T∗)
1,error

∥∥
2
≤ exp

(
− Θ(

√
D)
)
.

Besides, the coefficient of the projection of v(T∗) onto the direction of v∗, which is denoted by α(t),
follows that

C2

(
(T ∗)

1
3 +D

)
≤ α(T∗) ≤ C3

(
(T ∗)

1
3 +D

)
,

where C2, C3 are both positive constants solely depending on σx and η.

Lemma 4.2 reveals two important facts. Firstly, the fact that v(T∗)
2 = 0 implies that the positional

embedding part only contributes to attention weight calculation, and is not presented in the output.
Furthermore, v(T∗)

1 is well aligned with the direction of v∗, and the scale of its projection onto this
direction is accurately characterized by a matching lower and upper bound. Besides, the second

conclusion of Theorem 2.2 is a direction corollary of this lemma as
∥∥∥ v

(T∗)
1

∥v(T∗)
1 ∥2

− v∗
∥∥∥
2
≤ 2∥v(T∗)

1 ∥2

α(T∗) .

Upper and lower bounds of y · f(Z,W(T∗),v(T∗)). A tight upper and lower bound of y ·
f(Z,W(T∗),v(T∗)) is undoubtedly of utmost significance for the analysis of global loss conver-
gence. The accurate characterization of α(t) in Lemma 4.2 enables us to get this matching bound.
Before we present the result, we introduce a notation ET∗ to denote the event that the conclusion
in Theorem 2.2 holds, i.e., S(T∗)

j∗,j ≥ 1 − exp(Θ(D). Then, we present our results regarding the
matching bound of y · f(Z,W(T∗),v(T∗)) in the following lemma.
Lemma 4.3. There exist two i.i.d. random variables B1, B2 with B1/σ

2
x, B2/σ

2
x ∼ χ2

D, such that

yf(Z,W(T∗),v(T∗)) ≥ −Dα(T∗)B
1
2
1 −D

∥∥v(T∗)
1,error

∥∥
2
B

1
2
2 .

Moreover, under the event ET∗ , it holds that

Dα(T∗)

2
y⟨v∗,xj∗⟩ − 1 ≤ yf(Z,W(T∗),v(T∗)) ≤ Dα(T∗)y⟨v∗,xj∗⟩+ 1.

Based on these lemmas, we are ready to prove the conclusion of convergence bound in Theorem 2.2.

Proof of Theorem 2.2. We separate L(v(T∗),W(T∗)) into two parts as

L(v(T∗),W(T∗)) = E
[
ℓ(yf(Z,W(T∗),v(T∗)))1{ET∗}

]︸ ︷︷ ︸
I1

+E
[
ℓ(yf(Z,W(T∗),v(T∗)))1{Ec

T∗}
]︸ ︷︷ ︸

I2

.
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For I1, by the fact that exp(−x)/2 ≤ ℓ(x) ≤ exp(−x) for all x > 0, and utilizing the results of
Lemma 4.3 for ET∗ occurs, it holds that

I1 ≤ E

[
e exp

(
Dα(T∗)

2
y⟨v∗,xj∗⟩

)
1ET∗

]
≤
√

2

π

2e

σxDα(T∗)
;

I1 ≥ E
[
1

2e
exp

(
−Dα(T∗)y⟨v∗,xj∗⟩

)
1ET∗

]
≤
√

2

π

1

4eσxDα(T∗)
.

The last steps of both formulas are derived by basic integral since y⟨v∗,xj∗⟩ follows a folded nor-
mal distribution with mean 0 and variance σ2

x (See more details in Lemma E.5 and Lemma E.6).
Furthermore, for I2, we provide an upper-bound as

I2 ≤

√√√√E

[
log2

(
1 + exp

(
Dα(T∗)B

1
2
1 +D

∥∥v(T∗)
1,error

∥∥
2
B

1
2
2

))]√
P(Ec

T∗)

≤ 2

√
2D2

(
α(T∗)

)2E[B1] + 2D2
∥∥v(T∗)

1,error

∥∥2
2
E[B2]

√
P(Ec

T∗) ≤
2
√
2σxD

3
2

(
α(T∗) +

∥∥v(T∗)
1,error

∥∥
2

)
eΘ(

√
D)

.

The first inequality is from Cauchy-Schwarz inequality and Lemma 4.3. The second inequality holds
by the fact that log(1 + a) ≤ 2 log a for large a, and (a+ b)2 ≤ 2(a2 + b2). The third inequality is
derived by applying the definition of B1, B2 in Lemma 4.3 and the fact P(Ec

T∗) ≤ e−Θ(
√
D) from the

first conclusion in Theorem 2.2. (We provide a rigorous detail in Lemma C.5.) By the upper-bound
of α(T∗) in Lemma 4.2, the definition of T ∗ in Theorem 2.2 and our condition D ≥ ω(log2(1/ϵ)),
we know that α(T∗) ≪ e−Θ(

√
D), indicating that I2 ≪ I1. Let T ∗ = (

√
π
2
C2σx

4e )3
(
D3 ∨ 1

D3ϵ3

)
, by

applying the lower and upper bounds of α(T∗) in Lemma 4.2, we can finally obtain that

L(v(T∗),W(T∗)) ≤ 2I1 ≤
√

2

π

4e

C2σx

1

D(T ∗)1/3 +D2
≤ ϵ;

L(v(T∗),W(T∗)) ≥ I1 ≥
√

2

π

1

4eC3σx

1

D(T ∗)1/3 +D2
≥ C2

32e2C3
ϵ.

This completes the proof.

5 NUMERICAL EXPERIMENTS

In this section, we conduct numerical experiments on synthetic data to verify our theoretical conclu-
sions. Two types of synthetic data are generated following the group sparse data distribution defined
in Definition 2.1 and downstream task data distribution defined in Definition 3.1 respectively. For
each type of synthetic data, we generate two samples with different sample sizes n, variable group
numbers D, and variable dimensions d. Besides, the variable group numbers D, and variable di-
mensions d are matched across these two different types of synthetic data to enable the parameters
of one-layer self-attention to be transferred to downstream tasks.

In the experiments where transformers learn variable selection, we generate data according to Def-
inition 2.1, setting σx = 0.25 and j∗ = 2, with two different pairs of (n, d,D): (500, 4, 6) and
(200, 2, 4). The vector v∗ is randomly generated and then fixed. We set the learning rate η = 0.5
and train the models for 400 iterations. During the training process, we plot the training loss, the

cosine similarity ⟨v(t)
1 ,v∗⟩

∥v(t)
1 ∥∥v∗∥

and the norm ratio ∥v(t)
1 ∥/∥v(t)

2 ∥. After the training loss converges (at

final iteration), we calculate the attention score matrix for each sample and display the heatmap of
the average attention score matrix across all samples.

As shown in Figures 1, the training loss converges to 0 after sufficient iterations, and v
(t)
1 rapidly

aligns with the direction of v∗ early in the training and continues in that direction for the rest of
the iterations. When the training loss converges, we can also observe in Figure 1 that ∥v(t)

2 ∥ is
relatively small compared to ∥v(t)

1 ∥. When we examine the attention matrix, as shown in Figure 2,
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Figure 1: Figures on training loss, cosine similarity and norm ratio. The first line presents the
training results with a sample size of 400, 6 variable groups, and a variable dimension of 4. The
second line shows the training results for a sample size of 200, with 4 variable groups and a variable
dimension of 2.
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(a) Heatmap of Attention Matrix
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(b) Heatmap of Attention Matrix

Figure 2: Heatmap of the average attention matrix. Figure 2(a) shows the heatmap of the attention
matrix corresponding to the 6 variable groups, and Figure 2(b) shows the heatmap of the attention
matrix corresponding to the 4 variable groups.

we observe that the second row is significantly larger than the others, indicating that the attention is
predominantly focused on this row. This phenomenon well matches the prediction from our theory.

We conducted additional experiments on the downstream tasks by generating two new Gaussian
samples, each with a different v∗ from the previous setup. These samples follow Definition 3.1,
with parameters set to σ̃x = 1 and γ = 1, while using the previous configurations for d and D.
To ensure linear separability with a margin, we applied a projection to adjust the data accordingly.
The test accuracy is calculated after each iteration using 1000 test samples. Both experiments use a
sample size of 400, and the learning rate is set to 10−3.
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Figure 3: Test accuracy in the downstream task performance with different variable group numbers
and variable dimensions.

As shown in Figure 3, the test accuracy initially oscillates during the early stages of training. How-
ever, after a longer training period, the test accuracy stabilizes and converges to 1 in both settings.
This oscillation is primarily due to the transition in the direction of the vector v(t)

1 during training.
According to our analysis, once v(t)

1 completes its direction transition, the test error decreases, lead-
ing to stable learning in the downstream task. These trends are consistent with the theory, confirming
that the pre-trained transformers perform effectively on downstream tasks.

6 CONCLUSIONS AND LIMIATONS

In this paper, we study how one-layer transformers trained by gradient descent learn a binary clas-
sification group sparse data, without imposing any prior knowledge on the initialization. We pro-
vide an accurate characterization of optimization trajectories. Based on this result, we theoretically
demonstrate that the one-layer transformers can almost attend to the variables from the label-relevant
group, and disregard other ones by leveraging the self-attention mechanism. Besides, we establish a
tight convergence rate with a matching lower and upper bound for the population loss. Furthermore,
we also propose that a pre-trained one layer transformers on a group sparse data can be effectively
transferred to a downstream task with the same sparsity pattern. We theoretically demonstrate this
conclusion by providing an improved generalization error bound for one-layer transformers, which
surpasses that of linear logistic regression applied to vectorized features. Our numerical experiment
observations support the theoretical findings. Although our theoretical findings provide insights
into the mechanism of self-attention in variable selection, we focus exclusively on a one-layer self-
attention model. Future research could be more intriguing if it explored deeper transformer architec-
tures. Additionally, investigating the integration of self-attention with other modules, such as MLPs,
ResNets, and normalization layers, presents a promising direction for further work.
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A ADDITIONAL RELATED WORKS

Expressiveness of transformers. There has been a line of works studying the expressiveness of
transformers. Yun et al. (2020); Dehghani et al. (2019); Pérez et al. (2021); Wei et al. (2022) inves-
tigate the universal approximation results for transformers on a general class of functions. Likhosh-
erstov et al. (2021); Bhattamishra et al. (2022) evaluate the expressive power of transformers on
boolean concept classes by sample complexity. Bhattamishra et al. (2020); Liu et al. (2023) explore
the the capacity of transformers to recognize formal languages. Sahiner et al. (2022) study the equiv-
alent finite-dimensional convex problems of transformers by the lens of convex duality. Olsson et al.
(2022); Dong et al. (2022); Garg et al. (2022); Ruis et al. (2020) investigate the capacity of trans-
forms to learn in context and interpret the attention layers as gradient descent iterations. Sanford
et al. (2024) discuss the strengths and limitations of the representation power of attention layers, by
demonstrating the necessary intrinsic complexity of parameters on two different tasks.

Optimization of transformers. Several recent works study the optimizations of transformers.
Zhang et al. (2020) compare the performance of transformers trained using SGD and adaptive meth-
ods, attributing the subpar performance of SGD in training language models to the heavy-tail dis-
tributed noise it introduces. In contrast, by adjusting the batch size in experiments, Kunstner et al.
(2023) empirically demonstrates that the varying performance of Adam and SGD can be ascribed
to the differences in their geometric trajectories rather than the noise introduced by stochasticity.
Pan & Li (2023) compare the convergence rate of Adam and SGD on transformers, and argue that
Adam has a better directional sharpness of the update steps than SGD. Through a two-stage training
regime, Li et al. (2023c) investigate the optimal parameters of transformers applied to a masked
topic structure model. Ildiz et al. (2024) explain the mechanism of attention from the perspective
of Markov chains. The output of transformers is generated by a context-conditioned Markov chain,
with weights determined by the attention structure. Nichani et al. (2024) demonstrate that two-layer
transformers trained by gradient descent can encoder the latent causal graph in the first attention
layer when solving in-context learning tasks with latent causal structure. Tian et al. (2023) analyze
the training dynamic of transformers with one self-attention layer and one decoder layer trained by
SGD, revealing how transformers combine the tokens and attend more to distinct tokens. Tian et al.
(2024) further investigate the training dynamics jointly with a MLP layer, predicting a particular
pattern of attention map and theoretically decrypting the hierarchies of tokens.

B DETAILED COMPARISON WITH JELASSI ET AL. (2022)

In Jelassi et al. (2022), the authors provide a theoretical guarantee that one-layer vision transformers
can learn the inner structure of data, which is defined as “patch association” by the authors. This
result offers novel insights into the training dynamics of one-layer transformers.

However, both the conclusions and proof techniques of Jelassi et al. (2022) can not be directly
extended or applied to this work due to the distinctive settings among these two studies. Specifically,
Jelassi et al. (2022) considers a one-layer vision transformer defined as

f(X) = σ(v⊤XS(A))1D,

where X is the sequence of tokens/feature groups with each column xj denoting a token/feature
group, σ(·) represents the activation function, v indicates the value vector, S(·) represents the
softmax function, and A is input matrix of the softmax function. Unlike the common design of
transformers, they directly treat the entries of the matrix A as trainable parameters and consider
training A with gradient descent. In contrast, we consider softmax attention with the formulation
S(Z⊤WZ), and treat the coefficient matrix W as the trainable parameters, which aligns with the
general design of transformers. Besides, the initialization of the value vector v in Jelassi et al. (2022)
is assumed to strictly align with the direction of ground truth v∗, which is a strong and impractical
assumption. In comparison, we consider general zero initializations.

In addition to the distinctions among the settings of problems, our theoretical results are more pre-
cise and refined. While Jelassi et al. (2022) provides an upper bound on the number of iterations
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needed to achieve a population loss of 1/poly(d), we offer both matching upper and lower bounds
for iterations to reach arbitrarily small population loss. Furthermore, we present a sample complex-
ity analysis for transfer learning, which surpasses the conclusion of linear logistics regression on
vectorized inputs from the PAC learning theory. In contrast, Jelassi et al. (2022) does not include
such sample complexity analyses.

C PROOF IN SECTION 4

In this section, we provide detailed proof for lemmas in Section 4. Before we demonstrate the proof
details, we first introduce some basic gradient calculations of L(v,W) w.r.t v,W as,

∇vL(W,v) = E

[
ℓ′(yf(Z;W,v)) · y · ∂f(Z;W,v)

∂v

]

= E
[
ℓ′(yf(Z;W,v)) · y · ZS1D

]
= E

[
ℓ′(yf(Z;W,v))

D∑
j=1

y · zj
D∑
j′=1

Sj,j′

]
;

(C.1)

∇WL(W,v) = E

[
ℓ′(yf(Z;W,v)) · y · ∂f(Z;W,v)

∂W

]

= E

[
ℓ′(yf(Z;W,v)) · y ·

D∑
j=1

D∑
j′=1

v⊤zj′
∑
j′′ ̸=j′

exp(z⊤j′′Wzj) · exp(z⊤j′Wzj)

[
∑D
j′′=0 exp(z

⊤
j′′Wzj)]2

(zj′ − zj′′)z
⊤
j

]

= E

[
ℓ′(yf(Z;W,v)) · y ·

D∑
j=1

D∑
j′=1

∑
j′′ ̸=j′

Sj′,jSj′′,jv
⊤zj′(zj′ − zj′′)z

⊤
j

]
. (C.2)

For the following derivation, we first introduce a shorthand notation that ℓ′(t) =
ℓ′(yf(Z,W(t),v(t))). Besides, we also use A to denote an orthogonal matrix A with v∗ being
its first column. We denote ξ2, · · · , ξd the rest columns in A, i.e.,

A = [v∗, ξ2, · · · , ξd] ∈ Rd×d, (C.3)

where ⟨v∗, ξi⟩ = 0, ⟨ξi, ξi′⟩ = 0 and ∥ξi∥2 = 1 for all i, i′ ∈ {2, · · · , d}.

C.1 RESTATEMENT OF LEMMA 4.2 AND LEMMA 4.1

For the sake of conciseness and coherence in the presentation, we rearrange some content from
Lemma 4.2 and Lemma 4.1. Specifically, we consolidate the conclusion that v(t)

2 ,W
(t)
1,2,W

(t)
2,1 = 0

into Proposition C.1. The remaining conclusions of Lemma 4.2 are presented in Lemma C.2. We
also include the remaining conclusions regarding W

(t)
1,1 from Lemma 4.1 in Lemma C.3, and the

conclusions about W(t)
2,2 from Lemma 4.1 in Lemma C.4. We present these new lemmas in this

subsection and proof them respectively in the following subsections of this part.

We first introduce our new Proposition C.1.

Proposition C.1. For iterates v(t) and W(t) of gradient descent in (2.3) and (2.4), it holds that
v
(t)
2 = 0, W(t)

1,2 = 0 and W
(t)
2,1 = 0 for all t ≥ 0.

The next Lemma C.2 is a restatement of conclusion of v(t)
1 in Lemma 4.2.

Lemma C.2. Under the same condition as Theorem 2.2, it holds that

v
(t)
1 = α(t)v∗ + v

(t)
1,error

for all 3 ≤ t ≤ T ∗, where the error term satisfies that
〈
v∗,v

(t)
1,error

〉
= 0 and∥∥v(t)

1,error

∥∥
2
≤ e−C4

√
D (C.4)
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for some positive constant C4 solely depending on σx, η. Besides, the coefficient α(t) satisfy that(√
2

π

3η

2σxD
(t− 3) +

2η3σ3
x

125π

√
2

π
D3

) 1
3

≤ α(t) ≤
√

π

2

2

ησ3
xD

3
+

(√
2

π

6η

σxD
(t− 3) +

2η3σ3
x

π

√
2

π
D3

) 1
3

.

(C.5)

In the following Lemma C.3 and Lemma C.4, we present the conclusion concerning W
(t)
1,1 and W

(t)
2,2

from Lemma 4.1 respectively.
Lemma C.3. Under the same condition as Theorem 2.2, it holds that

W
(t)
1,1 = β1v

∗v∗⊤ +W
(t)
1,1,error (C.6)

for all 3 ≤ t ≤ T ∗, where |β1| ≤ c1
√
D for some positive constant c1 solely depending on η, σx.

Besides, the error term satisfies that

∥W(t)
1,1,error∥2 ≤ e−C7

√
D. (C.7)

for some positive constant C7 solely depending on σx, η.
Lemma C.4. Under the same condition as Theorem 2.2, it holds that

W
(t)
2,2 = β2

( ∑
j ̸=j∗

(
pj∗ − pj

))( D∑
j=1

p⊤
j

)
+W

(t)
2,2,error, (C.8)

for all 3 ≤ t ≤ T ∗, where c2
D2 ≤ |β2| ≥ c3

D2 for some positive constants c2, c3 solely depending on
η, σx, and the error term satisfies that

∥W(t)
2,2,error∥2 ≤ e−C7

√
D. (C.9)

for some positive constant C7 solely depending on σx, η.
Lemma C.5. Under the same condition with Theorem 2.2, with probability at least 1 − exp

(
−

C8

√
D
)
, it holds that

S
(t)
j∗,j ≥ 1−D exp(−C9D); S

(t)
j′,j ≤ exp(−C9D)

for all 3 ≤ t ≤ T ∗ ,j ∈ [D] and j′ ̸= j∗. The coefficients C8, C9 are all constants solely depending
on σx and η.

C.2 PROOF OF PROPOSITION C.1

We will prove Proposition C.1 by induction. And we first introduce several lemmas, which will be
used for further proof of Proposition C.1.

Lemma C.6. If W(t)
1,2,W

(t)
2,1 = 0, then S

(t)
j1,j2

can be expressed as a function of {y ·x1, · · · , y ·xD},
and is independent with y for all j1, j2 ∈ [D].

Proof of Lemma C.6. When W
(t)
1,2,W

(t)
2,1 = 0, we can re-write S

(t)
j1,j2

as

S
(t)
j1,j2

=
exp

(
z⊤j1W

(t)zj2
)∑D

j3=1 exp
(
z⊤j3W

(t)zj2
) =

exp
(
x⊤
j1
W

(t)
1,1xj2 + p⊤

j1
W

(t)
2,2pj2

)∑D
j3=1 exp

(
x⊤
j3
W

(t)
1,1xj2 + p⊤

j3
W

(t)
2,2pj2

)
=

exp
(
y · x⊤

j1
W

(t)
1,1y · xj2 + p⊤

j1
W

(t)
2,2pj2

)∑D
j3=1 exp

(
y · x⊤

j3
W

(t)
1,1y · xj2 + p⊤

j3
W

(t)
2,2pj2

) .
If we omit all non-random components, we have S

(t)
j1,j2

= S
(t)
j1,j2

(y · x1, · · · , y · xD). Moreover, by

Lemma E.2, we obtain that S(t)
j1,j2

is independent with y.

Lemma C.7. If W(t)
1,2,W

(t)
2,1 = 0 and v

(t)
2 = 0, then ℓ′(t) can be expressed as a function of {y ·

x1, · · · , y · xD}, and is independent with y.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Proof of Lemma C.7. When v
(t)
2 = 0, we express ℓ′(t) as,

ℓ′(t) = ℓ′(yf(Z,W(t),v(t))) = − 1

1 + exp
(
yf(Z,W(t),v(t))

) = − 1

1 + exp
(∑D

j=1⟨v
(t)
1 , yxj⟩

∑D
j′=1 S

(t)
j,j′

) .
By Lemma C.6, S(t)

j,j′ is a function of {y · x1, · · · , y · xD} for all j, j′ ∈ [D]. Therefore, ℓ′(t) can
also be expressed as a function of {y · x1, · · · , y · xD} when omitting all non-random components.
By applying Lemma E.2, we have ℓ′(t) is independent with y.

Lemma C.8. If W(t)
1,2,W

(t)
2,1,v

(t)
2 = 0, W(t)

1,1 = av∗v∗⊤ and v
(t)
1 = bv∗ for some scalar a, b, then

S
(t)
j1,j2

and ℓ′(t) can be expressed as functions of {y⟨v∗,x1⟩, · · · , y⟨v∗,xD⟩} for all j1, j2 ∈ [D],
and they are independent with y⟨ξi,xj⟩ for all i ∈ {2, · · · , d} and j ∈ [D].

Proof of Lemma C.8. When W
(t)
1,2,W

(t)
2,1 = 0 and W

(t)
1,1 = av∗v∗⊤, similar to the proof of

Lemma C.6, we can re-write Sj1,j2 as

S
(t)
j1,j2

=
exp

(
z⊤j1W

(t)zj2
)∑D

j3=1 exp
(
z⊤j3W

(t)zj2
) =

exp
(
ax⊤

j1
v∗v∗⊤xj2 + p⊤

j1
W

(t)
2,2pj2

)∑D
j3=1 exp

(
ax⊤

j3
v∗v∗⊤xj2 + p⊤

j3
W

(t)
2,2pj2

)
=

exp
(
ay⟨v∗,xj1⟩y⟨v∗,xj2⟩+ p⊤

j1
W

(t)
2,2pj2

)∑D
j3=1 exp

(
ay⟨v∗,xj3⟩y⟨v∗,xj2⟩+ p⊤

j3
W

(t)
2,2pj2

) .
This is a function of {y⟨v∗,x1⟩, · · · , y⟨v∗,xD⟩} when omitting all non-random components. Be-
sides, when v

(t)
2 = 0 and v1 = bv∗, we express ℓ′(t) as,

ℓ′(t) = ℓ′(yf(Z,W(t),v(t))) = − 1

1 + exp
(
yf(Z,W(t),v(t))

) = − 1

1 + exp
(
b
∑D
j=1 y⟨v∗,xj⟩

∑D
j′=1 S

(t)
j,j′

) .
Since we have demonstrated that S(t)

j1,j2
is a function of {y⟨v∗,x1⟩, · · · , y⟨v∗,xD⟩} for all j, j′ ∈

[D]. Therefore, ℓ′(t) can also be expressed as a function of {y⟨v∗,x1⟩, · · · , y⟨v∗,xD⟩} when omit-
ting all non-random components. By Lemma E.1, we obtain that y⟨v∗,xj⟩ is independent with y
for all j ∈ [D]. Furthermore, by the orthogonality among v∗ and ξ2, · · · , ξd, we can also obtain
that y⟨v∗,xj⟩ is independent with ⟨ξi,xj⟩ for all i ∈ {2, · · · , d}. While for j ̸= j′, y⟨v∗,xj⟩ is
independent with ⟨ξi,xj′⟩ since xj is independent with xj′ . Combining all the preceding results,
we conclude that y⟨v∗,xj⟩ is independent with y⟨ξi,xj′⟩ for all i ∈ {2, · · · , d} and j, j′ ∈ [D].
Since S

(t)
j1,j2

’s, ℓ′(t) are functions of {y⟨v∗,x1⟩, · · · , y⟨v∗,xD⟩}, we finally prove that they are in-
dependent with all y⟨ξi,xj⟩’s.

Now, we are ready to prove Proposition C.1.

Proof of Proposition C.1. Since the iterates of v(t) and W(t) start with v(0) = 0 and W(0) = 0, it
suffices to show that ∇v2

L(v(t),W(t)) = 0, ∇W1,2
L(v(t),W(t)) = 0 and ∇W2,1

L(v(t),W(t)) =

0 given v
(t)
2 = 0, W(t)

1,2 = 0 and W
(t)
2,1 = 0 by inductions. We first prove that ∇v2

L(v(t),W(t)) =
0. By (C.1), we have

∇v2
L(v(t),W(t)) =

D∑
j=1

D∑
j′=1

E
[
yℓ′(t)S

(t)
j′,j

]
pj =

D∑
j=1

D∑
j′=1

E[y]E
[
ℓ′(t)S

(t)
j′,j

]
pj = 0.

The second equality holds because ℓ′(t)S
(t)
j′,j is a function of {y · x1, · · · , y · xD} for all j, j′ ∈ [D]

by Lemma C.6 and Lemma C.7 when v
(t)
2 = 0, W(t)

1,2 = 0 and W
(t)
2,1 = 0. Then by Lemma E.2,

we have y is independent with ℓ′(t)S
(t)
j′,j . And the last equality holds since E[y] = 0. Next, we prove
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that ∇W1,2
L(v(t),W(t)) = 0, and we skip the proof for ∇W2,1

L(v(t),W(t)) since it’s similar.
By (C.2), we have

∇W1,2
L(v(t),W(t)) =

D∑
j=1

D∑
j′=1

∑
j′′ ̸=j′

E
[
yℓ′(t)S

(t)
j′,jS

(t)
j′′,j⟨v

(t), zj′⟩(xj′ − xj′′)
]
p⊤
j

=

D∑
j=1

D∑
j′=1

∑
j′′ ̸=j′

E
[
yℓ′(t)S

(t)
j′,jS

(t)
j′′,j⟨v

(t)
1 , yxj′⟩(yxj′ − yxj′′)

]
p⊤
j

=

D∑
j=1

D∑
j′=1

∑
j′′ ̸=j′

E[y]E
[
ℓ′(t)S

(t)
j′,jS

(t)
j′′,j⟨v

(t)
1 , yxj′⟩(yxj′ − yxj′′)︸ ︷︷ ︸
I(t)

]
p⊤
j = 0.

The second equality holds because ⟨v(t), zj′⟩ = ⟨v(t)
1 ,xj′⟩ when v

(t)
2 = 0, and y2 = 1. The third

equality holds since I(t) is a function of {y · x1, · · · , y · xD} for all j, j′, j′′ ∈ [D] by Lemma C.6
and Lemma C.7 when v

(t)
2 = 0, W(t)

1,2 = 0 and W
(t)
2,1 = 0. Similarly by Lemma E.2, we have y is

independent with I(t). The last equality holds since E[y] = 0. This finishes the proof.

C.3 CALCULATIONS FOR INITIAL ITERATIONS

Since we have demonstrated that v(t)
2 ,W

(t)
1,2,W

(t)
2,1 = 0 throughout the training process in Proposi-

tion C.1, we will focus our analysis solely on the iterates v(t)
1 ,W

(t)
1,1 and W

(t)
2,2. Before we further

present the global characterization of v(t)
1 ,W

(t)
1,1 and W

(t)
2,2, we first calculate several initial iterates

of these parameters in the following lemmas.

Lemma C.9. Under the same condition with Theorem 2.2, the iterates v
(t)
1 ,W(t) of gradient de-

scent defined in (2.3) and (2.4) satisfy that W(1) = 0 and v
(1)
1 = α(1)v∗ with α(1) = ησx√

2π
.

Proof of Lemma C.9. At t = 0, we have ⟨v(0)
1 , zj′⟩ for all j′ ∈ [D] since v(0)

1 = 0, and correspond-
ingly ∇WL(v(0),W(0)) = 0. Therefore, we still have W(1) = 0. On the other hand, we calculate
the gradient of L(v(t),W(t)) w.r.t v1 at t = 0 as

∇v1L(v(0),W(0)) =

D∑
j=1

D∑
j′=1

E
[
ℓ′(0)yS

(0)
j,j′xj

]
= −1

2

D∑
j=1

E
[
yxj
]
= −1

2
E
[
yxj∗

]
= − σx√

2π
v∗

The second equality holds since ℓ′(0) = 1
2 by the fact f(Z,v(0),W(0)) = 0, and S

(0)
j′,j =

1
D for all

j, j′ ∈ [D] by the fact W(0) = 0. The third equality is by the independence between y and xj for
j ̸= j∗. The last equality is from E.4. By this result, we obtain that

v
(1)
1 = v

(0)
1 − η∇v1L(v(0),W(0)) =

ησx√
2π

v∗ = α(1)v∗.

which completes the proof.

Next, we provide the calculation for the second iteration.

Lemma C.10. Under the same condition with Theorem 2.2, the iterates v
(t)
1 of gradient descent

defined in (2.3) satisfies that v(2)
1 = α(2)v∗ with α(2) = −Θ(D).

Proof of Lemma C.10. By the fact W(1) = 0, we still have S
(1)
j′,j =

1
D for all j, j′ ∈ [D]. Therefore

we can calculate the gradient w.r.t v(t)
1 as

∇v1L(v(1),W(1)) =

D∑
j=1

D∑
j′=1

E
[
ℓ′(1)yS

(1)
j,j′xj

]
= E

[
ℓ′(1)yxj∗

]
+
∑
j ̸=j∗

E
[
ℓ′(1)yxj

]
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We analyze the value of E
[
ℓ′(1)yxj∗

]
and E

[
ℓ′(1)yxj

]
respectively. For E

[
ℓ′(1)yxj∗

]
, we have

E
[
ℓ′(1)yxj∗

]
= AA⊤E

[
ℓ′(1)yxj∗

]
= AE

[
ℓ′(1)y

[
⟨v∗,xj∗⟩, ⟨ξ2,xj∗⟩, · · · , ⟨ξd,xj∗⟩

]⊤]
= AE

[
ℓ′(1)y

[
⟨v∗,xj∗⟩, ⟨ξ2,xj∗⟩, · · · , ⟨ξd,xj∗⟩

]⊤]
= E

[
ℓ′(1)y⟨v∗,xj∗⟩

]
v∗ +

d∑
i=2

E
[
ℓ′(1)y⟨ξi,xj∗⟩

]
ξi

= E
[
ℓ′(1)y⟨v∗,xj∗⟩

]
v∗ +

d∑
i=2

E
[
ℓ′(1)y

]
E
[
⟨ξi,xj∗⟩

]
ξi = E

[
ℓ′(1)y⟨v∗,xj∗⟩

]
v∗,

where A is the orthogonal matrix defined in (C.3). The penultimate equality holds since ℓ′(1) =
1

1+exp
(
α(1)

∑D
j=1⟨v∗,yxj⟩

) . By replacing y with sign
(
⟨v∗,xj∗⟩

)
, we can notice that yℓ′(1) only

contains the projection of xj∗ on the direction of v∗, i.e., ⟨v∗,xj∗⟩. Hence by the orthogonality
among v∗ and ξ2, · · · , ξd and properties of Gaussian distribution, we have ⟨ξi,xj∗⟩ is independent
with yℓ′(1) for all i ∈ {2, · · · , d}. The last equality is simply by E

[
⟨ξi,xj∗⟩

]
= 0 for all i ∈

{2, · · · , d}. Through a similar process, we can also derive that

E
[
ℓ′(1)yxj

]
= E

[
ℓ′(1)y⟨v∗,xj⟩

]
v∗

for all j ̸= j∗. Moreover, we could notice that ℓ′(1)yxj have the same distribution for all j ̸= j∗,
and correspondingly E

[
ℓ′(1)y⟨v∗,xj⟩

]
take the same value for all j ̸= j∗. By carefully checking

the distribution of ℓ′(1)y⟨v∗,xj∗⟩ and ℓ′(1)y⟨v∗,xj⟩ with j ̸= j∗, we notice that Lemma E.10 and
Lemma E.11 apply to the calculation of E

[
ℓ′(1)y⟨v∗,xj∗⟩

]
and E

[
ℓ′(1)y⟨v∗,xj⟩

]
with j ̸= j∗. We

can derive that

∇v1
L(v(1),W(1)) =

(
E
[
ℓ′(1)y⟨v∗,xj∗⟩

]
+
∑
j ̸=j∗

E
[
ℓ′(1)y⟨v∗,xj⟩

])
v∗.

And for the coefficients of v∗, we have

E
[
ℓ′(1)y⟨v∗,xj∗⟩

]
+
∑
j ̸=j∗

E
[
ℓ′(1)y⟨v∗,xj⟩

]
≥ −σx

√
2

π
+

1

3

√
2D

eπ3
exp

(
− ησ2

x√
2π

− 2π

η2σ4
x

)
≥ Θ

(√
D
)
,

and

E
[
ℓ′(1)y⟨v∗,xj∗⟩

]
+
∑
j ̸=j∗

E
[
ℓ′(1)y⟨v∗,xj⟩

]
≤ − σx

2
√
2eπ

e−
ησ2

x
2π +

4(1 + ησ2
x)

ησx

√
D

π
exp

(
η2σ4

x

2π

)
≤ Θ

(√
D
)
.

Applying these results into the gradient descent iteration of v(t)
1 , we have

v
(2)
1 = v

(1)
1 − η

(
E
[
ℓ′(1)y⟨v∗,xj∗⟩

]
+
∑
j ̸=j∗

E
[
ℓ′(1)y⟨v∗,xj⟩

])
v∗ = α(2)v∗,

where α(2) = −Θ
(√

D
)
. This completes the proof.

Lemma C.11. Under the same condition with Theorem 2.2, the iterates W(t)
1,1 of gradient descent

defined in (2.4) satisfies that W(2)
1,1 = β1v

∗v∗⊤. The coefficient β1 satisfy that |β1| ≤ c1
√
D for

some non-negative constant c1 solely depending on η and σx.

Proof of Lemma C.11. We first demonstrate the calculation details of ∇W1,1L(v(1),W(1)) Since
v
(1)
1 = α(1)v∗ and v

(1)
2 = 0, we always have ⟨v(1), zj⟩ = α(1)⟨v∗,xj⟩ in the following calcula-

tions. For ∇W1,1
L(v(1),W(1)), we can obtain that

∇W1,1
L(v(1),W(1)) = E

[
ℓ′(1) · y ·

D∑
j=1

D∑
j′=1

∑
j′′ ̸=j′

S
(1)
j′,jS

(1)
j′′,j⟨v

(1), zj′⟩(xj′ − xj′′)x
⊤
j

]
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=
α(1)(D − 1)

D2

D∑
j=1

D∑
j′=1

E
[
ℓ′(1) · y · ⟨v∗,xj′⟩xj′x⊤

j

]
︸ ︷︷ ︸

I1

− α(1)

D2

D∑
j=1

D∑
j′=1

∑
j′′ ̸=j′

E
[
ℓ′(1) · y · ⟨v∗,xj′⟩xj′′x⊤

j

]
︸ ︷︷ ︸

I2

.

We analyze the value of I1 and I2 respectively in the following. For I1, we can obtain that

I1 =
α(1)(D − 1)

D2

D∑
j=1

D∑
j′=1

AE

[
ℓ′(1)y⟨v∗,xj′⟩


⟨v∗,xj′⟩
⟨ξ2,xj′⟩

...
⟨ξd,xj′⟩

 [⟨v∗,xj⟩, ⟨ξ2,xj⟩, · · · , ⟨ξd,xj⟩
]]

︸ ︷︷ ︸
Bj,j′∈Rd×d

A⊤

We denote the entry in the i1-th row and i2-th column of the expectation matrix Bj,j′ as Bj,j′

i1,i2
. By

utilizing Lemma C.8, we can examine the value of Bj,j′

i1,i2
for two cases: j = j′ and j ̸= j′.

Case I: j = j′.

1. Bj,j
1,1 = E

[
ℓ′(1)y⟨v∗,xj⟩3

]
.

2. Bj,j
i1,i1

= E
[
ℓ′(1)y⟨v∗,xj⟩⟨ξi1 ,xj⟩2

]
= E

[
ℓ′(1)y⟨v∗,xj⟩

]
E
[
⟨ξi1 ,xj⟩2

]
= σ2

xE
[
ℓ′(1)y⟨v∗,xj⟩

]
,

for all i1 ̸= 1.

3. Bj,j
1,i2

= E
[
ℓ′(1)y⟨v∗,xj⟩2⟨ξi2 ,xj⟩

]
= E

[
ℓ′(1)y⟨v∗,xj⟩2

]
E
[
⟨ξi2 ,xj⟩

]
= 0, for all i2 ̸= 1.

4. Bj,j
i1,1

= E
[
ℓ′(1)y⟨v∗,xj⟩2⟨ξi1 ,xj⟩

]
= E

[
ℓ′(1)y⟨v∗,xj⟩2

]
E
[
⟨ξi1 ,xj⟩

]
= 0, for all i1 ̸= 1.

5. Bj,j
i1,i2

= E
[
ℓ′(1)y⟨v∗,xj⟩⟨ξi1 ,xj⟩⟨ξi2 ,xj⟩

]
= E

[
ℓ′(1)y⟨v∗,xj⟩

]
E
[
⟨ξi1 ,xj⟩

]
E
[
⟨ξi2 ,xj⟩

]
= 0,

for all i1, i2 ̸= 1 and i1 ̸= i2.

Case II: j ̸= j′.

1. Bj,j′

1,1 = E
[
ℓ′(1)y⟨v∗,xj′⟩2⟨v∗,xj⟩

]
.

2. Bj,j′

1,i2
= E

[
ℓ′(1)y⟨v∗,xj′⟩2⟨ξi2 ,xj⟩

]
= E

[
ℓ′(1)y⟨v∗,xj′⟩2

]
E
[
⟨ξi2 ,xj⟩

]
= 0, for all i2 ̸= 1.

3. Bj,j′

i1,1
= E

[
ℓ′(1)y⟨v∗,xj′⟩⟨ξi1 ,xj′⟩⟨v∗,xj⟩

]
= E

[
ℓ′(1)y⟨v∗,xj′⟩⟨v∗,xj⟩

]
E
[
⟨ξi1 ,xj′⟩

]
= 0,

for all i1 ̸= 1.

4. Bj,j′

i1,i2
= E

[
ℓ′(1)y⟨v∗,xj′⟩⟨ξi1 ,xj′⟩⟨ξi2 ,xj⟩

]
= E

[
ℓ′(1)y⟨v∗,xj′⟩

]
E
[
⟨ξi1 ,xj′⟩

]
E
[
⟨ξi2 ,xj⟩

]
=

0, for all i1, i2 ̸= 1.

By previous discussion of Bj,j′

i1,i2
, we derive that

I1 =
α(1)(D − 1)

D2

D∑
j=1

D∑
j′=1

E
[
ℓ′(1)y⟨v∗,xj′⟩2⟨v∗,xj⟩

]
v∗v∗⊤ +

α(1)(D − 1)σ2
x

D2

d∑
i=2

D∑
j=1

E
[
ℓ′(1)y⟨v∗,xj⟩

]
ξiξ

⊤
i .

(C.10)

Similarly, for I2, we have

I2 =
α(1)

D2

D∑
j=1

D∑
j′=1

∑
j′′ ̸=j′

AE

[
ℓ′(1)y⟨v∗,xj′⟩


⟨v∗,xj′′⟩
⟨ξ2,xj′′⟩

...
⟨ξd,xj′′⟩

 [⟨v∗,xj⟩, ⟨ξ2,xj⟩, · · · , ⟨ξd,xj⟩
]]

︸ ︷︷ ︸
Cj,j′,j′′∈Rd×d

A⊤
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We denote the entry in the i1-th row and i2-th column of the expectation matrix Cj,j′,j′′ as Cj,j′,j′′

i1,i2
.

And we examine the value of Cj,j′,j′′

i1,i2
for two cases: j = j′′ and j ̸= j′′.

Case I: j = j′′.

1. Cj,j′,j
1,1 = E

[
ℓ′(1)y⟨v∗,xj⟩2⟨v∗,xj′⟩

]
.

2. Cj,j′,j
i1,i1

= E
[
ℓ′(1)y⟨v∗,xj′⟩⟨ξi1 ,xj⟩2

]
= E

[
ℓ′(1)y⟨v∗,xj′⟩

]
E
[
⟨ξi1 ,xj⟩2

]
=

σ2
xE
[
ℓ′(1)y⟨v∗,xj′⟩

]
, for all i1 ̸= 1.

3. Cj,j′,j
1,i2

= E
[
ℓ′(1)y⟨v∗,xj′⟩⟨v∗,xj⟩⟨ξi2 ,xj⟩

]
= E

[
ℓ′(1)y⟨v∗,xj′⟩⟨v∗,xj⟩

]
E
[
⟨ξi2 ,xj⟩

]
= 0,

for all i2 ̸= 1.

4. Cj,j′,j
i1,1

= E
[
ℓ′(1)y⟨v∗,xj′⟩⟨v∗,xj⟩⟨ξi1 ,xj⟩

]
= E

[
ℓ′(1)y⟨v∗,xj⟩⟨v∗,xj⟩

]
E
[
⟨ξi1 ,xj⟩

]
= 0, for

all i1 ̸= 1.

5. Cj,j′,j
i1,i2

= E
[
ℓ′(1)y⟨v∗,xj′⟩⟨ξi1 ,xj⟩⟨ξi2 ,xj⟩

]
= E

[
ℓ′(1)y⟨v∗,xj′⟩

]
E
[
⟨ξi1 ,xj⟩

]
E
[
⟨ξi2 ,xj⟩

]
=

0, for all i1, i2 ̸= 1 and i1 ̸= i2.

Case II: j ̸= j′.

1. Cj,j′,j′′

1,1 = E
[
ℓ′(1)y⟨v∗,xj′⟩⟨v∗,xj′′⟩⟨v∗,xj⟩

]
.

2. Cj,j′,j′′

1,i2
= E

[
ℓ′(1)y⟨v∗,xj′⟩⟨v∗,xj′′⟩⟨ξi2 ,xj⟩

]
= E

[
ℓ′(1)y⟨v∗,xj′⟩⟨v∗,xj′′⟩

]
E
[
⟨ξi2 ,xj⟩

]
=

0, for all i2 ̸= 1.

3. Cj,j′,j′′

i1,1
= E

[
ℓ′(1)y⟨v∗,xj′⟩⟨ξi1 ,xj′′⟩⟨v∗,xj⟩

]
= E

[
ℓ′(1)y⟨v∗,xj′⟩⟨v∗,xj⟩

]
E
[
⟨ξi1 ,xj′′⟩

]
=

0, for all i1 ̸= 1.

4. Cj,j′,j′′

i1,i2
= E

[
ℓ′(1)y⟨v∗,xj′⟩⟨ξi1 ,xj′′⟩⟨ξi2 ,xj⟩

]
= E

[
ℓ′(1)y⟨v∗,xj′⟩

]
E
[
⟨ξi1 ,xj′′⟩

]
E
[
⟨ξi2 ,xj⟩

]
=

0, for all i1, i2 ̸= 1.

By previous discussion of Cj,j′,j′′

i1,i2
, we derive that

I2 =
α(1)

D2

D∑
j=1

D∑
j′=1

∑
j′′ ̸=j′

E
[
ℓ′(1)y⟨v∗,xj′⟩⟨v∗,xj′′⟨v∗,xj⟩

]
v∗v∗⊤ +

α(1)(D − 1)σ2
x

D2

d∑
i=2

D∑
j=1

E
[
ℓ′(1)y⟨v∗,xj⟩

]
ξiξ

⊤
i .

(C.11)

Notice that the coefficients of ξiξ⊤i are all equal in both I1 and I2. Besides, we define two sets:
J1 = {(j, j′)|j, j′ ∈ [D]; j, j′ ̸= j∗, j ̸= j′} and J2 = {(j, j′, j′′)|j, j′, j′′ ∈ [D]; j, j′, j′′ ̸= j∗, j ̸=
j′ ̸= j′′}. Then by using (C.10) minus (C.11), we get

∇W1,1
L(v(1),W(1)) = I1 − I2

=
α(1)

D2

(
(D − 1)

D∑
j=1

D∑
j′=1

E
[
ℓ′(1)y⟨v∗,xj′⟩2⟨v∗,xj⟩

]
−

D∑
j=1

D∑
j′=1

∑
j′′ ̸=j′

E
[
ℓ′(1)y⟨v∗,xj′⟩⟨v∗,xj′′⟨v∗,xj⟩

]
︸ ︷︷ ︸

I3

)
v∗v∗⊤

=
α(1)

D2

(
(D − 1)

∑
(j,j′)∈J1

E
[
ℓ′(1)y⟨v∗,xj′⟩2⟨v∗,xj⟩

]
︸ ︷︷ ︸

I3,1

−
∑

(j,j′,j′′)∈J2

E
[
ℓ′(1)y⟨v∗,xj′⟩⟨v∗,xj′′⟨v∗,xj⟩

]
︸ ︷︷ ︸

I3,2
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+ (D − 1)
∑

(j,j′)/∈J1

E
[
ℓ′(1)y⟨v∗,xj′⟩2⟨v∗,xj⟩

]
−

∑
(j,j′,j′′)/∈J2

E
[
ℓ′(1)y⟨v∗,xj′⟩⟨v∗,xj′′⟨v∗,xj⟩

]
︸ ︷︷ ︸

I3,3

)
v∗v∗⊤.

By carefully checking the terms inner expectation of I3,1, we can utilize Lemma E.12 to obtain that

−
√

2

π

4(η2σ2
x + 1)ησ5

x

π
e

3η2σ4
x

4π D5/2 ≤ I3,1 ≤ − 1

48πη4σ5
x

e
− ησ2

x√
2π

− 2π
η2σ4

x
− 1

2D5/2.

Similarly, we obtain that

− 16

ησ2
x

e
η2σ4

x
4π

(
σx√
2π

+
ησ3

xe
η2σ4

x
4π

√
2π

)3

D5/2 ≤ I3,2 ≤ 16

ησ2
x

e
η2σ4

x
4π

(
σx√
2π

+
ησ3

xe
η2σ4

x
4π

√
2π

)3

D5/2

by Lemma E.13, and

|I3,3| ≤ 6

√
2

π
σ3
xD

2

by Lemma E.14. Applying all the preceding results to the gradient descent iteration of W(t)
1,1, we

finally obtain that

W
(2)
1,1 = W

(1)
1,1 − η∇W1,1

L(v(1),W(1)) = β1v
∗v∗⊤.

And the coefficient β1 satisfy that |β1∥ ≤ c1
√
D for some non-negative constant c1 solely depending

on η and σx. This completes the proof.

Lemma C.12. Under the same condition with Theorem 2.2, the iterates W(t)
2,2 of gradient descent

defined in (2.4) satisfies that

W
(2)
2,2 = β2

( ∑
j ̸=j∗

(
pj∗ − pj

))( D∑
j=1

p⊤
j

)
.

The coefficient β2 satisfy that c2
D2 ≤ β2 ≤ c3

D2 for some non-negative constants c2, c3 solely de-
pending on η and σx.

Proof of Lemma C.12.

For ∇W2,2
L(v(1),W(1)), we can derive that

∇W2,2
L(v(1),W(1)) = E

[
ℓ′(1) · y ·

D∑
j=1

D∑
j′=1

∑
j′′ ̸=j′

S
(1)
j′,jS

(1)
j′′,j⟨v

(1), zj′⟩(pj′ − pj′′)p
⊤
j

]

=
α(1)(D − 1)

D2

D∑
j=1

D∑
j′=1

E
[
ℓ′(1) · y · ⟨v∗,xj′⟩

]
pj′p

⊤
j︸ ︷︷ ︸

I1

− α(1)

D2

D∑
j=1

D∑
j′=1

∑
j′′ ̸=j′

E
[
ℓ′(1) · y · ⟨v∗,xj′⟩

]
pj′′p

⊤
j︸ ︷︷ ︸

I2

.

We discuss the value of I1 and I2 respectively in the following. For I1, we can obtain that

I1 =
α(1)(D − 1)

D2
E
[
ℓ′(1)y⟨v∗,xj∗⟩

]
pj∗

( D∑
j=1

p⊤
j

)
︸ ︷︷ ︸

I1,1

+
α(1)(D − 1)

D2

∑
j′ ̸=j∗

E
[
ℓ′(1)y⟨v∗,xj′⟩

]
pj′

( D∑
j=1

p⊤
j

)
︸ ︷︷ ︸

I1,2

.

While for I2, we can also obtain that

I2 =
α(1)

D2
E
[
ℓ′(1)y⟨v∗,xj∗⟩

] ∑
j′′ ̸=j∗

pj′′

( D∑
j=1

p⊤
j

)
︸ ︷︷ ︸

I2,1

+
α(1)

D2

∑
j′ ̸=j∗

E
[
ℓ′(1)y⟨v∗,xj′⟩

]
pj∗

( D∑
j=1

p⊤
j

)
︸ ︷︷ ︸

I2,2
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+
α(1)

D2

∑
j′′ ̸=j∗

∑
j′ ̸=j′′,j∗

E
[
ℓ′(1)y⟨v∗,xj′⟩

]
pj′′

( D∑
j=1

p⊤
j

)
︸ ︷︷ ︸

I2,3

.

As we discussed earlier, E
[
ℓ′(1)y⟨v∗,xj⟩

]
takes the same value for all j ̸= j∗. Therefore, we can

obtain that

∇W2,2
L(v(1),W(1)) = I1 − I2 =

(
I1,1 − I2,1

)
+
((

I1,2 − I2,3
)
− I2,2

)
=
α(1)

D2

(
E
[
ℓ′(1)y⟨v∗,xj∗⟩

]
− E

[
ℓ′(1)y⟨v∗,xj′⟩

])( ∑
j ̸=j∗

(
pj∗ − pj

))( D∑
j=1

p⊤
j

)
.

Furthermore, we can utilize Lemma E.10 and Lemma E.11 to obtain that,

E
[
ℓ′(1)y⟨v∗,xj∗⟩

]
− E

[
ℓ′(1)y⟨v∗,xj⟩

]
≥ −σx

√
2

π
− 4(1 + ησ2

x)

ησx
√
Dπ

exp

(
η2σ4

x

2π

)
,

and

E
[
ℓ′(1)y⟨v∗,xj∗⟩

]
− E

[
ℓ′(1)y⟨v∗,xj⟩

]
≤ − σx

2
√
2eπ

e−
ησ2

x
2π .

Applying all the preceding results to the gradient descent iteration of W(t)
2,2, we finally obtain that

W
(2)
2,2 = W

(1)
2,2 − η∇W2,2L(v(1),W(1))

=
ηα(1)

D2

(
− E

[
ℓ′(1)y⟨v∗,xj∗⟩

]
+ E

[
ℓ′(1)y⟨v∗,xj′⟩

])( ∑
j ̸=j∗

(
pj∗ − pj

))( D∑
j=1

p⊤
j

)

= β2

( ∑
j ̸=j∗

(
pj∗ − pj

))( D∑
j=1

p⊤
j

)
,

where

1

D2

η2σ2
x

4π
√
e
e−

ησ2
x

2π ≤ β2 ≤ 1

D2

η2σx
π

(
σx +

4(1 + ησ2
x)

ησx
√
2D

e
η2σ4

x
2π

)
≤ 1

D2

2η2σ2
x

π
.

This completes the proof.

C.4 PROOF OF LEMMA C.5, LEMMA C.2, LEMMA C.3 AND LEMMA C.4

In this subsection, we provide complete proof for Lemma C.5, Lemma C.2, Lemma C.3 and
Lemma C.4 We first prove Lemma C.5, given that the result concerning W(t) in Proposition C.1,
Lemma C.3 and Lemma C.4 holds. Then we use Lemma C.5 to prove Lemma C.2, Lemma C.3
and Lemma C.4 by induction. We would like to clarify that this is not circular reasoning, since we
are utilizing induction. It’s reasonable to assume that all conclusions hold for each iteration and
verify all conclusions still hold for the next iteration, as long as we can rigorously demonstrate these
conclusions hold at the beginning.

Proof of Lemma C.5. By Lemma C.3 and Lemma C.4, there exists constants c1, c2 solely depending
on η, σx such that |β1| ≤ c1

√
D and β2 ≥ c2

1
D2 . Then further combining with Lemma E.15,

Lemma E.16 and Lemma E.18, with probability at least 1 −
√

26c1σ2
x

c2π
De

− c2
26c1σ2

x

√
D −De−

D
2 , we

can obtain that

z⊤j′W
(t)zj = x⊤

j′W
(t)
1,1xj + p⊤

j′W
(t)
2,2p

⊤
j′

= β1⟨v∗,xj′⟩⟨v∗,xj⟩ −
(D + 1)2

4
β2 + x⊤

j′W
(t)
1,1,errorxj + p⊤

j′W
(t)
2,2,errorp

⊤
j

≤
∣∣β1⟨v∗,xj′⟩⟨v∗,xj⟩

∣∣+ ∥∥W(t)
1,1,error

∥∥
2
∥xj∥2∥xj′∥2 +

∥∥W(t)
2,2,error

∥∥
2
∥pj∥2∥pj′∥2
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√
D

(√
c2

13c1σ2
x

σxD
1
4

)2

+
1

eC2

√
D
σ2
x(
√
d+

√
D)2 +

1

eC2

√
D

(√
D + 1

2

)2

≤ c2
12

D

holds for all j′ ̸= j∗ and j ∈ [D], and

z⊤j∗W
(T )zj = x⊤

j∗W
(T )
1,1 xj + p⊤

j∗W
(T )
2,2 p

⊤
j′

= β1⟨v∗,xj∗⟩⟨v∗,xj⟩+
(D − 1)(D + 1)2

4
β2 + x⊤

j∗W
(T )
1,1,errorxj + p⊤

j∗W
(T )
2,2,errorp

⊤
j

≥ c2D

4
−
∣∣β1⟨v∗,xj′⟩⟨v∗,xj⟩

∣∣− ∥∥W(T )
1,1,error

∥∥
2
∥xj∥2∥xj′∥2 −

∥∥W(T )
2,2,error

∥∥
2
∥pj∥2∥pj′∥2

≥ c2D

4
− c1

√
D

(√
c2

13c1σ2
x

σxD
1
4

)2

− 1

eC2

√
D
σ2
x(
√
d+

√
D)2 − 1

eC2

√
D

(√
D + 1

2

)2

≥ c2
6
D

holds for all j ∈ [D]. Therefore, we can obtain that

S
(T )
j∗,j ≥

e
c2
6 D

e
c2
6 D + (D − 1)e

c2
12D

≥ 1−De−
c2
12D;

S
(T )
j′,j ≤

e
c2
12D

e
c2
6 D + (D − 1)e

c2
12D

≤ e−
c2
12D,

holds for all j′ ̸= j∗ and j ∈ [D] with probability at least 1−
√

26c1σ2
x

c2π
D3/4e

− c2
26c1σ2

x

√
D−De−

D
2 ≥

1− e−C8

√
D for some non-negative constant C8 solely depending on η, σx.

Next, we prove Lemma C.2, Lemma C.3 and Lemma C.4 by induction. When we prove Lemma C.2,
we will assume that Lemma C.3 and Lemma C.4 hold at current iteration. The same situation
still holds for proof of Lemma C.3 and Lemma C.4. As we discussed earlier, this is not circular
reasoning by the essence of induction. Rigorously, all the conclusions from these three lemmas
could be composed into a big induction. However, for simplicity and consistency, we present them
respectively. Besides, we denote Et the event that |⟨v∗,xj⟩| ≤ c4D

1/4 and ∥xj∥2 ≤ σx(
√
d+

√
D)

for some constant c4 solely depending on η, σx and all j ∈ [D], and denote Ec
t the complement

event. By Lemma C.5, the occurrence of Et can imply that S(t)
j∗,j ≥ 1−D exp(−C9D) and S

(t)
j′,j ≤

exp(−C9D) for all j′ ̸= j∗ and j ∈ [D]. And the probability of Et follows that P
(
E

(t)
s

)
≥

1− exp(−C8

√
D).

In the following, we present the proof for Lemma C.2.

Proof of Lemma C.2. By Lemma C.11 and Lemma C.12, we have W
(2)
1,1 = β1v

∗v∗⊤ with |β1| ≤

c1
√
D, and W

(2)
2,2 = β2

(∑
j ̸=j∗

(
pj∗ − pj

))(∑D
j=1 p

⊤
j

)
with c2

1
D2 ≤ β2 ≤ c3

1
D2 , aligning

with the formulas of W(t)
1,1,W

(t)
2,2 in Lemma C.3 and Lemma C.4. We assume the conclusions of

Lemma C.3 and Lemma C.4 still hold for any t < T ∗, then by Lemma C.5, we have P
(
E

(t)
s

)
≥

1 − exp(−C8

√
D). Based on this result, we define a proxy gradient G(t)

v which is calculated by
assuming S

(t)
j∗,j = 1, i.e.,

G(t)
v = DE

[
ℓ′
(
Dα(t)y⟨v∗,xj∗⟩+Dy⟨v(t)

1,error,xj∗⟩
)
yxj∗

]
.

Besides, since v
(t)
1,error is perpendicular to v∗ (which is 0 at t = 2), it is inner the linear subspace

spanned by the {ξ2, · · · , ξd}, and we denote its decomposition as v
(t)
1,error =

∑d
i=2 a

(t)
i ξi. By the
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orthogonality among ξ2, · · · , ξd, we have
∑d
i=2

(
a
(t)
i

)2
=
∥∥v(t)

1,error

∥∥2
2
. We also denote Pξ the

projection matrix of the linear subspace spanned by the {ξ2, · · · , ξd}. Then, we can decompose
G(t)
v by a similar process in Lemma C.10 as

G(t)
v = DE

[
ℓ′
(
Dα(t)y⟨v∗,xj∗⟩+Dy⟨v(t)

1,error,xj∗⟩
)
yxj∗

]
= DAA⊤E

[
ℓ′
(
Dα(t)y⟨v∗,xj∗⟩+Dy

d∑
i=2

a
(t)
i ⟨ξi,xj∗⟩

)
yxj∗

]
= DAE

[
ℓ′
(
Dα(t)y⟨v∗,xj∗⟩+Dy

d∑
i=2

a
(t)
i ⟨ξi,xj∗⟩

)
y
[
⟨v∗,xj∗⟩, ⟨ξ2,xj∗⟩, · · · , ⟨ξd,xj∗⟩

]⊤]
= DE

[
ℓ′
(
Dα(t)y⟨v∗,xj∗⟩+D

d∑
i=2

a
(t)
i y⟨ξi,xj∗⟩

)
y⟨v∗,xj∗⟩

]
v∗

+

d∑
i=2

DE
[
ℓ′
(
Dα(t)y⟨v∗,xj∗⟩+D

d∑
i=2

a
(t)
i y⟨ξi,xj∗⟩

)
y⟨ξi,xj∗⟩

]
ξi.

And we can upper bound the difference term as∥∥∥∇v1
L(v(t),W(t))− G(t)

v

∥∥∥
2
=

∥∥∥∥E[Dℓ′
(
Dα(t)y⟨v∗,xj∗⟩+Dy⟨v(t)

1,error,xj∗⟩
)
yxj∗ −

D∑
j′=1

D∑
j=1

ℓ′(t)yxj′S
(t)
j′,j

]∥∥∥∥
2

≤E

[∥∥∥∥(Dℓ′
(
Dα(t)y⟨v∗,xj∗⟩+Dy⟨v(t)

1,error,xj∗⟩
)
yxj∗ −

D∑
j′=1

D∑
j=1

ℓ′(t)yxj′S
(t)
j′,j

)
1{Et}

∥∥∥∥
2

]

+ E

[∥∥∥∥(Dℓ′
(
Dα(t)y⟨v∗,xj∗⟩+Dy⟨v(t)

1,error,xj∗⟩
)
yxj∗ −

D∑
j′=1

D∑
j=1

ℓ′(t)yxj′S
(t)
j′,j

)
1{Ec

t }

∥∥∥∥
2

]

≤DE
[∣∣∣ℓ′(Dα(t)y⟨v∗,xj∗⟩+Dy⟨v(t)

1,error,xj∗⟩
)
− ℓ′(t)

∣∣∣∥xj∗∥21{Et}

]
︸ ︷︷ ︸

I1

+E

[(
D −

D∑
j=1

S
(t)
j∗,j

)∥∥xj∗∥∥21{Et}

]
︸ ︷︷ ︸

I2

+
∑
j′ ̸=j∗

D∑
j=1

E
[∥∥xj′∥∥2S(t)

j′,j1{Et}

]
︸ ︷︷ ︸

I3

+DE
[∥∥xj∗∥∥21{Ec

t }

]
︸ ︷︷ ︸

I4

+D

D∑
j′=1

E
[∥∥xj′∥∥21{Ec

t }

]
︸ ︷︷ ︸

I5

,

where the inequalities hold by triangle inequality and the fact that |ℓ′| ≤ 1 and |Sj′,j | ≤ 1. Next, we
demonstrate our analysis on two cases: t = 2 and t ≥ 3.

When t = 2, v(2)
1 = α(2)v∗ implies that v(2)

1,error = 0. Therefore, we have

G(2)
v = DE

[
ℓ′
(
Dα(2)y⟨v∗,xj∗⟩

)
y⟨v∗,xj∗⟩

]
v∗.

And we provide the upper bounds for each term of
∥∥∥∇v1

L(v(2),W(2))−G(2)
v

∥∥∥
2

respectively. Spe-
cially, for I1, we can derive that

I1 ≤DE
[∣∣∣ℓ′(Dα(t)y⟨v∗,xj∗⟩+Dy⟨v(t)

1,error,xj∗⟩
)
− ℓ′(2)

∣∣∣∥xj∗∥21{Et}

]
≤D

4
E

[∣∣∣∣Dα(2)y⟨v∗,xj∗⟩ − α(2)
D∑
j′=1

D∑
j=1

y⟨v∗,xj′⟩S(t)
j′,j

∣∣∣∣∥∥xj∗∥∥21{Et}

]

≤D

4

∣∣α(2)
∣∣E[(D −

D∑
j=1

S
(t)
j∗,j

)∣∣⟨v∗,xj∗⟩
∣∣∥∥xj∗∥∥21{Et}

]
+

D

4

∣∣α(2)
∣∣ ∑
j′ ̸=j∗

D∑
j=1

E
[∣∣⟨v∗,xj′⟩

∣∣∥∥xj∗∥∥2S(t)
j′,j1{Et}

]
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c3σxD
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4

∣∣α(2)
∣∣(√d+

√
D)

2eC9D
≤ 1

5ηeC4

√
D
.

The first inequality is because ℓ′ is Lipschitz continuous with 1
4 . The penultimate inequality holds

since |⟨v∗,xj⟩| ≤ c3D
1/4, ∥xj∥2 ≤ σx(

√
d +

√
D), S(t)

j∗,j ≥ 1 − D exp(−C9D) and S
(t)
j′,j ≤

exp(−C9D) when 1{Et} = 1. And the last inequality holds since α(2) = −Θ(
√
D). Similarly, we

also have

I2 ≤ σxD(
√
d+

√
D)

eC9D
≤ 1

5ηeC4

√
D
; and I3 ≤ σxD

2(
√
d+

√
D)

ecD
≤ 1

5ηeC4

√
D
.

For I4 and I5, by applying Cauchy-Schwarz inequality, we have

I4 ≤ D
√
E
[
∥xj∗∥22

]√
E
[
12
{Ec

t }
]
≤ D

√
d

e
C8
2

√
D

≤ 1

5ηeC4

√
D
;

I5 ≤ D

D∑
j′=1

√
E
[
∥xj′∥22

]√
E
[
12
{Ec

t }
]
≤ D2

√
d

e
C8
2

√
D

≤ 1

5ηeC4

√
D
.

Combining all preceding results, we have
∥∥∇v1

L(v(2),W(2))−G(2)
v

∥∥
2
≤ 1

eC4
√

D
for some constant

C4 only depending on σx and η. Furthermore, we can derive that

v
(3)
1 = v

(2)
1 − η∇v1

L(v(2),W(2)) = α(2)v∗ − ηG(2)
v − η

(
∇v1

L(v(2),W(2))− G(2)
v

)
=

(
α(2) +DηE

[
− ℓ′

(
Dα(2)y⟨v∗,xj∗⟩

)
y⟨v∗,xj∗⟩

]
+
〈
v∗, ηG(2)

v − η∇v1
L(v(2),W(2))

〉)
v∗

+ ηPξ

(
G(2)
v −∇v1L(v(2),W(2))

)
= α(3)v∗ + v

(3)
1,error.

For α(3), we can utilize Lemma E.10 to derive that

α(3) ≥ ησx
4

√
2

π
D + α(2) − η

∥∥∇v1
L(v(2),W(2))− G(2)

v

∥∥
2
≥ ησx

5

√
2

π
D;

α(3) ≤ ησx

√
2

π
D + α(2) + η

∥∥∇v1
L(v(2),W(2))− G(2)

v

∥∥
2
≤ ησx

√
2

π
D.

And we also have
∥∥v(3)

1,error

∥∥
2
≤ η

∥∥∇v1
L(v(2),W(2)) − G(2)

v

∥∥
2
≤ e−C4

√
D, which completes the

proof at t = 3.

Since we have derived that (C.5) and (C.4) hold at t = 3. We will use induction to prove the case
when 3 < t ≤ T ∗. Instead of directly proving (C.4), we prove the following inequality∥∥v(t)

1,error

∥∥
2
≤ ηt

ec
√
D
, (C.12)

where c is some positive constant solely depending on σx and η. Then we assume (C.5) and (C.12)
hold at any 3 < t ≤ T ∗ − 1. Similarly, we can bound I1 in

∥∥∥∇v1
L(v(t),W(t))− G(t)

v

∥∥∥
2

as

I1 ≤DE
[∣∣∣ℓ′(Dα(t)y⟨v∗,xj∗⟩+Dy⟨v(t)

1,error,xj∗⟩
)
− ℓ′(t)

∣∣∣∥xj∗∥21{Et}

]
≤D

4
E
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D∑
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D∑
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y⟨α(t)v∗ + v
(t)
1,error,xj′⟩S

(t)
j′,j
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]

≤Dα(t)

4
E
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D −
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S
(t)
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)∣∣⟨v∗,xj∗⟩
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]
+

Dα(t)

4

∑
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D∑
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E
[∣∣⟨v∗,xj′⟩
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]

+
D

4
E

[(
D −

D∑
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S
(t)
j∗,j

)∥∥v(t)
1,error
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2
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]
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D
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The first inequality is because ℓ′ is Lipschitz continuous with 1
4 . The penultimate inequal-

ity holds since |⟨v∗,xj⟩| ≤ c3D
1/4, ∥xj∥2 ≤ σx(

√
d +

√
D), S

(t)
j∗,j ≥ 1 − D exp(−C9D)

and S
(t)
j′,j ≤ exp(−C9D) when 1{Et} = 1. And the last inequality holds since α(t) ≤

O((T ∗)1/3 +D) ≪ exp(C9D) by (C.5) and our definition of T ∗ in Theorem 2.2. For other terms
in
∥∥∥∇v1

L(v(t),W(t)) − G(t)
v

∥∥∥
2
, we can obtain the same upper bound with t = 2. Therefore, by

combining these results, we obtain that
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∥∥
2
≤ 1
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D
for some constant c

only depending on σx and η. Now, we are ready to derive the gradient descent update for v(t+1) as

v
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1 =v
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v − η
(
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)
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L
)

=α(t+1)v∗ + v
(t+1)
1,error.

For α(t+1), we can utilize Lemma E.10 to derive the following iterative formulas
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hold for all t ≥ 3. Then combined with the fact about initialization that ησx
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+
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,

which completes the proof for (C.5). Next, we demonstrate the upper bound for
∥∥v(t+1)

1,error

∥∥
2
. In order

to provide this result, we first analyze the coefficient of each ξi, and W.L.O.G, we assume a
(t)
i ≥ 0.

Then by Lemma E.11, we have

E
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,

where the last inequality holds by α(t) ≥ ησx

5

√
2
πD. Therefore the coefficient of ξi follows that∣∣∣∣a(t)i + ηDE
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by σx ≤ 1
3 from conditions of Theorem 2.2 Based on these results, we can finally provide the

upper-bound for
∥∥v(t+1)
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2

as
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which completes the proof for (C.12). Further by our definition of T ∗ in Theorem 2.2, we can obtain∥∥v(t)
1,error

∥∥
2
≤ T ∗η

ec
√
D

≤ e−C4

√
D.

This completes the proof for (C.4).

Next, we present the proof for Lemma C.3.

Proof of Lemma C.3. By calculations in Lemma C.11, we have obtained that W(2)
1,1 follows (C.6)

with W
(2)
1,1,error = 0. Instead of directly proving (C.7), we prove the following inequality,

∥W(t)
1,1,error∥2 ≤ ηt

ec
√
D
. (C.13)

for some constant c solely depending on η and σx. Therefore by induction, we assume it holds for t,
and prove it still holds for t+1. Actually, it suffices to show that
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The first inequality is by triangle inequality and |y|, |ℓ′| ≤ 1. The second inequality holds because
|⟨v∗,xj⟩| ≤ c3D
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j∗,j ≥ 1 −D exp(−cD) and S
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when 1{Et} = 1. The second inequality holds since α(t) ≤ O((T ∗)1/3 + D) ≪ exp(C9D) and∥∥v(t)
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√
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In the following, we also denote v∗ by ξ1 in summation calculation for simplicity of expression.
Then by applying Cauchy–Schwarz inequality, we can obtain an upper bound as
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The first and second inequality is derived by Cauchy–Schwarz inequality, and the facts that∑D
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Combining all the preceding results, we have∥∥∥W(t+1)
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which completes the proof for (C.13). Further by our definition of T ∗ in Theorem 2.2, we can obtain∥∥∥W(t)
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This completes the proof for (C.7).

Next, we present the proof for Lemma C.4.

Proof of Lemma C.4. By calculations in Lemma C.12, we have obtained that W(2)
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for some constant c solely depending on η and σx. Therefore by induction, we assume it holds for t,
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L(v(t),W(t))

∥∥
2
≤ e−c

√
D.

By (C.2), we have
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(
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y⟨v(t)

1 ,xj′⟩1{Et}

]
pj′p

⊤
j︸ ︷︷ ︸

I2,1

−
D∑
j=1

D∑
j′=1

∑
j′′ ̸=j′

E
[
ℓ′(t)S

(t)
j′,jS

(t)
j′′,jy⟨v

(t)
1 ,xj′⟩1{Ec

t }

]
pj′′p

⊤
j︸ ︷︷ ︸

I2,2

For I1,1, we have∥∥I1,1∥∥2 ≤
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E
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(t)
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(
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)(
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4ec
√
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The first inequality is by triangle inequality and |y|, |ℓ′| ≤ 1. The second inequality holds because
|⟨v∗,xj⟩| ≤ c3D

1/4, ∥xj∥2 ≤ σx(
√
d+

√
D), S(t)

j∗,j ≥ 1−D exp(−C9D) and S
(t)
j′,j ≤ exp(−C9D)

when 1{Et} = 1, and ∥pj∥2 =
√
(D + 1)/2 by Lemma E.18. The second inequality holds since

α(t) ≤ O((T ∗)1/3 +D) ≪ exp(C9D) and
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2
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√
D by Lemma C.2 and definition of

T ∗ in Theorem 2.2. Similarly, for I2,1, we can obtain that∥∥I2,1∥∥2 ≤
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By applying Cauchy–Schwarz inequality, we can obtain an upper bound for I1,2 as∥∥I1,2∥∥2 =

∥∥∥∥∥
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∥∥∥∥∥
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The first inequality is derived by Cauchy–Schwarz inequality,
∥∥pj∥∥2 =

√
(D + 1)/2

by Lemma E.18, The second inequality is derived by Cauchy–Schwarz inequality, and∑D
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(
S
(t)
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)4 ≤ 1. The last inequality holds since α(t) ≤ O((T ∗)1/3 + D) ≪ exp(C8

√
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and
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√√√√ D∑
j′=1

E
[
⟨v(t)

1 /∥v(t)
1 ∥2,xj′⟩4

]

≤
3

1
4σx(D + 1)D

3
4

(
α(t) +

∥∥v(t)
1,error

∥∥
2

)
2eC8

√
D

≤ 1

4ec
√
D
.

Combining all the preceding results, we have∥∥∥W(t+1)
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∥∥∥
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which completes the proof for (C.14). Further by our definition of T ∗ in Theorem 2.2, we can obtain∥∥∥W(t)
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2
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This completes the proof for (C.9).

Finally, we provide the proof for Lemma 4.3

Proof of Lemma 4.3. By Lemma C.2 and Proposition C.1, we can re-write yf(Z,W(t),v(t)) as
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By the fact that
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1,error⟩ = 0, we can derive that
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The second inequality holds because Et implies that S(t)
j∗,j ≥ 1 − De−C9D, S(t)
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∥xj′∥2 ≤ σx(

√
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D) by Lemma C.5 and Lemma E.16. Besides, Lemma 4.2 guarantees that∥∥v(t)
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D
. The last inequality holds because α(t) ≤ O

(
(T ∗)1/3 + D

)
by Lemma C.2,

which is much smaller than eC9D by our definition of T ∗ in Theorem 2.2. Therefore, the last two
terms are much smaller than 1. Similarly, we can also obtain that
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This completes the proof.

D PROOF OF THEOREM 3.2

This section provides a complete proof for Theorem 3.2. Before we demonstrate the proof for
Theorem 3.2, we first introduce and prove several lemmas which will be utilized for further proof.
The following two lemmas are very similar to Lemma C.3, Lemma C.4 and Lemma C.5.

Lemma D.1. Under the same conditions of Theorem 3.2, with probability at least 1 − ne−C3

√
D

over the randomness of
(
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, it holds that
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where |β1| ≤ c1
√
D, β2 ≥ c2

D2 for some constant c1, c2 solely depending on η, σx, and the error
term satisfies that ∥∥W̃(i)
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2
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(
− C10

√
D
)
. (D.2)

The coefficients C3, C10 are both positive constants solely depending on σx, σ̃x and η.

Lemma D.2. Under the same conditions of Theorem 3.2, then with probability at least 1−ne−C3

√
D

over the randomness of
(
X(i)y(i)

)n
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, it holds that

S
(i)
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S
(i)
j′,j ≤ exp(−C11D)

for all i ∈ [n] ,j ∈ [D] and j′ ̸= j∗. The coefficients C3, C11 are both positive constants solely
depending on σx, σ̃x and η.

Proof of Lemma D.2. By Lemma D.1, there exists constants c1, c2 solely depending on η, σx such
that |β1| ≤ c1

√
D and β2 ≥ c2

1
D2 . Then further combining with Lemma E.17 and Lemma E.18,
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holds for all j ∈ [D] and i ∈ [D]. Therefore, we can obtain that
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This completes the proof.

Proof of Lemma D.1. By Lemma C.3 and Lemma C.4, we have obtained that W̃(1) = W(T∗)

follows (D.1) with
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where c is a constant solely depending on σx, σ̃x, η. Based on our previous discussion, we know it
holds for i = 1. Therefore by induction, we assume it holds for i ≤ n − 1, and prove it still holds
for i+ 1. Actually, it suffices to show that
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(
z
(i)
j

)⊤
︸ ︷︷ ︸

I1

− ℓ′(i)
D∑
j=1

D∑
j′=1

∑
j′′ ̸=j′

S
(i)
j′,jS

(i)
j′′,jy

〈
ṽ(i), z

(i)
j′

〉
z
(i)
j′′

(
z
(i)
j

)⊤
︸ ︷︷ ︸

I2

.
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For I1, we have∥∥I1∥∥2 ≤
D∑
j=1

D∑
j′=1

S
(i)
j′,j

(
1− S

(i)
j′,j

)∥∥ṽ(i)
∥∥
2

∥∥z(i)j′ ∥∥22∥∥z(i)j ∥∥2 ≤
2
(√

2σ̃x + 1
)2
Dn
(√

d+
√
D
)2

eC11D
≤ 1

2ecD
.

The first inequality is by triangle inequality and |y|, |ℓ′| ≤ 1. The second inequality holds because
∥z(i)j ∥ ≤

(√
2σ̃x + 1

)(√
d +

√
D
)
, S(i)

j∗,j ≥ 1 − D exp(−C11D) and S
(i)
j′,j ≤ exp(−C11D) by

Lemma D.2 and upper-bound for
∥∥ṽ(i)

∥∥
2
. The second inequality holds by the condition concerning

n from Theorem 3.2. Similarly, for I2, we can obtain that∥∥I2∥∥2 ≤
D∑
j=1

D∑
j′=1

∑
j′′ ̸=j′

S
(i)
j′,jS

(i)
j′′,j

∥∥ṽ(i)
∥∥
2

∥∥z(i)j′ ∥∥2∥∥z(i)j′′∥∥2∥∥z(i)j ∥∥2 ≤
2
(√

2σ̃x + 1
)2
Dn
(√

d+
√
D
)2

eC11D
≤ 1

2ecD
.

Combining all the preceding results, we have∥∥W̃(i+1)
error

∥∥
2
≤
∥∥W̃(i)

error

∥∥
2
+ η̃
∥∥∇WL̃i(ṽ(i),W̃(i))

∥∥
2

≤
∥∥W̃(i)

error

∥∥
2
+ η̃
∥∥I1∥∥2 + η̃

∥∥I2∥∥2
≤ exp

(
− C7

√
D
)
+

η̃i

ecD
+

2η̃

2ecD
= exp

(
− C7

√
D
)
+

η̃(i+ 1)

ecD
,

which proves that (D.3). Then by conditions concerning n from Theorem 3.2, we further have∥∥W̃(i)
error

∥∥
2
≤ exp

(
− C7

√
D
)
+

η̃i

ecD
≤ exp(−C10

√
D).

This completes the proof.

For further proof in this section, we introduce the following several notations. We denote ṽ∗ =

argmaxv:∥v∥2≤1 mini∈[n] y
(i) ·

〈
v,x

(i)
j∗

〉
, and v̂ =

[
( lognγD ṽ∗)⊤,0D

⊤]⊤ ∈ Rd+D. And we define

Ŵ is an idealized matrix such that S(i)
j∗,j = 1 and S

(i)
j′,j = 0 for all j′ ̸= j∗ and j ∈ [D] (Such

a matrix exists by Lemma E.18). Furthermore, we define a proxy loss by −ℓ′ as Ri(ṽ,W̃) =

−ℓ′(y(i) · f(Z(i),W̃, ṽ)) and R(ṽ,W̃) = E(X,y)∼D̃
[
− ℓ′(y · f(Z,W̃, ṽ))

]
. Based on these

notations, we can finish the remaining proof. Firstly, we prove that L̃i(ṽ,W̃) is nearly convex.

Lemma D.3. With probability at least 1− ne−C3

√
D, it holds that

Li(v̂,Ŵ)− Li(ṽ(i),W̃(i)) ≥
〈
∇vLi(ṽ(i),W̃(i)), v̂ − ṽ(i)

〉
− 1

γeC12D

for all i ∈ [n], where C12 is a constant solely depending on σx, σ̃x, η

Proof of Lemma D.3. By convexity of ℓ, we can obtain that

Li(v̂,Ŵ)− Li(ṽ(i),W̃(i))

=ℓ
(
y(i)f(Z(i),Ŵ, v̂)

)
− ℓ
(
y(i)f(Z(i),W̃(i), ṽ(i))

)
≥ℓ′
(
y(i)f(Z(i),W̃(i), ṽ(i))

)
y(i)
(
f(Z(i),Ŵ, v̂)− f(Z(i),W̃(i), ṽ(i))

)
=ℓ′(i)y(i)

( D∑
j=1

D∑
j′=1

S
(i)
j,j′

〈
v̂ − ṽ(i), z

(i)
j

〉)
+ ℓ′(i)y(i)

(
D −

∑
j′=1

S
(i)
j∗,j′

)〈
v̂, z

(i)
j∗

〉
+ ℓ′(i)y(i)

∑
j ̸=j∗

D∑
j′=1

S
(i)
j,j′

〈
v̂, z

(i)
j

〉
=
〈
∇vLi(ṽ(i),W̃(i)), v̂ − ṽ(i)

〉
+ ℓ′(i)y(i)

(
D −

∑
j′=1

S
(i)
j∗,j′

)〈
v̂, z

(i)
j∗

〉
+ ℓ′(i)y(i)

∑
j ̸=j∗

D∑
j′=1

S
(i)
j,j′

〈
v̂, z

(i)
j

〉
︸ ︷︷ ︸

I

And we can bound |I| as

|I| ≤
(
D −

∑
j′=1

S
(i)
j∗,j′

)∥∥v̂∥∥
2

∥∥z(i)j∗ ∥∥2 + ∑
j ̸=j∗

D∑
j′=1

S
(i)
j,j′

∥∥v̂∥∥
2

∥∥z(i)j ∥∥2
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≤
2
(√

2σ̃x + 1
)(√

d+
√
D
)
D log n

γeC11D
≤ 1

γeC12D
,

where the penultimate inequality is by Lemma D.2, Lemma E.17, Lemma E.18 and definition of v̂.
This completes the proof.

Based on the preceding Lemmas, we are now ready to prove Theorem 3.2.

Proof of Theorem 3.2. By updating rule (3.1), we can obtain that∥∥ṽ(i+1) − v̂
∥∥2
2
=
∥∥ṽ(i) − v̂

∥∥2
2
+ 2
〈
ṽ(i+1) − ṽ(i), ṽ(i) − v̂

〉
+
∥∥ṽ(i+1) − ṽ(i)

∥∥2
2

=
∥∥ṽ(i) − v̂

∥∥2
2
− 2η̃

〈
∇vLi(ṽ(i),W̃(i)), ṽ(i) − v̂

〉
+ η̃2

∥∥∇vLi(ṽ(i),W̃(i))
∥∥2
2

≤
∥∥ṽ(i) − v̂

∥∥2
2
+ 2η̃

(
Li(v̂,Ŵ)− Li(ṽ(i),W̃(i)) +

1

γeC12D

)
+ η̃2

∥∥∇vLi(ṽ(i),W̃(i))
∥∥2
2

≤
∥∥ṽ(i) − v̂

∥∥2
2
+ 2η̃

(
Li(v̂,Ŵ)− Li(ṽ(i),W̃(i)) +

1

γeC12D

)
+ η̃Li(ṽ(i),W̃(i))

≤
∥∥ṽ(i) − v̂

∥∥2
2
− η̃Li(ṽ(i),W̃(i)) +

2η̃

γeC12D
+

2η̃

n
. (D.4)

The first inequality holds by Lemma D.3. The second inequality holds because

η̃2
∥∥∇vLi(ṽ(i),W̃(i))

∥∥2
2
= η̃2

(
ℓ′
(
y(i)f(Z(i), ṽ(i),W̃(i))

))2∥∥∥∥ D∑
j=1

D∑
j′=1

S
(i)
j,j′z

(i)
j

∥∥∥∥
2

≤ η̃2ℓ
(
y(i)f(Z(i), ṽ(i),W̃(i))

)(√
2σ̃x + 1

)2(√
d+

√
D
)2
D2 ≤ η̃Li(ṽ(i),W̃(i)),

where the first inequality holds by the facts that −ℓ′(x) ≤ ℓ(x), −ℓ′(x) ≤ 1 and
∥∥z(i)j ∥∥2 ≤

(√
2σ̃x+

1
)(√

d+
√
D
)
, and the last inequality holds by our condition that η̃ ≤ 1

(
√
2σ̃x+1)2(

√
d+

√
D)2D2

. And
the third inequality is because

Li(v̂,Ŵ) = ℓ
(
y(i)f(Z(i),Ŵ, v̂)

)
= ℓ

(
log n

γ
y(i)⟨ṽ∗,x

(i)
j∗ ⟩
)

≤ ℓ(log n) ≤ 1

n
.

By rearranging and take a telescoping sum on both side of (D.4), we obtain that

1

n

n∑
i=1

Li(ṽ(i),W̃(i)) ≤
∥∥ṽ(1) − v̂

∥∥2
2

nη̃
+

2

γeC12D
+

2

n
≤ 2(

√
2σ̃x + 1)2 log2 n(d+D)

γ2n
+

2

γeC12D
+

2

n
.

Further by applying the fact that γ ≤ mini∈[n] ∥x
(i)
j∗ ∥2 ≤

√
2σ̃x
(√

d+
√
D
)

and −ℓ(x) ≤ ℓ(x), we
can get

1

n

n∑
i=1

Ri(ṽ
(i),W̃(i)) ≤ 1

n

n∑
i=1

Li(ṽ(i),W̃(i)) ≤ 4(
√
2σ̃x + 1)2 log2 n(d+D)

γ2n
+

2

γeC12D
.

(D.5)

Notice that the quantity
∑
i≤k
(
Ri(ṽ

(i),W̃(i)) − R(ṽ(i),W̃(i))
)

forms a martingale w.r.t. the fil-

tration σ
((

Z(1), y(1)
)
, · · · ,

(
Z(k−1), y(k−1)

))
= σ(k). The martingale difference Ri(ṽ

(i),W̃(i))−

R(ṽ(i),W̃(i)) is bounded by 1 since −ℓ′ is bounded. And we also have

E
[(
Ri(ṽ

(i),W̃(i))−R(ṽ(i),W̃(i))
)2∣∣∣σ(i)

]
=E
[
Ri(ṽ

(i),W̃(i))2
∣∣∣σ(i)

]
− 2R(ṽ(i),W̃(i))E

[
Ri(ṽ

(i),W̃(i))
∣∣∣σ(i)

]
+R(ṽ(i),W̃(i))2

=E
[
Ri(ṽ

(i),W̃(i))2
∣∣∣σ(i)

]
−R(ṽ(i),W̃(i))2 ≤ E

[
Ri(ṽ

(i),W̃(i))
∣∣∣σ(i)

]
−R(ṽ(i),W̃(i))2 ≤ R(ṽ(i),W̃(i)).
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Therefore by Theorem 1 in Beygelzimer et al. (2011) (a version of martingale difference concentra-
tion inequality), with probability at least 1− δ for any positive δ, it holds that,

1

n

n∑
i=1

(
R(ṽ(i),W̃(i))−Ri(ṽ

(i),W̃(i))
)
≤ e− 2

n

n∑
i=1

E
[(
Ri(ṽ

(i),W̃(i))−R(ṽ(i),W̃(i))
)2∣∣∣σ(i)

]
+

log(1/δ)

n

≤ e− 2

n

n∑
i=1

R(ṽ(i),W̃(i)) +
log(1/δ)

n
.

Rearranging on both sides and applying the results of (D.5), we get

1

n

n∑
i=1

R(ṽ(i),W̃(i)) ≤ 4

n

n∑
i=1

Ri(ṽ
(i),W̃(i)) +

4 log(1/δ)

n

≤ 16(
√
2σ̃x + 1)2 log2 n(d+D)

γ2n
+

4 log(1/δ)

n
+

8

γeC12D
.

Since P(X,y)∼D̃
(
y · f(Z,W̃, ṽ ≤ 0

)
≤ 2R(W̃, ṽ) holds for any ṽ and W̃, we finally derive that

1

n

n∑
i=1

P(X,y)∼D̃

(
y · f(Z,W̃(i), ṽ(i)) ≤ 0

)
≤ 2

n

n∑
i=1

R(ṽ(i),W̃(i)) ≤ O

(
log2 n(d+D)

γ2n

)
+O

(
log(1/δ)

n

)
,

which completes the proof.

E TECHNICAL LEMMAS

E.1 INDEPENDENCE AMONG GAUSSIAN RANDOM VECTORS

Lemma E.1. Let z1, z2 be two Gaussian random variables with zero mean, and y = sign(z1). Then
y is independent with y · z1 and y · z2. Moreover, y · z2 also follows the normal distribution, which
has zero mean and the same variance with z2.

Proof of Lemma E.1. W.L.O.G, we assume that z1, z2 are standard Gaussian random variables. We
first prove that y is independent with y · z1. It is clear that y · z1 = |z1|. Then for any x ≥ 0,

P(y · z1 ≤ x) = P(|z1| ≤ x) = P(|z1| ≤ x|y),

which indicate that y·z1 has the same distribution with y·z1|y. Therefore, y is independent with y·z1.
Next, we prove that y is independent with y · z2 and y · z2 follows the standard normal distribution.
We denote Φ(·) the cumulative density function (c.d.f.) of the standard normal distribution. Then
for any x ∈ R,

P(y · z2 ≤ x) = P(z2 ≤ x; y = 1) + P(z2 ≥ −x; y = −1)

= P(z2 ≤ x) · P(y = 1) + P(z2 ≥ −x) · P(y = −1)

=
1

2
Φ(x) +

1

2

(
1− Φ(−x)

)
= Φ(x),

where the second equality holds by the independence between y and z2, and the last equality holds
by the symmetry of standard normal distribution that Φ(−x) = 1− Φ(x). This proves that y · z2 ∼
N(0, 1). Moreover, it is obvious that

P(y · z2 ≤ x|y = 1) = P(z2 ≤ x|y = 1) = Φ(x),

and

P(y · z2 ≤ x|y = −1) = P(z2 ≥ −x|y = 1) = 1− Φ(−x) = Φ(x),

which indicate that y · z2 has the same distribution with y · z2|y. Therefore, we complete the proof
of Lemma E.1.

Lemma E.2. For y and x1,x2, · · · ,xD defined in Definition 2.1, it holds that y is independent with
y · xj for all j ∈ [D]. Moreover, y · xj ∼ N(0, σ2

xId) for all j ̸= j∗.
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Proof of Lemma E.2. For simplicity of expression, we assume σx = 1 here, and the proof for σx ̸= 1
is the same. We consider the following two cases: j ̸= j∗ and j = j∗.

When j ̸= j∗, y is independent with xj . Then for any k ∈ [d], we have y · xj [k] ∼ N(0, 1)
and y · xj [k] is independent with y by Lemma E.1. Therefore, y · xj is independent with y since
each coordinate of y · xj is independent with y. Moreover, we have E[y · xj [k] · y · xj [k′]] =
E[xj [k] · xj [k′]] = 0 for any k ̸= k′, which finally proves that y · xj ∼ N(0, Id).

When j = j∗, let A be an orthogonal matrix with v∗ being its first column. We denote ξ2, · · · , ξd
the rest columns in A, i.e., A = [v∗, ξ2, · · · , ξd]. Then we have

y · xj∗ = y ·AA⊤xj∗ = y · [v∗, ξ2, · · · , ξd] · [⟨v∗,xj∗⟩, ⟨ξ2,xj∗⟩, · · · , ⟨ξd,xj∗⟩]⊤

= y · ⟨v∗,xj∗⟩ · v∗ +

d∑
i=2

y · ⟨ξi,xj∗⟩ · ξi.

By orthogonality among v∗, ξ2, · · · , ξd, we obtain that ⟨v∗,xj∗⟩ and ⟨ξi,xj∗⟩ for i ∈ {2, · · · , d}
are all independent random variables with standard normal distribution, which further indicates that
y is independent with ⟨ξi,xj∗⟩ for all i ∈ {2, · · · , d}. Then by Lemma E.1, we can obtain that y
is independent with

∑d
i=2 y · ⟨ξi,xj∗⟩ · vi. Besides, note that y is the sign of the standard normal

random variable ⟨v∗,xj∗⟩. From Lemma E.1, we have that y is also independent with y · ⟨v∗,xj∗⟩.
Hence y is independent with y · xj∗ . This completes the proof of Lemma E.2.

Lemma E.3. For y and x1,x2, · · · ,xD defined in Definition 2.1, it holds that y·x1, y·x2, · · · , y·xD
are mutually independent.

Proof of Lemma E.3. For any j1, j2 ∈ [D] with j1 ̸= j2, then at least one of j1 and j2 is not j∗.
W.L.O.G., we assume j2 ̸= j∗. Then by Definition 2.1, xj2 is independent both with y and xj1 ,
hence it’s independent with the product y · xj1 . On the other hand, by applying Lemma E.2, y · xj1
is independent with y. Therefore, we finally prove that y · xj1 is independent with y · xj2 .

E.2 CALCULATION DETAILS OF EXPECTATIONS

Lemma E.4. Let x ∼ N(0, σ2
xId), for any fixed ṽ ∈ Rd, it holds that E

[
x sign

(
⟨x, ṽ⟩

)]
= σx

√
2
π ·

ṽ
∥ṽ∥2

.

Proof of Lemma E.4. Let Ã = [ṽ/∥ṽ∥2, ξ′2, · · · , ξ′d] be an orthogonal matrix, which is defined
similarly with Lemma E.1. Then by a similar method, we obtain that,

x sign
(
⟨x, ṽ⟩

)
= sign

(
⟨x, ṽ⟩

)
·
〈 ṽ

∥ṽ∥2
,x
〉
· ṽ

∥ṽ∥2
+

d∑
i=2

sign
(
⟨x, ṽ⟩

)
· ⟨ξ′i,x⟩ · ξ′i.

Note that ⟨ ṽ
∥ṽ∥2

,x⟩ and ⟨ξi,x⟩ for i ∈ {2, · · · , d} are i.i.d normal random variables with mean 0
and variance σ2

x, therefore we have

E
[
x sign

(
⟨x, ṽ⟩

)]
= E

[
sign

(
⟨x, ṽ⟩

)
·
〈 ṽ

∥ṽ∥2
,x
〉]

· ṽ

∥ṽ∥2
= σx

√
2

π
· ṽ

∥ṽ∥2
.

This completes the proof.

Lemma E.5. Let z1 ∼ N(0, σ2
1) and a fixed scalar a, then it holds that

1. If a < 0, then

max

{√
2

πe
eσ1a,

√
2

π

( 1

−σ1a
− 1

−σ3
1a

3

)}
≤ E

[
exp(a|z1|)

]
≤ min

{
2,

√
2

π

1

−σ1a

}
.

2. If a ≥ 0, then

e
σ2
1a2

2 ≤ E
[
exp(a|z1|)

]
≤ 2e

σ2
1a2

2 .
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Proof of Lemma E.5. The probability density function for |z1| is f|z1|(x) =

1
σ1

√
2
π e

−x2/(2σ2
1)1{x≥0}. By this density function, we can calculate E

[
exp(a|z1|)

]
as,

E
[
exp(a|z1|)

]
=

1

σ1

√
2

π

∫ ∞

0

e
− x2

2σ2
1
+ax

dx =
1

σ1

√
2

π
e

σ2
1a2

2

∫ ∞

0

e−
1
2

(
x
σ1

−σ1a
)2

dx = 2e
σ2
1a2

2 P(z ≥ −σ1a),

where z is a standard Gaussian random variable. If a ≥ 0, it holds that 1
2 ≤ P(z ≥ −σ1a) ≤ 1.

Then we can obtain that

e
σ2
1a2

2 ≤ E
[
exp(a|z1|)

]
≤ 2e

σ2
1a2

2 .

When a < 0, by applying the tail-bound of standard Gaussian random variables and Mills ratio
simultaneously, we have

1√
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σ2
1a2

2

( 1

−σ1a
− 1
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3

)
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Therefore, we derive that,√
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2 ,

which further implies that E
[
exp(a|z1|)

]
≥
√

2
πee

σ1a. Combining all preceding results, we finish
the proof.

Lemma E.6. Let z1 ∼ N(0, σ2
1) and two fixed positive scalars a, b, then it holds that

E
[
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]
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√
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1a

3
− 1

σ1a+ b/σ1
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Proof of Lemma E.6. The probability density function for |z1| is f|z1|(x) =

1
σ1

√
2
π e

−x2/(2σ2
1)1{x≥0}. By this density function, we can calculate E

[
exp(−a|z1|)1|z1|≤b

]
as,

E
[
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]
=
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e
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)
,

where z is a standard Gaussian random variable. By applying the Mills ratio, we have

P(z ≥ −σ1a) ≥
1√
2π

e−
σ2
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2

( 1

σ1a
− 1
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1a

3

)
,

and

P(z ≥ σ1a+ b/σ1) ≤
1√

2π(σ1a+ b/σ1)
e−

(σ1a+b/σ1)2

2

Therefore, we finally derive that,

E
[
exp(−a|z1|)1|z1|≤b

]
≥
√
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π

(
1

σ1a
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σ3
1a

3
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exp

(
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2σ2
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which completes the proof.

Lemma E.7. Let z1 ∼ N(0, σ2
1) and a fixed scalar a, then it holds that
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1. If a ≥ 0, then

lb1(σ1, a) ≤ E
[
|z1| exp(−a|z1|)

]
≤
√

2

π

1

σ1a2
, (E.1)

where lb1(σ1, a) = max

{
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√
2
π − 2σ2

1a,
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2
√
2eπ
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.

2. If a < 0, then
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√
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2 ≤ E
[
|z1| exp(−a|z1|)

]
≤ σ1

√
2

π
− 2σ2

1ae
σ2
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2 . (E.2)

Proof of Lemma E.7. Similar to Lemma E.5, we can calculate E
[
|z1| exp(−a|z1|)

]
as

E
[
|z1| exp(−a|z1|)

]
=
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√
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∫ ∞
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]
, (E.3)

where z is a standard Gaussian random variable. When a ≥ 0, by applying tail-bound of standard
Gaussian random variables and Mills ratio simultaneously, we have

1√
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e−
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2
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(E.4)

Applying the result of (E.4) into (E.3), we finally get

max
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√
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√
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Besides, we also have

E
[
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]
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2eπ
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Combining the results of (E.5) and (E.6), we finishes the proof of (E.1). When a < 0, it’s obvious
that 1/2 ≤ P(z ≥ σ1a) ≤ 1. Replacing this results in (E.3), we finish the proof for (E.2)

Lemma E.8. Let z1 ∼ N(0, σ2
1) and a non-negative fixed scalar a, then it holds that

E
[
z21 exp(a|z1|)

]
≤ 2σ2

1(a
2σ2

1 + 1)e
σ2
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2

Proof of Lemma E.8. Based on the density function of |z1|, we can calculate that

E
[
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]
=

1

σ1

√
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where z is a standard Gaussian random variable. This finishes the proof.

Lemma E.9. For any Gaussian random variable z with mean 0, it holds that E[−ℓ′(z)] ≥ 1/4.

Proof of Lemma E.9. It can be derived that

E[−ℓ′(z)] = E
[
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]
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[
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]
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]
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4
,

which finishes the proof.

Lemma E.10. Let z1 ∼ N(0, σ2
1) and z2 ∼ N(0, σ2

2) be two independent Gaussian random vari-
ables, and a, b be two scalars. Then it holds that,

1. If a ≥ 0, then
1

4
lb1(σ1, a) ≤ −E
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2. If a < 0, then
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√
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Proof of Lemma E.10. By the law of total expectation, we have −E
[
ℓ′(a|z1|+ bz2)|z1|

]
= E

[
E
[
−

ℓ′(a|z1| + bz2)|z1|
∣∣z2]]. Since z1, z2 are independent, we still have z1|z2 ∼ N(0, σ1). We first

prove the case for a ≥ 0. The lower-bound can be calculated as

E
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]
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4
lb1(σ1, a), (E.9)

where the last inequality holds by applying Lemma E.7 and Lemma E.9, and lb1(σ1, a) is defined in
Lemma E.7. On the other hand, we have
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where the last inequality holds by applying Lemma E.7 and moment-generating function of Gaussian
random variables. Besides, we also have

−E
[
ℓ′(a|z1|+ bz2)|z1|

]
≤ E

[
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]
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√
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. (E.11)

41



2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Combining (E.9), (E.10) and (E.11), we finish the proof for (E.7). Next, we prove the case for a < 0,
and (E.11) still holds for a < 0. Besides by Lemma E.9, we can obatin that

−E
[
ℓ′(a|z1|+ bz2)|z1|

]
≥ −E

[
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]
E
[
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]
≥ σ1

4

√
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π
. (E.12)

Combining (E.11) and (E.12), we finish the proof for (E.8).

Lemma E.11. Let z1 ∼ N(0, σ2
1), z2 ∼ N(0, σ2

2) and z3 ∼ N(0, σ2
3) be three independent Gaus-

sian random variables, and a, b, c be three non-negative scalars. Then it holds that

lb2(σ1, σ2, σ3, a, b, c) ≤ −E[ℓ′(a|z1|+ bz2 + cz3)z3] ≤ ub2(σ1, σ2, σ3, a, b, c), (E.13)

where
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and
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Proof of Lemma E.11. Similarly, by the law of total expectation, we have −E
[
ℓ′(a|z1| + bz2 +

cz3)z3
]
= E

[
E
[
− ℓ′(a|z1| + bz2 + cz3)z3

∣∣z1, z2]]. Notice that −ℓ′ is a decreasing function and

z3 has a zero-centered symmetric density function. Hence, we obtain that E
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Since −ℓ′ is Lipschitz continuous with 1
4 and the value of −ℓ′ is always in (0, 1), we have
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On the other hand, we also have
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By applying result of (E.16) in (E.14) and Lemma E.5, we obtain

E
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where the last inequality holds because E
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By applying result of (E.18), Lemma E.5 and Lemma E.7 in (E.14), we have
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Moreover, we can also obtain that
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By applying result of (E.20), Lemma E.5 and Lemma E.7 in (E.14), we have
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Combining (E.15), (E.17), (E.19), and (E.21), we finish the proof for (E.13).

The proofs for the following Lemmas are very similar to that of Lemma E.11, while we still include
them here for completeness.
Lemma E.12. Let z1 ∼ N(0, σ2

1), z2 ∼ N(0, σ2
2), z3 ∼ N(0, σ2

3), and z4 ∼ N(0, σ2
4) be four

independent Gaussian random variables, and a1, a2, a3, a4 be four non-negative scalars. Then it
holds that

lb3(σ1, σ2, σ3, σ4, a1, a2, a3, a4) ≤ −E[ℓ′(a1|z1|+ a2z2 + a3z3 + a4z4)z
2
3z4] ≤ ub3(σ1, σ2, σ3, σ4, a1, a2, a3, a4),

(E.22)

where

lb3(σ1, σ2, σ3, σ4, a1, a2, a3, a4) = max

{
− a4σ

2
3σ

2
4

4
,−σ2

3σ4√
2π

,−4

√
2

π

σ2
3σ

2
4a4(a

2
3σ

2
3 + 1)

σ2a2
e

σ2
1a2

1+σ2
3a2

3+σ2
4a2

4
2

}
,

and
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Proof of Lemma E.12. By the law of total expectation, we have −E[ℓ′(a|z1| + bz2 + cz3 +

dz4)z
2
3z4] = E

[
z23E[−ℓ′(a|z1| + bz2 + cz3 + dz4)z4

∣∣z1, z2, z3]]. Notice that −ℓ′ is a decreas-
ing function and z4 has a zero-centered symmetric density function. Hence, we obtain that
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∣∣z1, z2, z3] ≤ 0. Specifically, we have
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=E
[
− ℓ′(a1|z1|+ a2z2 + a3z3 + a4z4)z41{z4≥0}

∣∣z1, z2, z3]
+ E

[
− ℓ′(a1|z1|+ a2z2 + a3z3 + a4z4)z41{z4<0}

∣∣z1, z2, z3]
=− E

[(
− ℓ′(a1|z1|+ a2z2 + a3z3 − a4z4) + ℓ′(a1|z1|+ a2z2 + a3z3 + a4z4)

)
z41{z4≥0}

∣∣z1, z2, z3].
(E.23)

Since −ℓ′ is Lipschitz continuous with 1
4 and the value of −ℓ′ is always in (0, 1), we have

− E
[(

− ℓ′(a1|z1|+ a2z2 + a3z3 − a4z4) + ℓ′(a1|z1|+ a2z2 + a3z3 + a4z4)
)
z41{z4≥0}

∣∣z1, z2, z3]
≥−min

{
E
[
a4z

2
41{z4≥0}/2

∣∣z1, z2, z3],E[z41{z4≥0}
∣∣z1, z2, z3]} = max

{
− a4σ

2
4

4
,− σ4√

2π

}
.

Then we have

−E[ℓ′(a1|z1|+ a2z2 + a3z3 + a4z4)z
2
3z4] ≥ max

{
− a4σ

2
4

4
,− σ4√

2π

}
E[z23 ] = max

{
− a4σ

2
3σ

2
4

4
,−σ2

3σ4√
2π

}
.

(E.24)

On the other hand, we have

− ℓ′(a1|z1|+ a2z2 + a3z3 − a4z4) + ℓ′(a1|z1|+ a2z2 + a3z3 + a4z4)

=
1

1 + ea1|z1|+a2z2+a3z3−a4z4
− 1

1 + ea1|z1|+a2z2+a3z3+a4z4

=
ea1|z1|+a2z2+a3z3(ea4z4 − e−a4z4)(

1 + ea1|z1|+a2z2+a3z3−a4z4
)(
1 + ea1|z1|+a2z2+a3z3+a4z4

)
≥ ea1|z1|+a2z2+a3z3(ea4z4 − e−a4z4)(

ea1|z1| + ea1|z1|+a2z2+a3z3−a4z4
)(
ea1|z1| + ea1|z1|+a2z2+a3z3+a4z4

)
=e−a1|z1|

ea4z4 − e−a4z4

ea4z4 + e−a4z4 + ea2z2+a3z3 + e−a2z2−a3z3

≥e−a1|z1|
ea4z4 − e−a4z4

ea4z4 + e−a4z4 + ea2z2+a3z3 + e−a2z2−a4z3
1{z4≥ 1

a4
}1{|z2|≤ 1

2a2
}1{|z3|≤ 1

2a3
}

≥e−a1|z1|
e− e−1

2(e+ e−1)
1{z4≥ 1

a4
}1{|z2|≤ 1

2a2
}1{|z3|≤ 1

2a3
}

≥1

3
e−a1|z1|1{z4≥ 1

a4
}1{|z2|≤ 1

2a2
}1{|z3|≤ 1

2a3
}. (E.25)

By applying result of (E.25) in (E.23) and Lemma E.5, we obtain

E
[
− ℓ′(a1|z1|+ a2z2 + a3z3 + a4z4)z4

]
≤ −1

3
E
[
e−a1|z1|

]
E
[
z41{z4≥ 1

a4
}
]
E
[
z231{|z3|≤ 1

2a3
}
]
P
(
|z2| ≤

1

2a2

)
≤− σ4

192π3a2a33σ2σ3
max

{
e−σ1a1−1/2,

1

σ1a1
− 1

σ3
1a

3
1

}
e
− 1

8σ2
2a2

2
− 1

8σ2
3a2

3
− 1

2σ2
4a2

4 , (E.26)

where the last inequality holds because E
[
z41{z4≥1/a4}

]
= 1

σ4

√
2π

∫∞
1/a4

xe
− x2

2σ2
4 dx = σ4√

2π
e
− 1

2a2
4σ2

4 ,

E
[
z231{|z3|≤ 1

2a3
}
]

= 1
σ3

√
2π

∫ 1
2a3

− 1
2a3

x2e
− x2

2σ2
3 dx ≥ 1

32a33σ3

√
2π

e
− 1

8σ2
3a2

3 , and P(|z2| ≤ 1
2a2

) =

1
σ2

√
2π

∫ 1
2a2

− 1
2a2

e
− x2

2σ2
2 dx ≤ 1

a2σ2

√
2π

e
− 1

8σ2
2a2

2 . Similarly, we also have

− ℓ′(a1|z1|+ a2z2 + a3z3 − a4z4) + ℓ′(a1|z1|+ a2z2 + a3z3 + a4z4)

=
1

1 + ea1|z1|+a2z2+a3z3−a4z4
− 1

1 + ea1|z1|+a2z2+a3z3+a4z4

=
ea1|z1|+a2z2+a3z3(ea4z4 − e−a4z4)(

1 + ea1|z1|+a2z2+a3z3−a4z4
)(
1 + ea1|z1|+a2z2+a3z3+a4z4

)
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≤ ea1|z1|+a2z2+a3z3(ea4z4 − e−a4z4)(
1 + ea2z2+a3z3−a4z4

)(
1 + ea2z2+a3z3+a4z4

) = ea1|z1|
ea4z4 − e−a4z4

ea4z4 + e−a4z4 + ea2z2+a3z3 + e−a2z2−a3z3

≤ea1|z1|
ea4z4 − e−a4z4

ea2z2+a3z3 + e−a2z2−a3z3
≤ ea1|z1|e−|a2z2+a3z3|(ea4z4 − e−a4z4) ≤ ea1|z1|e−a2|z2|ea3|z3|(ea4z4 − e−a4z4)

(E.27)
By applying result of (E.27), Lemma E.5, Lemma E.7 and Lemma E.8 in (E.23), we have

E[−ℓ′(a1|z1|+ a2z2 + a3z3 + a4z4)z
2
3z4] ≥ −E

[
ea1|z1|

]
E
[
e−a2|z2|

]
E
[
z23e

a3|z3|
]
E
[
z4(e

a4z4 − e−a4z4)1{z4≥0}
]

≥ −4

√
2

π

σ2
3σ

2
4a4(a

2
3σ

2
3 + 1)

σ2a2
e

σ2
1a2

1+σ2
3a2

3+σ2
4a2

4
2 .

(E.28)
Combining (E.24), (E.26), and (E.28), we finish the proof for (E.22).

Lemma E.13. Let z1 ∼ N(0, σ2
1), z2 ∼ N(0, σ2

2), z3 ∼ N(0, σ2
3), z4 ∼ N(0, σ2

4) and z5 ∼
N(0, σ2

5) be five independent Gaussian random variables, and a1, a2, a3, a4, a5 be five non-negative
scalars. Then it holds that

− E[ℓ′(a1|z1|+ a2z2 + a3z3 + a4z4 + a5z5)z3z4z5] ≥ −8

√
2

π

1

σ2a2
e

σ2
1a2

1
2

5∏
i=3

(
σi√
2π

+ σ2
i aie

σ2
i a2

i
2

)
;

− E[ℓ′(a1|z1|+ a2z2 + a3z3 + a4z4 + a5z5)z3z4z5] ≤ 8

√
2

π

1

σ2a2
e

σ2
1a2

1
2

5∏
i=3

(
σi√
2π

+ σ2
i aie

σ2
i a2

i
2

)
.

(E.29)

Proof of Lemma E.13. By the law of total expectation, we have
− E[ℓ′(a1|z1|+ a2z2 + a3z3 + a4z4 + a5z5)z3z4z5]

=E
[
E[−ℓ′(a1|z1|+ a2z2 + a3z3 + a4z4 + a5z5)z3z4z5

∣∣z3, z4, z5]]
=E

[
E[−ℓ′(a1|z1|+ a2z2 + a3z3 + a4z4 + a5z5)z3z41{z3z4≥0}z5

∣∣z3, z4, z5]]︸ ︷︷ ︸
1⃝

+ E
[
E[−ℓ′(a1|z1|+ a2z2 + a3z3 + a4z4 + a5z5)z3z41{z3z4<0}z5

∣∣z3, z4, z5]]︸ ︷︷ ︸
2⃝

Since −ℓ′ is a decreasing function and z5 has a zero-centered symmetric density function. We can
conclude that 1⃝ ≤ 0 and 2⃝ ≥ 0, and

1⃝ ≤ −E[ℓ′(a1|z1|+ a2z2 + a3z3 + a4z4 + a5z5)z3z4z5] ≤ 2⃝.

Next, we provide a lower bound for 1⃝ and an upper bound for 2⃝. Similar to the proof of
Lemma E.12, we have

1⃝ ≥ −E
[
ea1|z1|

]
E
[
e−a2|z2|

]
E
[
z3z4e

a3|z3|+a4|z4|1{z3z4≥0}
]
E
[
z5e

a5z51{z5≥0}
]

= −2E
[
ea1|z1|

]
E
[
e−a2|z2|

]
E
[
z3e

a3z31{z3≥0}
]
E
[
z4e

a4z41{z4≥0}
]
E
[
z5e

a5z51{z5≥0}
]

≥ −8

√
2

π

1

σ2a2
e

σ2
1a2

1
2

5∏
i=3

(
σi√
2π

+ σ2
i aie

σ2
i a2

i
2

)
.

The last inequality is derived by applying Lemma E.5, Lemma E.7 and Lemma E.8. On the other
hand, we can obtain that

2⃝ ≤ −E
[
ea1|z1|

]
E
[
e−a2|z2|

]
E
[
z3z4e

a3|z3|+a4|z4|1{z3z4<0}
]
E
[
z5e

a5z51{z5≥0}
]

= 2E
[
ea1|z1|

]
E
[
e−a2|z2|

]
E
[
z3e

a3z31{z3≥0}
]
E
[
z4e

a4z41{z4≥0}
]
E
[
z5e

a5z51{z5≥0}
]

≤ 8

√
2

π

1

σ2a2
e

σ2
1a2

1
2

5∏
i=3

(
σi√
2π

+ σ2
i aie

σ2
i a2

i
2

)
.

This finishes the proof.
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Lemma E.14. Let z1, z2, z3 be three standard Gaussian random variables, and zi, zj are either

independent or zi = zj for i ̸= j. Then it holds that E
[
|z1z2z3|

]
≤ 2
√

2
π .

Proof of Lemma E.13. There are three possible cases:

1. z1, z2, z3 are all independent. Then E
[
|z1z2z3|

]
= E

[
|z1|
]
E
[
|z2|
]
E
[
|z3|
]
= 2

π

√
2
π

2. Two of z1, z2, z3 are equal while another one is independent with these two random vari-
ables. W.L.O.G, we assume z1 = z2 and z3 is independent with both z1, z2. Then

E
[
|z1z2z3|

]
= E

[
z21
]
E
[
|z3|
]
=
√

2
π

3. z1, z2, z3 are all equal. Then E
[
|z1z2z3|

]
= E

[
|z1|3

]
= 2
√

2
π

This finishes the proof.

E.3 CONCENTRATION RESULTS

Lemma E.15. Let z1, z2, · · · , zD
i.i.d.∼ N(0, σ2

x). Then with probability at least 1 −√
2
π
D3/4

c1
e−c

2
1

√
D/2, it holds that |zi| ≤ c1σxD

1/4 for all i ∈ [D] and any constant c1.

Proof of Lemma E.15. By Mills ratio, we can obtain that

P
(
|zi| > c1σxD

1/4
)
≤
√

2

π

1

c1D1/4
exp

(
− c21

√
D

2

)
.

By applying a union bound over all i ∈ [D], we complete the proof.

Lemma E.16. For x1,x2, · · · ,xD defined in Definition 2.1, it holds that

∥xj∥2 ≤ σx
√
d+ σx

√
D

with probability at least 1−De−
D
2 for all j ∈ [D].

Proof of Lemma E.16. Since ∥ · ∥2 is 1-Lipschitz continuous, then by Theorem 2.26 in Wainwright
(2019), we can obtain that

P
(
∥xj∥2 − E

[
∥xj∥2

]
≥ σx

√
D
)
≤ e−

D
2 .

Besides, by Jensen’s inequality, we also have

E
[
∥xj∥2

]
≤
√
E
[
∥xj∥22

]
= σx

√
d.

Applying a union-bound over all j ∈ [D] completes the proof.

Lemma E.17. For x(i)
j defined in Definition 3.1, it holds that∣∣⟨v∗,x

(i)
j ⟩
∣∣ ≤ cσ̃xD

1/4∥∥x(i)
j

∥∥
2
≤

√
2σ̃x

(√
d+

√
D
)

with probability at least 1 − ne−c
′√D for all i ∈ [n] and j ∈ [D], where c is any positive absolute

constant, and c′ is positive constant solely depending on c.
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Proof of Lemma E.17. By definition of ∥ · ∥ψ2
, we have

∣∣E[x(i)
j,k]
∣∣ ≤ √

2σ̃x and E[x(i)
j,k]

2 ≤ 2σ̃2
x for

all i ∈ [n], j ∈ [D] and k ∈ [d]. By Hoeffding inequality, we have

P

(∣∣∣∣∣∣⟨v∗,x
(i)
j ⟩
∣∣− E

[∣∣⟨v∗,x
(i)
j ⟩
∣∣]∣∣∣∣ ≥ cσ̃xD

1/4

)
≤ 2 exp

(
− c2

√
D

2

)
.

Besides, by Bernstein’s inequality, we also have

P

(∣∣∣∣∥∥x(i)
j

∥∥2
2
− E

[∥∥x(i)
j

∥∥2
2

]∣∣∣∣ ≥ 2̃σ2
xD

)
≤ 2 exp(−c′′D), (E.30)

where c′′ is an absolute constant. Applying a union-bound over all i ∈ [n] and j ∈ [D] completes
the proof.

E.4 ORTHOGONALITY AND NORM OF DISCRETE SINE TRANSFORM

Lemma E.18. For positional encodings p1,p2, · · · ,pD defined in (2.1), it holds that ∥pj∥ =√
D+1
2 for all j ∈ [D] and ⟨pj ,pj′⟩ = 0 for all j ̸= j′ ∈ [D].

Proof of Lemma E.18. This lemma is equal to prove that

D∑
j=1

sin

(
πkj

D + 1

)
sin

(
πk′j

D + 1

)
=

D + 1

2
δkk′ , ∀ k, k′ ∈ [D],

where δkk′ = 1 when k = k′ and δkk′ = 0 when k ̸= k′. Applying the form sin(x) = {exp(ix) −
exp(−ix)}/(2i), we can rewrite the left side above by

D∑
j=1

sin

(
πkj

D + 1

)
sin

(
πk′j

D + 1

)
= −1

4

D∑
j=0

{
exp

(
iπ(k + k′)

D + 1
j

)
− exp

(
iπ(k − k′)

D + 1
j

)

− exp

(
− iπ(k − k′)

D + 1
j

)
+ exp

(
− iπ(k + k′)

D + 1
j

)}
.

When k + sk′ ̸= 0, the geometric partial sum shows that

D∑
j=0

exp

(
± iπ(k + sk′)

D + 1
j

)
=

exp{±iπ(k + sk′)} − 1

exp{±iπ(k + sk′)/(D + 1)} − 1
,

where s ∈ {+1,−1}. In this case, it is required that k + sk′ ̸= 0. We have that when k + sk′ ̸= 0,
if k+ sk′ is even, the terms will vanish and then the equation equals 0. When k+ sk′ is odd, it must
hold that one of k and k′ is odd and the other is even, under this case exp(±iπ(k+ sk′)) = −1, the
term compensates as

1

exp{ix} − 1
+

1

exp{−ix} − 1
= −1.

This indicates that the equation above equals 0. We conclude that when k + sk′ ̸= 0,

D∑
j=1

sin

(
πkj

D + 1

)
sin

(
πk′j

D + 1

)
= 0.

We consider the case k+ sk′ = 0. By the definition, it only holds when s = −1 and k = k′. In such
case, simple algebra shows that

D∑
j=0

sin

(
πkj

D + 1

)
sin

(
πk′j

D + 1

)
=

D + 1

2
,

which completes the proof of Lemma E.18.
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E.5 SEQUENCE ITERATION BOUND

Lemma E.19. Suppose that a positive sequence xt, t ≥ 0 follows the iterative formula

xt+1 = xt + cx−a
t

for some positive constant a, c > 0. Then it holds that(
(a+ 1)ct+ xa+1

0

) 1
a+1 ≤ xt ≤ cx−a

0 +
(
(a+ 1)ct+ xa+1

0

) 1
a+1

for all t ≥ 0.

Proof of Lemma E.19. We first show the lower bound of xt. Consider a continuous-time sequence
xt, t ≥ 0 defined by the integral equation with the same initialization.

xt = x0 + c ·
∫ t

0

x−a
τ dτ, x0 = x0. (E.31)

Note that xt is obviously an increasing function of t. Therefore we have

xt+1 = xt + c ·
∫ t+1

t

x−a
τ dτ

≤ xt + c ·
∫ t+1

t

x−a
t dτ

= xt + cx−a
t

for all t ∈ N. Comparing the above inequality with the iterative formula of {xt}, we conclude by
the comparison theorem that xt ≥ xt for all t ∈ N. Note that (E.31) has an exact solution

xt =
(
(a+ 1)ct+ xa+1

0

) 1
a+1

Therefore we have

xt ≥
(
(a+ 1)ct+ xa+1

0

) 1
a+1

for all t ∈ N, which completes the first part of the proof. Now for the upper bound of xt, we have

xt = x0 + c ·
t−1∑
τ=0

x−a
τ

≤ x0 + c ·
t∑

τ=0

(
(a+ 1)cτ + xa+1

0

)− a
a+1

= x0 +
c

xa0
+ c ·

t∑
τ=1

(
(a+ 1)cτ + xa+1

0

)− a
a+1

≤ x0 +
c

xa0
+ c ·

∫ t

0

(
(a+ 1)cτ + xa+1

0

)− a
a+1 dτ,

where the second inequality follows by the lower bound of xt as the first part of the result of this
lemma. Therefore we have

xt ≤ x0 + cx−a
0 +

(
(a+ 1)ct+ xa+1

0

) 1
a+1 − x0

= cx−a
0 +

(
(a+ 1)ct+ xa+1

0

) 1
a+1 ,

which completes the proof of Lemma E.19.
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Figure 4: Figures on training loss, cosine similarity and attention matrix. The first line presents the
training results with j∗ = 30. The second line shows the training results for j∗ = 70.

F ADDITIONAL SIMULATION RESULTS.

In this section, we present additional simulation results with larger numbers of variable groups D
and higher variable dimensions d. Specifically, we generate data according to Definition 2.1, setting
σx = 0.25 and (n, d,D) = (10000, 100, 100). We consider two scenarios with j∗ = 30 and
j∗ = 70, respectively, and investigate whether the attention matrix effectively concentrates on the
specified j∗, even under high-dimensional settings designed to mimic the scale of image data. The
vector v∗ is randomly generated and kept fixed throughout the simulations.

Due to the large amount of sample size n, we consider the SGD training with batch size 64. We
set the learning rate η = 0.01 and train the model for 100 epochs. During the training process,

we plot training loss and the cosine similarity ⟨v(t)
1 ,v∗⟩

∥v(t)
1 ∥∥v∗∥

. After the training loss converges at the

final epoch, we calculate the attention score matrix for each sample and display the heatmap of the
average attention score matrix across all samples.

As shown in Figure 4, the training loss steadily decreases, eventually approaching zero after suffi-
cient training iterations, and v

(t)
1 rapidly aligns with the direction of v∗ even when d and D have a

higher dimension. More interestingly, when the value of j∗ varies, the attention mechanism consis-
tently adapts to the target index. For instance, when j∗ = 30, the attention matrix sharply focuses
on the 30th row and effectively isolates the label-relevant group. The focus shifts with the same
precision to j∗ = 70. This behavior highlights the model’s ability to redirect its attention to the
specified index, even in high-dimensional settings designed to mimic the complexity of image data.

G REAL DATA EXPERIMENTS

In this section, we conduct experiments using the CIFAR-10 dataset, where each image has a shape
of 3× 32× 32, representing three color channels (RGB). For this experiment, we select two labels,
“Frog” and “Airplane,” and use 500 images from each label. To prepare the input for our framework,
each CIFAR-10 image is embedded as either the first patch (positioned at (1,1)) or the 25th patch
(positioned at (4,4)) in a grid, while the remaining 48 patches are filled with noise. These noise
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(a) “Frog” Images at position (1,1) (b) “Airplane” Images at position (1,1)

(c) “Frog” Images at position (4,4) (d) “Airplane” Images at position (4,4)

Figure 5: Examples of embedded images. Figure 5(a) and Figure 5(b) show images labeled as
“Frog” and “Airplane,” respectively, embedded at position (1,1) with a token index of 1. Figure 5(c)
and Figure 5(d) show images labeled as “Frog” and “Airplane,” respectively, embedded at position
(4,4) with a token index of 25.

patches, each of size 3 × 32 × 32, are generated using random values sampled from a Gaussian
distribution with a mean of 0 and a standard deviation of 1/3. This arrangement forms a 7× 7 grid
(49 patches in total), resulting in a final input with dimensions of 3 × 224 × 224. Examples of the
processed images are shown in Figure 5.

We apply a one-layer transformer to learn from the processed images. Each patch, including the
original CIFAR-10 image and the 48 noise patches, is flattened into a vector of size 3× 32× 32 =
3072, resulting in a total of 49 vectors corresponding to the 7 × 7 grid of patches. These vectors,
each with a dimension of 3072, form the input sequence for the transformer model. As shown in
Figure 5(a) and Figure 5(b), images positioned at (1,1) correspond to j∗ = 1, while Figure 5(c) and
Figure 5(d) show images positioned at (4,4), corresponding to j∗ = 25. In this setup, d = 3072
represents the dimensionality of the data, and D = 49 denotes the number of variable groups. The
transformer model is initialized to 0, and we train it using a batch size of 64 and a learning rate of
10−3. For comparison, we also present results from directly applying logistic regression to the clean
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(f) Testing Accuracy at position (4,4)

Figure 6: Experiment results on training loss, attention matrix and testing accuracy. The first column
shows the results when images have position at (1,1). The second column shows the results when
images have position at (4,4).

data points, where each CIFAR-10 image is flattened into a single vector of size 3072, and logistic
regression is performed on these single vectors.

The results of our experiment are presented in Figures 6. Figures 6(a) and 6(b) show the training loss
over 100 epochs using gradient descent. The plot demonstrates a steady decrease in the loss during
training, which closely aligns with the decreasing trend observed in the clean logistic regression
model. This indicates the effectiveness of the optimization process and the transformer model’s
ability to focus on the true images. Figures 6(c) and 6(d) display the attention matrices for the
trained images, further confirming the model’s ability to focus on relevant features. For images
positioned at (1,1) with j∗ = 1, the attention matrix shows that the model focuses predominantly
on the first row, corresponding to the original CIFAR-10 image. Similarly, for images positioned at
(4,4) with j∗ = 25, the attention matrix highlights that the model concentrates on the 25th row, again
corresponding to the true image. Figures 6(e) and 6(f) demonstrate the generalization performance
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of the transformer on an unseen test dataset. The results show that the transformer maintains strong
performance, further verifying its ability to effectively generalize to new data.
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