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RETI-DIFF: ILLUMINATION DEGRADATION
IMAGE RESTORATION WITH RETINEX-BASED
LATENT DIFFUSION MODEL

Anonymous authors
Paper under double-blind review

Input OursDiff-Retinex Ground TruthRetformer

Figure 1: Results of Retinex-based cutting-edge image restoration methods, where our Reti-Diff
can better highlight details and correct color distortions. The dashed boxes indicate failure cases or
artifacts produced by existing methods, which can be properly addressed by our approach.

ABSTRACT

Illumination degradation image restoration (IDIR) techniques aim to improve
the visibility of degraded images and mitigate the adverse effects of deterio-
rated illumination. Among these algorithms, diffusion models (DM) have shown
promising performance but are often burdened by heavy computational demands
and pixel misalignment issues when predicting the image-level distribution. To
tackle these problems, we propose to leverage DM within a compact latent space
to generate concise guidance priors and introduce a novel solution called Reti-
Diff for the IDIR task. Specifically, Reti-Diff comprises two significant compo-
nents: the Retinex-based latent DM (RLDM) and the Retinex-guided transformer
(RGformer). RLDM is designed to acquire Retinex knowledge, extracting re-
flectance and illumination priors to facilitate detailed reconstruction and illumina-
tion correction. RGformer subsequently utilizes these compact priors to guide the
decomposition of image features into their respective reflectance and illumination
components. Following this, RGformer further enhances and consolidates these
decomposed features, resulting in the production of refined images with consistent
content and robustness to handle complex degradation scenarios. Extensive ex-
periments demonstrate that Reti-Diff outperforms existing methods on three IDIR
tasks, as well as downstream applications. 1

1 INTRODUCTION

Illumination degradation image restoration (IDIR) seeks to enhance the visibility and contrast of
degraded images while mitigating the adverse effects of deteriorated illumination, e.g., indefinite
noise and variable color deviation. IDIR has been investigated in various domains, including low-
light image enhancement (Cai et al., 2023), underwater image enhancement (Guo et al., 2023),
and backlit image enhancement (Liang et al., 2023). By addressing illumination degradation, the
enhanced images are expected to exhibit improved visual quality, making them more suitable for
decision-making or subsequent tasks like nighttime object detection and segmentation.

Traditional IDIR approaches (Fu et al., 2016; Ueng & Scharf, 1995) primarily rely on manually
crafted enhancement techniques with limited generalization capabilities. Leveraging the robust

1The source code will be made publicly available.
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Figure 2: Our Reti-Diff achieves a leading place in three IDIR tasks and the low-light object detec-
tion task, and outperforms the corresponding cutting-edge techniques on these tasks, where CLIP
and Diff-Re are short for CLIP-LIT (Liang et al., 2023), Diff-Retinex (Yi et al., 2023).

feature extraction capabilities of convolutional neural networks and transformers, a series of deep
learning-based methods (Cai et al., 2023; Jiang et al., 2021) have been proposed and have achieved
remarkable success in the IDIR domain. However, as depicted in Figs. 1 and 2, they still face chal-
lenges in complex illumination degradation scenarios due to their constrained restoration capacity.

To overcome this, deep generative models, like generative adversarial networks (He et al., 2023a),
have gained popularity for their generative abilities. Recently, the diffusion model (DM) (Yi et al.,
2023) has been introduced to the IDIR field for high-quality image restoration. However, existing
DM-based methods, e.g., Diff-Retinex (Yi et al., 2023) and GSAD (Jinhui et al., 2023), apply DM
directly to image-level generation, leading to two main challenges: (1) These methods incur high
computational costs, as predicting the image-level distribution requires a large number of inference
steps. (2) The enhanced results may exhibit pixel misalignment with the original clean image in
terms of restored details and local consistency. For example, as shown in Fig. 1, Diff-Retinex fails
to recover the car’s details in the top row and introduces severe artifacts in the bottom row.

To address the above challenges, we introduce a latent diffusion model (LDM) to solve the IDIR
problem. The computational burden is reduced by applying DM in the low-dimensional, compact
latent space. In addition, by integrating LDM with transformers, we prevent pixel misalignment in
generated images (see Fig. 1), a common issue in deep generative models. Unlike existing LDM-
based methods that rely solely on priors extracted from the RGB domain, our method, tailored to
the specific characteristics of IDIR tasks, empowers LDMs to extract Retinex information from
both the reflectance and illumination domains. This adaptation allows our method to generate high-
fidelity Retinex priors directly from low-quality input images. The compact priors preserve high-
quality information while minimizing the impact of degradation. Thus, our method simultaneously
enhances image details using the reflectance prior and corrects color distortions with the illumination
prior, resulting in visually appealing images with favorable downstream tasks.

With this inspiration, we present Reti-Diff, the first LDM-based solution to tackle the IDIR problem.
Reti-Diff, depicted in Fig. 3, consists of two primary components: the Retinex-based LDM (RLDM)
and the Retinex-guided transformer (RGformer). Initially, RLDM is employed to generate Retinex
priors, which are then integrated into RGformer to produce visually appealing results. To ensure
the generation of high-quality priors, we propose a two-phase training approach, wherein Reti-
Diff undergoes initial pretraining followed by subsequent RLDM optimization. In phase I, we
introduce a Retinex prior extraction (RPE) module to compress the ground-truth image into the
highly compact Retinex priors, namely the reflectance prior and the illumination prior. These priors
are then sent to RGformer to guide feature decomposition and the generation of reflectance and
illumination features. Afterward, RGformer employs the Retinex-guided multi-head cross attention
(RG-MCA) and dynamic feature aggregation (DFA) module to refine and aggregate the decomposed
features, ultimately producing enhanced images with coherent content and ensuring robustness and
generalization in extreme degradation scenarios. In phase II, we train RLDM in reflectance and
illumination domains to estimate Retinex priors from the low-quality image, with the constraint of
consistency with those extracted by RPE from the ground-truth image. Therefore, the extracted
Retinex priors can guide the RGformer in detail enhancement and illumination correction, resulting
in visually appealing results with favorable downstream performance.

Our contributions are summarized as follows:

• We propose a novel DM-based framework, Reti-Diff, for the IDIR task. To the best of our
knowledge, this is the first practice of the latent diffusion model to tackle the IDIR problem.

2
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• We propose to let RLDM learn Retinex knowledge and generate high-quality reflectance
and illumination priors from the low-quality input, which serve as critical guidance in detail
enhancement and illumination correction and can be integrated with various methods.

• We propose RGformer, which integrates extracted Retinex priors to decompose features
into reflectance and illumination components. Subsequently, RG-MCA and DFA are em-
ployed to refine and aggregate these decomposed features, ensuring robustness and gener-
alization in complex illumination degradation scenarios.

• Extensive experiments on four IDIR tasks verify our superiority, efficiency, and gener-
alizability to existing methods in terms of image quality and favorability in downstream
applications, including low-light object detection and image segmentation.

2 RELATED WORK

Illumination Degradation Image Restoration. Early IDIR methods mainly include three ap-
proaches: histogram equalization (HE) (Cheng & Shi, 2004), gamma correction (GC) (Huang et al.,
2012), and Retinex theory (Land, 1977). However, these methods still rely on hand-crafted priors,
limiting their generalization ability. With the development of deep learning, methods based on CNNs
and transformers (Cai et al., 2023; He et al., 2023a) have succeeded in IDIR. UNIE (Jin et al., 2022)
proposed a light-effect suppression network that leverages estimated light-effect layers to mitigate
excessive illumination. To improve visibility, NTD (Jin et al., 2023) introduced a nighttime dehazing
algorithm to suppress glow while enhancing low-light regions. Besides, Xue et al. (Xue et al., 2024)
introduced multi-modal visual-language information by integrating wavelet and Fourier transforms
with the CLIP-based model prior. To enhance generative capacity, Diff-Retinex (Yi et al., 2023) and
GSAD (Jinhui et al., 2023) introduced DM to the IDIR field by directly applying it to image-level
generation. However, they entail significant computational costs and may lead to pixel misalignment
with the original input, particularly concerning restored image details and local consistency.

Diffusion Models. Diffusion models (DMs) have verified great success in density estima-
tion (Kingma et al., 2021) and data generation (He et al., 2024a). Such a probabilistic generative
model adopts a parameterized Markov chain to optimize the lower variational bound on the likeli-
hood function, enabling them to generate target distributions with greater accuracy. Recently, DMs
have been introduced to solve the IDIR problem (Yi et al., 2023; Jinhui et al., 2023). However, when
directly applied to image-level generation, these methods bring computational burdens and pixel
misalignment. To overcome this, we employ LDM to estimate priors within a low-dimensional la-
tent space and then integrate these priors into the transformer-based framework, addressing the above
problems. Besides, unlike existing LDM-based methods (Xia et al., 2023; Chen et al., 2023) that
solely rely on priors extracted from the RGB domain, our method, tailored to the IDIR task, empow-
ers LDMs to extract Retinex information from both the reflectance and illumination domains. This
adaptation allows our method to generate high-fidelity compact Retinex priors directly from low-
quality input images but avoid the impact of degradation. By doing so, this novel approach enables
us to simultaneously enhance image details using the reflectance prior and correct color distortions
with the illumination prior, resulting in visually appealing results with favorable downstream tasks.

3 METHODOLOGY

In this paper, we propose Reti-Diff, the pioneering method based on Latent Diffusion Models (LDM)
for IDIR tasks. Reti-Diff is specifically tailored to address the challenges inherent in IDIR tasks by
leveraging high-quality Retinex priors extracted from both the illumination and reflectance domains
to guide the restoration process. This innovative approach utilizes the extracted Retinex prior repre-
sentation as dynamic modulation parameters, facilitating simultaneous enhancement of restoration
details through the reflectance prior and correction of color distortion via the illumination prior. This
ensures the generation of visually compelling results while positively impacting downstream tasks.

As shown in Fig. 3, our Reti-Diff comprises two parts: the Retinex-guided transformer (RGformer)
and the Retinex-based latent diffusion model (RLDM). To ensure the generation of high-quality
priors, Reti-Diff undergoes a two-phase training strategy, involving the initial pretraining of Reti-
Diff and the subsequent optimization of RLDM. In this section, we provide an in-depth explanation
of the two-phase training approach and elucidate the entire restoration process.

3
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Figure 3: Framework of Reti-Diff. In Phase I, we pretrain Reti-Diff with RGformer and RPE to
ensure the robust learning of RLDM and then optimize RLDM to generate high-quality Retinex
priors in Phase II, which guide RGformer in detail enhancement and illumination correction. In (a),
we omit the auxiliary decoder Da(•) for simplicity. In panel (c), we illustrate the use of RLDM to
extract the reflectance prior; the illumination prior can be extracted similarly. Zoom in for clarity.

3.1 PRETRAIN RETI-DIFF

We first pretrain Reti-Diff to encode the ground truth image into compact priors with Retinex prior
extraction (RPE) module and use the extracted Retinex priors to guide RGformer for restoration.

Retinex prior extraction module. Given the low-quality (LQ) image ILQ ∈ RH×W×3 and its
corresponding ground truth IGT ∈ RH×W×3, we initially decompose them into the reflectance
image R ∈ RH×W×3 and the illumination map L ∈ RH×W according to Retinex theory:

ILQ = RLQ ⊙ LLQ, IGT = RGT ⊙ LGT , (1)
where ⊙ is Hadamard product. Following URetinex (Wu et al., 2022), we use a pretrained decom-
posing network D(•) to decompose ILQ and IGT , comprising three Conv+LeakyReLU layers and
a Conv+ReLU layer. Then we concatenate the corresponding components of ground truth and LQ
image and use the RPE module RPE(•) to encode them into Retinex priors ZR ∈ R3C′

, ZL ∈ RC′
:

ZR = RPE(down(conca(RGT ,RLQ))), ZL = RPE(down(conca(LGT ,LLQ))), (2)
where conca(•) denotes concatenation and down(•) represents downsampling that is operated by
PixelUnshuffle. The Retinex priors, ZR and ZL, are then fed into RGformer to serve as dynamic
modulation parameters for detail restoration and color correction.

Retinex-guided transformer. RGformer mainly consists of two parts in each block, i.e., Retinex-
guided multi-head cross attention (RG-MCA) and dynamic feature aggregation (DFA) module. In
RG-MCA, we first split the input feature F ∈ RH̃×W̃×C̃ into two parts F1 ∈ RH̃×W̃×(3C̃/4)

and F2 ∈ RH̃×W̃×(C̃/4) along the channel dimension. Afterwards, we integrated ZR and ZL as
the corresponding dynamic modulation parameters to generate reflectance-guided feature FR ∈
RH̃×W̃×(3C̃/4) and illumination-guided feature FL ∈ RH̃×W̃×(C̃/4):

FR = Li1(ZR)⊙ Norm(F1) + Li2(ZR), FL = Li1(ZL)⊙ Norm(F2) + Li2(ZL), (3)
where Norm(•) is layer normalization. Li(•) means linear layer. Afterward, we aggregate global spa-
tial information by projecting FR into query Q = WQFR and key K = WKFL and transforming
FL into value V = WV FL, where W is the combination of a 1 × 1 point-wise convolution and a
3× 3 depth-wise convolution. We then perform cross-attention and get the output feature F̃:

F̃ = F+ SoftMax
(
QKT /

√
C̃
)
·V. (4)

By doing so, RG-MCA introduces explicit guidance to fully exploit Retinex knowledge at the fea-
ture level and use cross attention mechanism to implicitly model the Retinex theory and refine the
decomposed features, which helps to restore missing details and correct color distortion.
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Then we employ DFA for local feature aggregation. Apart from the 1 × 1 Conv and 3 × 3 depth-
wise Conv for information fusion, DFA adopts GELU, termed GELU(•), to ensure the flexibility of
aggregation (He et al., 2023b). Thus, given F̃ and Z, where Z = conca(ZR,ZL), the output F̂ is

F̂ = F̃+ GELU(W1F
′)⊙W2F

′, F′ = Li1(Z)⊙ Norm(F̃) + Li2(Z). (5)

Optimization. Having gotten the enhanced result IHQ, we propose a reconstruction loss with L1

norm ∥ • ∥1 to jointly train RPE and RGformer, which can facilitate the extraction of Retinex priors:
LRec = ∥IGT − IHQ∥1. (6)

To ensure that the separated features within RG-MCA capture reflectance and illumination knowl-
edge, we use an auxiliary decoder Da(•) with the same structure as that in (Locatello et al., 2020).
Da(•) takes F̃ as input and outputs the reconstructed reflectance image RRe and illumination map
LRe. For efficiency, we only apply Da(•) for the first transformer block in encoder to get RI

Re and
LI
Re and for the last block in decoder to get RL

Re and LL
Re. Da(•) is supervised by a Retinex loss:

LR = ∥RLQ −RI
Re∥1 + ∥LLQ − LI

Re∥1 + ∥RGT −RL
Re∥1 + ∥LGT − LL

Re∥1. (7)

By constraining the input and output ports, Eq. (7) ensures the preservation of essential Retinex in-
formation throughout the network. This integration not only facilitates the incorporation of Retinex
theory into the split features but also enhances the overall restoration capability.

In Phase I, the final loss LP1 is formulated with the assistance of a hyperparameter λ1 (λ1 = 1):
LP1 = LRec + λ1LR. (8)

3.2 RETINEX-BASED LATENT DIFFUSION MODEL

In Phase II, we train the RLDM to predict Retinex priors from the low-quality input, which are
expected to be consistent with that extracted by RPE from the ground-truth image. Unlike conven-
tional LDMs trained on the RGB domain, we introduce two RLDMs with a Siamese structure and
train them on distinct domains: the reflectance domain and the illumination domain. This approach,
grounded in Retinex theory, equips our RLDM to generate a more generative reflectance prior ẐR

to enhance image details, and a more harmonized illumination prior ẐL for color correction. The
compact priors retain high-quality information while effectively mitigating the effects of degrada-
tion. Note that RLDM is constructed upon the conditional denoising diffusion probabilistic models,
with both a forward diffusion process and a reverse denoising process. To simplify, we provide a
detailed derivation for ẐR herein, while that of ẐL can be found in the appendix.

Diffusion process. In the diffusion process, we first use the pretrained RPE to extract the reflectance
prior ZR, which is treated as the starting point of the forward Markov process, i.e., ZR = Z0

R. We
then gradually add Gaussian noise to ZR by T iterations and each iteration can be defined as:

q
(
Zt

R|Zt−1
R

)
= N

(
Zt

R;
√
1− βtZt−1

R , βtI
)
, (9)

where t = 1, · · · , T . Zt
R denotes the noisy prior at time step t, βt is the predefined factor that

controls the noise variance, and N is the Gaussian distribution. Following (Kingma & Welling,
2013), we define αt = 1− βt and ᾱt =

∏t
i=1 α

i, allowing us to simplify Eq. (9) as follows:

q
(
Zt

R|Z0
R

)
= N

(
Zt

R;
√
ᾱtZ0

R, (1− ᾱt)I
)
. (10)

Reverse process. In the reverse process, RLDM aims to extract the reflectance prior from pure
Gaussian noise. Thus, RLDM samples a Gaussian random noise map ZT

R and then gradually denoise
it to run backward from ZT

R to Z0
R with the corresponding mean µt and variance σt:

p
(
Zt−1

R |Zt
R,Z0

R

)
=N

(
Zt−1

R ;µt(Zt
R,Z0

R), (σt)2I
)
, (11)

where µt(Zt
R,Z0

R) = 1√
αt
(Zt

R − 1−αt
√
1−ᾱt ϵ) and (σt)2 = 1−ᾱt−1

1−ᾱt βt. ϵ is the noise in Zt
R and we

employ a denoising network ϵθ(•) to estimate θ. To operate in the latent space, we further introduce
another RPE module R̃PE(•) to extract the conditional reflectance vector VR ∈ R3C′

from the
reflectance image RLQ of the LQ image, i.e., VR = R̃PE(down(RLQ)). Therefore, the denoising
network can be represented by ϵθ (Z

t
R,VR, t). By setting the variance to 1− αt, we get

Zt−1
R =

1√
αt

(Zt
R− 1− αt

√
1− ᾱt

ϵθ(Z
t
R,VR, t))+

√
1− αtϵt, (12)
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LOL-v1 LOL-v2-real LOL-v2-synthetic SIDMethods Sources PSNR ↑ SSIM ↑ FID ↓ BIQE ↓ PSNR ↑ SSIM ↑ FID ↓ BIQE ↓ PSNR ↑ SSIM ↑ FID ↓ BIQE ↓ PSNR ↑ SSIM ↑ FID ↓ BIQE ↓
MIRNet (Zamir et al., 2020) ECCV20 24.14 0.835 71.16 47.75 20.02 0.820 82.25 41.18 21.94 0.876 40.18 36.29 20.84 0.605 81.37 40.63
EnGAN (Jiang et al., 2021) TIP21 17.48 0.656 153.98 35.82 18.23 0.617 173.28 51.06 16.57 0.734 93.66 45.59 17.23 0.543 77.52 33.47
RUAS (Liu et al., 2021) CVPR21 18.23 0.723 127.60 45.17 18.27 0.723 151.62 34.73 16.55 0.652 91.60 46.38 18.44 0.581 72.18 45.02
IPT (Chen et al., 2021) CVPR21 16.27 0.504 158.83 29.35 19.80 0.813 97.24 31.17 18.30 0.811 76.79 42.15 20.53 0.618 70.58 36.71
URetinex (Wu et al., 2022) CVPR22 21.33 0.835 85.59 30.37 20.44 0.806 76.74 28.85 24.73 0.897 33.25 33.46 22.09 0.633 71.58 38.44
UFormer (Wang et al., 2022) CVPR22 16.36 0.771 166.69 41.06 18.82 0.771 164.41 40.36 19.66 0.871 58.69 39.75 18.54 0.577 100.14 42.13
Restormer (Zamir et al., 2022) CVPR22 22.43 0.823 78.75 33.18 19.94 0.827 114.35 37.27 21.41 0.830 46.89 35.06 22.27 0.649 75.47 32.49
SNR-Net (Xu et al., 2022) CVPR22 24.61 0.842 66.47 28.73 21.48 0.849 68.56 28.83 24.14 0.928 30.52 33.47 22.87 0.625 74.78 30.08
SMG (Xu et al., 2023) CVPR23 24.82 0.838 69.47 30.15 22.62 0.857 71.76 30.32 25.62 0.905 23.36 29.35 23.18 0.644 77.58 31.50
PyDiff (Zhou et al., 2023a) IJCAI23 21.15 0.857 49.47 21.13 — — — — — — — — — — — —
Retformer (Cai et al., 2023) ICCV23 25.16 0.845 72.38 26.68 22.80 0.840 79.58 34.39 25.67 0.930 22.78 30.26 24.44 0.680 82.64 35.04
Diff-Retinex (Yi et al., 2023) ICCV23 21.98 0.852 51.33 19.62 20.17 0.826 46.67 24.18 24.30 0.921 28.74 26.35 23.62 0.665 58.93 31.17
MRQ (Liu et al., 2023) ICCV23 25.24 0.855 53.32 22.73 22.37 0.854 68.89 33.61 25.54 0.940 20.86 25.09 24.62 0.683 61.09 27.81
IAGC (Wang et al., 2023) ICCV23 24.53 0.842 59.73 25.50 22.20 0.863 70.34 31.70 25.58 0.941 21.38 30.32 24.80 0.688 63.72 29.53
DiffIR (Xia et al., 2023) ICCV23 23.15 0.828 70.13 26.38 21.15 0.816 72.33 29.15 24.76 0.921 28.87 27.74 23.17 0.640 78.80 30.56
CUE (Zheng et al., 2023) ICCV23 21.86 0.841 69.83 27.15 21.19 0.829 67.05 28.83 24.41 0.917 31.33 33.83 23.25 0.652 77.38 28.85
GSAD (Jinhui et al., 2023) NIPS23 23.23 0.852 51.64 19.96 20.19 0.847 46.77 28.85 24.22 0.927 19.24 25.76 — — — —
AST (Zhou et al., 2024) CVPR24 21.09 0.858 87.67 21.23 21.68 0.856 91.81 25.17 22.25 0.927 37.19 28.78 — — — —
MambaIR (Guo et al., 2024) ECCV24 22.23 0.863 63.39 20.17 21.15 0.857 56.09 24.46 25.75 0.958 19.75 20.37 21.14 0.656 154.76 32.72
Reti-Diff Ours 25.35 0.866 49.14 17.75 22.97 0.858 43.18 23.66 27.53 0.951 13.26 15.77 25.53 0.692 51.66 25.58

Table 1: Results on the LLIE task. The best two results are in red and blue fonts, respectively.

where ϵt ∼ N (0, I). By using Eq. (12) for T iterations, we can get the predicted prior ẐR and
use it to guide RGformer for image restoration. Because the size of the predicted prior ẐR ∈ R3C′

is much smaller than the original reflectance image RLQ ∈ RH×W×C , RLDM needs much less
iterations than those image-level diffusion models (Yi et al., 2023). Thus, we can run the complete
T iterations for the prior generation rather than randomly selecting one time step.

Optimization. We propose the diffusion loss to restrict the predicted priors ẐR and ẐL, generated
by two RLDMs with specific weights, to be consistent with those extracted from the ground truth:

LDif = ∥ZR − ẐR∥1 + ∥ZL − ẐL∥1. (13)

For restoration quality, we propose joint training RPE, RGformer, and RLDM with the Phase II loss:
LP2 = LDif + λ2LRec + λ3LR, (14)

where λ2 and λ3 are two hyper-parameters and are set as 1 in this paper. The constraints imposed by
LR and LDif , combined with our approach to extracting Retinex priors in a compact space, ensure
the generation of high-quality priors that significantly reduce interference from degraded inputs.

3.3 INFERENCE

In the inference phase, given the LQ input ILQ, Reti-Diff first uses R̃PE to extract the conditional
vectors VR and VL, and then generates predicted Retinex priors ẐR and ẐL with two RLDMs. Un-
der the guidance of the Retinex priors, RGformer generates the restored HQ image IHQ. Benefiting
from our Retinex-based diffusion framework, IHQ enjoys richer texture details and more harmo-
nized illumination, presenting visual-appealing results and further enhancing downstream tasks.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Our Reti-Diff is implemented in PyTorch on four RTX4090 GPUs and is optimized by Adam with
momentum terms (0.9, 0.999). In phases I and II, we train the network for 300K iterations and
the learning rate is initialized as 2 × 10−4 and gradually reduced to 1 × 10−6 with the cosine
annealing (Loshchilov, 2016). Random rotation and flips are used for augmentation. Reti-Diff
comprises RLDM and RGformer. For RLDM, the channel number C ′ and the total time step T are
set as 64 and 4. β1:T linearly increase from β1 = 0.1 to βT = 0.99. RGformer adopts a 4-level
cascade structure. We set the number of transformer blocks, the attention heads, the channel number
as [3, 3, 3, 3], [1, 2, 4, 8], [64, 128, 256, 512] from level 1 to 4. We abandon GT-mean for fairness.

4.2 COMPARATIVE EVALUATION

Low-light Image Enhancement. We conduct experiments on four datasets: LOL-v1 (Wei et al.,
2018), LOL-v2-real (Yang et al., 2021), LOL-v2-syn (Yang et al., 2021), and SID (Chen et al., 2019),
and involves four metrics: PSNR, SSIM, FID (Heusel et al., 2017), and BIQE (Moorthy & Bovik,
2010). Larger PSNR and SSIM, as well as smaller FID and BIQE, denote superior results. Ad-
hering to the training manner in (Cai et al., 2023), we compare our method against 17 cutting-edge
techniques and report the results in Table 1. As depicted in Table 1, our method emerges as the
top performer across all datasets, surpassing the second-best method (Diff-Retinex) by 13.2%, un-
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OursRetformer Ground TruthUretinex CUESNR-NetInput MambaIR

Figure 4: Visual results on the low-light image enhancement (LLIE) task.

OursNU2NetU-shapeFUGANS-uwnetInput Ground TruthMambaIR

Figure 5: Visual results on the underwater image enhancement (UIE) task.

OursCLIP-LIT Ground TruthUretinex RetformerSNR-NetInput MambaIR

Figure 6: Visual results on the backlit image enhancement (BIE) task.

derscoring our superiority. Fig. 4 presents qualitative results, showcasing our capacity to generate
restored images with corrected illumination and enhanced texture, even in extremely challenging

Metrics Diff-Retinex PyDiff GSAD Ours

Parameter (M) 56.88 97.89 17.17 26.11
MACs (G) 396.32 459.69 1340.63 156.55
FPS 4.25 3.63 2.33 12.27

Table 2: Efficiency analysis in diffusion
model-based methods.

conditions. In contrast, existing methods struggle to
address these challenges, such as the boundaries of
power lines, color distribution of lakes, and textures
of wooded areas. Besides, we also compare the ef-
ficiency of the diffusion model-based methods with
the size of 256×256. As shown in Table 2, our Reti-
Diff has the lowest MACs, highest FPS, and the second smallest parameters. This efficiency can be
attributed to our utilization of the diffusion model within a low-dimensional compact latent space.
For fairness, results from the compared methods are generated by their provided models.

Underwater Image Enhancement. We select two widely-used underwater image enhancement
datasets: UIEB (Li et al., 2019) and LSUI (Peng et al., 2023). In addition to PSNR and SSIM, we
employ two metrics tailored for underwater images, namely UCIQE (Yang & Sowmya, 2015) and
UIQM (Panetta et al., 2015). In all cases, higher values indicate better performance. The results are
presented in Table 3. As shown in Table 3, our method achieves the highest performance and outper-
forms the second-best method (MambaIR) by 2.30%. A qualitative analysis is presented in Fig. 5,
illustrating our capacity to correct underwater color aberrations and highlight texture details.
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UIEB LSUIMethods Sources PSNR ↑ SSIM ↑ UCIQE ↑ UIQM ↑ PSNR ↑ SSIM ↑ UCIQE ↑ UIQM ↑
FUGAN (Islam et al., 2020) IRAL20 17.41 0.842 0.527 2.614 22.16 0.837 0.576 2.667
EnGAN (Jiang et al., 2021) TIP21 17.73 0.833 0.529 2.465 19.30 0.851 0.587 2.817
Ucolor (Li et al., 2021) TIP21 20.78 0.868 0.537 3.049 22.91 0.886 0.594 2.735
S-uwnet (Naik et al., 2021) AAAI21 18.28 0.855 0.544 2.942 20.89 0.875 0.582 2.746
PUIE (Fu et al., 2022) ECCV22 21.38 0.882 0.566 3.021 23.70 0.902 0.605 2.974
U-shape (Peng et al., 2023) TIP23 22.91 0.905 0.592 2.896 24.16 0.917 0.603 3.022
PUGAN (Cong et al., 2023) TIP23 23.05 0.897 0.608 2.902 25.06 0.916 0.629 3.106
ADP (Zhou et al., 2023b) IJCV23 22.90 0.892 0.621 3.005 24.28 0.913 0.626 3.075
NU2Net (Guo et al., 2023) AAAI23 22.38 0.903 0.587 2.936 25.07 0.908 0.615 3.112
AST (Zhou et al., 2024) CVPR24 22.19 0.908 0.602 2.981 27.46 0.916 0.632 3.107
MambaIR (Guo et al., 2024) ECCV24 22.60 0.939 0.617 2.991 27.68 0.916 0.630 3.118
Reti-Diff Ours 24.12 0.910 0.631 3.088 28.10 0.929 0.646 3.208

Table 3: Results on the UIE task.

BAIDMethods Sources PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓
EnGAN (Jiang et al., 2021) TIP21 17.96 0.819 0.182 43.55
RUAS (Liu et al., 2021) CVPR21 18.92 0.813 0.262 40.07
URetinex (Wu et al., 2022) CVPR22 19.08 0.845 0.206 42.26
SNR-Net (Xu et al., 2022) CVPR22 20.86 0.860 0.213 39.73
Restormer (Zamir et al., 2022) CVPR22 21.07 0.832 0.192 41.17
Retformer (Cai et al., 2023) ICCV23 22.03 0.862 0.173 45.27
CLIP-LIT (Liang et al., 2023) ICCV23 21.13 0.853 0.159 37.30
Diff-Retinex (Yi et al., 2023) ICCV23 22.07 0.861 0.160 38.07
DiffIR (Xia et al., 2023) ICCV23 21.10 0.835 0.175 40.35
AST (Zhou et al., 2024) CVPR24 22.61 0.851 0.156 32.47
MambaIR (Guo et al., 2024) ECCV24 23.07 0.874 0.153 29.13
Reti-Diff Ours 23.19 0.876 0.147 27.47

Table 4: Results on the BIE task.
Methods Sources DICM LIME MEF NPE VV

PI ↓ NIQE ↓ PI ↓ NIQE ↓ PI ↓ NIQE ↓ PI ↓ NIQE ↓ PI ↓ NIQE ↓
EnGAN (Jiang et al., 2021) TIP21 4.173 4.064 3.669 4.593 4.015 4.705 3.226 3.993 3.386 4.047
KinD++ (Zhang et al., 2021b) IJCV21 3.835 3.898 3.785 4.908 4.016 4.557 3.179 3.915 3.773 3.822
SNR-Net (Xu et al., 2022) CVPR22 3.585 4.715 3.753 5.937 3.677 6.449 3.278 6.446 3.503 9.506
DCC-Net (Zhang et al., 2022) CVPR22 3.630 3.709 3.312 4.425 3.424 4.598 2.878 3.706 3.615 3.286
UHDFor (Li et al., 2023) ICLR23 3.684 4.575 4.124 4.430 3.813 4.231 3.135 3.867 3.319 4.330
PairLIE (Fu et al., 2023) CVPR23 3.685 4.034 3.387 4.587 4.133 4.065 3.726 4.187 3.334 3.574
GDP (Fei et al., 2023) CVPR23 3.552 4.358 4.115 4.891 3.694 4.609 3.097 4.032 3.431 4.683
GSAD (Jinhui et al., 2023) NIPS23 — 3.465 — 4.517 — 3.815 — 3.806 — 3.355
Reti-Diff Ours 2.351 3.255 2.837 3.693 3.308 3.792 2.599 3.384 3.341 3.000

Table 5: Results on the real-world IDIR task.

Datasets L-v2-r L-v2-s

Metrics PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

RLDM w/o RLDM 21.25 0.822 25.38 0.918
w/o DM 21.72 0.830 25.83 0.927

RGformer
w/o DFA 22.26 0.840 26.49 0.925

w/o RG-MCA 21.73 0.840 25.92 0.913
w/o Da(•) 22.58 0.847 26.80 0.944

Train w/o joint 22.83 0.853 27.18 0.947

Reti-Diff (Ours) 22.97 0.858 27.53 0.951

Table 6: Break down ablation.

Backlit Image Enhancement. Following CLIP-LIT (Liang et al., 2023), we select the BAID (Lv
et al., 2022) dataset for network training. Apart from PSNR and SSIM, our evaluation also selects
two perception metrics: LPIPS (Zhang et al., 2018) and FID (Heusel et al., 2017), where lower
values denote better performance. We report our results in Table 4. As demonstrated in Table 4,
our method outperforms all other methods across all metrics. Besides, a visual comparison in Fig. 6
provides additional evidence of our superiority in detail reconstruction and color correction.

Real-world Illumination Degradation Image Restoration. We also explore our applicability in
real-world IDIR tasks. Following CIDNet (Feng et al., 2024), we selected five commonly-used real-
world datasets, i.e., DICM (Lee et al., 2013), LIME (Guo et al., 2016), MEF (Wang et al., 2013),
NPE (Ma et al., 2015), and VV (He et al., 2024b), which only have low-quality images without paired
ground truths. Therefore, akin to (Feng et al., 2024), we leverage the model pretrained on LOL-v2-
syn for inference and select PI (Blau et al., 2018) and NIQE (Mittal et al., 2012) as evaluation
metrics, where lower scores indicate better results. As presented in Table 5, our method achieves
optimal results and surpasses the second-based method (DCC-Net (Zhang et al., 2022)) by 13.39%.
This verifies the generalizability of our Reti-Diff in addressing unknown degradation scenarios.

4.3 ABLATION STUDY

We conduct ablation studies on the low-light image enhancement task with the L-v2-r and L-v2-
s datasets, which are short for LOL-v2-real and LOL-v2-syn. Here, we present a subset of the
significant ablation studies; more experiments can be found in the Supplementary Material (Supp).

Effect of RLDM. As shown in Tables 6 and 7, we ablate RLDM by directly removing RLDM,
replacing the diffusion model with a linear model that shares the same structure with the denois-
ing network (w/o DM), or retraining RLDM in the RGB domain, i.e., w/o Z, rather than in the
reflectance and illumination domain (RGformer is guided by one RGB prior instead). The three
changes bring significant performance drops, underscoring the critical role of RLDM in enhancing
the restoration process and the importance of using the diffusion model to extract compact priors.

Effect of RGformer. We analyze the impact of our RGformer by removing key modules, such
as DFA, RG-MCA, and the auxiliary decoder Da(•). As shown in Table 6, the outcomes indicate
performance decreases when these modules are removed, highlighting their essential roles. Addi-
tionally, we also conduct an evaluation to affirm the significance of joint training in our method.

Effect of Retinex priors. We explore the effect of our Retinex prior from three aspects: (1) We
conduct the break down ablation for the Retinex priors and report the results in Fig. 7 and Table 7.
These findings demonstrate the effect of our Reflectance prior ZR in detail enhancement and our
Illumination prior ZL in illumination correction. (2) We then swap our Retinex priors with those
extracted from ground truth. As shown in Fig. 7 and Table 7, the results guided by the swapped
ground-truth priors exhibit limited performance gains. This indicates our RLDM can already gen-
erate high-quality priors, which is attributed to the constraints in Eqs. 7 and 13 and our approach
to extracting Retinex priors in a compact space, significantly reducing interference from degraded
inputs. (3) We further explore the potential of Retinex priors under extreme conditions where the re-
flectance or illumination priors exhibit high similarity between low-quality and ground-truth images.
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Part Ⅰ  Break down ablation in Retinex priors. 

w/ Reflectance ZRw/o Retinex ZInput

w/ Retinex (Ours)w/ Illumination ZLGround Truth
(a) Break down ablation in Retinex priors.

Swap ZR Swap ZLOurs Ground TruthInput

Part Ⅱ    Swap Retinex priors from low-quality images with those extracted by their GT.

(b) Swap our Retinex priors with that extracted from GT.
Figure 7: Visual validation of the effectiveness of Retinex priors.

Dataset Metrics All data Extreme condition (similar in ZR) Extreme condition (similar in ZL)
w/o Z w/ ZR w/ ZL w/ Z (Ours) Swap ZR Swap ZL w/o Z w/ ZR w/ ZL w/ Z (Ours) w/o Z w/ ZR w/ ZL w/ Z (Ours)

L-v2-r PSNR 21.63 22.13 22.35 22.97 23.31 23.17 21.37 21.66 22.57 23.57 21.19 23.06 21.85 24.06
SSIM 0.830 0.842 0.839 0.858 0.862 0.863 0.823 0.834 0.843 0.862 0.820 0.845 0.831 0.868

L-v2-s PSNR 26.25 26.62 27.02 27.53 27.92 27.75 25.68 26.17 27.05 28.57 25.42 27.34 26.24 28.80
SSIM 0.939 0.945 0.941 0.951 0.957 0.956 0.922 0.930 0.951 0.966 0.920 0.958 0.936 0.965

Table 7: Effect of Retinex priors in all data and two extreme conditions (each with 10 images).
Datasets Metrics Ufo Ufo+RLDM Res Res+RLDM Ret Ret+RLDM

L-v2-r
PSNR 18.82 21.37 19.94 21.56 22.80 23.16
SSIM 0.771 0.794 0.827 0.837 0.840 0.849
Gain – 8.27% – 4.67% – 1.33%

L-v2-s
PSNR 19.66 22.08 21.41 24.15 25.67 26.81
SSIM 0.871 0.889 0.830 0.862 0.930 0.942
Gain – 7.19% – 8.33% – 2.87%

Table 8: Generalization of Retinex priors. “Ufo”, “Res”,
and “Ret” are Uformer, Restormer, and Retformer.
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Figure 8: Ablation study of the number
of iterations in RLDM on LOL-v2-syn.

To validate this, five human subjects rated the similarity of the Retinex priors between low-quality
and ground-truth images (the detailed procedure will be introduced in the User Study below). Two
sets of images, each with 10 images, were selected based on the highest similarity in reflectance and
illumination priors. The results in Table 7 verify the effect of our Retinex priors even in this con-
dition. This is attributed to the generative capacity of our RLDM and the information aggregation
capacity of our RGformer. Visual results are placed in the Supp for space limitations.

Generalization of Retinex priors. To assess our generalizability, we incorporate our RLDM into
existing cutting-edge methods, namely Ufo (Uformer (Wang et al., 2022)), Res (Restormer (Zamir
et al., 2022)) and Ret (Retformer (Cai et al., 2023)), and use the extracted Retinex priors to guide
these methods for image enhancement, where the training settings are kept consistent with Reti-Diff.
The results are shown in Table 8. Table 8 reveals that RLDM significantly improves the performance
of all frameworks, indicating the strong generalization capabilities of our Retinex priors.

Ablations on iteration number. To balance performance and efficiency, we conducted experiments
to explore an optimal iteration number T and adjusted βt in Eq. (9). The results, as shown in Fig. 8,
illustrate that Reti-Diff exhibits rapid convergence and generates stable guidance priors in just 4
iterations, which is attributed to the use of the diffusion model within the compact latent space.

4.4 USER STUDY AND DOWNSTREAM TASKS

User Study. We conduct a user study to assess the subjective visual perception of low-light image
enhancement. In this study, 29 human subjects are invited to assign scores to the enhanced results
based on four criteria: (1) The presence of underexposed or overexposed regions. (2) The existence
of color distortion. (3) The occurrence of undesired noise or artifacts. (4) The inclusion of essential
structural details. Participants rate the results on a scale from 1 (worst) to 5 (best). Each low-
light image is presented alongside its enhanced results, with the names of the enhancement methods
concealed. The scores are reported in Table 9, where our method receives the highest scores across
all four datasets. This highlights our effectiveness in generating visually appealing results.

Low-light Object Detection. The enhanced images are expected to have better downstream perfor-
mance. We first verify this on low-light object detection. Following (Cai et al., 2023), all compared
methods are performed on ExDark (Loh & Chan, 2019) with YOLO, which is retrained from scratch
with their own enhanced results. As shown in Table 10, our Reti-Diff exhibits a substantial advantage
over existing methods and our performance surpasses that of the second-best method, Retformer, by
4.72%, verifying our efficacy in facilitating high-level vision understanding.
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Methods L-v1 L-v2-r L-v2-s SID Mean

KinD 2.31 2.25 2.46 2.33 2.34
EnGAN 2.63 1.69 2.23 1.24 1.95
RUAS 3.57 3.06 3.01 2.23 2.97
Restormer 3.26 3.32 3.41 2.53 3.13
Uretinex 3.82 3.98 3.70 3.28 3.70
SNR-Net 3.76 4.12 3.58 3.42 3.72
CUE 3.62 3.81 3.28 3.09 3.45
Retformer 3.35 4.02 3.71 3.35 3.61
Ours 4.05 4.33 3.92 3.75 4.01

Table 9: User study.

Methods (AP) Bicycle Boat Bottle Bus Car Cat Chair Cup Dog Motor People Table Mean

Baseline 74.7 64.9 70.7 84.2 79.7 47.3 58.6 67.1 64.1 66.2 73.9 45.7 66.4
RetinexNet 72.8 66.4 67.3 87.5 80.6 52.8 60.0 67.8 68.5 69.3 71.3 46.2 67.5
KinD 73.2 67.1 64.6 86.8 79.5 58.7 63.4 67.5 67.4 62.3 75.5 51.4 68.1
MIRNet 74.9 69.7 68.3 89.7 77.6 57.8 56.9 66.4 69.7 64.6 74.6 53.4 68.6
RUAS 75.7 71.2 73.5 90.7 80.1 59.3 67.0 66.3 68.3 66.9 72.6 50.6 70.2
Restormer 77.0 71.0 68.8 91.6 77.1 62.5 57.3 68.0 69.6 69.2 74.6 49.7 69.7
SCI 73.4 68.0 69.5 86.2 74.5 63.1 59.5 61.0 67.3 63.9 73.2 47.3 67.2
SNR-Net 78.3 74.2 74.5 89.6 82.7 66.8 66.3 62.5 74.7 63.1 73.3 57.2 71.9
Retformer 78.1 74.5 74.2 91.2 82.2 65.0 63.3 67.0 75.4 68.6 75.3 55.6 72.5
Ours 82.0 77.9 76.4 92.2 83.3 69.6 67.4 74.4 75.5 74.3 78.3 57.9 75.8

Table 10: Low-light image detection on ExDark.
Methods (IoU) Bicycle Boat Bottle Bus Car Cat Chair Dog Horse People Mean

Baseline 43.5 36.3 48.6 70.5 67.3 46.6 11.2 42.4 56.7 57.8 48.1
RetinexNet 48.6 41.7 51.7 77.6 68.3 52.7 15.8 46.3 60.2 62.3 52.5
KinD 51.3 40.2 53.2 76.8 69.4 50.8 14.6 47.3 60.3 60.9 52.5
MIRNet 50.3 42.9 47.4 73.6 62.7 50.4 15.8 46.3 61.0 63.3 51.4
RUAS 53.0 37.3 50.4 71.3 72.3 47.6 15.9 50.8 63.6 60.8 52.3
Restormer 53.8 43.8 51.4 68.7 66.8 52.6 21.6 54.8 59.8 63.3 53.7
SCI 54.5 46.3 57.2 78.4 73.3 49.1 22.8 49.0 62.1 66.9 56.0
SNR-Net 57.7 48.6 59.5 81.3 74.8 50.2 24.4 50.7 64.3 68.7 58.0
Retformer 50.9 47.7 58.6 77.2 68.1 53.2 17.4 52.0 61.3 71.5 55.8
Ours 59.8 51.5 62.1 85.5 76.6 57.7 28.9 56.3 66.2 73.4 61.8

Table 11: Low-light semantic segmentation, where images
are darkened by (Zhang et al., 2021a).

COD10K NC4KMethods
M ↓ Fβ ↑ Eϕ ↑ Sα ↑ M ↓ Fβ ↑ Eϕ ↑ Sα ↑

Baseline 0.050 0.625 0.812 0.756 0.071 0.733 0.816 0.763
RetinexNet 0.041 0.667 0.845 0.789 0.055 0.750 0.842 0.819
KinD 0.039 0.673 0.849 0.792 0.052 0.762 0.875 0.822
MIRNet 0.037 0.697 0.857 0.799 0.049 0.802 0.888 0.833
RUAS 0.036 0.705 0.861 0.803 0.051 0.795 0.883 0.827
Restormer 0.036 0.700 0.859 0.800 0.050 0.792 0.880 0.830
SCI 0.037 0.710 0.863 0.805 0.051 0.782 0.880 0.836
SNR-Net 0.036 0.703 0.865 0.803 0.049 0.801 0.892 0.838
Retformer 0.037 0.682 0.861 0.806 0.052 0.766 0.881 0.832
Ours 0.034 0.725 0.880 0.813 0.047 0.804 0.897 0.841

Table 12: Low-light concealed object
segmentation.

Low-light Image Segmentation. We also conducted segmentation tasks and retrained the segmen-
tor for each method following that in detection. (1) For semantic segmentation, following (Ju et al.,
2022), we apply image darkening to samples from the VOC (Everingham et al., 2010) dataset ac-
cording to (Zhang et al., 2021a). We then employ Mask2Former (Cheng et al., 2022) to segment
the enhanced results of these darkened images and select Intersection over Union (IoU) for evalua-
tion. As shown in Table 11, we achieve the highest performance across all classes, surpassing the
second-best method by 6.55%. (2) We further venture into concealed object segmentation (COS) on
two datasets, COD10K (Fan et al., 2021) and NC4K (Lv et al., 2021), which is a challenging task
aimed at delineating objects with inherent background similarity. We also apply image darkening
and enlist FEDER (He et al., 2023b) to segment the enhanced results. We evaluate the results using
four metrics: mean absolute error (M), adaptive F-measure (Fβ), mean E-measure (Eϕ), and struc-
ture measure (Sα). As depicted in Table 12, our method exhibits superior performance compared
to the second-best method, SNR-Net, with a margin of 2.16% on average. Note that it is a notable
improvement in COS. Collectively, the exceptional results achieved in these two segmentation tasks
substantiate our proficiency in recovering image-level illumination degraded information.

5 DISCUSSIONS

Our Reti-Diff is the first LDM-based solution specifically tailored for the IDIR task, setting it apart
from existing LDM-based methods applied in other tasks. To illustrate the distinctions, we compare
it with a general enhancement method, DiffIR (Xia et al., 2023): (1) Motivation. Reti-Diff targets
enhancing details and correcting degraded illumination. Thus, we enable RLDM to learn Retinex
knowledge and generate Retinex priors from the low-quality input. We contend that relying solely
on priors extracted from the RGB domain struggles to fully represent valuable texture details and
correct illumination cues, leading to suboptimal restoration performance. To verify this, we substi-
tute our RLDM for the LDM structure used in DiffIR. In LOL-v2-syn, we observe that the PSNR
rises from 24.76 to 26.14 and the SSIM increases from 0.921 to 0.933. (2) Implementation. Apart
from proposing RLDM to extract Retinex priors, we further modify the structure of RGformer to
implicitly model the Retinex theory at the feature level and introduce an auxiliary decoder to re-
construct the decomposed Retinex components to the RGB domain. (3) Performance. As shown
in Table 1, our Reti-Diff significantly outperforms DiffIR (Xia et al., 2023) by 20.6% on average.

6 CONCLUSIONS

To balance generation capability and computational efficiency, our approach adopts DM within a
compact latent space to generate guidance priors. Specifically, we introduce RLDM to extract
Retinex priors, which are subsequently supplied to RGformer for feature decomposition, ensur-
ing precise detailed reconstruction and effective illumination correction. RGformer then refines
and aggregates the decomposed features, enhancing the robustness in handling complex degradation
scenes. Our approach is validated through extensive experiments, establishing clear superiority.
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A METHODOLOGY

A.1 RETINEX-BASED LATENT DIFFUSION MODEL

In this section, we provide a detailed derivation for ẐL.

Diffusion process. In the diffusion process, we first use the pretrained RPE to extract the reflectance
prior ZL, which is treated as the starting point of the forward Markov process, i.e., ZL = Z0

L. We
then gradually add Gaussian noise to ZL by T iterations and each iteration can be defined as:

q
(
Zt

L|Zt−1
L

)
= N

(
Zt

L;
√
1− βtZt−1

L , βtI
)
, (1)

where t = 1, · · · , T . Zt
L denotes the noisy prior at time step t, βt is the predefined factor that

controls the noise variance, and N is the Gaussian distribution. Following (Kingma & Welling,
2013), Eq. (1) can be simplified as follows:

q
(
Zt

L|Z0
L

)
= N

(
Zt

L;
√
ᾱtZ0

L, (1− ᾱt)I
)
, (2)

where αt = 1− βt and ᾱt =
∏t

i=1 α
i.

Reverse process. In the reverse process, RLDM aims to extract the reflectance prior from pure
Gaussian noise. Thus, RLDM samples a Gaussian random noise map ZT

L and then gradually denoise
it to run backward from ZT

L to Z0
L:

p
(
Zt−1

L |Zt
L,Z

0
L

)
=N

(
Zt−1

L ;µt(Zt
L,Z

0
L), (σ

t)2I
)
, (3)

where mean µt(Zt
L,Z

0
L) = 1√

αt
(Zt

L − 1−αt
√
1−ᾱt ϵ) and variance (σt)2 = 1−ᾱt−1

1−ᾱt βt. ϵ denotes
the noise in Zt

L and is the only uncertain variable. Following previous practice (Xia et al., 2023),
we employ a denoising network ϵθ(•) to estimate θ. To operate in the latent space, we further
introduce another RPE module R̃PE(•) to extract the conditional reflectance vector VL ∈ RC′

from

1
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图二：将高质量的prior替换低质量的

w/ Retinex (Ours)w/ Ref. w/ Illu.w/o prior Ground TruthInput Ref.Illu. Illu. GT Ref. GT 
Fig. S1: Effect of Retinex priors in extreme conditions, where the two rows share a similarity in
reflectance and illumination components, respectively.

Datasets Metrics ℓ2-norm ℓ1-norm (Ours)

L-v2-s PSNR 27.26 27.53
SSIM 0.949 0.951

L-v2-r PSNR 22.62 22.97
SSIM 0.853 0.858

Fig. S1: Effect of ℓp-norm in Loss Functions.
Datasets Metrics λ1 = 0.1 λ1 = 1 (Ours) λ1 = 10 λ2 = 0.1 λ2 = 1 (Ours)λ2 = 10 λ3 = 0.1 λ3 = 1 (Ours)λ3 = 10

L-v2-s PSNR 27.15 27.53 27.33 27.08 27.53 27.33 27.26 27.53 27.35
SSIM 0.949 0.951 0.948 0.946 0.951 0.947 0.952 0.951 0.946

L-v2-r PSNR 22.86 22.97 22.82 22.36 22.97 22.76 22.33 22.97 22.16
SSIM 0.857 0.858 0.855 0.851 0.858 0.856 0.853 0.858 0.850

Fig. S2: Effect of ℓp-norm in Loss Functions.

the reflectance image LLQ of the LQ image, i.e., VL = R̃PE(down(LLQ)). Therefore, the denoising
network can be represented by ϵθ (Z

t
L,VL, t). By setting the variance to 1− αt, we get

Zt−1
L =

1√
αt

(Zt
L−

1− αt

√
1− ᾱt

ϵθ(Z
t
L,VL, t))+

√
1− αtϵt, (4)

where ϵt ∼ N (0, I).

B EXPERIMENT

B.1 ABLATION STUDY

Effect of Retinex priors in extreme conditions. We investigate the potential of Retinex priors, i.e.,
ZR and ZL, under extreme conditions where the reflectance or illumination components exhibit high
similarity between low-quality and ground-truth images. As shown in Fig. S1, the extracted priors
have a diminished effect when the corresponding component shows the similarity between low-
quality and ground-truth images. This is because the corresponding component undergoes minimal
degradation.

Effect of ℓp-norm in Loss Functions. We explore the effect of ℓp-norm in loss functions. As
shown in Table S1, Reti-Diff achieves better performance when using ℓ1-norm. Therefore, our loss
functions select ℓ1-norm.

Parameter Analysis. Our Reti-Diff is optimized with multiple losses, which are balanced by three
hyperparameters, i.e., λ1, λ2, and λ3. To analyze their impact, we vary one of the parameters and
fix others, and report the results in Table S2. Overall, we find that the different coefficients in the
tested range only slightly influence the final performance and λ1, λ2, and λ3 obtain better results
when they are set to 1. So we set those parameters to 1 each.

B.2 COMPARATIVE EVALUATION

Low-light Image Enhancement. As shown in Fig. S2, we provide more visualization results. Our
method can generate enhanced images with corrected illumination and enhanced texture, even in
extremely challenging conditions.

Underwater Image Enhancement. More qualitative analyses are presented in Fig. S3, illustrating
our superiority in underwater color correction and fine texture details reconstruction.
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Fig. S2: Visual results on the low-light image enhancement task.
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Fig. S3: Visual results on the underwater image enhancement task.
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Fig. S4: Visual results on the backlit image enhancement task.

Backlit Image Enhancement. Furthermore, a visual comparison in Fig. S4 provides additional
evidence of our superiority in detail reconstruction and color correction. All methods are trained by
cropping the training data as 256× 256 for fairness.

Real-world Illumination Degradation Image Restoration. As depicted in Fig. S5, our enhanced
images demonstrate superior capability in refining texture details and correcting inconsistent illumi-
nation, even under real-world complex degradation conditions. It is important to note that ground
truth data is not available for these real-world scenarios.

C DOWNSTREAM TASKS

Low-light Object Detection. As presented in Fig. S7, our method not only enhances image quality
but also achieves superior performance in low-light object detection. It is important to note that the
ground truth is the same low-quality image as the input.

Low-light Image Segmentation. The low-light image segmentation task comprises two main tasks,
i.e., low-light semantic segmentation task and low-light concealed object segmentation task. As de-
picted in Figs. S8 and S9, our enhanced images result in better segmentation, with masks that capture
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OursGSADPairLIEUHDFourInput DCC-NetSNR-NetCUE
Fig. S5: Visual results on the real-world IDIR task.

Input Illu. Illu. GTRef. Ground Truth Ref. GT
Fig. S6: Results of Retinex components decomposed by D(·), where Illu. and Ref. are shorts for
illumination and reflectance.

more complete objects and exhibit more accurate boundaries, further indicating the superiority of
our Reti-Diff.

D LIMITATIONS AND FUTURE WORK

In the first image of Fig. S10, our method fails to distinguish the two regions marked by the dashed
box due to the ambiguous boundary of the right region and the intrinsic similarities shared between
the two areas. Consequently, our method interprets the two distinct regions as a single object and
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Ground TruthOursRetformerSNR-NetSCIRestormerInput KinD
Fig. S7: Results on the low-light object detection task.

Ground TruthOursRetformerSNR-NetSCIRestormerInput KinD

Fig. S8: Results on the low-light semantic segmentation task.

Ground TruthOursRetformerSNR-NetSCIRestormerInput KinD
Fig. S9: Results on the low-light concealed object segmentation task.

OursRetformer Ground TruthUretinex CUESNR-NetEnGANInput
Fig. S10: Failure cases. Our results show blurred texture details in the dashed boxes.

attempts to merge them. This behavior contrasts with the successful separation of the lower clothing,
which exhibits more apparent differences. A similar issue is observed in the second image. This lim-
itation is not attributable to the Retinex priors or the RGformer, as neither is specifically designed to
highlight subtle differences. To address this challenge, future research could explore extracting tex-
ture priors from alternative domains, such as the frequency domain. Such priors could complement
those in the RGB domain by emphasizing subtle distinctions. Additionally, inspired by (Lin et al.,
2024; Sahoo et al., 2024), we acknowledge that further tuning the noise variance parameters could
enhance the latent diffusion model’s capacity to address noise across varying levels and facilitate
the generation of higher-quality enhanced images. In future work, we plan to thoroughly investigate
how this strategy can contribute to the development of a more effective IDIR algorithm.
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