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Figure 1: Results of Retinex-based cutting-edge image restoration methods, where our Reti-Diff
can better highlight details and correct color distortions. The dashed boxes indicate failure cases or
artifacts produced by existing methods, which can be properly addressed by our approach.

ABSTRACT

Illumination degradation image restoration (IDIR) techniques aim to improve
the visibility of degraded images and mitigate the adverse effects of deterio-
rated illumination. Among these algorithms, diffusion models (DM) have shown
promising performance but are often burdened by heavy computational demands
and pixel misalignment issues when predicting the image-level distribution. To
tackle these problems, we propose to leverage DM within a compact latent space
to generate concise guidance priors and introduce a novel solution called Reti-
Diff for the IDIR task. Specifically, Reti-Diff comprises two significant compo-
nents: the Retinex-based latent DM (RLDM) and the Retinex-guided transformer
(RGformer). RLDM is designed to acquire Retinex knowledge, extracting re-
flectance and illumination priors to facilitate detailed reconstruction and illumina-
tion correction. RGformer subsequently utilizes these compact priors to guide the
decomposition of image features into their respective reflectance and illumination
components. Following this, RGformer further enhances and consolidates these
decomposed features, resulting in the production of refined images with consistent
content and robustness to handle complex degradation scenarios. Extensive ex-
periments demonstrate that Reti-Diff outperforms existing methods on three IDIR
tasks, as well as downstream applications. '

1 INTRODUCTION

[lumination degradation image restoration (IDIR) seeks to enhance the visibility and contrast of
degraded images while mitigating the adverse effects of deteriorated illumination, e.g., indefinite
noise and variable color deviation. IDIR has been investigated in various domains, including low-
light image enhancement (Cai et al.,, 2023), underwater image enhancement (Guo et al., 2023),
and backlit image enhancement (Liang et al., 2023). By addressing illumination degradation, the
enhanced images are expected to exhibit improved visual quality, making them more suitable for
decision-making or subsequent tasks like nighttime object detection and segmentation.

Traditional IDIR approaches (Fu et al., 2016; Ueng & Scharf, 1995) primarily rely on manually
crafted enhancement techniques with limited generalization capabilities. Leveraging the robust

!"The source code will be made publicly available.
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Figure 2: Our Reti-Diff achieves a leading place in three IDIR tasks and the low-light object detec-
tion task, and outperforms the corresponding cutting-edge techniques on these tasks, where CLIP
and Diff-Re are short for CLIP-LIT (Liang et al., 2023), Diff-Retinex (Yi et al., 2023).

feature extraction capabilities of convolutional neural networks and transformers, a series of deep
learning-based methods (Cai et al., 2023; Jiang et al., 2021) have been proposed and have achieved
remarkable success in the IDIR domain. However, as depicted in Figs. 1 and 2, they still face chal-
lenges in complex illumination degradation scenarios due to their constrained restoration capacity.

To overcome this, deep generative models, like generative adversarial networks (He et al., 2023a),
have gained popularity for their generative abilities. Recently, the diffusion model (DM) (Yi et al.,
2023) has been introduced to the IDIR field for high-quality image restoration. However, existing
DM-based methods, e.g., Diff-Retinex (Yi et al., 2023) and GSAD (Jinhui et al., 2023), apply DM
directly to image-level generation, leading to two main challenges: (1) These methods incur high
computational costs, as predicting the image-level distribution requires a large number of inference
steps. (2) The enhanced results may exhibit pixel misalignment with the original clean image in
terms of restored details and local consistency. For example, as shown in Fig. 1, Diff-Retinex fails
to recover the car’s details in the top row and introduces severe artifacts in the bottom row.

To address the above challenges, we introduce a latent diffusion model (LDM) to solve the IDIR
problem. The computational burden is reduced by applying DM in the low-dimensional, compact
latent space. In addition, by integrating LDM with transformers, we prevent pixel misalignment in
generated images (see Fig. 1), a common issue in deep generative models. Unlike existing LDM-
based methods that rely solely on priors extracted from the RGB domain, our method, tailored to
the specific characteristics of IDIR tasks, empowers LDMs to extract Retinex information from
both the reflectance and illumination domains. This adaptation allows our method to generate high-
fidelity Retinex priors directly from low-quality input images. The compact priors preserve high-
quality information while minimizing the impact of degradation. Thus, our method simultaneously
enhances image details using the reflectance prior and corrects color distortions with the illumination
prior, resulting in visually appealing images with favorable downstream tasks.

With this inspiration, we present Reti-Diff, the first LDM-based solution to tackle the IDIR problem.
Reti-Diff, depicted in Fig. 3, consists of two primary components: the Retinex-based LDM (RLDM)
and the Retinex-guided transformer (RGformer). Initially, RLDM is employed to generate Retinex
priors, which are then integrated into RGformer to produce visually appealing results. To ensure
the generation of high-quality priors, we propose a two-phase training approach, wherein Reti-
Diff undergoes initial pretraining followed by subsequent RLDM optimization. In phase I, we
introduce a Retinex prior extraction (RPE) module to compress the ground-truth image into the
highly compact Retinex priors, namely the reflectance prior and the illumination prior. These priors
are then sent to RGformer to guide feature decomposition and the generation of reflectance and
illumination features. Afterward, RGformer employs the Retinex-guided multi-head cross attention
(RG-MCA) and dynamic feature aggregation (DFA) module to refine and aggregate the decomposed
features, ultimately producing enhanced images with coherent content and ensuring robustness and
generalization in extreme degradation scenarios. In phase II, we train RLDM in reflectance and
illumination domains to estimate Retinex priors from the low-quality image, with the constraint of
consistency with those extracted by RPE from the ground-truth image. Therefore, the extracted
Retinex priors can guide the RGformer in detail enhancement and illumination correction, resulting
in visually appealing results with favorable downstream performance.

Our contributions are summarized as follows:

e We propose a novel DM-based framework, Reti-Diff, for the IDIR task. To the best of our
knowledge, this is the first practice of the latent diffusion model to tackle the IDIR problem.
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e We propose to let RLDM learn Retinex knowledge and generate high-quality reflectance
and illumination priors from the low-quality input, which serve as critical guidance in detail
enhancement and illumination correction and can be integrated with various methods.

e We propose RGformer, which integrates extracted Retinex priors to decompose features
into reflectance and illumination components. Subsequently, RG-MCA and DFA are em-
ployed to refine and aggregate these decomposed features, ensuring robustness and gener-
alization in complex illumination degradation scenarios.

e Extensive experiments on four IDIR tasks verify our superiority, efficiency, and gener-
alizability to existing methods in terms of image quality and favorability in downstream
applications, including low-light object detection and image segmentation.

2 RELATED WORK

Illumination Degradation Image Restoration. Early IDIR methods mainly include three ap-
proaches: histogram equalization (HE) ( , ), gamma correction (GC) ( ,

), and Retinex theory ( s ). However, these methods still rely on hand-crafted priors,
limiting their generalization ability. With the development of deep learning, methods based on CNNs
and transformers ( , ; s ) have succeeded in IDIR. UNIE ( s )
proposed a light-effect suppression network that leverages estimated light-effect layers to mitigate
excessive illumination. To improve visibility, NTD ( , ) introduced a nighttime dehazing
algorithm to suppress glow while enhancing low-light regions. Besides, Xue et al. ( , )
introduced multi-modal visual-language information by integrating wavelet and Fourier transforms
with the CLIP-based model prior. To enhance generative capacity, Diff-Retinex ( , ) and
GSAD ( , ) introduced DM to the IDIR field by directly applying it to image-level
generation. However, they entail significant computational costs and may lead to pixel misalignment
with the original input, particularly concerning restored image details and local consistency.

Diffusion Models. Diffusion models (DMs) have verified great success in density estima-
tion ( , ) and data generation ( , ). Such a probabilistic generative
model adopts a parameterized Markov chain to optimize the lower variational bound on the likeli-
hood function, enabling them to generate target distributions with greater accuracy. Recently, DMs
have been introduced to solve the IDIR problem ( s ; s ). However, when
directly applied to image-level generation, these methods bring computational burdens and pixel
misalignment. To overcome this, we employ LDM to estimate priors within a low-dimensional la-
tent space and then integrate these priors into the transformer-based framework, addressing the above
problems. Besides, unlike existing LDM-based methods ( , ; R ) that
solely rely on priors extracted from the RGB domain, our method, tailored to the IDIR task, empow-
ers LDMs to extract Retinex information from both the reflectance and illumination domains. This
adaptation allows our method to generate high-fidelity compact Retinex priors directly from low-
quality input images but avoid the impact of degradation. By doing so, this novel approach enables
us to simultaneously enhance image details using the reflectance prior and correct color distortions
with the illumination prior, resulting in visually appealing results with favorable downstream tasks.

3 METHODOLOGY

In this paper, we propose Reti-Diff, the pioneering method based on Latent Diffusion Models (LDM)
for IDIR tasks. Reti-Diff is specifically tailored to address the challenges inherent in IDIR tasks by
leveraging high-quality Retinex priors extracted from both the illumination and reflectance domains
to guide the restoration process. This innovative approach utilizes the extracted Retinex prior repre-
sentation as dynamic modulation parameters, facilitating simultaneous enhancement of restoration
details through the reflectance prior and correction of color distortion via the illumination prior. This
ensures the generation of visually compelling results while positively impacting downstream tasks.

As shown in Fig. 3, our Reti-Diff comprises two parts: the Retinex-guided transformer (RGformer)
and the Retinex-based latent diffusion model (RLDM). To ensure the generation of high-quality
priors, Reti-Diff undergoes a two-phase training strategy, involving the initial pretraining of Reti-
Diff and the subsequent optimization of RLDM. In this section, we provide an in-depth explanation
of the two-phase training approach and elucidate the entire restoration process.
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Figure 3: Framework of Reti-Diff. In Phase I, we pretrain Retl Diff with RGformer and RPE to
ensure the robust learning of RLDM and then optimize RLDM to generate high-quality Retinex
priors in Phase II, which guide RGformer in detail enhancement and illumination correction. In (a),
we omit the auxiliary decoder D, () for simplicity. In panel (c), we illustrate the use of RLDM to
extract the reflectance prior; the illumination prior can be extracted similarly. Zoom in for clarity.

3.1 PRETRAIN RETI-DIFF

We first pretrain Reti-Diff to encode the ground truth image into compact priors with Retinex prior
extraction (RPE) module and use the extracted Retinex priors to guide RGformer for restoration.

Retinex prior extraction module. Given the low-quality (LQ) image I, € RP*W>3 and its

corresponding ground truth Ig € RH*W>3 we initially decompose them into the reflectance

image R € R¥>*Wx3 and the illumination map L € R¥*W according to Retinex theory:
Ino=Rig ®Lrg,Igr = Rgr © Ler, (D
where © is Hadamard product. Following URetinex ( s ), we use a pretrained decom-

posing network D(-) to decompose I1,g and Iy, comprising three Conv+LeakyReLU layers and
a Conv+ReLU layer. Then we concatenate the corresponding components of ground truth and LQ
image and use the RPE module RPE(+) to encode them into Retinex priors Zgr € R3, Zy, € RY":

Zyr = RPE(down(conca(Rgr,Rrg))), Zr = RPE(down(conca(Lgr,Lg))), 2)
where conca(+) denotes concatenation and down(+) represents downsampling that is operated by
PixelUnshuffle. The Retinex priors, Zgr and Zy,, are then fed into RGformer to serve as dynamic
modulation parameters for detail restoration and color correction.

Retinex-guided transformer. RGformer mainly consists of two parts in each block, i.e., Retinex-
guided multi-head cross attention (RG-MCA) and dynamic feature aggregation (DFA) module. In
RG-MCA, we first split the input feature F € RAXWXC jnto two parts F; € RAXWx(3C/4)
and Fo € RAXWX(C/4) glong the channel dimension. Afterwards, we integrated Zg and Zy, as
the corresponding dynamic modulation parameters to generate reflectance-guided feature Fr €
RHXWX(3C/4) and illumination-guided feature Fy, € R *Wx(C/4).

Fr =Lii(Zr) ® Norm(F1) + Li2(Zr), Fr =Lii(ZL) © Norm(F2) + Liz(ZL), (3)
where Norm(-) is layer normalization. Li(+) means linear layer. Afterward, we aggregate global spa-
tial information by projecting Fr into query Q = WFRr and key K = W g Fy, and transforming
Fy into value V = W Fy,, where W is the combination of a 1 x 1 point-wise convolution and a
3 x 3 depth-wise convolution. We then perform cross-attention and get the output feature F:

F = F + SoftMax (QKT /\fé) V. @)
By doing so, RG-MCA introduces explicit guidance to fully exploit Retinex knowledge at the fea-

ture level and use cross attention mechanism to implicitly model the Retinex theory and refine the
decomposed features, which helps to restore missing details and correct color distortion.
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Then we employ DFA for local feature aggregation. Apart from the 1 x 1 Conv and 3 x 3 depth-
wise Conv for information fusion, DFA adopts GELU, termed GELU(+), to ensure the flexibility of

aggregation ( , ). Thus, given F and Z, where Z = conca(Zg, Zr,), the output Fis
F = F + GELU(W,F') © WyF', F' = Li;(Z) © Norm(F) + Liy(Z). (5)

Optimization. Having gotten the enhanced result Iz, we propose a reconstruction loss with L
norm || « ||; to jointly train RPE and RGformer, which can facilitate the extraction of Retinex priors:

LRec = | IGT - IHQHl' (6)
To ensure that the separated features within RG-MCA capture reflectance and illumination knowl-
edge, we use an auxiliary decoder D, (+) with the same structure as that in ( , ).

D, (+) takes F as input and outputs the reconstructed reflectance image R . and illumination map
L ge. For efficiency, we only apply D, (+) for the first transformer block in encoder to get R%, and
L1, and for the last block in decoder to get R, and L. D, (¢) is supervised by a Retinex loss:

Lr = |Rrq — Rl + [Lrg — Liclli + [Rer — Riclh + [Lar — Liz|lr- 7

By constraining the input and output ports, Eq. (7) ensures the preservation of essential Retinex in-
formation throughout the network. This integration not only facilitates the incorporation of Retinex
theory into the split features but also enhances the overall restoration capability.

In Phase I, the final loss L p; is formulated with the assistance of a hyperparameter Ay (A; = 1):
Lp1 = Lree + M Lg. (3

3.2 RETINEX-BASED LATENT DIFFUSION MODEL

In Phase II, we train the RLDM to predict Retinex priors from the low-quality input, which are
expected to be consistent with that extracted by RPE from the ground-truth image. Unlike conven-
tional LDMs trained on the RGB domain, we introduce two RLDMs with a Siamese structure and
train them on distinct domains: the reflectance domain and the illumination domain. This approach,
grounded in Retinex theory, equips our RLDM to generate a more generative reflectance prior Zr
to enhance image details, and a more harmonized illumination prior Zy, for color correction. The
compact priors retain high-quality information while effectively mitigating the effects of degrada-
tion. Note that RLDM is constructed upon the conditional denoising diffusion probabilistic models,
with both a forward diffusion process and a reverse denoising process. To simplify, we provide a

detailed derivation for Zg herein, while that of Zy, can be found in the appendix.
Diffusion process. In the diffusion process, we first use the pretrained RPE to extract the reflectance

prior Zg, which is treated as the starting point of the forward Markov process, i.e., Zr = Z%. We
then gradually add Gaussian noise to Zg by 7 iterations and each iteration can be defined as:

¢ (ZRlZR") = N (Zhi V1= 2R 61T) ©
where t = 1,--- ,T. Z% denotes the noisy prior at time step ¢, 5" is the predefined factor that

controls the noise variance, and N is the Gaussian distribution. Following ( s
), we define af =1 — 3 and a* = []'_, o, allowing us to simplify Eq. (9) as follows:

1 (ZR|ZR) = N (Zhs Va'zZg, (1 - a")I). (10)

Reverse process. In the reverse process, RLDM aims to extract the reflectance prior from pure
Gaussian noise. Thus, RLDM samples a Gaussian random noise map Z% and then gradually denoise

it to run backward from Zﬁ to Z with the corresponding mean 4! and variance o'

P(Zr 12k, Z) =N (Zg s 1 (Z, Z). (01)°D) (11)
where pt(Z%,Z%) = \/%t(ZtR - \}%e) and (o!)? = %Bt. € is the noise in Z4 and we

employ a denoising network €y (+) to estimate 6. To operate in the latent space, we further introduce
another RPE module RPE(+) to extract the conditional reflectance vector Vg € R3%" from the

reflectance image R of the LQ image, i.e., Vg = lﬁ(down(R rq))- Therefore, the denoising
network can be represented by €y (Z%, Vg, t). By setting the variance to 1 — o, we get

_ 1 1—af S
Zi:t = Vot (Zﬁiwfia@EQ(ZEvVR?t))+ 1- atet’ (12)
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Methods Sources | LOL-v LOL-v2-real LOL-v2-synthetic | SID

: PSNR 1 SSIM 1 F[D | BIQE ||PSNR 1 SSIM 1 FID | BIQE ||PSNR 1 SSIM 1 FID | BIQE | PSNR 1 SSIM 1 FID | BIQE |
MIRNet ( s ) |ECCV20| 24.14 0835 71.16 47.75 | 20.02 0.820 82.25 41.18 | 21.94 0.876 40.18 36.29 | 20.84 0.605 81.37 40.63
EnGAN ( s ) TIP21 1748 0.656 153.98 3582 | 1823 0.617 173.28 51.06 | 16.57 0.734 93.66 45.59 | 17.23 0.543 77.52 33.47
RUAS ( N ) CVPR21| 1823 0.723 127.60 45.17 | 18.27 0.723 151.62 34.73 | 16.55 0.652 91.60 46.38 | 18.44 0581 72.18 45.02
IPT ( N ) CVPR21| 1627 0.504 158.83 29.35 | 19.80 0.813 97.24 31.17 | 1830 0.811 76.79 42.15 | 20.53 0.618 70.58 36.71
URetinex ( s ) CVPR22| 21.33 0.835 8559 30.37 | 20.44 0.806 76.74 28.85 | 24.73 0.897 33.25 33.46 | 22.09 0.633 71.58 38.44
UFormer ( s ) |CVPR22| 1636 0.771 166.69 41.06 | 18.82 0.771 164.41 40.36 | 19.66 0.871 58.69 39.75 | 18.54 0.577 100.14 42.13
Restormer ( s )|CVPR22| 2243 0.823 78.75 33.18 | 19.94 0.827 11435 37.27 | 21.41 0.830 46.89 3506 | 22.27 0.649 7547 3249
SNR-Net ( N ) CVPR22| 2461 0.842 6647 2873 | 21.48 0.849 68.56 28.83 | 24.14 0.928 30.52 33.47 | 22.87 0.625 74.78 30.08
SMG ( s ) CVPR23| 24.82 0.838 6947 30.15 | 22.62 0.857 71.76 30.32 | 25.62 0.905 23.36 29.35 | 23.18 0.644 77.58 31.50
PyDiff (. s ) [JCAI23| 21.15 0857 49.47 21.13 — — — — — — — — — — — —
Retformer ( s ) |ICCV23| 25.16 0.845 7238 26.68 | 22.80 0.840 79.58 3439 | 25.67 0930 22.78 30.26 | 24.44 0.680 82.64 35.04
Diff-Retinex ( N ) |ICCV23| 21.98 0852 51.33 19.62 | 20.17 0.826 46.67 24.18 | 2430 0921 28.74 26.35 | 23.62 0.665 58.93 31.17
MRQ ( N ) ICCV23| 25.24 0.855 53.32 2273 | 2237 0.854 68.89 33.61 | 2554 0.940 20.86 25.09 | 24.62 0.683 61.09 27.81
TAGC ( s ) ICCV23| 24,53 0.842 59.73 2550 | 22.20 0.863 70.34 31.70 | 25.58 0.941 21.38 30.32 | 24.80 0.688 63.72 29.53
DiffIR ( N ) ICCV23| 23.15 0.828 70.13 2638 | 21.15 0816 7233 29.15 | 2476 0.921 28.87 27.74 | 23.17 0.640 78.80 30.56
CUE ( s ) ICCV23| 21.86 0.841 69.83 27.15| 21.19 0.829 67.05 28.83 | 2441 0917 31.33 33.83 | 23.25 0.652 77.38 28.85
GSAD ( s ) NIPS23 | 2323 0.852 51.64 19.96 | 20.19 0.847 46.77 28.85 | 24.22 0.927 19.24 2576 — — — —
AST ( N ) CVPR24| 21.09 0.858 87.67 21.23 | 21.68 0.856 91.81 25.17 | 22.25 0.927 37.19 28.78 — — — —
MambalR ( N ) |ECCV24| 2223 0.863 63.39 20.17 | 21.15 0.857 56.09 24.46 | 25.75 0.958 19.75 20.37 | 21.14 0.656 154.76 32.72
Reti-Diff Ours 2535 0.866 49.14 17.75 | 22.97 0.858 43.18 23.66 | 27.53 0.951 13.26 15.77 2553 0.692 51.66 25.58

Table 1: Results on the LLIE task. The best two results are in red and blue fonts, respectively.

where € ~ N(0,1). By using Eq. (12) for T iterations, we can get the predicted prior Zg and
use it to guide RGformer for image restoration. Because the size of the predicted prior Zgr € R3¢
is much smaller than the original reflectance image Rrqg € REXWXC RLDM needs much less
iterations than those image-level diffusion models ( R ). Thus, we can run the complete
T iterations for the prior generation rather than randomly selecting one time step.

Optimization. We propose the diffusion loss to restrict the predicted priors Zg and Zr, generated
by two RLDMs with specific weights, to be consistent with those extracted from the ground truth:

Lpif = |Zr — Zr|)1 + |Z1 — Zv||1. (13)

For restoration quality, we propose joint training RPE, RGformer, and RLDM with the Phase II loss:
Lpys = Lpif + AoLpec + A3Lg, (14)
where A2 and A3 are two hyper-parameters and are set as 1 in this paper. The constraints imposed by
Lg and Lp;s, combined with our approach to extracting Retinex priors in a compact space, ensure
the generation of high-quality priors that significantly reduce interference from degraded inputs.

3.3 INFERENCE

In the inference phase, given the LQ input Iz, Reti-Diff first uses RPE to extract the conditional

vectors Vg and Vi, and then generates predicted Retinex priors Zy and Zy, with two RLDMs. Un-
der the guidance of the Retinex priors, RGformer generates the restored HQ image I 7. Benefiting
from our Retinex-based diffusion framework, I enjoys richer texture details and more harmo-
nized illumination, presenting visual-appealing results and further enhancing downstream tasks.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Our Reti-Diff is implemented in PyTorch on four RTX4090 GPUs and is optimized by Adam with
momentum terms (0.9,0.999). In phases I and II, we train the network for 300K iterations and
the learning rate is initialized as 2 x 10~* and gradually reduced to 1 x 10~% with the cosine
annealing ( , ). Random rotation and flips are used for augmentation. Reti-Diff
comprises RLDM and RGformer. For RLDM, the channel number C’ and the total time step T are
set as 64 and 4. ST linearly increase from ' = 0.1 to 87 = 0.99. RGformer adopts a 4-level
cascade structure. We set the number of transformer blocks, the attention heads, the channel number
as [3,3,3,3],[1,2,4, 8], [64, 128, 256, 512] from level 1 to 4. We abandon GT-mean for fairness.

4.2 COMPARATIVE EVALUATION

Low-light Image Enhancement. We conduct experiments on four datasets: LOL-vI ( ,

), LOL-v2-real ( , ), LOL-v2-syn ( , ), and SID ( , ),
and involves four metrics: PSNR, SSIM, FID ( , ), and BIQE (

). Larger PSNR and SSIM, as well as smaller FID and BIQE, denote superior results. Ad-
hering to the training manner in ( , ), we compare our method against 17 cutting-edge
techniques and report the results in Table 1. As depicted in Table 1, our method emerges as the
top performer across all datasets, surpassing the second-best method (Diff-Retinex) by 13.2%, un-



Under review as a conference paper at ICLR 2025

Input Uretinex SNR-Net CUE Retformer MambalR Ours Ground Truth
Figure 4: Visual results on the low-light image enhancement (LLIE) task.
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Figure 5: Visual results on the underwater image enhancement (UIE) task.

Input Uretinex SNR-Net Retformer CLIP-LIT MambalR Ours Ground Truth
Figure 6: Visual results on the backlit image enhancement (BIE) task.

derscoring our superiority. Fig. 4 presents qualitative results, showcasing our capacity to generate
restored images with corrected illumination and enhanced texture, even in extremely challenging
conditions. In contrast, existing methods struggle to  Metrics | Diff-Retinex PyDiff GSAD  Ours
address these challenges, such as the boundaries of  “pyrameter M)| 5688 97.89 17.17 26.11

power lines, color distribution of lakes, and textures ~ MACs (G) 396.32  459.69 1340.63 156.55
of wooded areas. Besides, we also compare the ef-  FPS 4.25 363 233 1227

ficiency of the diffusion model-based methods with Table 2: Efficiency analysis in diffusion
the size of 256 x 256. As shown in Table 2, our Reti- model-based methods.

Diff has the lowest MACs, highest FPS, and the second smallest parameters. This efficiency can be
attributed to our utilization of the diffusion model within a low-dimensional compact latent space.
For fairness, results from the compared methods are generated by their provided models.

Underwater Image Enhancement. We select two widely-used underwater image enhancement
datasets: UIEB (Li et al., 2019) and LSUI (Peng et al., 2023). In addition to PSNR and SSIM, we
employ two metrics tailored for underwater images, namely UCIQE (Yang & Sowmya, 2015) and
UIQM (Panetta et al., 2015). In all cases, higher values indicate better performance. The results are
presented in Table 3. As shown in Table 3, our method achieves the highest performance and outper-
forms the second-best method (MambalR) by 2.30%. A qualitative analysis is presented in Fig. 5,
illustrating our capacity to correct underwater color aberrations and highlight texture details.
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Methods Sources ‘ VIEB Lsut Methods Sources BAID
) h * PSNR 1 SSIM 1 UCIQE 1 UIQM 1|PSNR 1 SSIM 1 UCIQE 1 UIQM 1 PSNR 1 SSIM 1 LPIPS | FID |
FUGAN (. s )| IRAL20| 17.41 0.842 0.527 2614 | 22.16 0.837 0.576 2.667 EnGAN (. N ) TIP21 17.96 0.819 0.182 43.55
EnGAN (. N ) | TIP21 17.73  0.833 0.529 2.465 19.30  0.851 0.587 2.817 RUAS ( N ) CVPR21| 1892 0.813 0.262 40.07
Ucolor ( N ) TIP21 | 20.78 0.868  0.537 3.049 | 2291 0.886 0.594 2735 URetinex ( N ) CVPR22| 19.08 0.845 0.206 42.26
S-uwnet ( N ) |AAAI21| 18.28 0.855 0.544 2.942 20.89 0.875 0.582 2.746 SNR-Net ( N ) CVPR22| 20.86 0.860 0.213 39.73
PUIE ( N ) ECCV22| 21.38 0.882 0.566 3.021 | 2370 0902 0.605 2974 Restormer (. N )|CVPR22| 21.07 0.832 0.192 41.17
U-shape ( . ) | TIP23 2291  0.905 0.592 2.896 | 24.16 0917 0.603 3.022 Retformer (: . ) ICCV23| 22.03 0.862 0.173 45.27
PUGAN ( N )| TIP23 | 23.05 0.897 0.608 2902 | 25.06 0916 0.629 3.106 CLIP-LIT ( N ) |[ICCV23| 21.13 0.853 0.159 37.30
ADP ( N ) JCV23 | 2290 0.892 0.621 3.005 | 2428 0913 0.626 3.075 Diff-Retinex ( . ) |ICCV23| 22.07 0.861 0.160 38.07
NU2Net ( N ) |AAAI23| 2238 0903  0.587 2.936 | 25.07 0908 0.615 3.112 DiffIR ( N ) ICCV23| 21.10 0.835 0.175 40.35
AST ( N ) CVPR24| 22.19 0.908 0.602 2.981 2746 0916 0.632 3.107 AST (. . ) CVPR24| 2261 0.851 0.156 3247
MambalR ( N )|ECCV24| 22.60 0.939 0.617 2.991 27.68 0916 0.630 3.118 MambalR ( N ) |ECCV24| 23.07 0.874 0.153 29.13
Reti-Diff Ours 24.12 0910 0.631 3.088 | 28.10 0.929 0.646 3.208 Reti-Diff Ours 23.19 0.876 0.147 27.47
Table 3: Results on the UIE task. Table 4: Results on the BIE task.
. o DICM ‘ LIME MEF ‘ NPE 14% Datasets ‘ L-v2-r ‘ L-v2-s
Methods Sources | pr | "NIQE| PIJ NIQEL|PI/ NIQE| PI| NIQEL|PI| NIQE
Metrics [PSNR 1 SSIM 1|PSNR 1 SSIM 1
EnGAN ( N ) TIP21 |4.173 4.064 |3.669 4.593 |4.015 4.705 |3.226 3.993 [3.386 4.047
KinD++ ( ,20216)| ICV21 |3835 3898 3785 4908 |4016 4557 |3.179 3915 (3773 3822 RLDM ‘ WoRLDM | 2125 081 ‘ 2 0o8
SNR-Net ( N ) CVPR22(3.585 4.715 |3.753 5937 |3.677 6.449 |3.278 6.446 |3.503 9.506 wio i - . -
DCC-Net ( N )|CVPR22[3.630 3.709 |3.312 4.425 |3.424 4598 |2.878 3.706 |3.615 3.286 w/o DFA 2226 0.840 | 2649 0.925
UHDFor ( N ) ICLR23 |3.684 4.575 |4.124 4.430 |3.813 4.231 [3.135 3.867 |3.319 4.330 RGformer|w/o RG-MCA| 21.73  0.840 | 25.92 0.913
PairLIE ( N ) CVPR23 [3.685 4.034 |3.387 4.587 |4.133 4.065 |3.726 4.187 |3.334 3.574 w/0 Dq(+) 22.58 0.847 | 26.80 0.944
GDP ( N ) CVPR23[3.552 4.358 |4.115 4.891 |3.694 4.609 [3.097 4.032 |3.431 4.683 " T
GSAD ( 023 | NIPS23 | — 3465 | — 4517 | — 3815 | — 3806 | — 3355 Iwain | whojoint | 2283 0853 | 27.18 0947
Reti-Diff Ours |2.351 3.255 2.837 3.693 |3.308 3.792 2.599 3.384 (3.341 3.000 Reti-Diff (Ours) ‘ 2297 0.858 ‘ 2753 0.951
Table 5: Results on the real-world IDIR task. Table 6: Break down ablation.
Backlit Image Enhancement. Following CLIP-LIT ( , ), we select the BAID (
, ) dataset for network training. Apart from PSNR and SSIM, our evaluation also selects
two perception metrics: LPIPS ( , ) and FID ( , ), where lower

values denote better performance. We report our results in Table 4. As demonstrated in Table 4,
our method outperforms all other methods across all metrics. Besides, a visual comparison in Fig. 6
provides additional evidence of our superiority in detail reconstruction and color correction.

Real-world Illumination Degradation Image Restoration. We also explore our applicability in

real-world IDIR tasks. Following CIDNet ( s ), we selected five commonly-used real-
world datasets, i.e., DICM ( , ), LIME ( , ), MEF ( , ),
NPE ( , ), and VV ( , ), which only have low-quality images without paired
ground truths. Therefore, akin to ( s ), we leverage the model pretrained on LOL-v2-
syn for inference and select PI ( , ) and NIQE ( , ) as evaluation
metrics, where lower scores indicate better results. As presented in Table 5, our method achieves
optimal results and surpasses the second-based method (DCC-Net ( , )) by 13.39%.

This verifies the generalizability of our Reti-Diff in addressing unknown degradation scenarios.

4.3 ABLATION STUDY

We conduct ablation studies on the low-light image enhancement task with the L-v2-r and L-v2-
s datasets, which are short for LOL-v2-real and LOL-v2-syn. Here, we present a subset of the
significant ablation studies; more experiments can be found in the Supplementary Material (Supp).

Effect of RLDM. As shown in Tables 6 and 7, we ablate RLDM by directly removing RLDM,
replacing the diffusion model with a linear model that shares the same structure with the denois-
ing network (w/o DM), or retraining RLDM in the RGB domain, i.e., w/o Z, rather than in the
reflectance and illumination domain (RGformer is guided by one RGB prior instead). The three
changes bring significant performance drops, underscoring the critical role of RLDM in enhancing
the restoration process and the importance of using the diffusion model to extract compact priors.

Effect of RGformer. We analyze the impact of our RGformer by removing key modules, such
as DFA, RG-MCA, and the auxiliary decoder D,(+). As shown in Table 6, the outcomes indicate
performance decreases when these modules are removed, highlighting their essential roles. Addi-
tionally, we also conduct an evaluation to affirm the significance of joint training in our method.

Effect of Retinex priors. We explore the effect of our Retinex prior from three aspects: (1) We
conduct the break down ablation for the Retinex priors and report the results in Fig. 7 and Table 7.
These findings demonstrate the effect of our Reflectance prior Zg in detail enhancement and our
Illumination prior Zy, in illumination correction. (2) We then swap our Retinex priors with those
extracted from ground truth. As shown in Fig. 7 and Table 7, the results guided by the swapped
ground-truth priors exhibit limited performance gains. This indicates our RLDM can already gen-
erate high-quality priors, which is attributed to the constraints in Eqs. 7 and 13 and our approach
to extracting Retinex priors in a compact space, significantly reducing interference from degraded
inputs. (3) We further explore the potential of Retinex priors under extreme conditions where the re-
flectance or illumination priors exhibit high similarity between low-quality and ground-truth images.
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w/o Retinex Z w/ Reflectance Zy

i/
A

i e . [t . e e 2
Ground Truth w/ Illumination Z;, w/ Retinex (Ours) Inpu urs wap Zg pZy,
(a) Break down ablation in Retinex priors. (b) Swap our Retinex priors with that extracted from GT.

Figure 7: Visual validation of the effectiveness of Retinex priors.

Dataset | Metrics All data ‘ Extreme condition (similar in Zgr) Extreme condition (similar in Zy,)
- | wloZ w/Zw w/Zy w/Z(Ours) SwapZr SwapZy, w/oZ w/Zr w/Zy w/ZOurs)| wioZ w/Zr w/ Zy w/Z(Ours)
Lov2-r PSNR | 21.63 22.13 22.35 22.97 23.31 23.17 21.37 21.66 2257 23.57 21.19 23.06 21.85 24.06
V2T SSIM | 0830 0.842 0839  0.858 0862 0863 |0823 0834 0843 0862 |0820 0845 0831  0.868
L2s |[PSNR 2625 2662 2700 2753 2792 2775 | 2568 2617 2705 2857 |2542 2734 2624 28580
SSIM | 0939 0945 0941 0951 0957 0956 |0922 0930 0951 0966 | 0920 0958 0936  0.965
Table 7: Effect of Retinex priors in all data and two extreme conditions (each with 10 images).
Datasets | Metrics | Ufo Ufo+RLDM | Res Res+RLDM| Ret Ret+RLDM ® 095
PSNR |18.82  21.37 19.94 2156 [22.80  23.16 * 094
Lv2-r [SSIM [0771 0794 |0.827 0837 |0.840 0849 %, 2005
Gain | - 8.27% - 467% - 133% & B o
PSNR |19.66 2208 [21.41 2415 |2567 2681 z oo
L-v2-s |SSIM |0.871 0889 |0.830 0862 |0.930  0.942 2 )
Gain - 7.19% - 8.33% - 2.87% 0 5 10 15 20 25 30 00T 0 15 20 %5 %
- - - - S S . Number of iterations . Number of iterations
Table 8: Generalization of Retinex priors. “Ufo”, “Res”, Figure 8: Ablation study of the number
and “Ret” are Uformer, Restormer, and Retformer. of iterations in RLDM on LOL-v2-syn.

To validate this, five human subjects rated the similarity of the Retinex priors between low-quality
and ground-truth images (the detailed procedure will be introduced in the User Study below). Two
sets of images, each with 10 images, were selected based on the highest similarity in reflectance and
illumination priors. The results in Table 7 verify the effect of our Retinex priors even in this con-
dition. This is attributed to the generative capacity of our RLDM and the information aggregation
capacity of our RGformer. Visual results are placed in the Supp for space limitations.

Generalization of Retinex priors. To assess our generalizability, we incorporate our RLDM into
existing cutting-edge methods, namely Ufo (Uformer (Wang et al., 2022)), Res (Restormer (Zamir
et al., 2022)) and Ret (Retformer (Cai et al., 2023)), and use the extracted Retinex priors to guide
these methods for image enhancement, where the training settings are kept consistent with Reti-Diff.
The results are shown in Table 8. Table 8 reveals that RLDM significantly improves the performance
of all frameworks, indicating the strong generalization capabilities of our Retinex priors.

Ablations on iteration number. To balance performance and efficiency, we conducted experiments
to explore an optimal iteration number 7" and adjusted 3¢ in Eq. (9). The results, as shown in Fig. 8,
illustrate that Reti-Diff exhibits rapid convergence and generates stable guidance priors in just 4
iterations, which is attributed to the use of the diffusion model within the compact latent space.

4.4 USER STUDY AND DOWNSTREAM TASKS

User Study. We conduct a user study to assess the subjective visual perception of low-light image
enhancement. In this study, 29 human subjects are invited to assign scores to the enhanced results
based on four criteria: (1) The presence of underexposed or overexposed regions. (2) The existence
of color distortion. (3) The occurrence of undesired noise or artifacts. (4) The inclusion of essential
structural details. Participants rate the results on a scale from 1 (worst) to 5 (best). Each low-
light image is presented alongside its enhanced results, with the names of the enhancement methods
concealed. The scores are reported in Table 9, where our method receives the highest scores across
all four datasets. This highlights our effectiveness in generating visually appealing results.

Low-light Object Detection. The enhanced images are expected to have better downstream perfor-
mance. We first verify this on low-light object detection. Following (Cai et al., 2023), all compared
methods are performed on ExDark (I.oh & Chan, 2019) with YOLO, which is retrained from scratch
with their own enhanced results. As shown in Table 10, our Reti-Diff exhibits a substantial advantage
over existing methods and our performance surpasses that of the second-best method, Retformer, by
4.72%, verifying our efficacy in facilitating high-level vision understanding.
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Methods ‘ L-vl L-v2-r L-v2-s S]D‘ Mean Methods (AP)‘Bicycle Boat Bottle Bus Car Cat Chair Cup Dog Motor People Tablc‘Mean

KinD 231 225 246 233|234 Baseline 747 649 70.7 84.279.7473 58.6 67.1 64.1 662 739 45.7]66.4
EnGAN 263 1.69 223 1.24] 1.95 RetinexNet 728 66.4 67.3 87.580.6 52.8 60.0 67.8 68.5 69.3 713 46.2|67.5
KinD 732 67.1 64.6 86.879.558.7 63.4 675674 623 755 51.4|68.1

Egﬁ’?osrmer ;% g'gg 3'2} ;gg g?g MIRNet 749 69.7 68.3 89.777.6 57.8 56.9 66.4 69.7 64.6 746 53.4|68.6
Uretinex 1387 398 370 398| 370 RUAS 757 712 735 90.7 80.1 59.3 67.0 66.3 68.3 669 726 50.6|70.2
2050 : EIE Restormer 77.0 710 68.8 91.6 77.1 62.5 57.3 68.0 69.6 69.2 746 49.7|69.7

SNR-Net |3.76 4.12 358 3.42) 3.72 gy 734 68.0 69.5 86.274.563.1 59.5 61.0 673 639 732 473|672
CUE 3.62 381 328 3.09| 345  SNR-Net 78.3 742 745 89.6 82.7 66.8 66.3 625 747 63.1 733 57.2|719
Retformer|3.35 4.02 3.71 3.35| 3.61  Retformer 78.1 745 742 91.2 822650 63.3 67.0 75.4 68.6 753 55.6|725
Ours 4.05 433 392 3.75| 401 Ours 82.0 77.9 764 92.283.369.6 67.4 744 755 743 783 579|758

Table 9: User study. Table 10: Low-light image detection on ExDark.
Methods (IoU)|Bicycle Boat Bottle Bus Car Cat Chair Dog Horse People|Mean CODI0K NC4K

M| Fst Est Sat|M| Fzt Eyt S
Baseline 435 363 48.6 70.567.346.6 112 424 56.7 57.8 |48.1 - ‘ Fpt Bot Sat| M4 Fpt Byt Sat
RetinexNet 48.6 417 517 77.6 68.3 52.7 15.8 463 602 623 | 525 Bas.elme 0.050 0.625 0.812 0.756[0.071 0.733 0.816 0.763
KinD 513 402 532 768 69.4 50.8 146 473 60.3 600 | 50.5 RetinexNet|0.041 0.667 0.845 0.789|0.055 0.750 0.842 0.819
MIRNet 503 429 47.4 73.6 627504 158 463 61.0 63.3 |51.4 KinD  ]0.0390.6730.849 0.79210.052 0.762 0.875 0.822
MIRNet  [0.037 0.697 0.857 0.799]0.049 0.802 0.888 0.833
RUAS 53.0 373 504 713723 47.6 159 508 63.6 608 | 523 pyag 0036 0705 0.861 0.803]0.051 0.795 0.883 0.827

Restormer 53.8 43.8 514 68.766.8 52.6 21.6 54.8 59.8 633 |53.7 36 0700 0,950 0200 0°050 0705 0,220 O
es - . 4 687 068 52.6 21.6 543 59. - -7 Restormer |0.036 0.700 0.859 0.800|0.050 0.792 0.880 0.830
SCI 545 463 572 78473349.1 228 490 621 669 | 560 gy 0.037 0.710 0.863 0.805]0.051 0.782 0.880 0.836
SNR-Net 57.7 48.6 59.5 81.374.8 502 24.4 50.7 64.3 68.7 | 58.0  SNR-Net |0.036 0.703 0.865 0.803|0.049 0.801 0.892 0.838
Retformer 509 47.7 58.6 77.268.1 53.2 17.4 52.0 61.3 71.5 | 55.8  Retformer |0.037 0.682 0.861 0.806|0.052 0.766 0.881 0.832
Ours 59.8 51.5 62.1 85.576.657.7 28.9 56.3 66.2 73.4 |61.8 Ours 0.034 0.725 0.880 0.813]0.047 0.804 0.897 0.841

Table 11: Low-light semantic segmentation, where images Table 12: Low-light concealed object
are darkened by ( , ). segmentation.

Methods ‘

Low-light Image Segmentation. We also conducted segmentation tasks and retrained the segmen-
tor for each method following that in detection. (1) For semantic segmentation, following ( s

), we apply image darkening to samples from the VOC ( , ) dataset ac-
cording to ( , ). We then employ Mask2Former ( , ) to segment
the enhanced results of these darkened images and select Intersection over Union (IoU) for evalua-
tion. As shown in Table 11, we achieve the highest performance across all classes, surpassing the
second-best method by 6.55%. (2) We further venture into concealed object segmentation (COS) on

two datasets, CODI10K ( s ) and NC4K ( , ), which is a challenging task
aimed at delineating objects with inherent background similarity. We also apply image darkening
and enlist FEDER ( , ) to segment the enhanced results. We evaluate the results using

four metrics: mean absolute error (M), adaptive F-measure (Fj3), mean E-measure (E, ), and struc-
ture measure (S,). As depicted in Table 12, our method exhibits superior performance compared
to the second-best method, SNR-Net, with a margin of 2.16% on average. Note that it is a notable
improvement in COS. Collectively, the exceptional results achieved in these two segmentation tasks
substantiate our proficiency in recovering image-level illumination degraded information.

5 DISCUSSIONS

Our Reti-Diff is the first LDM-based solution specifically tailored for the IDIR task, setting it apart
from existing LDM-based methods applied in other tasks. To illustrate the distinctions, we compare
it with a general enhancement method, DiffIR ( , ): (1) Motivation. Reti-Diff targets
enhancing details and correcting degraded illumination. Thus, we enable RLDM to learn Retinex
knowledge and generate Retinex priors from the low-quality input. We contend that relying solely
on priors extracted from the RGB domain struggles to fully represent valuable texture details and
correct illumination cues, leading to suboptimal restoration performance. To verify this, we substi-
tute our RLDM for the LDM structure used in DiffIR. In LOL-v2-syn, we observe that the PSNR
rises from 24.76 to 26.14 and the SSIM increases from 0.921 to 0.933. (2) Implementation. Apart
from proposing RLDM to extract Retinex priors, we further modify the structure of RGformer to
implicitly model the Retinex theory at the feature level and introduce an auxiliary decoder to re-
construct the decomposed Retinex components to the RGB domain. (3) Performance. As shown
in Table 1, our Reti-Diff significantly outperforms DiffIR ( , ) by 20.6% on average.

6 CONCLUSIONS

To balance generation capability and computational efficiency, our approach adopts DM within a
compact latent space to generate guidance priors. Specifically, we introduce RLDM to extract
Retinex priors, which are subsequently supplied to RGformer for feature decomposition, ensur-
ing precise detailed reconstruction and effective illumination correction. RGformer then refines
and aggregates the decomposed features, enhancing the robustness in handling complex degradation
scenes. Our approach is validated through extensive experiments, establishing clear superiority.

10
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A  METHODOLOGY

A.1 RETINEX-BASED LATENT DIFFUSION MODEL

In this section, we provide a detailed derivation for 71

Diffusion process. In the diffusion process, we first use the pretrained RPE to extract the reflectance
prior Zy,, which is treated as the starting point of the forward Markov process, i.e., Zy, = Z?. We
then gradually add Gaussian noise to Zy, by T iterations and each iteration can be defined as:

0 (ZLIZEY) = N (Zhs/T— B2 6T) (M
where t = 1,---,T. Z denotes the noisy prior at time step ¢, 3° is the predefined factor that

controls the noise variance, and N is the Gaussian distribution. Following ( s
), Eq. (1) can be simplified as follows:

0(2Z)28) = N (24 Va'z, (1 - a'))), @
where of =1 — gt and @' = [['_, o’

Reverse process. In the reverse process, RLDM aims to extract the reflectance prior from pure
Gaussian noise. Thus, RLDM samples a Gaussian random noise map Z{ and then gradually denoise
it to run backward from Z] to Z{ :

(2124, 20) =N (2 (24, ). 0" ®

t—1
19— ', € denotes

where mean p'(Z%,Z9) = xlﬁ(Zf' — 1=2_¢) and variance (o) =

Vvi-at
the noise in Z and is the only uncertain variable. Following preV1ous practice ( , ),

we employ a denoising network €y(+) to estimate 6. To operate in the latent space, we further
introduce another RPE module RPE(+) to extract the conditional reflectance vector Vi, € R from
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= d e e = 4 |
Illu. Tllu. GT Ref. Ref. GT w/o prior w/ Ref. w/Illu w/ Retinex (Ours) Ground Tru(h
Flg Sl Effect of Retinex priors in extreme conditions, where the two rows share a similarity in

reflectance and illumination components, respectively.

Datasets| Metrics| £-norm ¢;-norm (Ours)

Lo |PSNR | 27.26 27.53
VS ISSIM | 0.949 0.951
Lo |PSNR | 2262 2297
Ve ISSIM | 0.853 0.858

Fig. S1: Effect of £,-norm in Loss Functions.
Datasets|Metrics| A; = 0.1 A\; =1 (Ours) A\; = 10| A2 = 0.1 Xy = 1 (Ours) A = 10| A3 = 0.1 A3 =1 (Ours) A3 = 10

L2 PSNR | 27.15 27.53 27.33 | 27.08 27.53 2733 | 27.26 27.53 27.35
VoS ISSIM | 0.949 0.951 0.948 | 0.946 0.951 0.947 | 0.952 0.951 0.946
12 PSNR | 22.86 22.97 22.82 | 2236 22.97 2276 | 22.33 22.97 22.16
VT ISSIM | 0.857 0.858 0.855 | 0.851 0.858 0.856 | 0.853 0.858 0.850

Fig. S2: Effect of £,,-norm in Loss Functions.

the reflectance image L, of the LQ image, i.e., Vi, = I@E(down(L Lq))- Therefore, the denoising
network can be represented by €y (Z% , Vi, t). By setting the variance to 1 — o, we get
t

_ 1—«
Zy = (Z1,— ———eo(Z1., VL, 1)) +V1 — ale’, @
1— ~t
where € ~ N (0,1). i

Vat

B EXPERIMENT

B.1 ABLATION STUDY

Effect of Retinex priors in extreme conditions. We investigate the potential of Retinex priors, i.e.,
Zy and Zi,, under extreme conditions where the reflectance or illumination components exhibit high
similarity between low-quality and ground-truth images. As shown in Fig. S1, the extracted priors
have a diminished effect when the corresponding component shows the similarity between low-
quality and ground-truth images. This is because the corresponding component undergoes minimal
degradation.

Effect of /,-norm in Loss Functions. We explore the effect of ¢,,-norm in loss functions. As
shown in Table S1, Reti-Diff achieves better performance when using ¢;-norm. Therefore, our loss
functions select /1-norm.

Parameter Analysis. Our Reti-Diff is optimized with multiple losses, which are balanced by three
hyperparameters, i.e., A1, A2, and A3. To analyze their impact, we vary one of the parameters and
fix others, and report the results in Table S2. Overall, we find that the different coefficients in the
tested range only slightly influence the final performance and A;, A2, and A3 obtain better results
when they are set to 1. So we set those parameters to 1 each.

B.2 COMPARATIVE EVALUATION

Low-light Image Enhancement. As shown in Fig. S2, we provide more visualization results. Our
method can generate enhanced images with corrected illumination and enhanced texture, even in
extremely challenging conditions.

Underwater Image Enhancement. More qualitative analyses are presented in Fig. S3, illustrating
our superiority in underwater color correction and fine texture details reconstruction.
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Input EnGAN Uretinex SNR-Net Retformer CLIP-LIT Ours Ground Truth
Fig. S2: Visual results on the low-light image enhancement task.

TS 7

EnGAN . S-uwnet i FUGAN U-shape ] U2Net o urs Ground Truth ]
Fig. S3: Visual results on the underwater image enhancement task.

ety
R-Net

\ Uretinex SNR-Net . CUE Retformer Ours Grouﬁd Truth
Fig. S4: Visual results on the backlit image enhancement task.

Input ENGAN

Backlit Image Enhancement. Furthermore, a visual comparison in Fig. S4 provides additional
evidence of our superiority in detail reconstruction and color correction. All methods are trained by
cropping the training data as 256 x 256 for fairness.

Real-world Illumination Degradation Image Restoration. As depicted in Fig. S5, our enhanced
images demonstrate superior capability in refining texture details and correcting inconsistent illumi-
nation, even under real-world complex degradation conditions. It is important to note that ground
truth data is not available for these real-world scenarios.

C DOWNSTREAM TASKS

Low-light Object Detection. As presented in Fig. S7, our method not only enhances image quality
but also achieves superior performance in low-light object detection. It is important to note that the
ground truth is the same low-quality image as the input.

Low-light Image Segmentation. The low-light image segmentation task comprises two main tasks,
i.e., low-light semantic segmentation task and low-light concealed object segmentation task. As de-
picted in Figs. S8 and S9, our enhanced images result in better segmentation, with masks that capture
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Input CUE SNR-Net DCC-Net UHDFour PairLIE GSAD Ours

Fig. S5: Visual results on the real-world IDIR task.
B

Input M. Ref. Ground Truth Tu. GT Ref. GT
Fig. S6: Results of Retinex components decomposed by D(+), where Illu. and Ref. are shorts for

illumination and reflectance.

more complete objects and exhibit more accurate boundaries, further indicating the superiority of
our Reti-Diff.

D LIMITATIONS AND FUTURE WORK

In the first image of Fig. S10, our method fails to distinguish the two regions marked by the dashed
box due to the ambiguous boundary of the right region and the intrinsic similarities shared between
the two areas. Consequently, our method interprets the two distinct regions as a single object and
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Input KinD Restormer SNR-Net Retformer Ours Ground Truth
Fig. S7: Results on the low-light object detection task.

Input KinD Restormer SNR-Net Retformer Ours Ground Truth
Fig. S8: Results on the low -light semantic segmentation task.

R EErN ;
P

Input KinD Restormer SNR-Net Retformer Ours Ground Truth
Fig. S9: Results on the low hght concealed object segmentatlon task

Input EnGAN Uretinex SNR-Net CUE Retformer Ours Ground Truth
Fig. S10: Failure cases. Our results show blurred texture details in the dashed boxes.

attempts to merge them. This behavior contrasts with the successful separation of the lower clothing,
which exhibits more apparent differences. A similar issue is observed in the second image. This lim-
itation is not attributable to the Retinex priors or the RGformer, as neither is specifically designed to
highlight subtle differences. To address this challenge, future research could explore extracting tex-
ture priors from alternative domains, such as the frequency domain. Such priors could complement
those in the RGB domain by emphasizing subtle distinctions. Additionally, inspired by ( ,

, ), we acknowledge that further tunlng the noise variance parameters could
enhance the latent diffusion model’s capacity to address noise across varying levels and facilitate
the generation of higher-quality enhanced images. In future work, we plan to thoroughly investigate
how this strategy can contribute to the development of a more effective IDIR algorithm.
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