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Abstract

In image retrieval, standard evaluation metrics rely on score ranking, e.g. av-
erage precision (AP). In this paper, we introduce a method for robust and de-
composable average precision (ROADMAP) addressing two major challenges for
end-to-end training of deep neural networks with AP: non-differentiability and
non-decomposability. Firstly, we propose a new differentiable approximation of
the rank function, which provides an upper bound of the AP loss and ensures robust
training. Secondly, we design a simple yet effective loss function to reduce the de-
composability gap between the AP in the whole training set and its averaged batch
approximation, for which we provide theoretical guarantees. Extensive experiments
conducted on three image retrieval datasets show that ROADMAP outperforms
several recent AP approximation methods and highlight the importance of our two
contributions. Finally, using ROADMAP for training deep models yields very
good performances, outperforming state-of-the-art results on the three datasets.
Code and instructions to reproduce our results will be made publicly available at
https://github.com/elias-ramzi/ROADMAP.

1 Introduction

The task of ‘query by example’ is a major prediction problem, which consists in learning a similarity
function able to properly rank all the instances in a retrieval set according to their relevance to the
query, such that relevant items have the largest similarity. In computer vision, it drives several major
applications, e.g. content-based image retrieval, face recognition or person re-identification.

Such tasks are usually evaluated with rank-based metrics, e.g. Recall@k, Normalized Discounted
Cumulative Gain (NDCG), and Average Precision (AP). AP is also the de facto metric used in several
vision tasks implying a large imbalance between positive and negative samples, e.g. object detection.

In this paper, we address the problem of direct AP training with stochastic gradient-based optimization,
e.g. using deep neural networks, which poses two major challenges.

Firstly, the AP loss LAP = 1− AP is not differentiable and is thus not directly amenable to gradient-
based optimization. There has been a rich literature for providing smooth and upper bound surrogate
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(a) LSupAP ≥ LAP and∇LSupAP > 0 in this example,
in contrast to SmoothAP [2]. This ensures robust
training and comes from a new approximation of the
rank function.

(b)LAP non-decomposability: LAP = 0 in all batches
Bi despite LAP 6= 0 over the whole

⋃
i B

i. Lcalibr.
controls the absolute scores between batches, such
that LROADMAP 6= 0 in each batch.

Figure 1: Our robust and decomposable Average Precision training (ROADMAP) includes (a) a
smooth lossLSupAP upper-boundingLAP, and (b) a calibration lossLcalibr. supporting decomposability.

losses for LAP [43, 21, 22, 6, 25]. More recently, smooth differentiable rank approximations have
been proposed [35, 14, 15, 3, 27, 8, 2], but generally lose the important LAP upper bound property.

The second important issue of AP optimization relates to its non-decomposability: LBAP averaged over
batches underestimates LAP on the whole training dataset, which we refer as the decomposability
gap. In image retrieval, the attempts to circumvent the problem involve ad hoc methods based on batch
sampling strategies [10, 32, 20, 32, 30], or storing all training representations/scores [39, 3, 27, 25],
leading to complex models with a large computation and memory overhead.

In this paper, we introduce a method for RObust And DecoMposable Average Precision (ROADMAP),
which explicitly addresses the aforementioned challenges of AP optimization.

Our first contribution is to propose a new surrogate loss LSupAP for LAP. In particular, we introduce
a smooth approximation of the rank function, with a different behaviour for positive and negative
examples. By this design, LSupAP provides an upper bound of LAP, and always back-propagates
gradients when the correct ranking is not satisfied. These two features illustrated in the the toy
example on Figure 1a are not fulfilled by binning approaches [3, 27] or by SmoothAP [2].

As a second contribution, we propose to improve the non-decomposability in AP training. To this
end, we introduce a simple yet effective training objective Lcalibr., which calibrates the scores among
different batches by controlling the absolute value of positive and negative samples. We provide
a theoretical analysis showing that Lcalibr. decreases the decomposability gap. Figure 1 illustrates
how Lcalibr. can be leveraged to improve the overall ranking.

We provide a thorough experimental validation including three standard image retrieval datasets and
show that ROADMAP outperforms state-of-the-art methods. We also report the large and consistent
gain compared to rank/AP approximation baselines, and we highlight in the ablation studies the
importance of our two contributions. Finally, ROADMAP does not entail any memory or computation
overhead and remains competitive even with small batches.

2 Related work

We discuss here the literature in image retrieval dedicated to AP optimization, and compare to other
approaches based on optimizing representations [23, 1, 44, 46, 33] in the experiments.

Smooth AP approximations Studying smooth surrogate losses for AP has a long history. The
widely used surrogate for retrieval is to consider constraints based on pairs [41, 12, 26], triplets [11],
quadruplets [18] or n-uplets [30] to enforce partial ranking. These metric learning methods optimize
a very coarse upper bound on AP and need complex post-processing and tricks to be effective.

One option for training with AP is to design smooth upper bounds on the AP loss. Seminal works are
based on structural SVMs [43, 21], with extensions to speed-up the "loss-augmented inference" [22]
or to adapt to weak supervision [6]. Recently, a generic blackbox combinatorial solver has been
introduced [25] and applied to AP optimization [28]. To overcome the brittleness of AP with respect to
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small score variations, an ad hoc perturbation is applied to positive and negative scores during training.
These methods provide elegant AP upper bounds, but generally are coarse AP approximations.

Other approaches rely on designing smooth approximations of the the rank function. This is done
in soft-binning techniques [14, 15, 35, 3, 27] by using a smoothed discretization of similarity
scores. Other approaches rely on explicitly approximating the non-differentiable rank functions using
neural networks [8], or with a sum of sigmoid functions in the recent SmoothAP approach [2]. These
approaches enable accurate AP approximations by providing tight and smooth approximations of the
rank function. However, they do not guarantee that the resulting loss is an AP loss upper bound. The
LSupAP introduced in this work is based on a smooth approximation of the rank function leading to an
upper bound on the AP loss, making our approach both accurate and robust.

Decomposability in AP optimization Batch training is mandatory in deep learning. However, the
non-decomposability of AP is a severe issue, since it yields an inconsistent AP gradient estimator.

Non-decomposability is related to sampling informative constraints in simple AP surrogates, e.g.
triplet losses, since the constraints’ cardinality on the whole training set is prohibitive. This has
been addressed by efficient batch sampling [13, 10, 32] or selecting informative constraints within
mini-batches [30, 9, 4, 32]. In cross-batch memory technique [39], the authors assume a slow drift in
learned representations to store them and compute global mining in pair-based deep metric learning.

In AP optimization, the non-decomposability has essentially been addressed by a brute force increase
of the batch size [3, 27, 25]. This includes an important overhead in computation and memory, gen-
erally involving a two-step approach for first computing the AP loss and subsequently re-computing
activations and back-propagating gradients. In contrast, our loss Lcalibr. does not add any overhead
and enables good performances for AP optimization even with small batches.

3 Robust and decomposable AP training

We present here our method for RObust And DecoMposable AP (ROADMAP) dedicated to direct
optimization of a smooth surrogate of AP with stochastic gradient descent (SGD), see Fig. 2.

Training context Let us consider a retrieval set Ω = {xj}j∈J1;NK composed of N elements, and a
set of M queries included in Ω, i.e. Q = {qi}i∈J1;MK ⊆ Ω. For each query qi, each element in Ω

is assigned a label y(xj , qi) ∈ {+1;−1}, such that y(xj , qi) = 1 (resp. y(xj , qi) = −1) if xj is
relevant (resp. irrelevant) with respect to qi. This defines a query-dependent partitioning of Ω such
that Ω = Pi ∪Ni, where Pi := {xj ∈ Ω|y(xj , qi) = +1} and Ni := {xj ∈ Ω|y(xj , qi) = −1}.
For each xj ∈ Ω, we define a prediction model parametrized by parameters θ, e.g. a deep neural
network, which provides a vectorial embedding vqi ∈ Rd of each element, i.e.: vqi := fθ(qi). In
the embedded space Rd, we compute a similarity score between each query qi and each element in

Ω, e.g. by using the cosine similarity: s(qi,xj) =
vqi

Tvj

||vqi
||2||vj||2 .

During training, our goal is to optimize, for each query qi, the model parameters θ such that positive
elements are ranked before negatives. More precisely, we aim at minimizing the AP loss LAPi

for
each query qi in the retrieval set Ω. Our overall AP loss LAP is averaged over all queries:

LAP(θ) = 1− 1

M

M∑
i=1

APi(θ), APi(θ) =
1

|Pi|
∑
k∈Pi

Pre(k, θ) =
1

|Pi|
∑
k∈Pi

rank+(k, θ)

rank(k, θ)
(1)

where Pre(k, θ) is the precision for the kth positive example xk, rank+(k, θ) its rank among positives
Pi, and the rank(k, θ) its rank over Ω = Pi ∪Ni.
As previously mentioned, there are two main challenges with SGD optimization of AP in Eq. (1):
i) AP(θ) is not differentiable with respect to θ, and ii) AP does not linearly decompose into
batches. ROADMAP addresses both issues: we introduce the robust differentiable LSupAP surrogate
(Section 3.1), and add the Lcalibr. loss (Section 3.2) to improve AP decomposability. Our final loss
LROADMAP is a linear combination of LSupAP and Lcalibr., weighted by the hyperparameter λ:

LROADMAP(θ) = (1− λ) · LSupAP(θ) + λ · Lcalibr.(θ) (2)
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Figure 2: ROADMAP training: we optimize parameters θ of a deep neural networks to minimize
a smooth surrogate of LAPi

(θ) between the query qi and the retrieval set Ω. Our smooth rank
approximations H+ and H− enables LSupAP to be both accurate and robust (sec 3.1), and Lcalibr.
enables an implicit batch scores comparison for better decomposability without additional storing
(sec 3.2).

3.1 Robustness in smooth rank approximation

The non-differentiablity in Eq (1) comes from the ranking operator, which can be viewed as counting
the number of instances that have a similarity score greater than the considered instance, i.e.1:

rank+(k) = 1 +
∑

j∈Pi\{k}

H(sj − sk), where H(t) =

{
1 if t ≥ 0

0 otherwise

rank(k) = rank+(k) +
∑
j∈Ni

H(sj − sk) = rank+(k) + rank−(k) (3)

From Eq. (3) it becomes clear that the non-differentiablity is due to the Heaviside (step) function H ,
whose derivative is either zero or undefined. Note that the computation of rank+(k) and rank−(k)
in Eq. (3) relates to the rank of positive instances xk ∈ Pi: the score sk in Eq. (3) is always the score
of a positive, whereas sj can either be a negative’s or positive’s score.

Smooth loss LSupAP To provide a smooth approximation of LAP in Eq. (1), we introduce a smooth
approximation of the rank function. In particular, we propose a different behaviour between rank+(k)
and rank−(k) in Eq. (3) by defining two functions H+ and H−.

For rank+(k), we choose to keep the Heaviside (step) function, i.e. H+ = H (see Fig. 3a),
which consists in ignoring rank+(k) in gradient-based AP optimization. This is done on purpose
since ∂AP

∂ rank+(k)
= rank−(k)

(rank+(k)+rank−(k))2
≥ 0: the gradient would tend to increase rank+(k) and to

decrease the score of sk. Reminding xk is always a positive instance, this behaviour is undesirable.

For rank−(k), we define the following smooth surrogate H− for H , shown in Fig 3b:

H−(t) =


σ( tτ ) if t ≤ 0, where σ is the sigmoid function (Fig. 3c)
σ( tτ ) + 0.5 if t ∈ [0; δ] with δ ≥ 0

ρ · (t− δ) + σ( δτ ) + 0.5 if t > δ

(4)

where τ and ρ are hyperparameters, and δ is defined such that the sigmoidal part of H− reaches
the saturation regime and is fixed for the rest of the paper (see supplementary Sec. A). From

1For the sake of readability we drop in the following the dependence on θ for the rank, i.e. rank(k) :=
rank(k, θ) and on the query for the similarity, i.e. sj := s(qi, xj).
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(a) H+(x) = H(x) in Eq. (3) (b) H−(x) in Eq. (4) (c) Sigmoid used in [2]

Figure 3: Proposed surrogate losses for the Heaviside (step): with H+(x) in Fig. 3a and H−(x) in
Fig. 3b, LSupAP in Eq. (5) is an upper bound of LAP. In addition, H−(x) back-propagates gradients
until the correct ranking is satisfied, in contrast to the sigmoid used in [2] (Fig. 3c).

the H− smooth approximation defined in Eq. (4), we obtain the following smooth approximation
rank−s (k) =

∑
j∈Ni

H−(sj − sk), leading to the following smooth AP loss approximation:

LSupAP(θ) = 1− 1

M

M∑
i=1

1

|Pi|
∑
k∈Pi

rank+(k)

rank+(k) + rank−s (k)
(5)

LSupAP in Eq. (5) fulfills two main features for AP optimization:

I 1 LSupAP is an upper bound of LAP in Eq. (1). Since H− in Eq. (4) is an upper bound of a
step function (Fig 3b), it is easy to see that LSupAP ≥ LAP. This is a very important property, since
it ensures that the model keeps training until the correct ranking is obtained. It is worth noting that
existing smooth rank approximations in the literature [35, 3, 27, 2] do not fulfill this property.

I 2 LSupAP brings training gradients until the correct ranking plus a margin is fulfilled.
When the ranking is incorrect, the negative xj is ranked before the positive xk, thus sj > sk and
H−(sj − sk) in Eq. (4) has a non-null derivative. We use a sigmoid to have a large gradient when
sj − sk is small. To overcome vanishing gradients of the sigmoid for large values sj − sk, we use a
linear function ensuring constant ρ derivative. When the ranking is correct (sj < sk), we enforce
robustness by imposing a margin parametrized by τ (sigmoid in Eq. (4)). This margin overcomes the
brittleness of rank losses, which vanish as soon as the ranking is correct [14, 3, 25].

Comparison to SmoothAP [2] LSupAP differs from LSmoothAP in [2] by i) providing an upper bound
on LAP, ii) improving the gradient flow (Fig. 3b vs Fig. 3c), and iii) overcoming adverse effects of
the sigmoid for rank+, as shown in Fig. 1a (and in supplementary sec. A). We experimentally verify
the consistent gain brought out by LSupAP over LSmoothAP.

3.2 Decomposable Average Precision

In Eq. (1), AP decomposes linearly between queries qi, but APi does not decomposes linearly
between samples. We therefore focus our analysis of the non-decomposability on a single query. For a
retrieval set Ω of N elements, we consider {Bb}b∈{1:K} batches of size B, such that N/B = K ∈ N.
Let APbi (θ) be the AP in batch b for query qi, we define the "decomposability gap" DGAP as follows:

DGAP(θ) =
1

K

K∑
b=1

APbi (θ)− APi(θ) (6)

DGAP in Eq. (6) is a direct measure of the non-decomposability of AP (see supplementary Sec.
A). Our motivation here is to decrease DGAP, i.e. to have the average AP over the batches as close as
possible to the AP computed over the whole training set. To this aim, we introduce the following loss
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during training:

Lcalibr.(θ) =
1

M

M∑
i=1

1

|Pi|
∑
xj∈Pi

[α− sj ]+︸ ︷︷ ︸
L+

calibr.

+
1

|Ni|
∑
xj∈Ni

[sj − β]+︸ ︷︷ ︸
L−

calibr.

(7)

where [x]+ = max(0, x). The loss L+
calibr. enforces the score of the positive xi ∈ Pi to be larger

than α, and L−calibr. enforces the score of the negative xj ∈ Ni to be smaller than β < α. Lcalibr. is a
standard pair-based loss [12], which we revisit in our context to "calibrate" the values of the scores
between mini-batches: intuitively, the fact that the positive (resp. negative) scores are above (resp.
below) a threshold in the mini-batches makes the average AP closer to the AP on the whole dataset.

Upper bound on the decomposabilty gap To formalize this idea, we provide a theoretical analysis of
the impact on the global ranking of Lcalibr. in Eq. (7). Firstly, we can see that if L−calibr. = L+

calibr. = 0,
on each batch, the overall AP and the AP in batches is null, i.e. DGAP(θ) = 0 and we get a
decomposable AP. In a more general setting, we show that minimizing Lcalibr. on each batch reduces
the decomposability gap, hence improving the decomposability of the AP.

Let’s consider K batches {Bb}b∈{1:K} of batch size B divided in Pbi positive instances and N b
i

negative instances w.r.t. the query qi. To give some insight we assume that the AP of each batch is
one (i.e. AP bi = 1), and give the following upper bound of DGAP :

0 ≤ DGAP ≤ 1− 1∑K
b=1 |Pbi |

 K∑
b=1

B∑
j=1

j + |P1
i |+ · · ·+ |P

b−1
i |

j + |P1
i |+ · · ·+ |P

b−1
i |+ |N 1

i |+ · · ·+ |N
b−1
i |

 (8)

This upper bound of the decomposability gap is given in the worst case for the global AP : the global
ranking is built from the juxtaposition of the batches (see supplementary Sec. A).

We can refine this upper bound by introducing the calibration lossLcalibr. and constraining the scores of
positive and negative instances to be well calibrated. On each batch we define the following quantities
E−b =

∑
j∈N−

i
1(sj > β) which are the negative instances that do not respect the constraints and

G−b =
∑
j∈N−

i
1(sj ≤ β) the negative instances that do. We similarly define E+

b and G+
b . We then

have the following upper bound on the decomposability gap :

0 ≤ DGAP ≤ 1− 1∑K
b=1 |Pbi |

(
K∑
b=1

[ G+
b∑

j=1

j +G+
1 + · · ·+G+

b−1

j +G+
1 + · · ·+G+

b−1 + E−1 + . . . E−b−1
+ (9)

E+
b∑

j=1

j +G+
b + |P1

i |+ · · ·+ |P
b−1
i |

j +G+
b + |P1

i |+ · · ·+ |P
b−1
i |+ |N 1

i |+ · · ·+ |N
b−1
i |

])

This refined upper bound is tighter than the upper bound of Eq. (8). Our new Lcalibr. loss directly
optimizes this upper bound (by explicitly optimizing E−b , E

+
b , E

+
b , G

+
b ), making it tighter, hence

improving the decomposability of the AP (see supplementary Sec. A).

4 Experiments

Experimental setup We evaluate ROADMAP on the following three image retrieval datasets:
CUB-200-2011 [37] contains 11 788 images of birds classified into 200 fine-grained classes. We
follow the standard protocol and use the first (resp. last) 100 classes for training (resp. evaluation).
Stanford Online Product (SOP) [31] is a dataset with 120 053 images of 22 634 objects classified
into 12 categories (e.g. bikes, coffee makers). We use the reference train and test splits from [31].
INaturalist-2018 [36] is a large scale dataset of 461 939 wildlife animals images classified into 8142
classes. We use the splits from [2] with 70% of the classes in the train set and the rest in the test set.

ROADMAP settings For all experiments in Section 4.1 and Section 4.2, we use λ = 0.5 for
LROADMAP in Eq. (2), τ = 0.01 and ρ = 100 for LSupAP in Eq. (5), α = 0.9 and β = 0.6 for Lcalibr.
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in Eq. (7). We study more in depth the impact of those parameters in Section 4.3. Deep models are
trained using Adam [17] for ResNet-50 backbones and AdamW [19] for DeiT transformers [34].
Test protocol Methods are evaluated using the standard recall at k (R@k) and mean average precision
at R [24] (mAP@R) metrics (see supplementary Sec. B).

4.1 ROADMAP validation

In this section, all models are trained in the same setting (ResNet-50 backbone, embedding size 512,
batch size 64). The comparisons thus directly measures the impact of the training loss.

Comparison to AP approximations. In Table 1, we compare ROADMAP on the three datasets to
recent AP loss approximations including the soft-binning approaches FastAP [3] and SoftBinAP [27],
the generic solver BlackBox [28], and the smooth rank approximation [2]. We use the publicly
available PyTorch implementations of all these baselines. We can see that ROADMAP outperforms
all the current AP approximations by a large margin. The gain is especially pronounced on the large
scale dataset INaturalist. This highlights the importance our two contributions, i.e. our robust smooth
AP upper bound and our AP decomposability improvement (see supplementary Sec. B).

Table 1: Comparison between ROADMAP and state-of-the-art AP ranking based methods.
CUB SOP INaturalist

Method R@1 mAP@R R@1 mAP@R R@1 mAP@R

FastAP [3] 58.9 22.9 78.2 51.3 53.5 19.6
SoftBin [27] 61.2 24.0 80.1 53.5 56.6 20.1
BlackBox [28] 62.6 23.9 80.0 53.1 52.3 15.2
SmoothAP [2] 62.1 23.9 80.9 54.6 59.8 20.7

ROADMAP 64.2 25.3 82.0 56.5 64.5 25.1

Comparison to memory methods.

XBM stores the embeddings of previously seen batches to alleviate complex batch sampling and
better approximate AP on the whole dataset. Although XBM has a low memory overhead (a few
hundreds megabytes on SOP), it is time consuming. We ran experiments storing the entire dataset for
SOP (60k embeddings), but for INaturalist we could not train while storing all the dataset in tractable
time. We chose to store the same amount of embeddings as for SOP : 60k embeddings which is about
17% of the training set.

We can see in Table 2 that XBM is approximately 3 times longer to train than ROADMAP. This
becomes critical on INaturalist, where training while storing 60k images takes about 3 days, and
reaches only a R@1 of 60. Consequently, ROADMAP outperforms XBM on both datasets; there is
a ∼+2pt increase on both metrics for SOP and an especially large gap on INaturalist. In the latter,
not being able to store all the embeddings affects drastically the performances of the XBM in a
negative way. There is a 5pt difference in R@1 and more than 6pt in mAP@R. This demonstrates the
suitability of ROADMAP on large-scale settings.

Table 2: Our method compared to cross batch memory [39]. The unit of time is m/e which stands for
minutes per epoch.

SOP INaturalist

Method R@1 mAP@R time↓ R@1 mAP@R time↓
XBM [39] 80.6 54.9 6 59.3 18.5 34
ROADMAP (ours) 82.0 56.5 2 64.5 25.1 12

Ablation study. To study more in depth the impact of our contributions, we perform ablation studies
in Table 3. We show the improvement against SmoothAP [2] when changing the sigmoid by H+

and H− for LSupAP in Eq. (5), and the use of Lcalibr. in Eq. (7). We can see that LSupAP consistently
improves performances over LSmoothAP (0.9pt on CUB, 0.5pt on SOP and 1.5pt on INaturalist). LSupAP
and Lcalibr. equally contribute to the overall gain in CUB and SOP, but the gain of Lcalibr. is much
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more important on INaturalist. This is explained by the fact that the batch vs. dataset ratio size B
N is

tiny (� 1), making the decomposability gap in Eq. (6) huge. We can see that Lcalibr. is very effective
for reducing this gap and brings a gain of more than 3pt.

Table 3: Ablation study for the impact of our two contribution on and the SmoothAP baseline.
CUB SOP INaturalist

Method H− Lcalibr. R@1 mAP@R R@1 mAP@R R@1 mAP@R

SmoothAP [2] 7 7 62.1 23.9 80.9 54.6 59.7 20.7
SupAP 3 7 62.9 24.6 81.4 55.3 61.2 21.3
ROADMAP 3 3 64.2 25.3 82.0 56.5 64.5 25.1

4.2 State of the art comparison

We compare ROADMAP to other state of the art methods across three image retrieval datasets and
report the results in Table 4. We divide competitor methods into three categories: metric learning
[29, 38, 45, 16, 39, 42], classification losses for image retrieval [46, 44, 1, 33], and AP approximations
[3, 28, 2]. ROADMAP falls in the latter category. We use the same setup as in Section 4.1 and follow
standard practices for ResNet-50 [33, 42, 1] by using larger images (256× 256 on SOP and CUB)
and using max instead of average pooling and layer normalization for CUB.

Using the popular ResNet-50 backbone, ROADMAP establishes a new state of the art across all meth-
ods for SOP and the challenging INaturalist dataset and outperforms all previous AP approximations
on CUB, while being competitive with the other two top performers (ProxyNCA++ and SEC). R@k
improvements are consistent on all datasets with a ∼2pts R@1 increase on INaturalist and ∼3pts
increase on SOP compared to SmoothAP, the best performing AP approximation from the literature.

Switching the backbone to the more recent vision transformer architecture DeiT [5, 34], further lifts
the performances of ROADMAP by several point, from 3 to 9 points depending on the dataset, with
a smaller embedding size (384 vs 512). The decomposable AP approximation ROADMAP also
outperforms by a significant margin IRTR, the DeiT architecture for image retrieval introduced in [7]
trained with a contrastive loss. Overall ROADMAP achieves state-of-the-art performances across all
three datasets by a significant margin.

4.3 Model Analysis

We show in Fig. 4 the impact of the main ROADMAP hyperparameters on INaturalist. The relative
weighting λ from Eq. (2) controls the balance between our two training objectives LSupAP and Lcalibr.:
λ = 0 reduces LROADMAP to LSupAP while λ = 1 to Lcalibr.. We can see in Fig. 4a that training
with the complete LROADMAP with both Lcalibr. and LSupAP is always better than using only one of
the two losses. Note that results are stable in the [0.2, 0.8] range with a consistent ∼1.5pt increase,
demonstrating the robustness of ROADMAP to this hyperparameter tuning.

0 0.2 0.5 0.8 1

23

24
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27

28

m
A

P@
R

(a) mAP@R vs λ for LROADMAP
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(b) mAP@R vs ρ for LSupAP

0 0.2 0.4 0.6 0.8
16

18

20

22

24

26

28

LROADMAP
LSupAP

(c) mAP@R vs α− β for Lcalibr.

Figure 4: Analysis of ROADMAP hyperparameters on INaturalist (batch size 224).

Fig. 4b shows the influence of the slope ρ that controls the linear regime in H− and determines the
amount of gradient backpropagated for negative samples with a (wrong) high score. As shown in
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Table 4: Comparison of state of the art performances from the literature on SOP, CUB and INaturalist
with the proposed ROADMAP (recall@k). Except for the DeiT category, all methods rely on a
standard convolutional backbone (generally ResNet-50).

SOP CUB INaturalist
Method dim 1 10 100 1 2 4 8 1 4 16 32

M
et

ri
c

le
ar

ni
ng

Triplet SH [40] 512 72.7 86.2 93.8 63.6 74.4 83.1 90.0 58.1 75.5 86.8 90.7
LiftedStruct [31] 512 62.1 79.8 91.3 47.2 58.9 70.2 80.2 - - - -
MIC [29] 512 77.2 89.4 95.6 66.1 76.8 85.6 - - - - -
MS [38] 512 78.2 90.5 96.0 65.7 77.0 86.3 91.2 - - - -
SEC [45] 512 78.7 90.8 96.6 68.8 79.4 87.2 92.5 - - - -
HORDE [16] 512 80.1 91.3 96.2 66.8 77.4 85.1 91.0 - - - -
XBM [39] 128 80.6 91.6 96.2 65.8 75.9 84.0 89.9 - - - -
Triplet SCT [42] 512/64 81.9 92.6 96.8 57.7 69.8 79.6 87.0 - - - -

C
la

ss
ifi

ca
tio

n

ProxyNCA [23] 512 73.7 - - 49.2 61.9 67.9 72.4 61.6 77.4 87.0 90.6
ProxyGML [46] 512 78.0 90.6 96.2 66.6 77.6 86.4 - - - - -
NSoftmax [44] 512 78.2 90.6 96.2 61.3 73.9 83.5 90.0 - - - -
NSoftmax [44] 2048 79.5 91.5 96.7 65.3 76.7 85.4 91.8 - - - -
Cross-Entropy [1] 2048 81.1 91.7 96.3 69.2 79.2 86.9 91.6 - - - -
ProxyNCA++ [33] 512 80.7 92.0 96.7 69.0 79.8 87.3 92.7 - - - -
ProxyNCA++ [33] 2048 81.4 92.4 96.9 72.2 82.0 89.2 93.5 - - - -

A
P

lo
ss

FastAP [3] 512 76.4 89.0 95.1 - - - - 60.6 77.0 87.2 90.6
BlackBox [28] 512 78.6 90.5 96.0 64.0 75.3 84.1 90.6 62.9 79.4 88.7 91.7
SmoothAP [2] 512 80.1 91.5 96.6 - - - - 67.2 81.8 90.3 93.1
SoftBin* [27] 512 80.6 91.3 96.1 61.2 73.14 83.0 89.5 64.2 77.1 82.7 91.7
ROADMAP (ours) 512 83.1 92.7 96.3 68.5 78.7 86.6 91.9 69.1 83.1 91.3 93.9

D
ei

T IRTR [7] 384 84.2 93.7 97.3 76.6 85.0 91.1 94.3 - - - -
ROADMAP (ours) 384 86.0 94.4 97.6 77.4 85.5 91.4 95.0 73.6 86.2 93.1 95.2

Fig. 4b, the improvement is important and stable in [10, 100]. Note that ρ > 0 already improves the
results compared to ρ = 0 in [2]. There is an important decrease when ρ� 100 probably due to the
high gradient that takes over the signal for correctly ranked samples.
The impact of the margin α− β in Lcalibr. is shown in Fig. 4c. Once again, ROADMAP exhibits a
robust behaviour w.r.t. the values of its hyperparameters: any margin in the [0.1, 0.6] range results in
an improvement in mAP@R compared to the LSupAP baseline without the decomposability loss. Best
results are achieved with smaller margins 0.1 < α− β < 0.4.

Fig. 5 shows the improvement in mAP@R on the three datasets when adding Lcalibr. to LSupAP. We
can see that the increase becomes larger as the batch size gets smaller. This confirms our intuition
that the decomposability in Lcalibr. has a stronger effect on smaller batch sizes, for which the AP
estimation is noisier and DGAP larger. This is critical on the large-scale dataset INaturalist where the
batch AP on usual batch sizes is a very poor approximation of the global AP.
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Figure 5: Relative increase of the mAP@R vs batch size when adding Lcalibr. to LSupAP.
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As a qualitative assessment, we show in Fig. 6 some results of ROADMAP on INaturalist. We show
the queries (in purple) and the 4 most similar retrieved images (in green). We can appreciate the
semantic quality of the retrieval. More qualitative results are provided in supplementary Sec. C.

Fig. 7 shows another qualitative assessment on INaturalist, where ROADMAP corrects some failing
cases of the SmoothAP baseline.

Figure 6: Results on INaturalist: a query (purple) with the 4 most similar retrieved images (green).

Figure 7: Results on INaturalist: a query (purple) with the 9 most similar retrieved images, green for
relevant images, red otherwise. Top line results with ROADMAP. Bottom line results with SmoothAP.

5 Conclusion

This paper introduces the ROADMAP method for gradient-based optimization of average precision.
ROADMAP is based on a smooth rank approximation, leading to the LSupAP being both accurate and
robust. To overcome the lack of decomposability in AP, ROADMAP is equipped with a calibration
lossLcalibr. which aims at reducing the decomposability gap. We provide theoretical guarantees as well
as experiments to assess this behavior. Experiments show that ROADMAP can combine the strength
of ranking methods with the simplicity of a batch strategy. Without bells and whistles, ROADMAP is
able to outperform state-of-the-art performances on three datasets, and remains effective even with
small batch sizes.

As any work on image retrieval, our contribution could be applied to critical applications in surveil-
lance scenarios, e.g. face recognition or person re-identification. ROADMAP is neither worse nor
better than previous work in this regard. Our work is also a data-driven learning method, and thus
inherits the risk of perpetuating dataset biases. Future work will focus on improving fair and accurate
retrieval by reducing dataset biases. We also plan to relax the need for full supervision to tackle
situations more representative to in-the-wild scenarios.

Acknowledgement This work was done under a grant from the the AHEAD ANR program (ANR-
20-THIA-0002). It was granted access to the HPC resources of IDRIS under the allocation 2021-
AD011012645 made by GENCI.
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