
MCLF: A Multi-grained Contrastive Learning Framework for
ASR-robust Spoken Language Understanding

Zhiqi Huang, Dongsheng Chen, Zhihong Zhu, and Xuxin Cheng
Peking University, China

zhiqihuang@pku.edu.cn
{chends,zhihongzhu,chengxx}@stu.pku.edu.cn

Abstract

Enhancing the robustness towards Automatic
Speech Recognition (ASR) errors is of great
importance for Spoken Language Understand-
ing (SLU). Trending ASR-robust SLU sys-
tems have witnessed impressive improvements
through global contrastive learning. However,
although most ASR errors occur only at local
positions of utterances, they can easily lead to
severe semantic changes, and utterance-level
classification or comparison is difficult to dis-
tinguish such differences. To address the prob-
lem, we propose a two-stage multi-grained
contrastive learning framework dubbed MCLF.
Technically, we first adapt the pre-trained lan-
guage models to downstream SLU datasets via
the proposed multi-grained contrastive learn-
ing objective and then fine-tune it on the cor-
responding dataset. Besides, to facilitate con-
trastive learning in the pre-training stage, we
explore several data augmentation methods to
expand the training data. Experimental results
and detailed analyses on four datasets and four
BERT-like backbone models demonstrate the
effectiveness of our approach.

1 Introduction

The rise in popularity of intelligent assistants like
Apple Siri and Amazon Alexa has aroused interest
in intelligent speech technology. A fundamental
component of these smart assistants is the Spo-
ken Language Understanding (SLU), a framework
that aims to comprehend the semantics of human
speech (Tur and Mori, 2011). Traditionally, seman-
tic information from utterances are obtained by
initially applying Automatic Speech Recognition
(ASR) to convert human speech into text. After-
wards, the SLU model is trained using this textual
transcript as input (Huang et al., 2021c; Chen et al.,
2022a; Zhu et al., 2023c,b).

Since speech-to-text has a wide range of appli-
cation scenarios in both academia and industry,
many ASR systems based on neural networks have

Figure 1: Comparison of RoBERTabase and our MCLF
on different WER intervals split from the SLURP test
set. The performance of MCLF in the case of larger
WER is greater than that of RoBERTabase.

been proposed, e.g., Speech Transformer (Dong
et al., 2018), wav2vec (Baevski et al., 2020), and
SPIRAL (Huang et al., 2022a). Despite the suc-
cess, ASR systems still generate transcripts with
errors (mainly insertions, deletions, and substitu-
tions errors) when facing more complicated real-
world scenarios (Fang et al., 2020a). These ASR
errors may confuse the downstream SLU tasks and
lead to performance degradation. Previous works
towards ASR-robust SLU can be divided into two
categories: 1) Detecting and correcting ASR errors
directly (Zhou et al., 2022), or injecting additional
ASR output information such as N-best hypothesis
and phoneme sequence to the downstream SLU
models (Li et al., 2020; Sundararaman et al., 2021;
Wang et al., 2022b). However, both hypotheses
with ASR errors and extra ASR information are
hard to obtain due to the limitation of the ASR
system (Dutta et al., 2022). 2) Adapting the ASR
system architecture towards improving language
correctness and fluency (Kim et al., 2021a; Le et al.,
2021). An obvious shortcoming is the additional
technical burden of modifying and retraining exist-
ing ASR systems according to specific tasks.

Recent pre-trained language models (PLMs) like

SLU datasetAugmented
SLU dataset

Data Augmentation

Backbone Pre-trained
MCLF

Pre-training Fine-tuning Fine-tuned
MCLF

Figure 2: Overview of MCLF learning.

BERT (Devlin et al., 2019; Liu et al., 2019b) have
shown appealing performance on various down-
stream NLP tasks. However, most PLMs are
trained on clean texts and are compromised in-
evitably to ASR errors. As shown in Figure 1,
as WER gets higher, the SLU model suffers se-
vere classification performance degradation (from
95.69% to 56.71%). Taking ASR hypotheses as
inputs may introduce an issue that words in an ut-
terance may be misrecognized. For instance, fair
and fare are acoustically similar, so an ASR system
may fail to distinguish between them, resulting in
a substitution error. Such substitution errors might
be recovered by humans because humans are aware
of the acoustic confusability of words. However,
the errors may significantly degrade the testing per-
formance when the models are trained on oracle
transcripts (i.e., clean texts). In order to enhance
the ASR robustness in contextualized word em-
beddings, Chang and Chen (2022) first introduced
contrastive pre-training objectives with only tex-
tual information as input. However, they neglect
finer-level alignment between the oracle transcript
and the ASR hypothesis.

In this work, we propose a novel two-stage multi-
grained contrastive learning framework (MCLF)
for ASR-robust SLU (illustrated in Figure 2).
Specifically, in the first stage, we devise a fine-
grained interactive module to align the tokens of
the oracle transcript with the ones of the ASR hy-
pothesis. We also leverage contrastive learning to
facilitate global representation learning at the ut-
terance level. Inspired by Fang et al. (2020b) that
consider the phonetic confusion, we explore vari-
ous task-specific data augmentation (DA) methods
to mitigate the deficiency of large amounts of la-
beled data for the PLM training procedure.1 In the
second stage, we fine-tune the pre-trained MCLF
model with several robust training techniques. We
conduct extensive experiments on four benchmark
datasets (i.e., SLURP, ATIS, TREC6, and TREC50)
and four BERT-like backbone models. Experimen-

1More DA details are in Section 2.2 and Appendix B.

tal results and detailed analyses demonstrate the
superiority and competitiveness of MCLF.

In summary, the contributions of this paper are
three-fold: 1) We propose MCLF, which is the
first attempt to combine global contrastive and
fine-grained contrastive objectives for establishing
ASR-robust SLU models; 2) Experiments on four
backbone models and four datasets demonstrate the
effectiveness of our proposed method; 3) Detailed
analysis shows that our proposed framework brings
effectiveness to the robustness of noise data.

2 Approach

In this section, we first detailedly elaborate on the
pre-training tasks used in MCLF (Figure 3) in Sec-
tion 2.1. Then we introduce the proposed data aug-
mentation methods for contrastive learning in the
pre-training stage (Section 2.2). Finally, we briefly
describe the fine-tuning stage in Section 2.3.

2.1 Pre-training for MCLF

In Figure 3a, we illustrate the architecture of MCLF
as well as the three pre-training objectives, namely
masked language modeling (Lmlm), global con-
trastive learning (Lg), and fine-grained contrastive
learning (Lf). The combination of Lg and Lf is
called multi-grained contrastive learning.

2.1.1 Global Contrastive Learning
Contrastive learning has been proven effective to
learn better representations in both computer vi-
sion (Chen et al., 2020; Li et al., 2021; Yao et al.,
2022) and natural language processing (Gao et al.,
2021; Kim et al., 2021b) research. It aims to learn
highly discriminative features by pulling semanti-
cally related samples together and pushing apart
unrelated ones. Here we adopt contrastive learning
to learn the ASR-robust utterance encoder f , which
is initialized with the original RoBERTabase model.

Assume a training batch with B paired examples
D = {(xoi , xai)}Bi=1, where (xoi , xai) denotes the
i-th clean oracle transcript and ASR hypothesis
pair. They are both fed into the shared encoder,
and ho

i and ha
i represent the ℓ2 normalized output

embedding of the [CLS] token, respectively. We
then apply contrastive learning over ho

i and ha
i by

optimizing a symmetric InfoNCE loss. The ASR-
to-Oracle contrastive loss La2o is:

La2o = −
1

B

B∑
i=1

log
e(h

o⊤
i ha

i /τc)∑
j e

(ho⊤
i ha

j /τc)
,

ASR Encoder 𝑓𝑓(·)shared

[CLS] when did hawaii become a estate [SEP]

Oracle Encoder 𝑓𝑓(·)

[CLS] when did hawaii become a state [SEP]

h𝒐𝒐… …h𝒂𝒂ℒ𝑔𝑔

Fine-grained Contrastive ℒ𝑓𝑓
Token-wise Similarity

𝑛𝑛1

𝑛𝑛2

1. max

2. m
ean

2. mean

1. m
ax

ℒ𝑚𝑚𝑚𝑚𝑚𝑚

𝑶𝑶𝟏𝟏 𝑶𝑶𝟐𝟐 … 𝑶𝑶𝑩𝑩

𝑨𝑨𝟏𝟏

𝑨𝑨𝟐𝟐

…

𝑨𝑨𝑩𝑩

𝑨𝑨𝟏𝟏 𝑨𝑨𝟐𝟐 … 𝑨𝑨𝑩𝑩

𝑶𝑶𝟏𝟏

𝑶𝑶𝟐𝟐

…

𝑶𝑶𝑩𝑩

ASR to Oracle
Contrastive

Oracle to ASR
Contrastive

(a) Overview of the MCLF pre-training.

𝑓𝑓(·)

Pooling

Linear

ℒ𝑑𝑑 & ℒ𝑐𝑐𝑐𝑐

1 0

0.7 0.3ℒ𝑠𝑠

ℒℎ

(b) MCLF fine-tuning.

Figure 3: (a) Overall schematic diagram of MCLF pre-training. MCLF is a dual-stream model consisting of a
single weight-shared encoder f . Besides the canonical objective masked language modeling (Lmlm), we introduce
ASR-Oracle global contrastive loss (Lg) and a novel fine-grained contrastive loss (Lf) to align the representations
of a clean-noisy utterance pair at both instance-level and token-level. (b) The fine-tuning objective includes a
cross-entropy loss (Lce), two supervised contrastive learning loss (Ls and Lh), and a self-distillation loss (Ld).

where τc = 0.2 is a temperature parameter. Simi-
larly, the Oracle-to-ASR contrastive loss Lo2a is:

Lo2a = − 1

B

B∑
i=1

log
e(h

o⊤
i ha

i /τc)∑
j e

(ho⊤
j ha

i /τc)
,

thus the ASR-Oracle global contrastive loss is:

Lg =
1

2
(La2o + Lo2a). (1)

2.1.2 Fine-grained Contrastive Learning
Besides the global contrastive alignment, it re-
mains a challenge to establish finer-grained token-
level ASR-Oracle alignment. Recent work
CASLU (Wang et al., 2022b) proposes to utilize a
single cross-attention layer to explicitly model the
fine-grained interactions between ASR hypotheses
and phonemes sequence. However, it still relies on
additional phoneme information and is inefficient.
To this end, inspired by FILIP (Yao et al., 2022) that
learns fine-grained image-text alignment through
a cross-modal late interaction mechanism, we de-
sign the fine-grained contrastive learning which
strengthens the model’s robustness towards the lo-
cal word error caused by phonetic confusion.

Specially, denote n1 and n2 as the token number
of the i-th ASR hypothesis and j-th Oracle tran-
script, respectively, and the corresponding encoded
features are f(xai) ∈ Rn1×d and f(xoj) ∈ Rn2×d.
For the k-th ASR token, we compute its similarity
with all oracle tokens of xoj , and use the largest one

ma
k = max0≤r<n2 [f(x

a
i)]

⊤
k [f(x

o
j)]r as its token-

wise maximum similarity with xoj . We then use the
average token-wise maximum similarity of all non-
padded tokens in the ASR hypothesis (resp. Oracle
transcript) as the similarity of ASR-to-Oracle (resp.
Oracle-to-ASR). The similarity of the i-th ASR hy-
pothesis to the j-th Oracle transcript can thus be
formulated as:

sai,j =
1

n1

n1∑
k=1

[f(xai)]
⊤
k [f(x

o
j)]ma

k
. (2)

Similarly, the similarity of the j-th Oracle tran-
script to the i-th ASR hypothesis is

soi,j =
1

n2

n2∑
k=1

[f(xai)]
⊤
mo

k
[f(xoj)]k, (3)

where mo
k = argmax0≤r<n1 [f(x

a
i)]

⊤
r [f(x

o
j)]k.

Note that sai,j in Equation (2) does not necessar-
ily equal soi,j in Equation (3). Thus the fine-grained
contrastive loss is:

Lf = − 1

2B

B∑
i=1

[log
e(s

a
i,i/τc)∑

j e
(sai,j/τc)

+

log
e(s

o
i,i/τc)∑

j e
(soj,i/τc)

].

(4)

2.1.3 Overall Pre-training Objective
Following Gururangan et al. (2020) that lever-
ages the masked language modeling (MLM) loss

for Domain-Adaptive Pretraining on downstream
datasets, we keep the MLM loss in the pre-training
for MCLF. Specially, the overall pre-training loss
function is formulated as:

Lp = Lg + λfLf + λmLmlm, (5)

where the λf and λm are weight parameters.

2.2 Data Augmentation for Contrastive
Learning in Pre-training

Traditionally, ASR system uses Word Error Rate
(WER) as the performance metric to measure the
percentage of incorrectly transcribed words. It is
defined as follows:

WER =
I +D + S

N
,

where I, D, and S denote the number of inserted
words, deleted words, and substitution words in the
ASR hypothesis, respectively. N is the number of
words in the oracle text. From the perspective of
WER, ASR errors can be divided into three cate-
gories (Fang et al., 2020b): insertions (I), deletions
(D), and substitutions (S).

In this work, we design different data augmen-
tation (DA) methods for contrastive pre-training
following different ASR error types. 1) Insertion
DA. According to preliminary experiments, we find
that some words are easier to appear in the ASR
hypothesis. So we augment the data by repeat-
ing the common words selected from the oracle
transcript of training set. 2) Deletion DA. We ran-
domly delete some words from the oracle transcript.
3) Substitution DA. We randomly replace some
words from the oracle transcript.

First, we obtain the insertion words set and sub-
stitution words set (i.e., confusion set) which ac-
quires a new set of words that each word is most
likely to be replaced with based on the training set.
The construction procedure for insertion set and
confusion set is in Algorithm 1. And we sort all
of the confusion list for each word in descending
order of longest common subsequence. Detailed
sorting algorithm can be seen in Algorithm 2 in
Appendix. Then, we perform different DA meth-
ods (i.e., Insertion/Deletion/Substitution) on part of
sentences position. The target of position selection
is to let WER reach a certain value. Empirically,
for sentences with length less than 5, we keep it
unchanged, for sentences with length between 5
and 10, we perform DA in one random position, for
sentences with length larger than 10, we perform
DA in two random positions.

Algorithm 1: Procedure for Insertion Set
and Confusion Set Construction
Input: Training set D = {(Ot, At)}T

t=1

Params: Ot: the tth Oracle transcript
At: the tth ASR hypothesis
T : the size of training set

Output: I: the Insertion set
C: the Confusion set

1: I ← ∅;C ← ∅
2: for t←1 to T do
3: It ← ∅
4: m← length(Ot);n← length(At)
5: for i← 1 to n do
6: if [At]i /∈ Ot then
7: It.Insert([At]i)
8: end if
9: end for

10: I ← I ∪ It
11: for i← 1 to m do
12: if [Ot]i /∈ At then
13: C[[Ot]i]← C[[Ot]i] ∪ It
14: end if
15: end for
16: end for
17: // Sort each word list in descending order of

longest common subsequence (LCS)
18: Keys← C.keys()
19: for key in Keys do
20: C[key].sort(LCS(C[key], key))
21: end for
22: return I, C

2.3 Fine-tuning MCLF for SLU Task

We further adapt the pre-trained MCLF model to
the corresponding SLU datasets in fine-tuning.

Following Gunel et al. (2021), we leverage the
supervised contrastive learning (SCL) objective,
which is meant to pull the examples of the same
label closer and push away the examples from other
labels. As shown in Figure 3b, two examples with
green color (the same color represents the same
label) should be closer in the latent space, and be
pulled away from the red example. Such technique
can make full use of the hard label information
during the training process. Denote hi and hj as
the Mean-Max pooled features (Zhang et al., 2018)
of all the output tokens from the utterance encoder.

The hard SCL loss is:

Lh = − 1

N

N∑
i

N∑
i ̸=j

1yi=yj log
e(h

⊤
i hj/τc)∑N

k ̸=i e
(h⊤

i hk/τc)
.

Moreover, we adopt Chang and Chen (2022) that
utilizes self-distillation to mitigate the impact of
label noises in the training set by minimizing the
KL divergence between current step prediction and
the previous one. Denote pti = P (yi|xi, t) as the
posterior probability of data xi predicted by the
model followed by a single linear layer at the t-th
epoch. The loss is formulated as:

Ld =
1

N

N∑
i

KLτd(p
t−1
i ||p

t
i),

where p0i is the one-hot vector of the label yi.
We also consider using the soft supervised con-

trastive learning as a complement of Lh to further
relieve the label noise (Yun et al., 2020):

Ls = −
1

N

N∑
i

N∑
i ̸=j

pt−1
i pt−1

j log
e(h

⊤
i hj/τc)∑N

k ̸=i e
(h⊤

i hk/τc)
.

Finally, the overall fine-tuning loss function is:

Lft = Lce + λsc(Lh + λdLs) + λdLd, (6)

where Lce is the cross-entropy loss, λsc and λd are
weight parameters.

3 Experiments

In this section, we evaluate the effectiveness of the
proposed method on four benchmark datasets, i.e.,
SLURP (Bastianelli et al., 2020), ATIS (Hemphill
et al., 1990), TREC6 and TREC50 (Li and Roth,
2002). Data statistics are shown in Table 1.

Dataset #Class Avg. Length Train Test WER

SLURP 18 × 46 6.93 50,628 10,992 25%
ATIS 22 11.14 4,978 893 29.11%
TREC6 6 8.89 5,452 500 32.93%
TREC50 50 8.89 5,452 500 32.93%

Table 1: Datasets statistics information.

3.1 Datasets
SLURP SLURP is a publicly available multi-
domain SLU dataset with a collection of ∼72k
audio recordings. It includes 18 different scenar-
ios and 46 defined actions. Joint accuracy of both

scenario and action is used as the evaluation metric
of SLURP. Following Chang and Chen (2022), we
use Google Web API (an off-the-shelf ASR system)
to obtain the ASR hypothesis from the audio and
adopt the same dataset split way. The median WER
is 25% for Google Web API.

ATIS ATIS is a widely used SLU dataset with 22
different intents on flight reservation. The average
WER for ATIS is 29.11%.

TREC6 / TREC50 TREC is a question classi-
fication dataset with two versions, i.e., TREC6 (6
classes) and TREC50 (50 classes). The difference
is that the class labels of TREC50 are more fine-
grained than TREC6. The average WER for both
datasets is 32.93%. The ASR hypotheses of both
ATIS and TREC are synthesized by TTS and later
transcribed by the ASR system, and they have been
released by PhonemeBERT2.

3.2 Experimental Settings

Backbone Models In our experiments, we
choose four pre-trained language models with
different architectures and pre-trained tasks as
backbones, i.e., 1) RoBERTabase (Liu et al.,
2019b); 2) BERTbase (Devlin et al., 2019);
3) ELECTRAsmall (Clark et al., 2020); 4)
TinyBERT4 (Jiao et al., 2020). BERT is the most
widely used PLM in various NLP tasks. RoBERTa
improves the pre-training of BERT with various
optimization techniques. ELECTRA replaces the
MLM task in BERT with the more compute-
efficient replaced token detection pre-training task.
TinyBERT accelerates inference and reduces the
model size compared with BERT through a novel
Transformer distillation method. To demonstrate
the consistent improvement brought by the pro-
posed multi-grained contrastive objective, we con-
duct experiments on all different backbones while
keeping BERT’s related training parameters fixed,
as can be seen in Appendix A.

Training Details We follow Chang and Chen
(2022) for the data split and preprocessing. The
training batch size is selected from {32, 64, 128}
for each dataset. For each experimental setting,
we pre-train the model with 20000 steps and then
fine-tune it on the corresponding ASR hypotheses
with 10 epochs. Unless otherwise specified, all

2https://github.com/
Observeai-Research/Phoneme-BERT

https://github.com/Observeai-Research/Phoneme-BERT
https://github.com/Observeai-Research/Phoneme-BERT

PLM Global CL Fine-grained CL SLURP ATIS TREC6 TREC50 Average

RoBERTabase ✗ ✗ 84.04±0.19 94.42±0.54 84.76±0.67 75.08±0.27 84.58
✓ ✗ 85.33±0.18 94.93±0.46 87.04±0.53 76.20±0.32 85.88
✗ ✓ 85.01±0.14 94.58±0.50 85.76±0.37 78.72±0.78 86.02
✓ ✓ 85.39±0.28 95.22±0.55 87.00±0.52 78.84±1.11 86.62

BERTbase ✗ ✗ 83.87±0.24 94.27±0.34 85.40±0.28 74.56±0.45 84.53
✓ ✗ 84.44±0.16 95.15±0.33 86.12±0.37 76.47±0.98 85.55
✗ ✓ 84.13±0.14 94.83±0.44 86.04±0.62 78.40±0.68 85.85
✓ ✓ 84.85±0.31 94.95±0.20 86.40±0.85 78.92±0.20 86.28

ELECTRAsmall ✗ ✗ 69.77±0.60 92.67±0.56 82.44±0.64 58.32±0.75 75.80
✓ ✗ 74.82±0.40 92.83±0.84 85.08±0.91 61.12±0.74 78.46
✗ ✓ 82.70±0.17 94.25±0.26 84.20±0.74 72.30±1.26 83.36
✓ ✓ 82.76±0.24 95.00±0.24 85.56±1.09 74.52±0.30 84.46

TinyBERT4 ✗ ✗ 72.05±0.56 88.45±0.76 77.84±0.46 55.28±0.37 73.41
✓ ✗ 78.14±0.13 93.46±0.15 82.90±0.30 64.10±0.30 79.65
✗ ✓ 81.80±0.12 95.00±0.26 82.64±0.81 70.60±0.66 82.51
✓ ✓ 81.83±0.15 95.35±0.24 84.04±0.96 72.60±0.85 83.46

Table 2: Average accuracy (%) across 5 seeds on the benchmarks under different pre-trained language models and
their standard deviation. For each PLM, results in row 1 are with fine-tuning only, and the results of row 2 to 4 are
pre-trained first (all equipped with MLM loss by default) and then fine-tuned.

experimental training processes are kept consistent.
Detailed experimental settings are in Appendix A.

3.3 Main Results

In Table 2, we show the performance of four back-
bones introduced in Section 3.2 under different
pre-training objective settings in Equation (5), i.e.,
1) no pre-training stage; 2) with only Lg and Lmlm;
3) with only Lf and Lmlm; and 4) with the full pre-
training objective. And they correspond to row 1
∼ row 4 for each backbone, respectively. As can
be seen, when compared with the baseline result in
row 1, using global contrastive learning (global CL)
and fine-grained CL respectively in pre-training can
boost the performance of all datasets for all back-
bone models, and combining both Lg and Lf at the
same time brings further gains, which indicates the
effectiveness of the proposed multi-grained con-
trastive learning. Another observation is that using
our proposed MCLF upon a smaller backbone (i.e.,
parameters scale-wise) usually has a higher accu-
racy gain than upon the larger one, this indicates
that MCLF is more efficient to dig the potential of
smaller models and has the potential to make up for
the inefficient models’ capacity. Fine-grained CL,
most of the time, performs better than those that
only employ global CL under smaller backbones.

Method SLURP ATIS TREC6 TREC50

RoBERTa 83.97 94.53 84.08 75.02
PhonemeBERT 83.78 94.83 85.96 76.16
SimCSE 84.47 94.07 84.92 74.82
SpokenCSE 85.26 95.10 86.36 76.20

MCLF (Ours) 85.39 95.22 87.00 78.84

Table 3: Accuracy (%) comparison of baseline works
and the proposed MCLF on four datasets. For a fair
comparison, all of the methods in this table employ
RoBERTabase model as the backbone.

3.4 Comparison with Baselines

To validate the superiority of MCLF, in this sec-
tion, we implement various previous methods as
baselines for comparison:

• RoBERTa (Liu et al., 2019b): A RoBERTabase
model directly fine-tuned on the SLU tasks
using cross-entropy loss, and with ASR hy-
pothesis as input.

• PhonemeBERT (Sundararaman et al., 2021):
A RoBERTabase model first jointly trained on
ASR hypothesis augmented with phoneme se-
quence (generated from the ASR hypothesis
with Phonemizer tool3) and then fine-tuned
for SLU tasks with cross-entropy loss.

3https://github.com/bootphon/
phonemizer

https://github.com/bootphon/phonemizer
https://github.com/bootphon/phonemizer

• SimCSE (Gao et al., 2021): We first simply
feed the same ASR hypothesis twice and get
the two embeddings with different dropout
noise (both p = 0.1) for computing Lg in
Equation (1), then it was fine-tuned on the
same dataset with cross-entropy loss.

• SpokenCSE (Chang and Chen, 2022): The
closest method to our MCLF. A major dif-
ference is that they only consider global con-
trastive learning during pre-training while ig-
noring finer-grained interactions (e.g., token-
level ASR-Oracle alignment). And we intro-
duce the fine-grained contrastive objective Lf
in Equation (4) to alleviate this problem.

As shown in Table 3, MCLF surpasses previ-
ous methods on all four datasets. Among them,
PhonemeBERT, SimCSE, and SpokenCSE focus
on feature representation in pre-training. Phoneme-
BERT needs extra phoneme sequence as input and
is less effective on SLURP. SpokenCSE leverages
global contrastive learning by taking oracle tran-
scripts and the corresponding ASR hypotheses as
input and gets rid of the dependence on phoneme
information. By introducing an extra novel fine-
grained contrastive objective together with the DA
method, our MCLF improves considerably over the
latest SpokenCSE as well as all other baselines.

4 Discussions

4.1 UMAP Visualization

To further understand how the proposed method
plays an important role, we extract the 768-d ut-
terance embeddings from the TREC6 dataset and
use the Uniform Manifold Approximation and Pro-
jection (UMAP) (McInnes and Healy, 2018) algo-
rithm to project these embeddings onto a 2-d plane
in Figure 4. First, from Figure 4a and Figure 4b,
we can see that the semantics of ASR utterances
are very scattered, farther than oracle utterances.
Second, Figure 4a and 4c show the representations
of ASR hypothesis on RoBERTabase and MCLF,
respectively. We can see that most of the ASR ut-
terances with same class are pulled together in both
models. In RoBERTabase, there are some ASR ut-
terances that cannot be assigned to specific classes,
while nearly all the utterances in MCLF model are
pulled closer. Third, from Figure 4c and Figure 4d,
even in MCLF, there are still some ASR utterances
that are indistinguishable, which we believe that

it is due to the ASR errors that make them indis-
tinguishable, for example, we found two oracle
utterances with different labels but they share same
ASR assumption in the dataset.

4.2 Effect of Pooling Strategy in Fine-tuning

In Table 4, we evaluate the effect of different fea-
ture pooling strategies in fine-tuning. Specifically,
we first pre-train the BERTbase model with sev-
eral contrastive learning objectives, then during
fine-tuning, we try different output features pool-
ing strategies for utterance representations, i.e., 1)
[CLS]: global [CLS] representation; 2) Mean:
averaging of all output token representations; 3)
Mean-Max: concatenating the mean and maxi-
mum of all token features (Zhang et al., 2018).

As can be seen, compared to the global [CLS]
representation, method Mean can further improve
performance. Especially, the model got the best
results using Mean-Max pooling. Thus, we can
conclude that, after adding fine-grained contrastive
learning loss, layer Mean pooling strategy outper-
forms [CLS]. Intuitively, we attribute this to that
the fine-grained interaction provides fruitful infor-
mation to the tokens. This proves that the whole
sentence representation is more meaningful and dis-
tinguishable with fine-grained contrastive learning.

4.3 Case Study on Different Error Types

We take several typical ASR errors from TREC6 for
analysis in Table 5. The predictions are collected
based on the RoBERTabase and MCLF predictions.
For six labels of TREC6, the total mismatch pre-
dictions (e.g., the golden label is HUM but pre-
dicted as LOC) can be up to 30. Here, we list
examples for analyzing the origin of the ASR er-
rors between and after employing the MCLF. Take
the first Oracle-ASR pair for example, when the
key information Philippines is deleted, the baseline
model tends to treat the whole utterance as DESC
label, while the MCLF can capture fine-grained
information like word in thus to predict true label
as LOC. There are many such examples. However,
we also find some interesting cases that are hard
to solve even employing the MCLF, for example,
in the third example, both the RoBERTabase and
MCLF mispredict the label as HUM, because the
ASR hypothesis is what is nikki, for this example,
the ASR error will cause both the local and global
information of the utterance to change. In such a
case, even MCLF will not have much effect.

ABBR

DESC

ENTY

HUM

LOC

NUM

(a) RoBERTa - ASR

ABBR

DESC

ENTY

HUM

LOC

NUM

(b) RoBERTa - Oracle

ABBR

DESC

ENTY

HUM

LOC

NUM

(c) MCLF - ASR

ABBR

DESC

ENTY

HUM

LOC

NUM

(d) MCLF - Oracle

Figure 4: UMAP visualization of ASR and Oracle utterances on RoBERTa and MCLF model on TREC6 dataset.

BERTbase

SLURP TREC6

[CLS] Mean Mean-Max [CLS] Mean Mean-Max

w/ Global CL 83.98 84.10 84.44 85.91 85.95 86.12
w/ Fine-grained CL 83.71 83.93 84.13 85.68 85.90 86.04
w/ Multi-grained CL 84.39 84.71 84.85 85.80 86.22 86.40

Table 4: Performance on SLURP and TREC6 datasets under different output feature pooling strategies.

Example ASR Error Type Golden Label RoBERTa Prediction MCLF Prediction

O: What hemisphere is the Philippines in
Deletion LOC DESC LOC

A: What hemisphere is the in

O: Why is a ladybug helpful
Insertion DESC ENTY DESC

A: Why is a lady bug helpful

O: What is nicotine
Substitution DESC HUM HUM

A: What is nikki

Table 5: ASR error analysis on TREC6 test dataset. “O” and “A” denote the Oracle transcript and ASR hypothesis,
respectively. Label in red denotes an error while the one in blue denotes the correct.

5 Related Work

SLU is an essential task for machines to infer cor-
rect semantic meaning (e.g., intent detection, slot
filling) from human speech (Huang et al., 2020;
Zhou et al., 2020; Huang and Chen, 2020; Huang
et al., 2022b; Chen et al., 2022b; Cheng et al.,
2023b,d,e; Zhu et al., 2023a). Traditionally, it can
be solved by fine-tuning NLP models (especially
PLMs) with the ASR hypothesis as input (Wang
et al., 2022a). However, the ASR hypothesis of-
ten contains errors caused by ASR systems. If the
SLU models are trained with clean texts, the per-
formance will be poor when predicting using noisy
text as input. Also, models trained with noisy texts
may suffer performance degradation over datasets
without ASR errors.

The core problem lies in improving the ASR
robustness for SLU models, and several types of
methods have been proposed to address this issue.
One stream treats texts with or without noise as two
modalities. For example, Tan and Ling (2019) pro-
posed to rebuild tuples between ASR results and

correct candidates by leveraging the minimum edit
distance (MED). Ruan et al. (2020) introduced a
novel loss to minimize the distribution differences
between correct and incorrect output texts. Spo-
kenCSE (Chang and Chen, 2022) aimed to learn
the invariant representations between clean text
and erroneous hypothesis by utilizing a contrastive
objective to adapt PLM to ASR results. Another
stream considers making full use of the ASR output
information (e.g., N-best hypothesis, phoneme se-
quence). For example, Zhu et al. (2021) proposed
two novel approaches (i.e., N-best Plain, N-best
Alignment) that combine the N-best hypothesis
of ASR as input for error correction. Wang et al.
(2022b) proposed to trigger the fine-grained inter-
actions between phoneme and word embeddings to
derive phonetic-aware ASR-robust features. Cheng
et al. (2023a) used manual transcripts to improve
ASR robustness by mutual learning. Xie et al.
(2023) proposed to incorporate syntax information
into SLU system to strengthen ASR-robust ability
by constraining attention scopes based on relation-
ships within the syntactic structure. Cheng et al.

(2023c) utilized cross attention to fuse the features
between manual transcripts and ASR transcripts
and contrastive attention to capture unique features
of ASR transcripts.

Considering that the ASR output information
may not be easily obtained due to the constraint of
ASR systems, we adopt the first stream in this paper.
In addition to following Chang and Chen (2022)
that builds alignment between ASR hypotheses and
the oracle transcripts through a contrastive learning
objective, we design the fine-grained contrastive
learning which strengthens the model’s robustness
towards the local word error caused by phonetic
confusion, and it serves as a complement to the
global contrastive learning. The combination of
both types of contrastive objectives is called multi-
grained contrastive learning, aiming to learn both
utterance and token level alignment between ASR
hypotheses and the oracle transcripts, which mines
fruitful utterance-level and token-level information
from downstream datasets.

6 Conclusion

In this paper, we propose MCLF, an ASR-robust
SLU model towards multi-grained Oracle-ASR
contrastive pre-training. Besides, several data aug-
mentation techniques are used to facilitate the con-
trastive pre-training stage. To our best knowledge,
this is the first attempt to improve the ASR robust-
ness of SLU models by simultaneously exploiting
both global and fine-grained features alignment
between ASR hypothesis and oracle transcripts.
Empirical results on four benchmark datasets show
the effectiveness of the proposed MCLF and the
superiority compared with several baseline works.

Limitations

As with any research, MCLF is not without lim-
itations. We split the discussion into limitations
that are inherent to our method, and limitations
of our present study, the latter can be overcome
by extensions of our work. Previous studies (e.g.,
SpokenCSE (Chang and Chen, 2022)) conducted
contrastive learning with ASR and oracle utterance
pairs using the Transformer-based model. Our em-
pirical results can be seen as further mining the
potential of contrastive learning and illustrating
the generalization of our method under multiple
baseline backbones. Another technical limitation
is that our method requires the cost of additional
training data, and while we have shown that our

experiments can be performed on a single NVIDIA
V100 GPU, it still incurs additional training time
and cost. However, this does not change the range
of devices on which the technique can be applied,
since data augmentation does not change the size
of the entire SLU model, and at the same time, the
inference speed is basically unchanged.

Ethics Statement

Our goal in developing an ASR-robust SLU model
is to enable practical intelligent assistant applica-
tions more useful and appealing to human users
through robust semantic recognition with ASR er-
roneous outputs. For example, for people with
different accents, different language habits, and
whether they use slang, their inputs to the ASR sys-
tem will be very different. So it is difficult for the
ASR model to fully consider all of these situations
and correctly identify all spoken errors. Therefore,
the design of a robust spoken language understand-
ing system for ASR is very important. And our
proposed approach based on multi-granularity con-
trastive learning effectively adapts the SLU model
to the error of the ASR system. Overall, ASR error
is a crucial problem in application scenarios such
as intelligent speech assistant, and having an ASR-
robust SLU model that can filter such errors would
have many positive applications.

References
A. Baevski, Y. Zhou, A. Mohamed, and M. Auli. 2020.

wav2vec 2.0: A framework for self-supervised learn-
ing of speech representations. In Proc. of NeurIPS.

E. Bastianelli, A. Vanzo, P. Swietojanski, and V. Rieser.
2020. SLURP: A spoken language understanding
resource package. In Proc. of EMNLP.

Y. Chang and Y. Chen. 2022. Contrastive learning for
improving ASR robustness in spoken language un-
derstanding. In Proc. of INTERSPEECH.

D. Chen, Z. Huang, X. Wu, S. Ge, and Y. Zou. 2022a.
Towards joint intent detection and slot filling via
higher-order attention. In Proc. of IJCAI.

D. Chen, Z. Huang, and Y. Zou. 2022b. Leveraging
bilinear attention to improve spoken language under-
standing. In Proc. of ICASSP.

D. Chen, C. Tao, L. Hou, L. Shang, X. Jiang, and Q. Liu.
2022c. Litevl: Efficient video-language learning with
enhanced spatial-temporal modeling. In Proc. of
EMNLP.

T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. 2020.
A simple framework for contrastive learning of visual
representations. In Proc. of ICML.

X. Cheng, B. Cao, Q. Ye, Z. Zhu, H. Li, and Y. Zou.
2023a. Ml-lmcl: Mutual learning and large-margin
contrastive learning for improving asr robustness in
spoken language understanding. In Proc. of ACL
Findings.

X. Cheng, W. Xu, Z. Zhu, H. Li, and Y. Zou. 2023b.
Towards spoken language understanding via multi-
level multi-grained contrastive learning. In Proc. of
CIKM.

X. Cheng, Z. Yao, Z. Zhu, Y. Li, H. Li, and Y. Zou.
2023c. C2A-SLU: Cross and Contrastive Attention
for Improving ASR Robustness in Spoken Language
Understanding. In Proc. of INTERSPEECH.

X. Cheng, Z. Zhu, B. Cao, Q. Ye, and Y. Zou. 2023d.
Mrrl: Modifying the reference via reinforcement
learning for non-autoregressive joint multiple intent
detection and slot filling. In Proc. of EMNLP Find-
ings.

X. Cheng, Z. Zhu, W. Xu, Y. Li, H. Li, and Y. Zou.
2023e. Accelerating multiple intent detection and
slot filling via targeted knowledge distillation. In
Proc. of EMNLP Findings.

K. Clark, M. Luong, Q. Le, and C. Manning. 2020.
ELECTRA: pre-training text encoders as discrimina-
tors rather than generators. In Proc. of ICLR.

J. Devlin, M. Chang, K. Lee, and K. Toutanova. 2019.
BERT: pre-training of deep bidirectional transform-
ers for language understanding. In Proc. of NAACL.

L. Dong, S. Xu, and B. Xu. 2018. Speech-transformer:
A no-recurrence sequence-to-sequence model for
speech recognition. In Proc. of ICASSP.

S. Dutta, S. Jain, A. Maheshwari, G. Ramakrish-
nan, and P. Jyothi. 2022. Error correction in
ASR using sequence-to-sequence models. CoRR,
abs/2202.01157.

A. Fang, S. Filice, N. Limsopatham, and O. Rokhlenko.
2020a. Using phoneme representations to build pre-
dictive models robust to ASR errors. In Proc. of
SIGIR.

A. Fang, S. Filice, N. Limsopatham, and O. Rokhlenko.
2020b. Using phoneme representations to build pre-
dictive models robust to ASR errors. In Proc. of
SIGIR.

T. Gao, X. Yao, and D. Chen. 2021. Simcse: Simple
contrastive learning of sentence embeddings. In Proc.
of EMNLP.

B. Gunel, J. Du, A. Conneau, and V. Stoyanov. 2021.
Supervised contrastive learning for pre-trained lan-
guage model fine-tuning. In Proc. of ICLR.

S. Gururangan, A. Marasovic, S. Swayamdipta, K. Lo,
I. Beltagy, D. Downey, and N. Smith. 2020. Don’t
stop pretraining: Adapt language models to domains
and tasks. In Proc. of ACL.

C. Hemphill, J. Godfrey, and G. Doddington. 1990.
The ATIS spoken language systems pilot corpus. In
Speech and Natural Language: Proceedings of a
Workshop Held at Hidden Valley.

L. Hou, Z. Huang, L. Shang, X. Jiang, X. Chen, and
Q. Liu. 2020. Dynabert: Dynamic BERT with adap-
tive width and depth. In Proc. of NeurIPS.

C. Huang and Y. Chen. 2020. Learning asr-robust con-
textualized embeddings for spoken language under-
standing. In Proc. of ICASSP.

W. Huang, Z. Zhang, Y. Yeung, X. Jiang, and Q. Liu.
2022a. SPIRAL: self-supervised perturbation-
invariant representation learning for speech pre-
training. In Proc. of ICLR.

Z. Huang, L. Hou, L. Shang, X. Jiang, X. Chen, and
Q. Liu. 2021a. Ghostbert: Generate more features
with cheap operations for BERT. In Proc. of ACL.

Z. Huang, F. Liu, X. Wu, S. Ge, H. Wang, W. Fan, and
Y. Zou. 2021b. Audio-oriented multimodal machine
comprehension via dynamic inter- and intra-modality
attention. In Proc. of AAAI.

Z. Huang, F. Liu, P. Zhou, and Y. Zou. 2021c. Sentiment
injected iteratively co-interactive network for spoken
language understanding. In Proc. of ICASSP.

Z. Huang, F. Liu, and Y. Zou. 2020. Federated learn-
ing for spoken language understanding. In Proc. of
COLING.

Z. Huang, M. Rao, A. Raju, Z. Zhang, B. Bui, and
C. Lee. 2022b. MTL-SLT: multi-task learning for
spoken language tasks. In Proc. of ConvAI@ACL.

X. Jiao, Y. Yin, L. Shang, X. Jiang, X. Chen, L. Li,
F. Wang, and Q. Liu. 2020. Tinybert: Distilling
BERT for natural language understanding. In Proc.
of EMNLP.

M. Kim, G. Kim, S. Lee, and J. Ha. 2021a. St-bert:
Cross-modal language model pre-training for end-
to-end spoken language understanding. In Proc. of
ICASSP.

T. Kim, K. Yoo, and S. Lee. 2021b. Self-guided con-
trastive learning for BERT sentence representations.
In Proc. of ACL.

D. Le, M. Jain, G. Keren, S. Kim, Y. Shi, J. Mahadeokar,
J. Chan, Y. Shangguan, C. Fuegen, O. Kalinli,
Y. Saraf, and M. Seltzer. 2021. Contextualized
streaming end-to-end speech recognition with trie-
based deep biasing and shallow fusion. In Proc. of
INTERSPEECH.

J. Li, R. Selvaraju, A. Gotmare, S. Joty, C. Xiong, and
S. Hoi. 2021. Align before fuse: Vision and language
representation learning with momentum distillation.
In Proc. of NeurIPS.

M. Li, W. Ruan, X. Liu, L. Soldaini, W. Hamza, and
C. Su. 2020. Improving spoken language understand-
ing by exploiting ASR N-best hypotheses. CoRR,
abs/2001.05284.

X. Li and D. Roth. 2002. Learning question classifiers.
In Proc. of COLING.

F. Liu, Y. Liu, X. Ren, X. He, and X. Sun. 2019a.
Aligning visual regions and textual concepts for
semantic-grounded image representations. In Proc.
of NeurIPS.

Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen,
O. Levy, M. Lewis, L. Zettlemoyer, and V. Stoyanov.
2019b. Roberta: A robustly optimized bert pretrain-
ing approach. CoRR, abs/1907.11692.

L. McInnes and J. Healy. 2018. UMAP: uniform man-
ifold approximation and projection for dimension
reduction. CoRR, abs/1802.03426.

A. Radford, J. Kim, C. Hallacy, A. Ramesh, G. Goh,
S. Agarwal, G. Sastry, A. Askell, P. Mishkin, J. Clark,
G. Krueger, and I. Sutskever. 2021. Learning transfer-
able visual models from natural language supervision.
In Proc. of ICML.

W. Ruan, Y. Nechaev, L. Chen, C. Su, and I. Kiss. 2020.
Towards an ASR error robust spoken language under-
standing system. In Proc. of INTERSPEECH.

M. Sundararaman, A. Kumar, and J. Vepa. 2021. Phone-
mebert: Joint language modelling of phoneme se-
quence and ASR transcript. In Proc. of INTER-
SPEECH.

C. Tan and Z. Ling. 2019. Multi-classification model
for spoken language understanding. In International
Conference on Multimodal Interaction.

G. Tur and R. De Mori. 2011. Spoken language under-
standing: Systems for extracting semantic informa-
tion from speech. John Wiley & Sons.

C. Wang, S. Dai, Y. Wang, F. Yang, M. Qiu, K. Chen,
W. Zhou, and J. Huang. 2022a. Arobert: An ASR ro-
bust pre-trained language model for spoken language
understanding. IEEE ACM Trans. Audio Speech
Lang. Process.

Z. Wang, Y. Le, Y. Zhu, Y. Zhao, M. Feng, M. Chen,
and X. He. 2022b. Building robust spoken language
understanding by cross attention between phoneme
sequence and ASR hypothesis. In Proc. of ICASSP.

Y. Xie, Z. Zhu, X. Cheng, Z. Huang, and D. Chen.
2023. Syntax matters: Towards spoken language
understanding via syntax-aware attention. In Proc.
of EMNLP Findings.

Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. Salakhutdinov,
and Q. Le. 2019. Xlnet: Generalized autoregressive
pretraining for language understanding. In Proc. of
NeurIPS.

L. Yao, R. Huang, L. Hou, G. Lu, M. Niu, H. Xu,
X. Liang, Z. Li, X. Jiang, and C. Xu. 2022. FILIP:
fine-grained interactive language-image pre-training.
In Proc. of ICLR.

S. Yun, J. Park, K. Lee, and J. Shin. 2020. Regularizing
class-wise predictions via self-knowledge distillation.
In Proc. of CVPR.

M. Zhang, Y. Wu, W. Li, and W. Li. 2018. Learning
universal sentence representations with mean-max
attention autoencoder. In Proc. of EMNLP.

P. Zhou, D. Chong, H. Wang, and Q. Zeng. 2022. Cal-
ibrate and refine! A novel and agile framework for
ASR error robust intent detection. In Proc. of INTER-
SPEECH.

P. Zhou, Z. Huang, F. Liu, and Y. Zou. 2020. PIN:
A novel parallel interactive network for spoken lan-
guage understanding. In Proc. of ICPR.

L. Zhu, W. Liu, L. Liu, and E. Lin. 2021. Improving
ASR error correction using N-Best hypotheses. In
Proc. of ASRU.

Z. Zhu, X. Cheng, D. Chen, Z. Huang, H. Li, and Y. Zou.
2023a. Mix before align: towards zero-shot cross-
lingual sentiment analysis via soft-mix and multi-
view learning. In Proc. of INTERSPEECH.

Z. Zhu, X. Cheng, Z. Huang, D. Chen, and Y. Zou.
2023b. Enhancing code-switching for cross-lingual
slu: A unified view of semantic and grammatical
coherence. In Proc. of EMNLP.

Z. Zhu, X. Cheng, Z. Huang, D. Chen, and Y. Zou.
2023c. Towards unified spoken language understand-
ing decoding via label-aware compact linguistics rep-
resentations. In Proc. of ACL Findings.

A Experimental Details

The detailed hyperparameters for training MCLF
are shown in Table 6.

Config Pre-training Fine-tuning

Batchsize {32, 64, 128} {32, 64, 128}
Learning rate (lr) 2e-5 2e-5
Lr shedule linear decay linear decay
Gradient clipping 1 1
Dropout rate 0.1 0.1
Attention dropout 0.1 0.1
MLM ratio 15% -
λf , λm 0.1, 1.0 -
λsc, λd - 1.0, 10
τc 0.2 0.2
τd - 5
Data Augmentation y n
Training Steps/Epochs 20000 Steps 10 Epochs

Table 6: Experimental setup for two stages in training
four backbone models on four benchmark datasets.

B Data Augmentation Details

LCS Sorting Algorihtm We show the Longest
Common Subsequence (LCS) sorting details in Al-
gorithm 2.

Ablation Study To further illustrate the effect of
our data augmentation approach, in this section, we
show the ablation results of MCLF in Table 7 that
remove the DA part, while keeping other training
details unchanged. We find that DA is important
as part of the training step for multi-grained con-
trastive learning objectives, and can help PLMs to
learn more representative features.

Ablation Settings ATIS (∆Acc)

RoBERTa 0
G-CL: Insertion-DA +0.2
G-CL: Deletion-DA +0.1
G-CL: Substitution-DA +0.2
FG-CL: Insertion-DA +0.2
FG-CL: Deletion-DA +0.3
FG-CL: Substitution-DA +0.3
MCLF +0.8

Table 7: Ablation study of DA on the MCLF.

C Effect of Training Batch Size for
MCLF with Different Backbones

In this section, we analyze the effect of batch size
in pre-train and fine-tune stages. We show the re-
sults on MCLF of different batch size of in Table 8.

Algorithm 2: LCS-based Sorting Algo-
rithm for Utterance X and Y

Input: X =< x1, ...xm >
Y =< y1, ...yn >

Output: c[m,n]: the LCS of X and Y
1: m← length[X] ; n← length[Y]
2: for i←1 to m do
3: c[i, 0]← 0
4: end for
5: for j ←1 to n do
6: c[0, j]← 0
7: end for
8: for i←1 to m do
9: for j ←1 to n do

10: if X[i] == Y[j] then
11: c[i, j]← c[i− 1, j − 1] + 1
12: else
13: c[i, j]← max(c[i, j − 1], c[i− 1, j])
14: end if
15: end for
16: end for
17: return c[m,n]

We can see that, 1) different datasets do not share a
uniform best batch size, while having different opti-
mal batch sizes for optimal performance; 2) smaller
dataset has larger results variance than larger one
(e.g., TREC to SLURP), showing that MCLF gets
consistent performance when the training data is
larger; 3) for ATIS, large fine-tune batch size get
better results, for SLURP, large pre-trained batch
size get better results.

D Implementation Details

We outline the key components of the fine-grained
and global contrastive objectives in PyTorch.
Please refer to Listing 1 for details.

PLM PT batch size FT batch size SLURP ATIS TREC6 TREC50

RoBERTabase 32 32 85.14±0.16 94.32±0.36 86.40±0.83 77.56±0.94

32 64 85.39±0.28 94.95±0.40 86.76±0.99 77.88±0.47

32 128 85.30±0.14 95.05±0.25 86.40±0.38 77.64±0.79

64 32 85.33±0.27 94.12±0.38 86.76±0.64 77.20±0.72

64 64 85.27±0.11 94.93±0.41 87.00±0.52 78.12±0.60

64 128 85.08±0.10 95.07±0.46 86.32±0.37 77.80±0.38

128 32 85.24±0.15 94.67±0.94 86.52±0.73 77.92±1.08

128 64 85.31±0.21 95.20±0.32 86.72±0.63 78.84±1.11

128 128 85.01±0.14 95.22±0.55 86.20±0.63 78.28±0.83

BERTbase 32 32 84.82±0.16 94.82±0.43 86.16±0.82 78.32±0.61

32 64 84.54±0.18 94.75±0.35 85.88±0.41 78.20±0.61

32 128 84.11±0.20 94.95±0.20 85.96±0.71 78.04±0.54

64 32 84.82±0.20 94.77±0.63 85.48±1.09 78.92±0.20

64 64 84.67±0.24 94.70±0.46 85.72±0.48 78.56±0.34

64 128 84.20±0.20 94.95±0.33 86.32±0.37 78.32±0.48

128 32 84.85±0.31 94.58±0.42 85.92±0.72 78.76±0.56

128 64 84.81±0.19 94.10±0.48 86.40±0.85 78.84±0.82

128 128 84.11±0.15 94.80±0.39 86.24±0.93 78.92±0.61

ELECTRAsmall 32 32 79.79±0.27 94.80±0.26 84.24±0.89 71.72±0.94

32 64 81.48±0.21 94.55±0.43 84.44±0.53 72.76±1.11

32 128 81.69±0.33 94.88±0.19 85.56±1.09 73.52±0.65

64 32 80.24±0.27 94.70±0.47 84.96±1.18 72.08±0.41

64 64 81.81±0.11 94.82±0.30 84.80±1.51 74.24±0.39

64 128 82.43±0.39 95.05±0.48 85.52±0.89 74.52±0.30

128 32 80.81±0.19 94.63±0.24 83.36±0.97 71.56±0.91

128 64 82.19±0.18 94.45±0.19 84.64±0.86 73.56±0.66

128 128 82.76±0.24 95.00±0.24 84.12±0.55 74.12±0.69

TinyBERT4 32 32 79.80±0.28 94.75±0.38 83.36±0.66 70.76±0.91

32 64 81.55±0.22 94.35±0.32 83.48±0.70 71.40±0.72

32 128 81.65±0.25 95.12±0.36 83.00±0.61 72.08±1.13

64 32 80.15±0.22 94.55±0.50 83.68±1.00 71.36±0.75

64 64 81.77±0.24 94.95±0.52 84.04±0.96 72.16±0.89

64 128 81.71±0.07 95.35±0.24 83.32±0.57 72.60±0.85

128 32 80.42±0.19 94.75±0.38 83.68±0.57 70.12±0.32

128 64 81.83±0.21 95.30±0.47 83.84±0.45 70.84±0.32

128 128 81.83±0.15 95.22±0.19 83.32±0.30 71.20±0.67

Table 8: Results of four backbones on benchmark datasets under different pre-train and fine-tune batch sizes.

import torch
import torch.nn as nn
import torch.nn.functional as F
import math

def token_wise_similarity(rep1, rep2, chunk_size=1024):
batch_size1, n_token1, feat_dim = rep1.shape
batch_size2, n_token2, _ = rep2.shape
num_folds = math.ceil(batch_size2 / chunk_size)
output = []
for i in range(num_folds):

rep2_seg = rep2[i * chunk_size:(i + 1) * chunk_size]
out_i = rep1.reshape(-1, feat_dim) @ rep2_seg.reshape(-1, feat_dim).T
out_i = out_i.reshape(batch_size1, n_token1, batch_size2, n_token2)
out_i = out_i.max(3)[0].mean(1)
output.append(out_i)

return torch.cat(output, dim=1)

def get_2b_sim(asr, oracle):
m1 = token_wise_similarity(asr, asr)
m2 = token_wise_similarity(asr, oracle)
m3 = token_wise_similarity(oracle, asr)
m4 = token_wise_similarity(oracle, oracle)
matrix_up = torch.cat([m1, m2], dim=1)
matrix_down = torch.cat([m3, m4], dim=1)
return torch.cat([matrix_up, matrix_down], dim=0)

class ContrastiveLoss(nn.Module):
temperature = 0.05

def l_ij(self, i, j, sim_mat, batch_size, z_i):
numerator = torch.exp(sim_mat[i, j] / self.temperature)
identity_except_i = torch.ones((2 * batch_size,)).scatter_(0, torch.tensor

([i]), 0.0).to(z_i.device)
denominator = torch.sum(identity_except_i * torch.exp(sim_mat[i, :] / self.

temperature))
loss_ij = -torch.log(numerator / denominator)
return loss_ij.squeeze(0)

def forward(self, z_i, z_j, granularity):
z_j, z_j: global_shape=[b,d]; fine_shape=[b,n1/n2,d]
batch_size = z_i.shape[0]
if granularity == "global":

rep = torch.cat([z_i, z_j], dim=0)
sim_mat = F.cosine_similarity(rep.unsqueeze(1), rep.unsqueeze(0), dim=2)

elif granularity == "fine":
z_i = z_i / z_i.norm(dim=-1, keepdim=True)
z_j = z_j / z_j.norm(dim=-1, keepdim=True)
sim_mat = get_2b_sim(z_i, z_j)

loss = 0.0
for k in range(0, batch_size):

loss = loss + self.l_ij(k, k + batch_size, sim_mat, batch_size, z_i)
loss = loss + self.l_ij(k + batch_size, k, sim_mat, batch_size, z_i)

return 1.0 / (2 * batch_size) * loss

Listing 1: Contrastive Loss Implementation

