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Abstract
Differentiable renderers provide gradients w.r.t.
arbitrary scene parameters, but the mere existence
of these gradients does not guarantee useful up-
date steps in an optimization. Instead, inverse
rendering might not converge due to plateaus, i.e.,
regions of zero gradient, in the objective func-
tion. We propose to alleviate this by convolv-
ing the rendering equation with an additional ker-
nel that blurs the parameter space. We describe
two Monte Carlo estimators to compute plateau-
reduced gradients efficiently, i.e., with low vari-
ance, and show that these translate into net-gains
in optimization error and runtime. Our approach
is a straightforward extension to both black-box
and differentiable renderers and enables optimiza-
tion of problems with intricate light transport,
such as caustics or global illumination, that ex-
isting differentiable renderers do not converge
on. Our code is at https://github.com/
mfischer-ucl/prdpt.

1. Introduction
Regressing scene parameters from 2D observations is a task
of significant importance in graphics and vision, but also a
hard, ill-posed problem. When all rendering steps are dif-
ferentiable, we can derive gradients of the final image w.r.t.
the scene parameters. However, differentiating through the
discontinuous rendering operator is not straightforward due
to, e.g., occlusion. The two prevalent rendering approaches
are path tracing and rasterization.

Path-tracing aims to solve the rendering equation by com-
puting a Monte Carlo (MC) estimate for each pixel. Unfortu-
nately, MC is only compatible with modern Automatic Dif-
ferentiation (AD) frameworks under continuous integrands,
e.g., color, but not for spatial derivatives.

1Department of Computer Science, University College Lon-
don, United Kingdom. Correspondence to: Michael Fischer
<m.fischer@cs.ucl.ac.uk>.

Published at the Differentiable Almost Everything Workshop of the
40 th International Conference on Machine Learning, Honolulu,
Hawaii, USA. July 2023. Copyright 2023 by the author(s).

Initial Our MethodReference Path Tracer

Figure 1. Optimization results with a differentiable path tracer (we
use Mitsuba 3 (Jakob et al., 2022)) and our proposed method. The
task is to rotate the cup around its z-axis to match the reference.
Due to a plateau in the objective function (when the handle is
occluded by the cup), regular methods do not converge.

To alleviate this, previous work uses re-sampling of sil-
houette edges and integrand reparametrizations (Li et al.,
2018; Loubet et al., 2019), which enable the optimization of
primitive- or light positions. For rasterization, differentiabil-
ity is achieved by replacing discontinuous edge- and z-tests
with hand-crafted derivatives (Loper & Black, 2014; Rhodin
et al., 2015; Liu et al., 2019; Le Lidec et al., 2021). Unfor-
tunately, rasterization by design does not capture complex
light transport effects, e.g., global illumination or caustics.

However, Metz et al. (2021) show that the mere existence of
gradients is no guarantee for an optimization’s convergence.
In fact, there are surprisingly many cases where they do not
lead to a successful optimization, due to a plateau in the
objective function. An example is the optimization of the
mug’s rotation in Fig. 1: As soon as the handle disappears
behind the cup, no infinitesimally small rotation change will
result in a reduced loss. We have hence reached a plateau in
the objective function, i.e., a region of zero gradients.

To alleviate this, we take inspiration from differentiable
rasterization, where discontinuities are replaced by smooth
approximations (Liu et al., 2019). This makes the edge- and
z-tests continuous and hence differentiable, and in passing
(and much less studied) removes plateaus. In this work, we
aim to find a way to apply the same concept to complex
light transport. We thus path-trace an alternative, smooth
version of the Rendering Equation (RE), which we achieve
by convolving the original RE with a smoothing kernel. Our
proposed method is a lightweight extension to (differen-
tiable) path tracers that extends the infinitely-dimensional
path integral to the product space of paths and scene param-
eters. We further show that the resulting double integral
can be MC-solved efficiently through our derived variance
reduction techniques, importance- and antithetic sampling.
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2. Background
2.1. Rendering equation
The RE (Kajiya, 1986) defines a pixel P as

P (θ) =

∫
Ω

f(x, θ)dx , (1)

an integral of the scene function f(x, θ), that depends on
scene parameters θ ∈ Θ, over all light paths x ∈ Ω. In
inverse rendering, we aim to find the parameters θ∗ that best
explain the pixels Pi in the reference image with

θ∗ = argmin
θ

∑
i

L (Pi(θ)− Pi(θref)) , (2)

where L is the objective function and Pi(θref) are the target
pixels created by the (unknown) parameters θref.

We will now discuss the two predominant ways to differ-
entiably solve the RE: path tracing, which can simulate all
forms of complex light transport but suffers from plateaus
(Sec. 2.2), and rasterization, which removes plateaus but
is limited to simple once-bounce light transport (Sec. 2.3).
Other renderers, e.g., volumetric rendering (Henzler et al.,
2019; Mildenhall et al., 2021) or neural rendering (Nalbach
et al., 2017; Sitzmann et al., 2021) are mostly limited to
simple, approximate light transport or come with their own
drawbacks (e.g., static scene constraints) and thus are not
within the scope of this work.

2.2. Path tracing
As there is no closed-form solution to Eq. 1, path tracing
uses MC to estimate the integral by sampling the integrand
at random paths xi:

P̂ ≈ 1

N

∑
i

f(xi, θ) (3)

We are interested in the partial derivatives of P with respect
to the scene parameters θ, i.e.,

∂P

∂θ
=

∂

∂θ

∫
Ω

f(x, θ)dx =

∫
Ω

∂

∂θ
f(x, θ)dx . (4)

In order to make Eq. 4 compatible with automatic differenti-
ation, Li et al. (2018) propose a re-sampling of silhouette
edges and Loubet et al. (2019) suggest a re-parametrization
of the integrand. Both approaches allow to MC-estimate the
gradient as

∂̂P

∂θ
≈ 1

N

N∑
i

∂

∂θ
f(xi, θ) . (5)

This is now standard practice in modern differentiable ren-
dering packages (Nimier-David et al., 2019; Li et al., 2018;
Zeltner et al., 2021; Zhang et al., 2021; 2020), none of which
attempt to actively resolve plateaus.

2.3. Rasterization
Rasterization is often used in practical applications due to
its simplicity and efficiency, but lacks the ability to readily
compute complex light transport phenomena, as it solves a
simplified version of the RE, where for every pixel, the light
path length is limited to one.

A rasterizer projects the a scene’s primitives to screen space
and then resolves occlusion. Both these operations are inher-
ently non-differentiable due to jump discontinuities, which
therefore – in order to backpropagate gradients through
them – need to be replaced with smooth approximations,
e.g., a Sigmoid. For a survey on differentiable rasterization
and the used employed smoothing approximations, we refer
to (Kato et al., 2020) and (Petersen et al., 2022).

Choosing smoothing functions with infinite support (for
instance, the Sigmoid), implicitly resolves the plateau prob-
lem as well. Our method (Sec. 3) draws inspiration from
this concept of “differentiating through blurring”. However,
most differentiable rasterizers make simplifying assump-
tions, e.g., constant colors, the absence of shadows or reflec-
tions, and no illumination interaction between objects. We
will see in later examples that this leads to non-convergence
in multi-bounce light transport scenarios, e.g., the optimiza-
tion from a scene’s global illumination. Our formulation, in
contrast, does not make such assumptions.

3. Plateau-reduced Gradients
As differentiable rasterization (cf. Sec. 2.3) has established,
the blurring of primitive edges is a viable means for differ-
entiation. But what if there is no “primitive edge” in the first
place, as we deal with general light paths instead of simple
rasterization? The edge of a shadow, for instance, is not
optimizable itself, but the result of a combination of light
position, reflection, occlusion, etc. Therefore, to achieve an
effect similar to that of differentiable rasterizers, we would
need a method that blurs the entire light path (instead of just
primitive edges) over the parameter space θ. If this method
used a blur kernel with infinite support (e.g., a Gaussian
distribution), the plateau in the objective would vanish, as
a small parameter change in any direction would induce a
change in the objective function.

In Fig. 2, we again aim to optimize the cup’s rotation around
its z-axis to have the handle point to the right, a 1D problem.
As we have seen previously, using an image-based objective
function leads to a plateau in the “hard” optimization set-
ting, i.e., without blur (the blue line in the plot). Blurring
the cup’s rotation parameter, on the other hand, leads to
θ continuously influencing the value of the objective and
therefore resolves the plateau (orange line in the plot). Nat-
urally, it is easy to descend along the gradient of the orange
curve, while the gradient is zero on the plateau of the blue
curve.
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Figure 2. Optimizing the cup’s rotation in the hard (left, blue) and
smooth (right, orange) setting (note the blurred handle). The image-
space loss is displayed on the right: blurring removes the plateau.

3.1. The Plateau-reduced Rendering Equation
We realize our blurring operation as a convolution of the
RE (Eq. 1) with a blur kernel κ over the parameter space Θ:

Q(θ) = κ ⋆ P (θ) =

∫
Θ

κ(τ)

∫
Ω

f(x, θ − τ) dxdτ

=

∫
Θ×Ω

κ(τ)f(x, θ − τ) dxdτ . (6)

While κ(τ) could be any symmetric monotonous decreasing
function, we here choose a Gaussian kernel. The kernel
acts as a weighting function that weights the contribution
of parameters θ that were offset by τ ∈ Θ. This means
that, in addition to integrating all light paths x over Ω, we
now also integrate over all parameter offsets τ in Θ. Note
that we do not convolve across the path space Ω but across
the parameter space θ, e.g., the cup’s rotation in Fig. 2.
Analogous to Eq. 3 and Eq. 4, we can estimate the integral
in Eq. 6 through an MC estimator and take its derivative as

∂̂Q

∂θ
=

∂

∂θ

1

N

N∑
i=1

κ(τi)f(xi, θ − τi) . (7)

Due to the linearity of differentiation and convolution, there
are two ways of computing Eq. 7: one for having a differen-
tiable renderer, and one for a renderer that is not differen-
tiable. We discuss both options next.

Plateau-reduced gradients if P is differentiable With
access to a differentiable renderer (i.e., access to ∂P/∂θ),
we can rewrite Eq. 7 as

∂̂Q

∂θ
=

1

N

N∑
i=1

κ(τi)
∂P

∂θ
(θ − τi)︸ ︷︷ ︸

Diff. Renderer

. (8)

Therefore, all that that needs to be done is to classically
compute the gradients of a randomly perturbed rendering
and weight them by the blur kernel.

Plateau-reduced gradients if P is not differentiable In
several situations, we might not have access to a differen-
tiable renderer, or a non-differentiable renderer might have
advantages, such as computational efficiency or advanced

y=κ(τ)

a)

y=∇κ(τ)

b)

y~|∇κ(τ)|

d)c)

y=|∇κ(τ)|

Figure 3. Our kernel κ (a), its gradient ∇κ (b), the positivized
gradient (c) and samples drawn proportional thereto (d).

rendering features. Our derivation also supports this case,
as we can rewrite Eq. 7 as

∂̂Q

∂θ
≈ 1

N

N∑
i=1

∂κ

∂θ
(τi)︸ ︷︷ ︸

Diff. Kernel

P (θ − τi)︸ ︷︷ ︸
Renderer

, (9)

which equals sampling a non-differentiable renderer and
weighting the result by the gradient of the blur kernel. This
is possible due to the additional convolution we introduce:
prior work (Li et al., 2018; Loubet et al., 2019) must take
special care to compute derivatives (Eq. 5), as in their case,
optimizing θ might discontinuously change the pixel inte-
gral. We circumvent this problem through the convolution
with κ, which ensures that, in expectation, θ continuously
influences the pixel integral.

3.2. Variance Reduction
Drawing uniform samples from Θ× Ω will result in a sam-
ple distribution that is not proportional to the integrand
and hence lead to high-variance gradient estimates and ulti-
mately slow convergence for inverse rendering. In our case,
the integrand is the product the kernel κ and the scene func-
tion f , which Veach (Veach, 1998) showed how to optimally
sample for. As we generally consider the rendering operator
a black box, we can only reduce variance by sampling ac-
cording to the remaining function, the (differentiated) kernel
κ (Fig. 3b).

While importance-sampling for a Gaussian (τi ∼ κ,
required to reduce variance of Eq. 8) is easily done,
importance-sampling for the gradient of a Gaussian (τi ∼
∂κ/∂θ, to be applied to Eq. 9) is more involved, as the
gradient of our kernel

∂κ

∂θ
(τ) =

−τ
σ3
√
2π

exp

(
−τ2

2σ2

)
(10)

is negative for τ > 0. We enable sampling proportional to
its Probability Density Function (PDF) by “positivization”
(Owen & Zhou, 2000), and hence sample for |∂κ∂θ (τ)| instead
(Fig. 3c). The kernel’s closed-form PDF allows us to use the
inverse Cumulative Distribution Function (ICDF) method
for importance sampling. The ICDF of Eq. 10 is

F−1(ξ) =
√
−2σ2 log(ξ) ,

into which we feed uniform random numbers ξ ∈ (0, 1) that
generate samples proportional to |∂κ∂θ (τ)| (Fig. 3d).
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Figure 4. We show the optimization tasks and results for Our∂κP (“Ours”, Eq. 9, orange) and our baseline Mitsuba 3 (“Diff. Path Tracer”,
blue). The right upper subfigure in each column depicts the scene setup, with the optimizable parameters colored in red. All methods
operate in image space only. We additionally plot parameter-space error as a quality control metric.

In order to obtain a zero-variance estimator, we allocate an
equal number of samples to the positivized and regular parts
(Owen & Zhou, 2000). As the function is point symmet-
ric around the origin, we use antithetic sampling to do so
(Hammersley & Mauldon, 1956), i.e., for each sample τ ,
we additionally generate its negated counterpart −τ .

Moreover, we decrease the amount of smoothing, the ker-
nel’s bandwidth σ, over time. For more information on
implementation as well as an outline of our plateau-reduced
gradient computation, please cf. Appendix A.

4. Results
We analyze our method and its variants on a variety of
tasks that feature advanced light transport, plateaus and
ambiguities (for detailed task descriptions, cf. Appendix B,
for task visualizations, cf. Fig. 4). We compare our method
(Eq. 9) against Mitsuba3 (Jakob et al., 2022) and show
numerical comparisons against other methods in Appendix
B. We run all methods for the same number of iterations
and with the same settings.

Performance As is evident from Fig. 4, our method con-
verges reliably on tasks where regular differentiation does
not converge due to plateaus in the objective. This is due to
our stochastic smoothing of the parameter space, which ef-
fectively allows the optimizer to descend a smoother version
of the loss landscape. Importantly, we effectively handle
complex light transport, as is evident from the rightmost col-
umn in Fig. 4, where out-of-view objects in the scene scene
are optimized solely from the global illumination scattered
from the walls. For a more detailed discussion of our results
on each task, cf. Appendix B.

Timing Additionally, we have found that our approach’s
runtime on average is 8× faster than differentiable rendering
with Mitsuba, as our stochastic gradient estimation through
the derivative-kernel allows us to skip the gradient computa-
tion step of the renderer, which leads to significant savings
in computation time. Moreover, as we do not need special
treatment of discontinuities (e.g., re-parametrization), we
can use Mitsuba’s regular forward path tracer at no addi-
tional runtime cost.

5. Discussion and Conclusion
Relation to Variational Optimization Indeed, the formal-
ism developed in Sec. 3.1 can be interpreted as a form of
variational optimization (Staines & Barber, 2012; 2013),
where one would descend along the (smooth) variational
objective instead of the true underlying function. As such,
Eq. 9 can be seen as an instance of a score-based gradient
estimator (Sutton et al., 1999), while Eq. 8 can be inter-
preted as reparametrization gradient (Kingma et al., 2015;
Schulman et al., 2015). Suh et al. (2022) provide intuition
on each estimator’s performance and align with our findings
of the score-based estimator’s superiority under a discontin-
uous objective. It is one of the contributions of this work to
connect these variational approaches with inverse rendering.

Conclusion In summary, we have proposed a method for
inverse rendering that convolves the rendering equation with
a smoothing kernel, which allows straight-forward differen-
tiation and removes plateaus. The idea combines strengths
of differentiable rasterization and differentiable path trac-
ing. Our approach is simple to implement, efficient, has
theoretical justification and optimizes tasks that existing
differentiable renderers so far have diverged upon.
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A. Implementation Details
A.1. Adaptive Bandwidth
Adjusting σ, the kernel’s spread, controls over how far from
the current parameter θ our samples will be spaced out. A
high σ may be useful in the early stages of the optimization,
when there still is a considerable difference between θ and
θref, whereas we want a low σ towards the end of the opti-
mization to zero-in on θref. Throughout the optimization,
we hence decay the initial σ0 according to a linear schedule,
i.e., σt+1 = σ0−t(σ0−σm), where σm is a fixed minimum
value we choose to avoid numerical instabilities that would
otherwise arise from σ → 0 in, e.g., Eq. 10.

A.2. Implementation
We outline our gradient estimator in pseudo-code in Alg. 1.
We importance-sample for our kernel with zero variance,
use antithetic sampling and adapt the smoothing strength
via σ. As Alg. 1 shows, our method is simple to implement
and can be incorporated into existing frameworks with only
a few lines of code. We implement our method in PyTorch,
with Mitsuba as rendering backbone, and use Adam as our
optimizer.

Algorithm 1 Gradient estimation of the scene function f at
parameters θ with perturbations τ ∼ N (0, σ) at N samples.

1: # Equation 9
2: procedure ESTIMATEGRADIENT(P , θ, σ, N )
3: G := 0
4: for i ∈ (1, N/2) do
5: ξ ← UNIFORM(0, 1)
6: τ ←

√
−2σ2 log(ξ)

7: G← G + P (θ + τ)− P (θ − τ)
8: end for
9: return G / N

10: end procedure

B. Tasks and Additional Results
The following will detail the task setup and our method’s
optimization performance on our evaluation tasks.

B.1. Tasks
CUP A mug is rotated around its vertical axis and as its han-
dle gets occluded, the optimization has reached a plateau.
Our method differentiates through the plateau. The differ-
entiable path tracer gets stuck in the local minimum after
slightly reducing the loss by turning the handle towards the
left, due to the direction of the incoming light.

SHADOWS An object outside of the view frustum is casting
a shadow onto a plane. Our goal is to optimize the hidden
object’s position. Differentiable rasterizers can not solve

this task, as they a) do not implement shadows, and b)
cannot differentiate what they do not rasterize. Again, our
method matches the reference position very well. Mitsuba
first moves the sphere away from the plane (in negative
z-direction), as this reduces the footprint of the sphere’s
shadow on the plane and thus leads to a lower error, and
then finally moves the sphere out of the image, where a
plateau is hit and the optimization can not recover. The blue
line in the image-space plot in Fig. 4 illustrates this problem,
as the parameter-error keeps changing very slightly, but the
image-space error stays constant.

GLOBAL ILLUMINATION We here show that our method
is compatible with the ambiguities encountered in advanced
light transport scenarios. The goal of this optimization task
is to simultaneously move the top-light to match the scene’s
illumination, change the left wall’s color to create the color
bleeding onto the box, and also to rotate the large box to an
orientation where the wall’s reflected light is actually visible.
The optimization only sees an inset of the scene (as shown
in Fig. 4) and hence only ever sees the scattered light, but
never the wall’s color or light itself. This task therefore is not
solvable for differentiable rasterizers, as they do not model
such advanced light transport. The differentiable path tracer,
on the other hand, cannot resolve the ambiguity between
the box’s rotation, the light position and the wall’s color, as
it is operating in a non-smoothed space. Our method finds
the correct combination of rotation, light position and wall
color.

We will now detail three additional tasks that we did not
include in the main text for brevity. Their qualitative results
are displayed in Fig. 5.

OCCLUSION Here, a sphere translates along the viewing
axis to match the reference. The challenge is that the sphere
initially is occluded by another sphere, i.e., we are on a
plateau as long as the occluder is closer to the camera than
the sphere we are optimizing. The baseline path tracer ini-
tially pushes the red sphere towards the back of the box,
as this a) reduces the error in the reflection on the bottom
glass plane, and b) lets the shadow of the red sphere (visi-
ble underneath the blue sphere in the initial configuration)
shrink, which again leads to a lower image-space error. Our
method, in contrast, successfully differentiates through both
the plateau (the red sphere has a negligible effect on the ob-
jective) and the discontinuity that arises when the red sphere
first moves closer to the camera than the blue occluder.

SORT: In this task, we need to sort a randomly perturbed
assortment of 75 colored primitives into disjoint sets. We
optimize the x- and y-coordinates of each cube, which leads
to a 150-dimensional setting, with a plateau in each dimen-
sion, as most of the cubes are initially not overlapping their
reference. Mitsuba cannot find the correct position of non-
overlapping primitives and moves them around to minimize
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Figure 5. We show the optimization tasks and results for Our∂κP (Eq. 9, orange) and our baseline Mitsuba 3 (“Diff. Path Tracer”, blue).

Table 1. Image- and parameter-space MSE of different methods (columns) on different tasks (rows). Lower is better for both metrics.

Rasterizer Path Tracer

SoftRas Mitsuba Our∂κP Ourκ∂P

Img. Para. Img. Para. Img. Para. Img. Para.

CUP 3.66×10−1 2.72×10−2 5.49×10−3 0.75×10−1 4.92×10−6 4.18×10−7 4.75×10−4 2.77×10−1

SHADOWS 1.64×10−3 1.42×10−1 1.64×10−3 5.06×10−0 1.74×10−5 1.81×10−3 5.12×10−4 1.28×10−0

OCCL. 5.33×10−2 7.18×10−3 5.85×10−2 5.23×10+1 2.34×10−4 3.29×10−3 5.37×10−2 1.87×10+1

GLOBAL ILL. – – 3.78×10−2 3.87×10−1 5.07×10−5 8.71×10−4 5.88×10−2 2.55×10−1

SORT 1.85×10−2 1.57×10−0 1.18×10−2 6.64×10−0 3.81×10−3 4.19×10−1 1.02×10−2 2.24×10−0

CAUSTIC – – 3.12×10−1 8.50×10−0 1.89×10−5 9.76×10−5 2.42×10−1 4.03×10−0

the image error, which is ultimately achieved by moving
them outside of the view frustum. Our method, admittedly
not perfect on this task, finds more correct positions, a result
more similar to the reference.

CAUSTIC Lastly, the CAUSTIC task features a light source
outside the view frustum illuminating a glass sphere, which
casts a caustic onto the ground. The goal is to optimize the
light’s position in order to match a reference caustic. As
the sphere does not change its appearance with the light’s
movement, the optimization has to solely rely on the caus-
tic’s position to find the correct parameters. Similar to the
GI task, this is not solvable for rasterizers. Our method
reaches the optimum position with high accuracy. For the
baseline path tracer, we see a failure mode that is similar
to the SHADOW task. In this case, the image space error
can be reduced by moving the light source far away, as most
of the error comes from the caustic not being at the correct
position. Moving the light source far away reduces this
error, but also leads into a local minimum where there is no
illumination at all, resulting in the gray image in Fig. 5.

B.2. Quantitative Results
Tab. 1 reports image- and parameter-space MSE and con-
firms what Fig. 4 conveyed visually: regular gradient-based
path tracers that operate on non-smooth loss landscapes fail
catastrophically on our tasks. SoftRas manages to over-
come some plateaus, but struggles with achieving accurate
results, as it blurs in image space but must compare to the
non-blurred reference, which leads to a notable difference
between the final state and the reference parameters. Our
method Our∂κP , in contrast, achieves errors of as low as
10−7, and consistently outperforms its competitors on all
tasks by several orders of magnitude. Interestingly, Ourκ∂P

(i.e., using the gradients from the differentiable renderer)
works notably worse than Our∂κP , which we attribute to
the fact that we cannot importance-sample for the gradient
here, as we do not know its PDF. Instead, we can only draw
samples proportional to κ(τ), which places many samples
where the kernel is high, i.e., at the current parameter. As we
can see from the rigid optimization by Mitsuba, the gradient
at the current position is not very informative, so placing
samples there is not very helpful.
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