
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Looking beyond the next token

Anonymous Authors1

Abstract
The structure of causal language model training
assumes that each token can be accurately pre-
dicted from the previous context. This contrasts
with humans’ natural writing and reasoning pro-
cess, where goals are typically known before the
exact argument or phrasings. While this mismatch
has been well studied in the literature, the working
assumption has been that architectural changes
are needed to address this mismatch. We argue
that rearranging and processing the training data
sequences can allow models to more accurately
imitate the true data-generating process, and does
not require any other changes to the architecture
or training infrastructure. We demonstrate that
this technique TRELAWNEY and the inference
algorithms derived from it allow us to improve
performance on benchmarks that span planning,
algorithmic reasoning, and story generation tasks.
Finally, our method naturally enables the genera-
tion of long-term goals at no additional cost. We
investigate how using the model’s goal-generation
capability can further improve long horizon plan-
ning and reasoning.

1. Introduction
Next-token prediction (NTP) is the primary objective for
training sequence models. This objective involves a tech-
nique called teacher forcing (Williams & Zipser, 1989),
where the model’s predicted output at each step is replaced
with the ground truth from the real dataset. One of teacher
forcing’s benefits is that it accelerates the training by pro-
viding the model with the correct previous output, so the
learning does not suffer from error accumulation, and the
gradient update is more stable. Another crucial benefit
is that it enables parallelism and hardware acceleration in
training because the model can simultaneously process all
time steps, rather than sequentially waiting for its own pre-
dictions. However, Bachmann & Nagarajan (2024) argue
that models trained with teacher forcing often fail to learn
long-range dependencies, latching onto local patterns and
surface-level correlations instead.

Several recent methods have been proposed to alleviate the
issues of teacher forcing. One popular approach is multi-

token prediction, where the model learns to predict multiple
tokens at the same time (Bachmann & Nagarajan, 2024;
Gloeckle et al., 2024; Deepseek et al., 2024). Another fam-
ily of approaches involves modifying the training objective
to predict both the next token for a prefix and the previous
token for a suffix by modifying the model architecture (Hu
et al., 2025). Most of these approaches either involve non-
trivial modification to the model architecture or make the
learning process much harder by forcing the model to pre-
dict multiple tokens at the same time.

In this work, we investigate a data-centric approach to ad-
dress these limitations. Instead of modifying the model
architecture, our method TRELAWNEY modifies the train-
ing data to embed inductive biases directly. Concretely, we
augment the training corpus by interleaving it with special
lookahead tokens - <T> and </T> that encapsulate future
information (see Figure 1). The placement and content of
these tokens can be determined either randomly or with
task-specific knowledge. We hypothesize that this augmen-
tation makes learning the long-term dependencies easier and
imbues the model with the capacity to plan ahead. Further-
more, these modified training data naturally teach the model
to guide the generation towards the future information, so
the lookahead tokens can also let users exert fine-grained
control over the long-term generation.

This work contributes a simple data-rearrangement proce-
dure, TRELAWNEY, which results in both improved task per-
formance in domains otherwise difficult for models trained
with next token prediction, by decoupling the discussion of
the training objective from the underlying data generating
function the model needs to learn. Results are presented on
planning, reasoning tasks and conditional story generation.

2. Preliminaries
Consider a sequence of tokens y = (y1, y2, . . . , yT ), where
each token yt belongs to a fixed vocabulary V . Suppose
that y follows a distribution P (y), an auto-regressive model
Pθ factorizes the joint probability of y = (y1, y2...yT ) as
follows: Pθ(y) =

∏T
t=1 pθ

(
yt | y<t

)
where y<t =

(y1, . . . , yt−1) denotes all tokens before index t.

Next token prediction. We train the model parameters θ
to maximize the likelihood of each token under the ground
truth context (teacher forcing) from the training corpus. If
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our training data consists of N sequences {y(i)}Ni=1, each
of length T , then MLE(θ) is obtained by:
θ∗ = argmaxθ

∑N
i=1

∑T
t=1 log pθ

(
y
(i)
t | y(i)

<t

)
.

Inference. At inference time, the model predicts the next
token by either sampling or selecting the most likely token,
conditioned on an optional context c (e.g., question).

2.1. Pitfalls of teacher forcing

Bachmann & Nagarajan (2024) highlighted the following
subtle failure modes in teacher-forced training:

Clever Hans Cheat. When training with teacher-forcing,
the model is provided with ground truth prefixes (e.g.,
vstart, v1, . . . , vi−1) that include parts of the answer. This
extra information can enable the model to “cheat” by simply
copying the easy tokens that follow without learning the
true underlying plan.

Indecipherable Token Problem. Because the later tokens
can be easily predicted using the Clever Hans cheat, the
crucial early decision receives insufficient gradient signal.
This early token becomes “indecipherable” since its correct
prediction relies on long-range planning that is effectively
bypassed during teacher-forced training.

Exposure bias. During inference, the model would likely
make a mistake because the model has not learned the inde-
cipherable token. The mismatch between training (where
the model always sees the correct previous tokens) and in-
ference (where it must rely on its own predictions) can lead
to a cascading sequence of errors.

3. TRELAWNEY

Standard decoder-only transformers typically learn the fac-
torization of a sequence defined in Equation 2. We in-
troduce a data augmentation scheme that modifies the
given sequence y as follows: first select a point d and
insert a sequence of k tokens, z = (z1, z2, . . . , zk), de-
limited with special tokens <T> and </T>. Concretely,
we have the following augmentation: (y1 y2 . . . yT ) =⇒
(y1 y2 . . . yd <T> z </T> yd+1 . . . yT−1 yT ) The choices
of d, k, and the content of z are flexible, and we present
several strategies.

3.1. Augmentation schemas

Copying. We can directly copy a part of the sequence from
a point after yd to between the special tokens. For s such
that d<s≤T−k, z is the subsequence ys:s+k, resulting in
ỹcopy ≡ y1 y2 . . . yd <T> ys:s+k </T> yd+1 . . . yT−1 yT
The choice of z can have a significant impact on the behav-
ior of the resulting model. For example, for certain types of
data, there are decision points where there are many different
possible futures. These points are good candidates for choos-
ing d. Analogously, we can choose z to be future tokens

that indicate which future is being generated. These terms
are intentionally defined loosely since the design space is
large.(§4.1, §A.1) Without this prior information, we can
also select d, s, and k randomly, which can be useful for
generic language modeling.

Positional information. In the previous approach, d and s
can vary between different data points. This can be prob-
lematic if two sequences have very different values of s− d.
Intuitively, this makes the modeling task harder because
there may be conflicting information between different
sequences. For example, suppose y1 and y2 share the same
prefixes, y1

:d = y2
:d but the relevant future tokens are at

locations with large differences. To mitigate this conflict,
we introduce additional positional information into the
future tokens, ζ(k, z). For example, we can have: ζ(k, z) =
“I want the [k]th sentencefrom here to be z′′.
ỹcopy+pos ≡ y1 y2 . . . yd <T> ζ(k, z) </T> yd+1 . . . yd+k . . . yn

The exact design of the positional information can be
problem-dependent (§ 4.2). It is also possible to introduce
various agentic behaviors via ζ, though we only conduct a
preliminary investigation in this direction.

3.2. Dataset Construction and Training Objective
Dataset construction. Our goal is to introduce additional
capabilities via the augmentation schema shown above.
However, it is desirable to do so without hurting the tra-
ditional language modeling ability of the model. To do so,
we train on both regular text and augmented text simulta-
neously.Given an original dataset D = {y(i)}Ni=1 and an
augmentation schema aug, we can construct a distribution
for the original dataset, and a distribution for the augmented
dataset:D(s) = 1

N

∑N
i=1 I

{
s = y(i)

}
, Daug(s) =

1
N

∑N
i=1 I

{
s = aug(y(i))

}
For a probability p that con-

trols how much of the training distribution comprises the
original data, the training distribution is the following mix-
ture: D′(s) = pD(s) + (1− p)Daug(s).

Training and loss function. During training, the model
parameters are optimized using a standard cross-entropy
loss with teacher forcing on D′. This allows us to take
advantage of all existing engineering optimizations for
training language models.One caveat for training with
the new dataset D′ is that choosing the decision point
and future tokens arbitrarily will result in a large por-
tion of sequences with the next token being </T> at ar-
bitrary locations. This would distract from the learning
process and does not help learning the underlying dis-
tribution, since the special tokens are synthetically in-
troduced. Instead, we modify the regular cross-entropy
loss by masking the special start token, <T>: L(D′) =

−Ey∼D′

[
1
|y|

∑|y|
j=1 I{yj ̸= <T>} logP (yj | y<j)

]
. Here,

I{yj ̸= <T>} ensures no loss is computed for the prediction
of the special token <T>. We do not exclude the loss on
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</T> because there is a utility to predicting the closing of
the future tokens, which we will elaborate on below.

3.3. Inference

Standard autoregressive generation. The model gener-
ates sequences autoregressively without any intervention,
following any standard decoding algorithm.

<T>-generation. We aim to enable the model to explicitly
consider future context at appropriate decision points, to
improve its ability to plan ahead. At each decision point
yd in sequence generation, we explicitly insert the special
token <T>. Subsequently, (a) either the model generates
the sequence z autonomously, enabling it to create plausible
future plans, or (b) incorporates a user-specified sequence
z, enhancing controllability. Recall that during the training
process, we compute the loss on the </T> token, this allows
the model to generate future goals, which can then be used
for conditional generation.
4. Experiments
We hypothesize that prioritizing predictions of challenging
tokens or strategic goals can improve generation quality. To
test this, we conduct experiments across three synthetic and
natural language tasks. Synthetic tasks serve as a controlled
environment where specific token-level or semantic unit
challenges - otherwise difficult to disentangle in natural
language - can be precisely studied.

We begin with two synthetic benchmarks: the star graph
(§ 4.1), a didactic example used to highlight limitations of
next-token prediction even in simple tasks, and an algo-
rithmic reasoning benchmark (§ A.1), which allow us to
test whether explicitly adding future goals or anchor points
improves performance in simple reasoning tasks. Finally,
we extend our analysis to story generation (§ 4.2) to as-
sess controllable generation and planning. Our experiments
are designed to answer the following questions:(1) Does
TRELAWNEY enable the generation of long-term goals? (2)
Does TRELAWNEY training improve planning when using
autoregressive inference? (3) Do the goals generated ex-
plicitly by the model improve planning? (4) Does explicitly
providing goal sequences z’s improve controllability?

4.1. Star Graph

The star graph is a simple path-finding problem introduced
by Bachmann & Nagarajan (2024), where, given a directed
graph G(d, n) with degree d and path length n, the objective
is to find a path from the start node to the goal node (Fig. 2).
Despite its simplicity, traditional NTP struggles on this task.
A key challenge is that the critical decision point occurs at
v1, the first node after vstart. This node is hard to predict
because vstart has many outgoing edges.

Dataset and Augmentation Schema. To mitigate these
issues, we introduce a future subgoal z, as any contigu-

ous subsection of the path in [v2, vgoal). This modifica-
tion compels the model to generate a meaningful interme-
diate plan rather than simply copying the full ground truth
prefix. As a result, the model receives a stronger learn-
ing signal for critical early decision-making. Each exam-
ple y = (p, c) in the dataset is a prefix and completion
pair. The prefix p is given by the adjacency list of G fol-
lowed by the vstart, vgoal =. The completion c is the path
vstart, v1, v2, ...vgoal, i.e., p ≡ Adj(G) | vstart, vgoal = and
c ≡ vstart, v1, v2, . . . , vgoal.

Our augmentation schema y =⇒ ỹcopy for this task is as
follows:

y ≡ Adj(G) | vstart, vgoal = vstart, v1, v2, . . . , vgoal

ỹcopy ≡ Adj(G) | vstart, vgoal = vstart, <T> z,</T> v1, . . . , vgoal

Choice of z. We vary z (a contiguous subsequence of fu-
ture tokens) across experiments and ablations (see Figure 2).
Its role is to guide planning by indicating a subgoal on the
path from vstart to vgoal. We exclude v1 to avoid the Clever
Hans cheat discussed above. We exclude vgoal so that the
model learns the long-term dependency between start and
goal without having direct access to the goal token.

Training. Data for all experiments are generated program-
matically using the official implementation Although we
use pretrained models, each node remains a single token in
the tokenizer. All models are trained on 200, 000 examples
as described in Appendix A.4. We follow standard teacher
forcing training with two variants of augmentation schemas.

TRELAWNEY-fixed: In a single training run, the choice of z
is fixed across all examples. Specifically, z is chosen as a
contiguous sequence of 1 to 4 nodes with a fixed start and
end point across all sequences in the dataset (Figure 2).

TRELAWNEY-random: z can vary between examples. We
randomly select any contiguous subsequence of the path
after v1 to serve as z in ỹcopy. We do not include v1 (the
hard node) as part of z (Figure 2). Without fixed positional
information, the model learns to generate its own goals of
varying lengths. We observe that this variant is successful
in solving longer planning problems.

Evaluation. We evaluate the models on 5,000 held-out
examples for each graph, reporting the accuracy of the gen-
erated path compared to the ground truth. For the next-
token prediction baseline, we evaluate the model using stan-
dard autoregressive generation. For models trained with
TRELAWNEY, we assess both standard autoregressive and
<T>-generation. In the conditional setting, the model uses
either model-generated z’s as goals or user-provided ground
truth “future goals” as hints. Standard autoregressive gen-
eration allows us to test whether TRELAWNEY improves
regular generation. <T>-generation demonstrates whether
the model has learned to generate plausible future goals and
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Path planning G(*,*)
G(2,5) G(5,5) G(20,5) G(2,10)

A
ut

oR
eg

. NTP 0.50 0.20 0.05 0.50
TRELAWNEY

– Fixed 1.00 1.00 1.00 0.52
– Random 1.00 1.00 1.00 0.50

G
en

. TRELAWNEY
– Fixed 1.00 1.00 1.00 0.57
– Random 1.00 1.00 1.00 0.91

Sp
ec

. TRELAWNEY
– Fixed 1.00 1.00 1.00 1.00
– Random 1.00 1.00 1.00 0.91

Table 1: TRELAWNEY outperforms next token prediction in
Path planning (Star Graph) Autoreg, Gen. and Spec. refer
to inference methods of standard autoregressive generation,
model generated <T>-generation and user specified <T>-
generation respectively. Fixed, Random and Rule-Based
indicate the data augmentation strategies used in training.
Bold is the best and underline is the second best.

use these goals for better planning. By providing intermedi-
ate hints, we evaluate if the model can leverage these cues
to solve the larger planning problems.

Results. On shorter graphs (n=5), training with
TRELAWNEY improves autoregressive generation at no ad-
ditional cost, suggesting that the model implicitly learns to
plan better and can generate long-term goals. For longer
graphs G(2, 10), TRELAWNEY-random can complete the
task when the model is used to generate its own subgoal
sequence z, indicating that model-generated goals can im-
prove planning. TRELAWNEY-random is notably more per-
formant on graphs with longer paths when compared to
TRELAWNEY-fixed, We hypothesize that the random vari-
ant’s flexibility in future goal selection has a regularizing
effect that allows the model to learn better representations.
Both variants of TRELAWNEY succeed when user-provided
goal sequences are provided, showing that explicit goal hints
allow for better controllability.(See: Tab. 1) Ablations con-
ducted on larger models (A.6) show that the ability to plan
for future tokens improves with increase in model capacity.

4.2. Natural Language Planning
We evaluate our approach on the Tiny Stories dataset (Eldan
& Li, 2023). In this task, the aim is to generate coherent
stories conditioned on specified goals. This benchmark tests
whether our strategy of inserting future tokens can enhance
planning in natural language generation.

Dataset and Augmentation Schema. Each example
y = (p, c) is a prefix–completion pair. We use a sentence
parser to segment each story into individual sentences or
phrases. If a story is split into sentences s1, s2, . . . , sn,
the prefix p is the beginning of the story (e.g., s1 s2) and

the completion c is the remainder (i.e., s3 s4 . . . sn).
Our augmentation schema y =⇒ ỹcopy+pos is defined as:
y ≡ s1 s2 . . . sn
ỹcopy+pos ≡ s1 s2 . . . sd <T> ζ(k, sd+k) </T> sd+1 . . . sd+k . . . sn
ζ(k, s) = “I want the [k]-th sentence from here to be [s] ′′,
Choice of ζ(k, s). We choose decision points randomly at
the end of the k-th sentence in the document, as the position
to to insert ζ(k, s). The subgoal [s] is defined in ζ(d, s)
as extracted from the corresponding sentence sd+k.

Training. All models are trained on 300, 000 examples
from the Tiny Stories dataset.(See App. A.4)

• Next-token prediction: We follow standard teacher forced
training on the dataset D.

• TRELAWNEY-implicit-pos: We insert goals into Daug by
specifying how far ahead the goal is in natural language.
This probes if the model can discern positional informa-
tion without explicit labels.

Evaluation: Following the evaluation protocol in Hu et al.
(2025), we use GPT-4 as a judge to rate 100 generated stories
from each model. The stories are anonymized and shuffled
to prevent any information leakage about the author before
being passed to the judge. Each evaluation is repeated over
6 trials. We report the win rate with binomial confidence
intervals computed at a 95% significance level.

RQ1: Does TRELAWNEY improve goal reaching abil-
ity i.e., resulting in more controllable generation? We
compare the completions from few-shot prompts on the
baseline with those obtained by explicitly specifying goals
on TRELAWNEY. Qualitatively, models trained with
TRELAWNEY generate stories that more effectively reach
the intended long-term goals (see Figure 1). Quantita-
tively, GPT-4 prefers TRELAWNEY to few-shot prompts
on next-token-prediction, 76.53% of the time, with a con-
fidence interval of [72.9%, 79.9%]; which suggests that
TRELAWNEYis more effective at controllable generation
than few-shot prompting.(See : D.2)

RQ2: Preference on stories generated by standard au-
toregressive generation. We compare the standard autore-
gressive generations from models trained with TRELAWNEY
and models trained with NTP. Quantitatively, we ob-
serve that GPT-4 prefers autoregressive generations on
TRELAWNEYto next-token-prediction, 40.35% of the time,
with a binomial confidence interval of [44.5%, 36.2%]. For
examples, see D.2

Ablations. We evaluate perplexity on Wikitext to verify that
TRELAWNEY maintains language model performance, with
results comparable to the baseline.(See: D.3)

5. Discussion
Our small-scale experiments are effective but limited to syn-
thetic or constrained scenarios. Our initial results suggest
that adaptation to more general settings may be useful.
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A. Appendix

B C D E F G

A B C D E F

B F’ G’ </T> C

A B <T> F’ G’ </T>

D E F

C D E

G

F

Standard training Trelawney

Regular Masked Future Special

IN
PU

T
O

UT
PU

T

<T> I want the [2]-nd sentence from 
here to be: "Hello little frog!  </T>

Once upon a time, there was a little girl named Lily. Lily loved to play in the rain.

<T> I want the [4]-th sentence from 
here to be: "Hello little frog!  </T>

<T> I want the [8]-th sentence from 
here to be: "Hello little frog!  </T>

One day, Lily was playing in the rain and she saw 
a little frog. "Hello little frog! What are you doing 
here?” Lily asked. The frog replied, "I am looking 
for a friend to play with. Can you be my friend?” 
Lily was happy to have a new friend. She said, 
"Yes, I can be your friend. We can play in the rain 
together.” So, the frog and Lily played in the rain, 
making puddles and having fun. At the end of the 
day, they said goodbye and promised to play 
again the next day. 

One day, Lily went outside to play. She saw a big 
frog on a log. The frog looked sad. "Hello little 
frog! Why are you sad?” Lily asked. The frog 
replied, "I can't jump high. I need help.” Lily 
thought for a moment and said, "I have an idea! 
Let's play together and I will help you jump high.” 
The frog was so happy and thanked Lily. They 
jumped high and played all day. From that day 
on, Lily and the frog became best friends.

One day, Lily went outside to play in the rain. She 
jumped in the puddles and laughed. She loved 
the feeling of the rain on her face. Suddenly, Lily 
saw a frog in a puddle. The frog was small and 
wet. Lily wanted to help the frog. She picked up 
the frog and put it on a rock. ”Hello little frog! 
You are so wet and cold," said Lily. The frog 
smiled and thanked Lily for helping. From that day 
on, Lily and the frog became good friends. 

FU
TU

RE
GE

NE
RA

TI
ON

PROMPT

Figure 1: TRELAWNEY. (Top) We modify the training data by inserting tokens from the future, delimited with special
tokens <T> and </T>, into the modified sequences. By first predicting tokens in the future, the model is encouraged to
learn the tokens pertaining to what it will generate in the future (i.e., F’G’), and the path leading to the future (i.e., CDE) as
well as the actual future (i.e., FG) will be easier to predict. (Bottom) Illustration of TRELAWNEY’s effect during generation.
The top is the prompt, and the middle is different future tokens. The generations are coherent and read naturally.
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Next Token Prediction 
Adj(G) | 1, 5  =  1,  2,  3,   4,   5 
Adj(G) | 1,13 = 1, 10, 11, 12, 13 
Adj(G) | 1, 9  = 1,   6,   7,   8,   9

Trelawney - Fixed 
Adj(G) | 1, 5   = 1,  <T>  3,   4,  </T>    2,   3,   4,   5 
Adj(G) | 1,13  = 1,  <T> 11, 12,</T>  10, 11, 12, 13 
Adj(G) | 1, 9   = 1,  <T>  7,   8,    </T>   6,  7,   8,   9

Trelawney - Random 
Adj(G) | 1, 5   = 1,   <T> 3,  4,  </T>   2,   3,   4,   5 
Adj(G) | 1,13  = 1,   <T> 11, </T> 10, 11, 12, 13 
Adj(G) | 1, 9   = 1,   <T>  8,   </T>   6,   7,   8,   9

1

2

6

7

8

9

3
4

5

10
11

12
13

Star graph

Start

Path

Goal

Hard node

Figure 2: In the star graph, there are key “hard nodes” that indicate the moment of branching, after which the path and goal
become clear. Above is a visualization of the construction of D′ for the star graph with corresponding linearizations.
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(a) Goal-conditioned win-rate.
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Unconditional win-rate

(b) Unconditional win-rate.

Figure 3: Our evaluation of story generation demonstrates greatly improved performance when goal-conditioned, without
hurting the performance of unconditional generation.
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A.1. Additional synthetic tasks - Algorithmic Reasoning

CLRS-Text (Markeeva et al., 2024)1 is a benchmark of algorithmic reasoning. The input is the algorithm name, followed
by a step-by-step reasoning trace and the final answer. We pick a representative example from algorithms that require
backtracking, i.e., tasks that benefit from information of future states. We choose strongly-connected-components, a
step-by-step sequential prediction task where each step is longer than one token, and report results on it. The trace contains
the execution of Tarjan’s algorithm (Tarjan, 1972), which computes strongly connected components in linear time by
performing a depth-first search that tracks low-link values and uses a stack to detect cycles.

Dataset and Augmentation Schema. In each example y = (p, c) of the strongly-connected-components subset, the prefix
p is given by the adjacency matrix of the initial graph. The completion c is graph execution traces of the algorithm followed
by the final answer, i.e., p ≡ Adj(G) = and c ≡ t1, t2 . . . tn|F where ti is the state of the graphical trace and F is the final
answer. Our augmentation schema y =⇒ ỹcopy for this task is as follows:

y ≡ algo: Adj(G) = t1, t2, . . . , tn|F
ỹcopy ≡ algo: Adj(G) = t1,<T> z </T> t2, . . . , tn|F

Unlike the star graph task — where failure typically occurs at a single critical decision point — the algorithmic reasoning
tasks involve multiple branching points where errors can accumulate. In the strongly connected components subset, the
state sequence t represents the graph execution trace and comprises multiple tokens, each corresponding to a distinct graph
state. By segmenting the trace into these meaningful units, our augmentation schema is better able to capture intermediate
reasoning steps and guide the model’s planning process throughout the entire execution trace.

Choice of z. For simplicity, we fix the decision point yd at the second state in each trace. Unlike the star graph task, where
the hard tokens are easy to extract, algorithmic reasoning tasks do not present a clear failure point — there can be many
points in the trace at which misprediction causes the entire generation to diverge. We only pick z as a complete step ti in the
trace and how i is determined for each variant.

Training. Data for all experiments are sub-selected from the original dataset. We train a single model on problems of
varying sizes. Since we do not test for length generalization, we only report accuracies on problem sizes present in the
training corpus. For strongly connected components, all models are trained on 60,000 examples. We train two variants (See
C.1) of our method:

TRELAWNEY-rule-based: For every example in Daug, z is chosen as the first change in the trace provided. The position of z
in the trace varies across graph sizes and graphs.

TRELAWNEY-random: z is chosen as a single random state in the trace provided.

Alg Reasoning scc-
scc-4 scc-5 scc-11 scc-12 scc-15

A
ut

oR
eg

. NTP 1.00 0.99 0.62 0.57 0.27
TRELAWNEY

– Fixed 1.00 1.00 0.73 0.62 0.31
– Random 1.00 0.978 0.718 0.706 0.476

G
en

er
at

ed NTP – – – – –
TRELAWNEY

– Fixed 1.00 1.00 0.73 0.65 0.34
– Random 1.00 0.998 0.776 0.79 0.512

Sp
ec

ifi
ed NTP – – – – –

TRELAWNEY
– Fixed 1.00 1.00 0.84 0.76 0.47
– Random 1.00 0.998 0.828 0.812 0.544

Table 2: Algorithmic-reasoning performance on SCCs.

Evaluation. We evaluate on 500 examples (CLRS-Text-test) 2 per graph length. We evaluate the models similar to the

1https://huggingface.com/datasets/tomg-group-umd/CLRS-Text-train
2https://huggingface.co/datasets/tomg-group-umd/CLRS-Text-test
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star-graph setting, and report the accuracies of the final answer.

Results Results from Figure 5 show a trend that TRELAWNEY-Random consistently improves on next token prediction
when using <T>-generation and, surprisingly, in standard autoregressive generation as well. TRELAWNEY-Rule-Based
although being chosen more strategically, performs worse than <T>-Random.

A.2. Related work

Next token prediction. Bachmann & Nagarajan (2024) characterizes two failure that occur in next-token prediction,
those that emerge from (1) teacher-forced training, and (2) those emerging at inference, where errors compound (the
so-called snowballing failure). Much of the prior work (Arora et al., 2022; Ross et al., 2011) has focused primarily on
the inference-time errors. In contrast, during training, the maximum likelihood estimation (MLE) objective treats all
tokens equally. However, Bigelow et al. (2024) provides empirical evidence that tokens contribute unequally to the overall
performance, suggesting that some tokens are inherently more critical than others. Relatedly, Lin et al. (2024) propose
leveraging a stronger model to identify and prioritize these important tokens for more efficient pretraining. Nye et al. (2021)
introduce scratchpads which augment the model’s input with intermediate reasoning steps to support multi-step problem
solving. Goyal et al. (2023) introduces pause tokens at training and inference, as a mechanism for delayed next-token
prediction, which improves performance across several language tasks.

Architectural changes. (Du et al., 2023; Yin et al., 2024) propose architectural modifications to improve planning. Qi
et al. (2020) predict multiple n-grams rather than a single token at a time. Similarly, Gloeckle et al. (2024); Deepseek
et al. (2024) incorporate these insights and have empirically validated the approach at scale. Hu et al. (2025) introduce
an additional encoder that learns representations for both the next and previous states simultaneously. Frydenlund (2024)
explores alternate encoder-based architectures for planning.

Controllable generation. Our work is also related to the literature of controllable generation, where the models are
conditioned to follow high-level goals or guidelines provided through explicit instructions or auxiliary inputs. Prominent
methods include Keskar et al. (2019); Dathathri et al. (2019); Krause et al. (2020). More recent models can be controlled
via prompting (Brown et al., 2020; Wei et al., 2022). In comparison, TRELAWNEY does not require a curated dataset or
additional classifiers and achieves fine-grained temporal control.

Non-causal sequence modeling. offers an alternative to the traditional autoregressive, left-to-right generation constraint by
allowing the model to use both past and future context (Gu et al., 2017; Gong et al., 2022; Nolte et al., 2024). Bavarian et al.
(2022) propose a “fill in the middle” strategy which changes the data ordering, while T5 (Raffel et al., 2020) incorporates
span corruption, σ-GPT (Pannatier et al., 2024) uses on-the-fly order modulation, MLM-U (Kitouni et al., 2024) uses
uniform masking similar to the diffusion objective and XLNet (Yang et al., 2019) leverages permutation-based training.
Inference-time strategies, such as tree generation (Welleck et al., 2019), have also been explored. Beyond language modeling,
video prediction (Han et al., 2019; Vondrick et al., 2016) similarly relies on non-causal prediction of future frames or states.
In control tasks and world modeling (LeCun, 2022; Hafner et al., 2023; Lin et al.), non-causal approaches provide a more
comprehensive representation of environmental dynamics, thereby enhancing long-term planning.
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Looking beyond the next token

A.3. Reproducibility statement

Code and datasets for all experiments are currently in preparation and will be released.

A.4. Implementation details

Training details: All results are reported on the pretrained-Llama 3.2-1B model. We conducted experiments by sweeping
over learning rates of 1e-5, 2e-5, and 1e-6, using the AdamW optimizer with a linear learning rate scheduler for one epoch,
and reporting the best result. We use the masked cross-entropy loss specified in § 3.2. We use p = 0.5 for all experiments.
All experiments were run on 4xA6000 GPUs or 4xL40S GPUs. We will also provide the full list of hyperparameters and
release code and datasets used.

A.5. Ablations - Autoregressive architectures

In this section we also compare against other autoregressive architectures. We use mamba as a representative model class
for state space models. We observe that using TRELAWNEY-Random improves on next token prediction on state space
architectures as well.

Path planning G(*,*)
G(2,5) G(5,5) G(20,5) G(2,10)

A
R

. NTP 0.50 0.20 0.05 0.50
TRELAWNEY 1.0 0.998 0.049 0.50

G
en

. NTP – – – –
TRELAWNEY 1.0 0.997 0.048 0.511

Sp
ec

. NTP – – – –
TRELAWNEY 1.0 0.998 0.048 0.50

Table 3: Mamba-1.5B - Results on star graph

A.6. Ablations - Model sizing

To compare the effects of model size on TRELAWNEY-Random, we perform on 0.5B (Qwen2.5-0.5B), 1B (Llama-3.2-1B)
and 3B (Llama-3.2-3B) models. We do not account for architectural differences between the Qwen 0.5B model and the 1B
and 3B Llama models.

The smallest model is unable to solve the longest graph that we test for G(2, 10), while the 1B model is able to solve the
graph when allowed to generate z. Finally, the 3B model, is able to solve the graph with only autoregressive generation
when trained with TRELAWNEY. This hints at TRELAWNEY being more effective on larger models, potentially learning
better representations, and being easily scalable. Interestingly, larger models can solve the simplest graphs (G(2, 5), G(5, 5))
autoregressively. We speculate that this could be due to pre-caching improving with scale as previously observed by (Wu
et al.)

Path planning G(*,*)
G(2,5) G(5,5) G(20,5) G(2,10)

A
R

. NTP 0.50 0.20 0.05 0.50
TRELAWNEY 1.0 1.0 0.874 0.533

G
en

. NTP – – – –
TRELAWNEY 1.0 1.0 0.847 0.514

Sp
ec

. NTP – – – –
TRELAWNEY 1.0 1.0 0.931 0.523

Table 4: Qwen/Qwen2.5-0.5B

Path planning G(*,*)
G(2,5) G(5,5) G(20,5) G(2,10)

A
R

. NTP 1.0 1.0 0.05 0.50
TRELAWNEY 1.0 1.0 1.0 1.0

G
en

. NTP – – – –
TRELAWNEY 1.0 1.0 1.0 1.0

Sp
ec

. NTP – – – –
TRELAWNEY 1.0 1.0 1.0 1.0

Table 5: meta-llama/Llama-3.2-3B
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B. Star graph
B.1. Results - Llama-3.2-1B
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Star-Graph: Trelawney-Fixed

(a) Accuracies TRELAWNEY-Fixed

G(2,5) G(5,5) G(10,5) G(20,5) G(2,10)
0

20

40

60

80

100

Ac
cu

ra
cy

 %

NTP-AR Trelawney-AR Trelawney-Model-Generated-Goal Trelawney-Specified-Goal

Star-Graph: Trelawney-Random

(b) Accuracies TRELAWNEY-Random

Figure 4: Results on Star Graph.
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C. Algorithmic reasoning
C.1. Examples

We provide examples of the data augmentation schema used in Daug for the strongly connected components task.Looking at
the examples in the data, we see many repeated states t in the trace. The rule used to pick z was likely more beneficial, since
the first change in the trace state contains more information than a random trace state.

Strongly connected components - Examples

Prefix:
"strongly_connected_components:
A: [[0 0 0 0 0 0],

[0 0 0 0 0 0],
[0 0 0 0 1 0],
[0 0 0 1 1 0],
[0 0 1 1 1 0],
[0 0 0 0 0 1]],

initial_trace: [0 1 2 3 4 5] trace | scc_id:",

Completion:
"[0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5],
[0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5],
[0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5],
[0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5],
[0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 2 5], [0 1 2 2 2 5],
[0 1 2 2 2 5], [0 1 2 2 2 5], [0 1 2 2 2 5], [0 1 2 2 2 5], [0 1 2 2 2 5],
[0 1 2 2 2 5], [0 1 2 2 2 5] | [0 1 2 2 2 5]"

Completion for TRELAWNEY–Rule-Based:
"[0 1 2 3 4 5], <T> [0 1 2 3 2 5], </T> [0 1 2 3 4 5], [0 1 2 3 4 5],
[0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5],
[0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5],
[0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5],
[0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5],
[0 1 2 3 2 5], [0 1 2 2 2 5], [0 1 2 2 2 5], [0 1 2 2 2 5], [0 1 2 2 2 5],
[0 1 2 2 2 5], [0 1 2 2 2 5], [0 1 2 2 2 5], [0 1 2 2 2 5] | [0 1 2 2 2 5]"

Completion for TRELAWNEY–Random:
"[0 1 2 3 4 5], <T> [0 1 2 3 4 5] </T> [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5],
[0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5],
[0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5],
[0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5],
[0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 4 5], [0 1 2 3 2 5],
[0 1 2 2 2 5], [0 1 2 2 2 5], [0 1 2 2 2 5], [0 1 2 2 2 5], [0 1 2 2 2 5],
[0 1 2 2 2 5], [0 1 2 2 2 5], [0 1 2 2 2 5] | [0 1 2 2 2 5]"
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C.2. Results - Llama-3.2-1B
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Strongly-connected-components: Trelawney-RuleBased

Figure 5: Accuracies - Strongly connected components TRELAWNEY-Rule-Based
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Figure 6: Accuracies - Strongly connected components TRELAWNEY-Random
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D. Story generation
D.1. Examples

Once upon a time, there was a little girl 
named Lily. Lily loved to play in the rain. 
<T> I think [3] sentences away should 
be:"Hello little frog! </T> [1] She would 
jump in all the puddles and get very wet. 
[2] One day, Lily saw a cute little frog 
hopping around in the rain. [3] “Hello 
little frog! [4] What are you doing in the 
rain?" asked Lily. [5] “I like the rain 
because it helps create more puddles 
for me to swim in," [6] replied the frog. 
[7] Lily smiled and said, [8] “That’s so 
cool! [9] I love playing in the rain too.” …

Once upon a time, there was a little girl 
named Lily. Lily loved to play in the rain. 
She would jump in all the puddles and 
get very wet. One day, Lily saw a cute 
little frog hopping around in the rain. 
“Hello little frog! What are you doing in 
the rain?" asked Lily. “I like the rain 
because it helps create more puddles 
for me to swim in,” replied the frog. Lily 
smiled and said, “That’s so cool! I love 
playing in the rain too.” …

Once upon a time, there was a little girl 
named Lily. Lily loved to play in the rain. 
<T> I think [3] sentences away should 
be:"Hello little frog! </T> She would 
jump in all the puddles and get very wet. 
One day, Lily saw a cute little frog 
hopping around in the rain. “Hello little 
frog! What are you doing in the rain?" 
asked Lily. “I like the rain because it 
helps create more puddles for me to 
swim in,” replied the frog. Lily smiled 
and said, “That’s so cool! I love playing 
in the rain too.” …

Baseline Trelawney - Explicit Position Trelawney - Implicit Position

Figure 7: Construction of D′
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Looking beyond the next token

D.2. GPT4-as-Judge

Unconditional generation. System prompt used and an example

Unconditional generation

System prompt: You are evaluating two story generation models. First, analyze the outputs and note their properties.
Then, make an argument for why one model is better than the other, or state that both models perform similarly.
Finally, Respond with WINNER: Story 1/2 (depending on which is better) or respond with DRAW if both are equal.

User

Story 1:
"Once upon a time, there was a naughty bee named Buzzy.Buzzy loved to fly

around the big tree and play with the other bees.One day, Buzzy saw a
big, juicy flower and wanted to eat it.But the flower was too high up
for Buzzy to reach.\n\nBuzzy had an idea!He flew up to the top of the
tree and found a long stick.He used the stick to reach the flower and
eat it.Buzzy was very happy and flew back down to tell the other bees
about his adventure.\n\nThe other bees were impressed with Buzzy's
cleverness.They all decided to try and reach the flower too.They worked
together and used their wings to fly up to the top of the tree.Buzzy was
proud of them and they all shared the delicious flower together.From
that day on, Buzzy and the other bees were known as the best bee team in
the forest.",

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

Story 2:

Judge

"Both stories have similar structures, characters, and plotlines. They both
follow the adventure of a bee named Buzzy who uses a stick to reach a
flower that was too high up. The other bees in both stories are
impressed by Buzzy's cleverness and decide to try reaching the flower
too. \n\nHowever, there are subtle differences in the way the stories
are told. Story 1 ends with a stronger conclusion, stating that Buzzy
and the other bees were known as the best bee team in the forest. This
gives a sense of accomplishment and closure to the story. On the other
hand, Story 2 ends on a more casual note, stating that they all had a
fun day playing together. \n\nIn terms of language and style, Story 1
uses more descriptive language and provides more details, such as the
bees using their wings to fly up to the top of the tree. Story 2 is more
straightforward and uses simpler language.\n\nIn conclusion, while both
stories are similar, Story 1 is slightly better due to its stronger
conclusion and more descriptive language.\n\nWINNER: Story 1"

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

Conditional generation : We assess if the model was able to reach the specified goal and if the generated stories are
coherent. We run two ablations of our method on the baseline trained model 1) Few shot prompts with instructions in natural
language - the baseline is unable to reach any of the goals effectively, 2) Few shot prompts (8 examples) with goals specified
as tags. Note: we do not use special tokens, only patterns resembling tags. For fairness we report the version with tags in the
main paper.
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Looking beyond the next token

Conditional generation

System prompt: You are evaluating two story generation models for goal reaching ability. The goal is specified
within <LOOKAHEAD> and </LOOKAHEAD>, analyze if the stories reach the goal and Then, make an argument for
why one model is better than the other, or state that both models perform similarly. Finally, Respond with WINNER:
Story 1/2 (depending on which is better) or respond with DRAW if both are equal
User

Story 1:

"Once upon a time, there was a goat.The goat was outside and it was very
hot.<LOOKAHEAD> I think [4] sentences away should be: The goat looked
for another way inside but there was none. </LOOKAHEAD>The goat was very
thirsty and it wanted to drink some water.\n\nThe goat saw a big tree
and it thought it would be a good place to drink water.But when the goat
got to the tree, it was too high up and the goat couldn't reach the
water.\n\nThe goat looked for another way inside but there was none.So
the goat had to stay outside and wait for the water to come down from
the sky.\n\nFinally, the water came down and the goat was very happy.It
drank the water and felt much better.The goat was very grateful for the
water and it thanked the sky for providing it.",

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

Story 2:

"Once upon a time, there was a goat.The goat was outside and it was very
hot.<LOOKAHEAD> I think [4] sentences away should be: The goat looked
for another way inside but there was none. </LOOKAHEAD>Then, the goat
saw a big tree and thought it would be a good place to hide.\n\nThe goat
went to the tree and climbed up.It was very hot inside the tree, but the
goat was happy to be safe.The goat stayed in the tree for a long time,
but it was not happy because it was not able to get out.\n\nFinally, the
sun went down and the goat was able to get out of the tree.The goat was
very tired and hot, but it was happy to be outside again.The goat
learned that sometimes it is not good to hide in a tree when it is too
hot.",

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

Judge

"Both stories have the same goal: \"The goat looked for another way inside
but there was none.\" Story 1 reaches this goal perfectly, as the goat
tries to find another way to get water but fails, and the sentence is
included verbatim. Story 2, however, does not reach the goal. The goat
does look for a place to hide, but it successfully finds one in the
tree, and the sentence is not included in the story.\n\nTherefore, Story
1 is better at reaching the specified goal than Story 2. Story 1 not
only includes the goal sentence but also builds a coherent narrative
around it, while Story 2 deviates from the goal and does not include the
sentence.\n\nWINNER: Story 1"

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

We use GPT-4 as the judge to evaluate stories generated by both models:

Failure modes: Often, both models are unable to reach the goal, then the judge outputs DRAW. In some generations, we
note that while the full sentence may not be copied verbatim, we still have coherent generations. In implicit generations, the
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Looking beyond the next token

Story Generation Baseline Ours Draw

Autoregressive 0.4526+0.494
−0.411 0.4035+0.445

−0.362 0.1439+0.175
−0.116

Few shot natural language v. TRELAWNEY 0.0000+0.006
−0.000 0.8860+0.911

−0.858 0.1139+0.142
−0.089

Few shot tags v. TRELAWNEY 0.1734+0.207
−0.144 0.7653+0.799

−0.729 0.0612+0.084
−0.043

Table 6: Tiny stories win rate with confidence intervals at 95th percentile

number of sentences away is less accurate than explicitly specifying them.

D.3. Perplexity

WikiText Perplexity on models trained with TRELAWNEY are comparable to models trained with standard next token
prediction, indicating no noticeable loss in text generation abilities.

Bits-per-byte (↓) Byte-Perplexity (↓) Word-Perplexity (↓)

Next-Token-Prediction 0.6958 1.6198 13.1865

TRELAWNEY 0.6975 1.6217 13.2669

Table 7: Perplexity metrics on wikitext
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