
Published as a conference paper at ICLR 2024

TOWARDS GREEN AI IN FINE-TUNING LARGE LAN-
GUAGE MODELS VIA ADAPTIVE BACKPROPAGATION

Kai Huang†, Hanyun Yin§, Heng Huang‡ & Wei Gao†
University of Pittsburgh†, University of Maryland, College Park‡

University of Science and Technology of China§
k.huang@pitt.edu, ykissgoodbye@gmail.com, heng@umd.edu, weigao@pitt.edu

ABSTRACT

Fine-tuning is essential to adapting pre-trained large language models to down-
stream applications. With the increasing popularity of LLM-enabled applications,
fine-tuning has been performed intensively worldwide, incurring a tremendous
amount of computing costs that correspond to big carbon footprint and environ-
mental impact. Mitigating such environmental impact directly correlates to re-
ducing the fine-tuning FLOPs. Existing fine-tuning schemes focus on either sav-
ing memory or reducing the overhead of computing weight updates, but cannot
achieve sufficient FLOPs reduction due to their ignorance of the training cost
in backpropagation. To address this limitation, in this paper we present Green-
Trainer, a new technique that minimizes the FLOPs of LLM fine-tuning via adap-
tive backpropagation, which adaptively selects the most appropriate set of LLM
tensors for fine-tuning based on their importance and backpropagation cost in
training. Experiment results show that GreenTrainer can save up to 64% training
FLOPs compared to full fine-tuning, without any noticeable accuracy loss. Com-
pared to the existing schemes such as Prefix Tuning and LoRA, GreenTrainer can
achieve up to 4% improvement of model accuracy, with on-par FLOPs reduction.

1 INTRODUCTION

Large language models (LLMs) are used as foundational tools in generative AI. To be used in down-
stream applications, a pre-trained LLM needs to be fine-tuned using the specific application data
(Devlin et al., 2018). Intuitively, fine-tuning is less computationally expensive than pre-training due
to the smaller amount of training data, but it may result in significantly high energy consumption and
carbon footprint when being intensively performed worldwide. Enabled by the democratization of
open-sourced LLMs (Candel et al., 2023) and convenient APIs of operating these LLMs (Ott et al.,
2019; Wolf et al., 2019), even non-expert individuals can easily fine-tune LLMs for model perfor-
mance enhancement or personalization (Scialom et al., 2022; Wang and Gao, 2023). For example,
when a LLaMA-13B model (Touvron et al., 2023) is fine-tuned by 10k users using A100-80GB
GPUs, such fine-tuning consumes 6.9× more GPU hours than pre-training a GPT-3 model (Brown
et al., 2020) with 175B parameters. The amount of energy consumed by such fine-tuning is com-
parable to that consumed by some underdeveloped countries, and the amount of carbon footprint is
equivalent to 1000× of that produced by a New York-San Francisco flight (aii, 2023).

Mitigating such environmental impact towards Green AI directly correlates to reducing the number
of floating operations (FLOPs) of fine-tuning, which represents the amount of computational opera-
tions and hence energy consumption in training (Schwartz et al., 2020; Huang et al., 2023a). Most
existing techniques of optimizing LLM fine-tuning, however, are limited to reducing the memory
consumption rather than FLOPs (Malladi et al., 2023; Liao et al., 2023). Some other methods re-
duce FLOPs by only fine-tuning certain types of model parameters such as bias (Zaken et al., 2021),
LayerNorm and output layer weights (Lu et al., 2021), but they impair the model’s expressivity and
are only applicable to simple non-generative learning tasks. Instead, researchers suggested keep-
ing the original model parameters frozen but injecting additional trainable parameters to the input
(Lester et al., 2021; Liu et al., 2022) or internal layers (Li and Liang, 2021; Hu et al., 2023; Huang
et al., 2023b). Recent LoRA-based methods (Hu et al., 2021; Zhang et al., 2023) further reduce
the overhead of computing weight updates for these injected parameters via low-rank approxima-
tion. These methods can minimize the model’s accuracy loss on generative tasks. However, they
still need to compute the activation gradients through the whole model and their FLOPs reduction is
hence limited, because the computations of weight updates are only 25%-33% of the total training
FLOPs.

1

Published as a conference paper at ICLR 2024

Besides computing weight updates, FLOPs in training are also produced in i) forward propagation
and ii) backward propagation of activation gradients. Since complete forward propagation is es-
sential to calculate the training loss, we envision that the key to further FLOPs reduction is to take
the backpropagation cost of activation gradients, which is >33% of the total training FLOPs, into
account and selectively involve only the most appropriate model structures in backpropagation. The
major challenge, however, is that selective training will possibly bring model accuracy loss. We
minimize the accuracy loss is by adapting such selection in backpropagation to a flexible objective
of FLOPs reduction, determined by the carbon footprint in energy supply. For example, when such
carbon footprint is low due to insertion of renewable energy, using a lower objective of FLOPs re-
duction can involve more model structures in training and retain the training accuracy. High carbon
footprint, instead, leads to a higher objective of FLOPs reduction for better embracing Green AI.

epoch 1 epoch 3

backprop trained frozenmodel params

epoch 1 epoch 2 epoch 3

Figure 1: GreenTrainer adaptively se-
lects the most appropriate portion of
LLM model for fine-tuning

In this paper, we present GreenTrainer, a new technique
that realizes adaptive backpropagation for efficient LLM
fine-tuning with the minimum accuracy loss. As shown
in Figure 1, given an objective of FLOPs reduction,
GreenTrainer adaptively selects the set of trainable neu-
ral network (NN) tensors in each epoch, based on eval-
uation of tensors’ importance in training. Such impor-
tance evaluation is difficult because NN tensors do not di-
rectly associate with input data variables or intermediate
features, and most attribution techniques (Sundararajan
et al., 2017; Hesse et al., 2021) that evaluate feature im-
portance are not applicable. Popular importance metrics,
including SNIP (Lee et al., 2018) and Fisher (Liu et al.,
2021), are mainly used in NN pruning to quantify the importance of model weights at their current
values, but they cannot quantify the importance of weight updates on a tensor to reducing the train-
ing loss. Classic metrics based on exact accuracy contribution (Lin et al., 2022), weight updates’
magnitudes (Li et al., 2016), or random perturbations (Breiman, 2001), on the other hand, are either
inaccurate or computationally expensive for LLMs. Instead, our approach adopts a similar rationale
with the existing attribution and pruning metrics, and quantifies the contribution of each tensor up-
date to the training loss via first-order Taylor expansion over the training loss. In this way, we ensure
that the selected tensors can make the maximum contribution to reducing the training loss.

Another challenge is how to precisely profile the training FLOPs. Due to interdependency between
tensors, their total FLOPs in training is not equal to the summation of their individual FLOPs. Such
interdependency is determined by the backpropagation characteristics of NN operators in each ten-
sor, but existing FLOPs models cannot link NN operators to tensors based on the computing flow of
backpropagation. Some existing work (Kwon et al., 2023) only incorporates the layer-wise forward
FLOPs into tensor selection, but ignores the computation dependency between layers in backpropa-
gation. To tackle this challenge, we rigorously model the cross-tensor dependencies in profiling their
backpropagation FLOPs. Based on this model, we develop a dynamic programming (DP) algorithm
to find the nearly optimal tensor selection from an exponential number of possibilities (e.g., 2515 for
515 tensors in OPT-2.7B model (Zhang et al., 2022)). Therefore, GreenTrainer can make sure that
the given objective of FLOPs reduction can be met in most cases.

We evaluated GreenTrainer with three open-sourced LLMs, namely OPT (Zhang et al., 2022),
BLOOMZ (Muennighoff et al., 2022) and FLAN-T5 (Chung et al., 2022), on text generation datasets
including SciTLDR (Cachola et al., 2020) and DialogSum (Chen et al., 2021). Our results show that
GreenTrainer can save up to 64% training FLOPs compared to full LLM fine-tuning, without any no-
ticeable accuracy loss. In some cases, GreenTrainer can even improve the model accuracy compared
to full fine-tuning, by removing model redundancy and overfitting. Compared to existing techniques
such as Prefix Tuning (Li and Liang, 2021) and LoRA (Hu et al., 2021), GreenTrainer improves the
model accuracy by 4% with the same amount of FLOPs reduction, and also provides users with the
flexibility to balance between the training accuracy and cost depending on the needs of Green AI.

2 BACKGROUND & MOTIVATION

2.1 TRANSFORMER ARCHITECTURES FOR TEXT GENERATION

Current LLMs are stacked by transformer blocks (Vaswani et al., 2017), each containing a Multi-
Head Attention (MHA) layer, LayerNorms (Ba et al., 2016), and a Feed-Forward Network (FFN).

2

Published as a conference paper at ICLR 2024

Given an input sequence X ∈ Rn×d with n tokens, the MHA projects tokens into a (Q,K, V) space
h times, using h suites of trainable projectors (W

(i)
Q ,W

(i)
K ,W

(i)
V)i=1,...,h. Each projection fi :

Rn×d → Rn× d
h is defined as Qi,Ki, Vi = XW

(i)
Q , XW

(i)
K , XW

(i)
V . The output (Qi,Ki, Vi) then

performs attention mechanisms to produce Oi by weighting Vi with the attention scores between Qi

and Ki. The MHA’s final output is obtained by concatenating each Oi, following a linear projection
g : Rn×d → Rn×d with a trainable projector Wo:

Oi = Softmax
(
QiK

⊤
i /

√
d/h

)
Vi, MHAout = Concat(O1, O2, ..., Oh)Wo. (1)

To improve the training efficiency, LLMs adopt the teacher-forcing method (Lamb et al., 2016) to
generate the entire sequence of output tokens in a single forward pass. Specifically, causal masks
are applied to MHA’s attention scores, so that each output token can be predicted from the label
tokens at previous positions. With this technique, when being fine-tuned, LLMs can be trained in a
standard way like any feed-forward models.

2.2 THE NEED FOR ADAPTIVE BACKPROPAGATION

When being fine-tuned for a downstream task, LLMs are usually over-parameterized, because only
part of the world knowledge that they learned from pre-training is useful for the target task. In these
cases, only involving some of the model’s substructures into fine-tuning could have little impact on
the model accuracy, but significantly reduces the amount of computations.

Trainable
substructure

OPT-2.7B FLAN-T5-3B

FLOPs (×1015) Acc. (%) FLOPs (×1015) Acc. (%)
All params 262.0 23.6 135.7 46.5
Last 2 layers 181.6 (31%↓) 20.8 46.1 (66%↓) 39.2
Decoder prefix 174.7 (33%↓) 13.4 55.3 (60%↓) 37.6
(WQ,WV) 174.7 (33%↓) 23.8 90.5 (33%↓) 44.7

Table 1: Fine-tuning different substructures of OPT-2.7B and FLAN-T5-3B LLMs on the Dialog-
Sum dataset (ROUGE-1 score on the test set is used as the accuracy metric)

Existing work has made attempts with fixed selections of some NN components, such as the last 2
layers, decoder prefixes (Li and Liang, 2021), and linear projectors (WQ,WV) (Hu et al., 2021), in
fine-tuning. However, due to the interdependencies of NN parameters (Jin et al., 2020), such fixed
selections will significantly impair the model accuracy. As shown in Table 1, solely fine-tuning
either the last 2 layers or decoder prefixes leads to up to 10% accuracy drop. The reason is that
nearby NN substructures with interdependencies on the fixed selections are excluded from fine-
tuning, and hence become inconsistent with those selected substructures. Increasing the density of
selection, such as including all the linear projectors (WQ,WV), could mitigate the model accuracy
loss, but can save at most 33% FLOPs due to backpropagating activation gradients through trans-
former blocks. Naive methods of dynamic selections, such as expanding the trainable portion from
the last layer, have the similar limitation.

The deficiency of these existing methods motivates us to enforce more flexible and adaptive selection
of LLM substructures in backpropagation. In GreenTrainer, we develop a tensor importance metric
that incorporates parameter dependencies to evaluate how fine-tuning each tensor contributes to the
trained model’s accuracy at runtime. Knowledge about such tensor importance, then, allows us to
achieve the desired FLOPs reduction while maximizing the model accuracy.

La
ye

r 1

La
ye

r 2

La
ye

r 3

La
ye

r 4 PredictionInput data

Label

forward
backward

dy4dy3dy2

dw1 dw2 dw3 dw4

y2y1 y3 y4

Figure 2: Backpropagation of a 4-layer dense NN

2.3 FLOPS MODEL OF BACKPROPAGATION

The design of GreenTrainer relies on proper calculation of the selected model substructures’ back-
propagation FLOPs, which can be decomposed into two parts using the chain rule. For example, as

3

Published as a conference paper at ICLR 2024

shown in Figure 2, when training a 4-layer dense NN without bias, each layer computes i) dyi as the
loss L’s gradient w.r.t the activation yi, and ii) dwi as the loss gradient w.r.t weight Wi, such that

dyi =
∂L

∂yi
=

∂L

∂yi+1
W⊤

i = dyi+1W
⊤
i , dwi =

∂L

∂Wi
= y⊤i

∂L

∂yi+1
= y⊤i dyi+1, (2)

and the corresponding amounts of FLOPs for computing dyi and dwi are tdyi
and tdwi

, respectively.

(dyi,dwi) can be computed from (dyi+1,dwi+1). In particular, even if a layer is not selected in
fine-tuning, it still needs to compute and pass error gradients (dyi) to the downstream layers. Hence,
the amount of computations in backpropagation does not only depend on the selected layers, but also
depends on some unselected layers. For example, if only Layer 2 is trainable, the total FLOPs for
backpropagation will be decided by the cost of computing dw2, dy3 and dy4. Due to the generality
of the chain rule, such rationale of FLOPs calculation is also applicable to other types of NN layers.

Based on this rationale, we can construct FLOPs models for LLM substructures. The layer-level
model is coarse-grained and can lead to inaccurate tensor selection. Some important parameters
may be unselected due to other unimportant ones in the same layer. In GreenTrainer, we use tensor-
level granularity for such selection, which can be well-supported by tensorized NN libraries (e.g.,
TensorFlow (Abadi, 2016) and PyTorch (Paszke et al., 2019)). Weight-level selection, although more
fine-grained, is too computationally expensive due to the requirement of fine-grained indexing.

3 METHOD

To reduce the FLOPs of LLM fine-tuning, an intuitive problem formulation is to minimize the
FLOPs while achieving the desired model accuracy. However, it is hard to determine a proper accu-
racy objective in advance, because some accuracy objectives may require very intensive training and
the accuracy that we can achieve with our FLOPs budget cannot be pre-estimated before training.
Instead, we maximize the training loss reduction while achieving the desired FLOPs reduction:

max∆loss(m) s.t. Tselective(m) ≤ ρTfull, (3)

where m is a binary vector to be solved for tensor selection. m parameterizes both the loss reduction
(∆loss) and per-batch FLOPs of training (Tselective), and Tselective is constrained within a user-
specified ratio (ρ) of the FLOPs of fine-tuning the whole model (Tfull). For example, ρ = 0.5
means that the FLOPs of fine-tuning should be at most 50% of that in fine-tuning the whole model.
In practice, the value of ρ can either be preset or adjusted at runtime in any stage of training.

To identify each tensor’s contribution in fine-tuning, we model ∆loss(m) as the aggregated impor-
tance of selected tensors, and calculate the FLOPs incurred by selected tensors using the FLOPs
model of backpropagation in Section 2.3. With this model, Eq. (3) can be rewritten as:

max ∆loss(m) s.t. Tfp +m · tdw + σ(m) · tdy ≤ ρTfull, (4)

where Tfp indicates the per-batch FLOPs of the forward pass, and each pair of variables in (tdy, tdw)
represents the FLOPs of computing (dy,dw) for the corresponding tensor, respectively. Given
a binary selector m, σ(m) incorporates all the tensors along the backward pass that contribute
to the FLOPs of fine-tuning, by involving in passing the error gradients (dy). For example, if
m = [0, 0, 1, 0, 1, 0, 0], all the tensors that are in deeper layers than the selected tensors are involved
in passing the error gradients, and hence σ(m) = [0, 0, 1, 1, 1, 1, 1].

To ground this formulation and solve m, GreenTrainer consists of three key components: (i) Tensor
FLOPs Profiling, which calculates the FLOPs of all NN tensors (i.e., tdy and tdw) prior to training;
(ii) Tensor Importance Evaluation, which quantifies the contribution of updating each NN tensor
to the training quality at runtime; (iii) Tensor Selector, which grounds the tensor selection problem
using tensors’ FLOPs and importances, and provides solutions via dynamic programming at runtime.

3.1 TENSOR FLOPS PROFILING

Standard NN profilers, such as Torch Profiler (Paszke et al., 2019), can measure the execution FLOPs
of individual NN operators such as matrix multiplication and convolution. However, it cannot be
directly linked to NN tensors that participate in these operations. When a set of tensors is trained, the
training FLOPs of backpropagation are not equal to the summation of individual tensors’ FLOPs.

To address this limitation, our approach consists of two steps. First, we convert the layer-based
NN structure of LLMs into a tensor-level computing graph, which retains the execution order of all

4

Published as a conference paper at ICLR 2024

Input Embed.
Tensor Projector Q Projector K Projector VBias Bias Output Embed.

Tensor

0, 0

Tensors in MHA layer in 1st block

Tensor-level
Graph:

Tensor FLOPs
𝑡𝑡𝑑𝑑𝑑𝑑, 𝑡𝑡𝑑𝑑𝑑𝑑 : 𝑇𝑇,𝑇𝑇 0,𝑇𝑇𝑇 𝑇𝑇,𝑇𝑇 0,𝑇𝑇𝑇 𝑇𝑇 + 𝑇𝑇att,𝑇𝑇 ∑𝑡𝑡𝑑𝑑𝑑𝑑,𝑇𝑇𝑇𝑇

variable
assign.

Related
Backprop Ops:

matmul_1
matmul_2

matmul_3
matmul_4add_1 add_2 matmul_5

matmul_6
matmul_{N-1}
matmul_{N}

Match & Agg.
FLOPs

❹

❶

❷

❸

Backprop direction

Figure 3: An sample workflow of tensor FLOPs profiling

tensors’ involvements in training. Then, we extract the related backpropagation operators of each
tensor, and derive each tensor i’s FLOPs in backpropagation (tdyi

and tdwi
) by matching and aggre-

gating the FLOPs of these NN operators. For example in Figure 3, the training of each linear projec-
tor (Q, K and V) in an MHA layer should be executed after its corresponding bias tensor’s training.
Training each linear projector, then, will involve two matrix multiplication operators, whose FLOPs
in backpropagation will be aggregated. We categorize such rules of matching and aggregation by
the type of LLM layers where tensors are located, as described below. A specific example about
such tensor FLOPs profiling on the OPT-2.7B model is provided in Appendix A.3.

Input & output embedding layers. The input embedding layer contains a trainable embedding
tensor that maps each raw token into a dense representation. Given the activation gradient dyi+1

from upstream layers, deriving the update of this tensor only involves variable assignment, and we
can safely consider tdwi

≈ 0 for any tensor i. If a raw token is mapped to the k-th vector in the
embedding tensor during the forward pass, then during backpropagation, dyi+1 from the upstream
will be only assigned to k-th row of dwi, such that dwi[s] = dyi+1 if s = k, otherwise dwi[s] = 0.
Since the input layer doesn’t propagate activation gradients, we can also conclude that its tdy is 0.

Reversely, the output embedding layer projects each token back to the probability space. Intuitively,
its (tdy, tdw) can be derived in the same way as we did for the dense layer in Eq. (2). However, in
most LLMs, the output embedding layer shares the same trainable tensor with the input embedding
layer. This implies that if the output embedding is trainable, then the input embedding will also be
involved in training. Hence, all the tdy from LLM’s output, up to the input embedding layer, should
be accumulated to tdy of the output embedding tensor, while its tdw remains unchanged.

Multi-Head Attention (MHA) layer. An MHA layer contains multiple linear projectors as trainable
tensors, and their FLOPs in training can be derived in the same way as we did with the dense layer
in Eq. (2). Some LLMs (e.g., OPT) also include bias as another type of trainable tensor after
such projection. In this case, based on the chain rule, the backpropagation of bias is computed as
dyi = dyi+1 and dwi = 1⊤dyi+1, indicating that tdy for bias is 0 since dyi is identically passed
from dyi+1. tdw of bias can be derived as the FLOPs of adding up elements in dyi+1 along every
feature channel. The attention mechanism in Eq. (1) is backpropagated prior to the projectors. If
any of these projectors are involved in training, the attention’s backpropagation FLOPs must be also
calculated, and we accumulate such FLOPs to the corresponding projector tensor (WV)’s tdy .

LayerNorm. Given a token, LayerNorm first normalizes its features and uses two trainable tensors
γ and β to element-wise multiply with and add to the token, respectively. The operations of multi-
plication and addition are similar to those in the dense layer, and so its FLOPs can be calculated in
the similar way. However, the backpropagation FLOPs of normalization operators should be accu-
mulated to the previous tensor’s tdy . If any tensors in the previous layers are trained, the FLOPs of
propagating the normalization operators should be also included in the FLOPs of the current layer.

Feed-Forward Network (FFN). In the FFN, there is a nonlinear activation function between two
dense layers. Following the same method of calculating LayerNorm’s FLOPs, we accumulate the
FLOPs of propagating through this activation function to the bias tensor’s tdy in the first dense layer.

3.2 TENSOR IMPORTANCE EVALUATION

A tensor’s importance in training can be estimated as the summation of the importances of all its
weights. In training, since the model weights are iteratively updated to minimize the training loss,
an intuitive approach to evaluating the importance of a weight update in a given iteration is to undo
this update and check how the training loss increases back as ∆L = L(w) − L(w + ∆w), so
that a higher value of ∆L means this update is more important and the weight should be selected.
However, computing ∆L for every weight is expensive. Instead, we estimate the importance of
all weights in one shot by smoothing the undo operation described above and computing the loss
gradients with respect to the updates that correspond to all the weights. Letting the multiplicative

5

Published as a conference paper at ICLR 2024

c ∈ [0, 1]M denote the undo operation for all the M weights, we can compute the loss gradient as

−∂L(w + c⊙∆w)

∂c
= − ∆w ⊙ ∂L(u)

∂u

∣∣∣∣
u=w+c⊙∆w

, (5)

where ⊙ denotes element-wise multiplication. When c = 0, Eq. (5) becomes an importance vector
over all weights. Since the loss gradient is parameterized by all weights, the weight importances
calculated in this way implicitly incorporate the impact of weight dependencies. A tensor k’s im-
portance is then calculated as

Ik = −
∑

i
∆w

(k)
i ∂L/∂w

(k)
i . (6)

In some cases, when the training process encounters divergence, the values of gradients and calcu-
lated tensor importances in Eq. (6) could be very large, eventually leading to overflow when using
these importance values for deciding tensor selection in Eq. (4). To address this issue, we could
further scale all the tensor importance by the maximum amplitude to improve numerical stability.

1 𝑇𝑇𝑏𝑏𝑏𝑏𝑡𝑡 ……
1…

𝑘𝑘

𝑁𝑁

… P[k, t]
Subproblem

Table (𝑁𝑁 × 𝑇𝑇𝑏𝑏𝑏𝑏)

backprop depth ≤ k

backprop FLOPs ≤ t

k 1k-1

1

…
…1

…
…1

…

(a) Subproblem definition

k-1 k-2 k-3 1k

P[k-1, t]

P[k, t] = ?

not
selected

k-1 k-2 k-3 1k

P[k-1, t]

P[k, t] = ?

selected

not selected selected

Case 1:

Case 2:

(b) Finding recurrence relations

Figure 4: Solving the tensor selection problem using DP

3.3 TENSOR SELECTION

Since Eq. (4) is a nonlinear integer programming problem and hence NP-hard, in GreenTrainer
we seek for an approximate solution using dynamic programming (DP). We decompose the whole
problem into subproblems constrained by different depths of backpropagation. These subproblems
can be sequentially solved from the one with the smallest depth, by using their recurrence relations.

Subproblem definition. As shown in Figure 4(a), we define each subproblem P [k, t] as to maximize
the cumulative importance of selected tensors when 1) selection is among the top k tensors1 and 2)
backpropagation FLOPs is at most t. DP starts by solving the smallest subproblem P [k = 1, t =
1] and gradually solves larger subproblems based on the results of smaller subproblems and the
recurrence relation of these subproblems, until the target problem P [N,Tfull] is solved.

Recurrence relations of subproblems. The recurrence relation between subproblem P [k, t] and
P [k − 1, t] depends on whether we further select the top tensor k from the solution of P [k − 1, t],
as shown in Figure 4(b). Case 1: If k is not selected, P [k, t] will fall back to P [k − 1, t], since the
importance of selected tensors will not be further increased. Case 2: If k is selected, then its FLOPs
will be included into the solution of P [k, t], no matter which other tensors are selected. The FLOPs
involved with tensor k include 1) the FLOPs to update tensor k and 2) the FLOPs to pass activation
gradients from the closest selected tensor kc, such as tensor k− 3 as shown in Figure 4(b), to tensor
k. This implies that P [k, t] falls back to a previously solved subproblem P [k − kc, t−∆t], where

∆t = tdwk
+

∑k−1

j=kc

tdyj
. (7)

Since kc is unknown in advance, we backtrace the previously solved subproblems and explore all
the possibilities of kc by reducing the depth of backpropagation from k, and the optimal solution to
P [k, t] is the one with the highest cumulative importance of selected tensors. Based on this recur-
rence relation, we can solve all subproblems by traversing the subproblem space. The time com-
plexity of solving each subproblem is O(N), and the overall time complexity of DP is O(N2Tfull).

4 EXPERIMENTS

In our evaluation, we include decoder-only LLMs including OPT (Zhang et al., 2022) and BLOOMZ
(Muennighoff et al., 2022), and an encoder-decoder LLM, namely FLAN-T5 (Chung et al., 2022),

1We consider the tensor that is closest to the NN output as the topmost.

6

Published as a conference paper at ICLR 2024

with LLM sizes ranging from 350M to 6.7B. Our experiments are mainly conducted using the fol-
lowing two datasets of abstractive summarization:

• SciTLDR (Cachola et al., 2020) is a dataset of 5.4K text summaries on 3.2K papers. It
contains both author-written and expert-derived TLDRs, where the latter is collected by an
annotation protocol that produces high-quality summaries with low annotation burden.

• DialogSum (Chen et al., 2021) is a dialogue summarization dataset of 13,460 dialogues
with manually labeled summaries and topics. It has been demonstrated more challenging
than other summarization datasets, such as SAMSum (Gliwa et al., 2019) and CNN/Daily
(Nallapati et al., 2016) at a similar scale.

We also perform generative QA tasks on WebQuestion (Berant et al., 2013) and PIQA (Bisk et al.,
2020) datasets in Appendix A.4. However, we do not consider non-generative tasks such as senti-
mental classification, entailment classification and extractive QA, because these tasks are too easy
for LLMs and testing them with LLMs will result in exaggerated performance gain over the baseline.

For OPT and BLOOMZ, we follow GPT2-like prompt structures (Radford et al., 2019), “[source
seq.] TL;DR:”, for summarization tasks to preprocess input data. For FLAN-T5, we adopt the
prompt structure “summarize: [source seq.]” used in the original T5 pre-training. We truncate the
source sequences so that the length of every preprocessed input sequence is within 512 tokens. On
the test data, we use a beam search size of 4, and set the maximum number of generated tokens to 64
for SciTLDR and 128 for DialogSum. We compare GreenTrainer (GT) with the following baselines:

• Full Fine-Tuning (Full FT) fine-tunes all the LLM parameters and should intuitively
achieve the best accuracy of the trained model.

• Fine-Tuning Top2 (FT-Top2) only fine-tunes the last two layers, typically the embedding
layer and a LayerNorm. The input and output embedding layers are tied for OPT and
BLOOMZ, but are not tied for FLAN-T5. This naive baseline only fine-tunes the smallest
portion of LLM parameters and is used to identify whether the dataset is trivial to the LLM.

• Prefix Tuning (Prefix-T) (Li and Liang, 2021) inserts trainable prefixes into each trans-
former block’s input sequence while freezing the model parameters. For encoder-decoder
LLMs, the trainable prefixes are only inserted into the decoder blocks.

• LoRA (Hu et al., 2021) is currently the most popular method for efficient LLM fine-tuning.
It uses low-rank matrix decomposition to reduce the training cost. We apply LoRA to both
query and value projectors, as suggested in (Hu et al., 2021).

In all experiments, we use a batch size of 4 and fine-tune the model for 5 epochs. We use the
AdamW optimizer (Loshchilov and Hutter, 2017) at a learning rate of 2×10−5 with linear schedule
and weight decay of 10−2. We use the ROUGE scores (%R1/R2/RL) (Lin, 2004) as the accuracy
metric, and measure both Peta-FLOPs (PFLOPs) and wall-clock time as the training cost in each run.
We measure the end-to-end cost of training, including the computing costs in forward and backward
passes, and the computing costs of tensor importance evaluation and tensor selection using DP.

4.1 TRAINING COST & ACCURACY

We first evaluate the training cost and accuracy of GreenTrainer (GT). As shown in Table 2, for
the OPT-2.7B model, GT-0.5 can achieve the required 50% of FLOPs reduction with at most 2%
accuracy loss, and GT-0.7 can even achieve 0.2%-3% higher ROUGE scores than Full FT. We hy-
pothesize that this is because GT only fine-tunes the most important tensors and hence mitigates
the possible overfitting in Full FT. Insufficient trainable parameters can also lead to underfitting, as
FT-Top2 has significantly lower ROUGE scores. Similarly, compared to LoRA and Prefix Tuning,
GT-0.7 achieves at least 2% higher accuracy with the same amount of training FLOPs.

Similarly, for BLOOMZ-3B, GT-0.5 can save 50% training FLOPs and wall-clock time with < 2%
accuracy loss. Compared to Full FT, GT-0.7 achieves the same ROUGE scores on SciTLDR, and
4%-10% higher on DialogSum. With the same amount of training FLOPs, GT-0.7 has 0.4%-1.4%
higher ROUGE scores than LoRA. Note that both datasets are non-trivial for the BLOOMZ model,
since the naive baseline (FT-Top2) still exhibits high accuracy loss.

For the FLAN-T5-3B model, FT-Top2 achieves similar fine-tuning qualities to Full FT with lower
FLOPs, indicating that the SciTLDR dataset is trivial for FLAN-T5. In this case, GT-0.34 can
achieve the same FLOPs and ROUGE scores by selecting a small portion of tensors. On the other
hand, FT-Top2 loses accuracy significantly on DialogSum, but GT-0.4 reduces 54% of training
FLOPs and 43% of wall-clock time without noticeable accuracy loss. GT-0.4 also outperforms
LoRA by 1% on ROUGE scores and reduces 11% more FLOPs. Compared to Prefix tuning, GT-
0.34 achieves 2%-5% higher ROUGE scores, while reducing the same amount of training FLOPs.

7

Published as a conference paper at ICLR 2024

Model
& Method

SciTLDR DialogSum

PFLOPs Time (h) R1/R2/RL PFLOPs Time (h) R1/R2/RL

OPT-2.7B

Full FT 41.8 0.92 32.9/14.9/27.1 262.0 5.5 23.6/9.5/18.8
FT-Top2 29.0 (31%↓) 0.61 (34%↓) 9.1/4.0/7.6 181.6 (31%↓) 3.8 (31%↓) 20.8/7.9/17.5
Prefix-T 27.9 (33%↓) 0.58 (37%↓) 7.6/0.4/6.1 174.7 (33%↓) 3.7 (33%↓) 13.4/3.3/10.9
LoRA 27.9 (33%↓) 0.59 (36%↓) 28.2/12.1/21.0 174.7 (33%↓) 3.6 (35%↓) 23.8/9.5/18.8
GT-0.5 20.8 (50%↓) 0.46 (50%↓) 30.5/13.1/25.2 130.1 (50%↓) 2.7 (51%↓) 21.4/8.2/17.6
GT-0.7 29.2 (30%↓) 0.68 (26%↓) 33.1/15.2/27.6 182.7 (30%↓) 4.0 (27%↓) 26.8/11.0/21.6

BLOOMZ-3B

Full FT 47.2 1.0 28.3/12.1/22.5 294.8 6.5 26.1/10.6/21.0
FT-Top2 36.5 (23%↓) 0.75 (25%↓) 23.7/8.8/18.8 227.9 (23%↓) 4.6 (29%↓) 22.1/8.5/17.8
Prefix-T 31.5 (33%↓) 0.68 (34%↓) 6.5/2.2/5.5 196.5 (33%↓) 4.2 (35%↓) 29.6/9.4/24.9
LoRA 31.5 (33%↓) 0.69 (33%↓) 27.4/11.7/21.8 196.5 (33%↓) 4.3 (34%↓) 35.4/14.3/28.6
GT-0.5 23.4 (51%↓) 0.51 (50%↓) 26.7/10.7/21.2 146.4 (50%↓) 3.1 (52%↓) 24.9/9.5/20.0
GT-0.7 32.3 (32%↓) 0.74 (28%↓) 28.0/12.2/22.4 204.7 (31%↓) 4.3 (34%↓) 36.8/14.7/29.4

FLAN-T5-3B

Full FT 21.7 0.64 37.1/18.5/31.7 135.7 4.0 46.5/20.8/38.5
FT-Top2 7.3 (66%↓) 0.21 (67%↓) 36.5/18.4/31.5 46.1 (66%↓) 1.4 (65%↓) 39.2/16.7/32.9
Prefix-T 8.0 (63%↓) 0.23 (64%↓) 36.0/18.2/31.0 55.3 (60%↓) 1.7 (57%↓) 37.6/16.4/32.1
LoRA 14.4 (33%↓) 0.41 (36%↓) 36.6/18.5/31.5 90.5 (33%↓) 2.5 (38%↓) 44.7/19.8/37.1
GT-0.34 7.5 (65%↓) 0.23 (64%↓) 36.4/18.4/31.7 53.5 (61%↓) 1.4 (65%↓) 42.7/18.3/35.1
GT-0.4 10.0 (54%↓) 0.38 (41%↓) 36.7/18.5/31.5 62.5 (54%↓) 2.3 (43%↓) 46.0/20.7/38.1
GT-0.5 12.4 (43%↓) 0.44 (31%↓) 36.3/17.7/30.9 77.6 (43%↓) 2.6 (35%↓) 46.2/20.7/38.1

Table 2: Comparison of the training cost & accuracy in LLM fine-tuning. GreenTrainer with an
objective ρ of FLOPs reduction is denoted as GT-ρ.

4.2 THE IMPACT OF FLOPS REDUCTION OBJECTIVE

To better understand how GreenTrainer performs with different objectives of FLOPs reduction, we
vary the value of ρ between 0.36 and 0.8, and compare GreenTrainer with LoRA on the OPT-2.7B
model. As shown in Table 3, on the SciTLDR dataset, when the requirement of FLOPs reduction
is high and corresponds to a value of ρ ≤0.4, GreenTrainer outperforms LoRA by achieving 2%
higher ROUGE scores and saving 25% more FLOPs and wall-clock time. On the other hand, when
the value of ρ increases to 0.6, GreenTrainer outperforms the Full FT on ROUGE scores by 0.5%
and outperforms LoRA by 5.2%, but saves 40% of training FLOPs and 39% of wall-clock time
compared to Full FT. Similar results are also observed on the DialogSum dataset. In summary, with
different objectives of FLOPs reduction, GreenTrainer can always provide better tradeoffs between
the training accuracy and cost, compared to the SOTA baselines.

Method SciTLDR DialogSum

PFLOPs Time (h) R1/R2/RL PFLOPs Time (h) R1/R2/RL
Full FT 41.8 0.92 32.9/14.9/27.1 262.0 5.5 23.6/9.5/18.8
LoRA 27.9 (33%↓) 0.59 (36%↓) 28.2/12.1/21.0 174.7 (33%↓) 3.6 (35%↓) 23.8/9.5/18.8
GT-0.36 14.9 (64%↓) 0.32 (65%↓) 4.1/1.7/3.6 92.9 (65%↓) 1.9 (65%↓) 15.7/5.0/13.8
GT-0.4 16.6 (60%↓) 0.36 (61%↓) 28.6/11.6/23.5 103.4 (61%↓) 2.2 (60%↓) 17.9/6.3/15.4
GT-0.5 20.8 (50%↓) 0.46 (50%↓) 30.5/13.1/25.2 130.1 (50%↓) 2.7 (51%↓) 21.4/8.2/17.6
GT-0.6 25.0 (40%↓) 0.56 (39%↓) 33.4/15.3/27.8 156.6 (40%↓) 3.3 (40%↓) 24.0/9.7/19.2
GT-0.7 29.2 (30%↓) 0.68 (26%↓) 33.1/15.2/27.6 182.7 (30%↓) 4.0 (27%↓) 26.8/11.0/21.6
GT-0.8 33.4 (20%↓) 0.77 (16%↓) 33.1/15.5/27.6 209.6 (20%↓) 4.4 (20%↓) 23.9/9.9/19.1

Table 3: Impact of different objectives of FLOPs reduction on the OPT-2.7B model

These results also demonstrate that GreenTrainer provides great flexibility in LLM fine-tuning be-
tween the training accuracy and cost, by adjusting the value of ρ. The user can opt to set a low value
of ρ (≤0.4) to maximize the FLOPs reduction (>60%) with moderate model accuracy loss (3%-4%
on the two datasets we use). Alternatively, they can use a high value of ρ (≥0.6) to have the same
level of FLOPs reduction as that of LoRA, but ensure the minimum model accuracy loss or even
minor model accuracy improvement. We believe that such flexibility is practically important when
fine-tuning LLMs for downstream tasks with different green AI requirements and constraints.

4.3 EFFICACY OF TENSOR IMPORTANCE METRICS

The fine-tuning quality of GreenTrainer builds on proper evaluation of tensor importance. We com-
pare our metric (∆w ∂L

∂w) to the magnitude-based metric (∆w) (Lee et al., 2020) and the gradients-
only metric (∂L∂w) (Aji and Heafield, 2017), using the OPT-2.7B model with ρ =0.7. As shown

8

Published as a conference paper at ICLR 2024

Method SciTLDR DialogSum

PFLOPs Time (h) R1/R2/RL PFLOPs Time (h) R1/R2/RL
Full FT 41.8 0.92 32.9/14.9/27.1 262.0 5.5 23.6/9.5/18.8
GT-0.7 (∆w) 29.4 (30%↓) 0.68 (26%↓) 32.7/15.2/27.2 183.8 (30%↓) 4.0 (27%↓) 24.9/10.2/19.7
GT-0.7 (∂L

∂w
) 29.4 (30%↓) 0.67 (27%↓) 32.8/15.1/27.2 184.0 (30%↓) 4.0 (27%↓) 25.0/10.2/20.0

GT-0.7 (∆w ∂L
∂w

) 29.2 (30%↓) 0.68 (26%↓) 33.1/15.2/27.6 182.7 (30%↓) 4.0 (27%↓) 26.8/11.0/21.6

Table 4: Efficacy of Tensor Importance Metrics (OPT-2.7B)

in Table 4, with the same objective of FLOPs reduction, using our metric (∆w ∂L
∂w) for tensor im-

portance evaluation achieves the highest model accuracy and outperforms Full FT by 1%-3% on
ROUGE scores. This is because magnitude-based metrics ignore the dependencies of weight up-
dates. Gradient-only metrics only contain the direction information about tensor importance but
cannot reflect the intensity of importance. Inaccurate importance measurements will in turn lead to
inappropriate selections of trainable tensors.

4.4 IMPACT OF LLM SIZE

A type of LLM may contain several variants with different sizes. To study GreenTrainer’s perfor-
mance with different LLM sizes, we performed fine-tuning using the OPT models with sizes ranging
from 350M to 6.7B. As shown in Table 5, even on small models (OPT-350M), GT-0.5 can save 17%-
21% more training FLOPs than LoRA does, while achieving 2%-4% higher accuracy (on SciTDR)
or the same accuracy (on DialogSum). When the model size increases to 2.7B, GT-0.5 outperforms
LoRA and GT-0.7 outperforms Full FT on the SciTLDR dataset. On DialogSum, GT-0.7 performs
similarly compared to LoRA. For the OPT-6.7B model2, GT-0.4 can save 27% more training FLOPs
than LoRA does on SciTLDR, while achieving the same model accuracy, and similar advantages
can also be observed when comparing GT-0.5 and GT-0.7 with LoRA. Generally speaking, Green-
Trainer’s performance advantage widely applies to LLMs with different sizes.

Params
& Method

SciTLDR DialogSum

PFLOPs Time (h) R1/R2/RL PFLOPs Time (h) R1/R2/RL

OPT-350M

Full FT 5.4 0.15 30.9/13.9/25.7 33.8 0.92 23.2/9.0/18.5
LoRA 3.6 (33%↓) 0.10 (33%↓) 25.9/10.8/20.3 22.5 (33%↓) 0.65 (29%↓) 21.5/7.7/17.3
GT-0.4 2.1 (61%↓) 0.06 (60%↓) 27.7/12.2/23.4 13.3 (61%↓) 0.36 (61%↓) 17.3/5.8/14.6
GT-0.5 2.7 (50%↓) 0.08 (47%↓) 29.9/13.2/24.9 16.7 (51%↓) 0.45 (51%↓) 21.3/7.8/17.3
GT-0.7 3.8 (30%↓) 0.12 (20%↓) 30.6/13.5/25.0 23.6 (30%↓) 0.66 (28%↓) 24.2/9.3/19.3

OPT-1.3B

Full FT 20.8 0.46 32.1/14.3/26.4 130.8 2.9 25.4/10.3/20.2
LoRA 13.9 (33%↓) 0.31 (33%↓) 28.1/11.9/22.0 87.2 (33%↓) 1.9 (34%↓) 24.6/9.9/19.4
GT-0.4 8.2 (61%↓) 0.18 (61%↓) 28.9/11.9/23.8 51.4 (61%↓) 1.1 (62%↓) 16.9/5.7/14.6
GT-0.5 10.3 (50%↓) 0.23 (50%↓) 30.0/12.7/24.5 64.2 (51%↓) 1.4 (51%↓) 20.1/7.4/16.7
GT-0.7 14.5 (30%↓) 0.34 (26%↓) 31.2/14.2/25.8 90.8 (30%↓) 2.0 (31%↓) 24.4/9.7/19.4

OPT-2.7B

Full FT 41.8 0.92 32.9/14.9/27.1 262.0 5.5 23.6/9.5/18.8
LoRA 27.9 (33%↓) 0.59 (36%↓) 28.2/12.1/21.0 174.7 (33%↓) 3.6 (35%↓) 23.8/9.5/18.8
GT-0.4 16.6 (60%↓) 0.36 (61%↓) 28.6/11.6/23.5 103.4 (61%↓) 2.2 (60%↓) 17.9/6.3/15.4
GT-0.5 20.8 (50%↓) 0.46 (50%↓) 30.5/13.1/25.2 130.1 (50%↓) 2.7 (51%↓) 21.4/8.2/17.6
GT-0.7 29.2(30%↓) 0.68 (26%↓) 33.1/15.2/27.6 182.7 (30%↓) 4.0 (27%↓) 26.8/11.0/21.6

OPT-6.7B

Full FT 103.9 5.44 32.9/14.9/27.5 649.9 - -
LoRA 69.3 (33%↓) 1.3 28.4/12.3/22.7 433.3 (33%↓) 8.1 24.9/10.2/19.4
GT-0.4 41.2 (60%↓) 0.9 28.9/11.8/23.4 257.9 (60%↓) 5.2 19.7/7.0/16.3
GT-0.5 50.8 (51%↓) 1.1 30.1/13.0/24.8 331.4 (49%↓) 6.7 21.8/8.5/17.3
GT-0.7 74.8 (28%↓) 1.4 33.1/15.3/27.7 - - -

Table 5: Impact of LLM’s model size

5 CONCLUSION
In this paper, we present GreenTrainer, a new technique for LLM fine-tuning that allows efficient
selection of trainable parameters via adaptive backpropagation, to ensure high training quality while
minimizing the computation cost. GreenTrainer saves up to 64% training FLOPs compared to full
fine-tuning without noticeable accuracy loss. Compared to the existing technique such as Prefix
Tuning and LoRA, GreenTrainer improves the accuracy by up to 4% with the same FLOPs reduction.

2For the OPT-6.7B, Full FT and GT-0.7 with DialogSum have the out-of-memory issue on GPUs we use.

9

Published as a conference paper at ICLR 2024

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers and area chair for their comments and feedback.
This work was supported in part by National Science Foundation (NSF) under grant number IIS-
2205360, CCF-2217003 and CCF-2215042.

REFERENCES

2023 AI index report. https://aiindex.stanford.edu/report/, 2023.

M. Abadi. Tensorflow: learning functions at scale. In Proceedings of the 21st ACM SIGPLAN
International Conference on Functional Programming, pages 1–1, 2016.

A. F. Aji and K. Heafield. Sparse communication for distributed gradient descent. arXiv preprint
arXiv:1704.05021, 2017.

J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer normalization. arXiv preprint arXiv:1607.06450,
2016.

J. Berant, A. Chou, R. Frostig, and P. Liang. Semantic parsing on freebase from question-answer
pairs. In Proceedings of the 2013 conference on empirical methods in natural language process-
ing, pages 1533–1544, 2013.

Y. Bisk, R. Zellers, J. Gao, Y. Choi, et al. Piqa: Reasoning about physical commonsense in natural
language. In Proceedings of the AAAI conference on artificial intelligence, volume 34, pages
7432–7439, 2020.

L. Breiman. Random forests. Machine learning, 45:5–32, 2001.

T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,
G. Sastry, A. Askell, et al. Language models are few-shot learners. Advances in neural informa-
tion processing systems, 33:1877–1901, 2020.

I. Cachola, K. Lo, A. Cohan, and D. S. Weld. Tldr: Extreme summarization of scientific documents.
arXiv preprint arXiv:2004.15011, 2020.

A. Candel, J. McKinney, P. Singer, P. Pfeiffer, M. Jeblick, P. Prabhu, J. Gambera, M. Landry,
S. Bansal, R. Chesler, et al. h2ogpt: Democratizing large language models. arXiv preprint
arXiv:2306.08161, 2023.

Y. Chen, Y. Liu, L. Chen, and Y. Zhang. Dialogsum: A real-life scenario dialogue summarization
dataset. arXiv preprint arXiv:2105.06762, 2021.

H. W. Chung, L. Hou, S. Longpre, B. Zoph, Y. Tay, W. Fedus, E. Li, X. Wang, M. De-
hghani, S. Brahma, et al. Scaling instruction-finetuned language models. arXiv preprint
arXiv:2210.11416, 2022.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional trans-
formers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

B. Gliwa, I. Mochol, M. Biesek, and A. Wawer. Samsum corpus: A human-annotated dialogue
dataset for abstractive summarization. arXiv preprint arXiv:1911.12237, 2019.

R. Hesse, S. Schaub-Meyer, and S. Roth. Fast axiomatic attribution for neural networks. Advances
in Neural Information Processing Systems, 34:19513–19524, 2021.

E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen. Lora: Low-rank
adaptation of large language models. arXiv preprint arXiv:2106.09685, 2021.

Z. Hu, Y. Lan, L. Wang, W. Xu, E.-P. Lim, R. K.-W. Lee, L. Bing, and S. Poria. Llm-adapters:
An adapter family for parameter-efficient fine-tuning of large language models. arXiv preprint
arXiv:2304.01933, 2023.

10

https://aiindex.stanford.edu/report/

Published as a conference paper at ICLR 2024

K. Huang, B. Yang, and W. Gao. Elastictrainer: Speeding up on-device training with runtime elastic
tensor selection. In Proceedings of the 21st Annual International Conference on Mobile Systems,
Applications and Services, pages 56–69, 2023a.

K. Huang, B. Yang, and W. Gao. Modality plug-and-play: Elastic modality adaptation in multimodal
llms for embodied ai. arXiv preprint arXiv:2312.07886, 2023b.

G. Jin, X. Yi, L. Zhang, L. Zhang, S. Schewe, and X. Huang. How does weight correlation affect
generalisation ability of deep neural networks? Advances in Neural Information Processing
Systems, 33:21346–21356, 2020.

Y. D. Kwon, R. Li, S. I. Venieris, J. Chauhan, N. D. Lane, and C. Mascolo. Tinytrain: Deep neural
network training at the extreme edge. arXiv preprint arXiv:2307.09988, 2023.

A. M. Lamb, A. G. ALIAS PARTH GOYAL, Y. Zhang, S. Zhang, A. C. Courville, and Y. Ben-
gio. Professor forcing: A new algorithm for training recurrent networks. Advances in neural
information processing systems, 29, 2016.

J. Lee, S. Park, S. Mo, S. Ahn, and J. Shin. Layer-adaptive sparsity for the magnitude-based pruning.
arXiv preprint arXiv:2010.07611, 2020.

N. Lee, T. Ajanthan, and P. H. Torr. Snip: Single-shot network pruning based on connection sensi-
tivity. arXiv preprint arXiv:1810.02340, 2018.

B. Lester, R. Al-Rfou, and N. Constant. The power of scale for parameter-efficient prompt tuning.
arXiv preprint arXiv:2104.08691, 2021.

H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf. Pruning filters for efficient convnets.
arXiv preprint arXiv:1608.08710, 2016.

X. L. Li and P. Liang. Prefix-tuning: Optimizing continuous prompts for generation. arXiv preprint
arXiv:2101.00190, 2021.

B. Liao, S. Tan, and C. Monz. Make your pre-trained model reversible: From parameter to memory
efficient fine-tuning. arXiv preprint arXiv:2306.00477, 2023.

C.-Y. Lin. ROUGE: A package for automatic evaluation of summaries. In Text Summarization
Branches Out, pages 74–81, Barcelona, Spain, July 2004. Association for Computational Lin-
guistics. URL https://www.aclweb.org/anthology/W04-1013.

J. Lin, L. Zhu, W.-M. Chen, W.-C. Wang, C. Gan, and S. Han. On-device training under 256kb
memory. Advances in Neural Information Processing Systems, 35:22941–22954, 2022.

L. Liu, S. Zhang, Z. Kuang, A. Zhou, J.-H. Xue, X. Wang, Y. Chen, W. Yang, Q. Liao, and W. Zhang.
Group fisher pruning for practical network compression. In International Conference on Machine
Learning, pages 7021–7032. PMLR, 2021.

X. Liu, K. Ji, Y. Fu, W. Tam, Z. Du, Z. Yang, and J. Tang. P-tuning: Prompt tuning can be com-
parable to fine-tuning across scales and tasks. In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume 2: Short Papers), pages 61–68, 2022.

I. Loshchilov and F. Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

K. Lu, A. Grover, P. Abbeel, and I. Mordatch. Pretrained transformers as universal computation
engines. arXiv preprint arXiv:2103.05247, 1, 2021.

S. Malladi, T. Gao, E. Nichani, A. Damian, J. D. Lee, D. Chen, and S. Arora. Fine-tuning language
models with just forward passes. arXiv preprint arXiv:2305.17333, 2023.

N. Muennighoff, T. Wang, L. Sutawika, A. Roberts, S. Biderman, T. L. Scao, M. S. Bari, S. Shen,
Z.-X. Yong, H. Schoelkopf, et al. Crosslingual generalization through multitask finetuning. arXiv
preprint arXiv:2211.01786, 2022.

R. Nallapati, B. Zhou, C. Gulcehre, B. Xiang, et al. Abstractive text summarization using sequence-
to-sequence rnns and beyond. arXiv preprint arXiv:1602.06023, 2016.

11

https://www.aclweb.org/anthology/W04-1013

Published as a conference paper at ICLR 2024

M. Ott, S. Edunov, A. Baevski, A. Fan, S. Gross, N. Ng, D. Grangier, and M. Auli. fairseq: A fast,
extensible toolkit for sequence modeling. arXiv preprint arXiv:1904.01038, 2019.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, et al. Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems, 32, 2019.

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al. Language models are unsu-
pervised multitask learners. OpenAI blog, 1(8):9, 2019.

R. Schwartz, J. Dodge, N. A. Smith, and O. Etzioni. Green ai. Communications of the ACM, 63
(12):54–63, 2020.

T. Scialom, T. Chakrabarty, and S. Muresan. Fine-tuned language models are continual learners.
In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing,
pages 6107–6122, 2022.

M. Sundararajan, A. Taly, and Q. Yan. Axiomatic attribution for deep networks. In International
conference on machine learning, pages 3319–3328. PMLR, 2017.

H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière, N. Goyal,
E. Hambro, F. Azhar, et al. Llama: Open and efficient foundation language models. arXiv preprint
arXiv:2302.13971, 2023.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polo-
sukhin. Attention is all you need. Advances in neural information processing systems, 30, 2017.

H. Wang and W. Gao. Tackling the unlimited staleness in federated learning with intertwined data
and device heterogeneities. arXiv preprint arXiv:2309.13536, 2023.

T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault, R. Louf, M. Fun-
towicz, et al. Huggingface’s transformers: State-of-the-art natural language processing. arXiv
preprint arXiv:1910.03771, 2019.

E. B. Zaken, S. Ravfogel, and Y. Goldberg. Bitfit: Simple parameter-efficient fine-tuning for
transformer-based masked language-models. arXiv preprint arXiv:2106.10199, 2021.

Q. Zhang, M. Chen, A. Bukharin, P. He, Y. Cheng, W. Chen, and T. Zhao. Adaptive budget allocation
for parameter-efficient fine-tuning. arXiv preprint arXiv:2303.10512, 2023.

S. Zhang, S. Roller, N. Goyal, M. Artetxe, M. Chen, S. Chen, C. Dewan, M. Diab, X. Li, X. V. Lin,
et al. Opt: Open pre-trained transformer language models. arXiv preprint arXiv:2205.01068,
2022.

12

Published as a conference paper at ICLR 2024

A APPENDIX

A.1 REDUCING THE MEMORY USAGE OF TENSOR IMPORTANCE EVALUATION

Our approach to evaluating the importance of NN tensors in Section 3.2 requires caching all the
previous model weights and the current gradients, in order to compute Eq. (6). However, doing so
significantly increases the GPU memory consumption, especially for modern LLMs with billions
of model weights. To reduce such GPU memory usage, we observe that our problem formulation
in Eq. (4) will prevent tensors in early layers to be selected for training, due to the high costs
of propagating their activation gradients in backpropagation. Hence, we could safely exclude these
tensors from the trainable portion of LLM fine-tuning and save a significant amount of GPU memory.
More specifically, the backpropagation during tensor importance evaluation can be early stopped at
a certain tensor k, such that ∑

i=k−1,...,N

tdyi < ρTfull ≤
∑

i=k,...,N

tdyi , (8)

i.e., the cumulative FLOPs of all the tensors from 1 to k just exceeds our objective of FLOPs re-
duction. As shown in Table 6, by applying such early stopping method, we could proportionally
save GPU memory with respect to the value of ρ, as a smaller value of ρ leads to smaller k and the
backpropagation can hence be stopped earlier. For example, when ρ =50%, 25% of GPU memory
can be saved, and such saving could further increase to 50% when ρ =34%.

Model Full
evaluation

Early-stop
ρ = 34%

Early-stop
ρ = 40%

Early-stop
ρ = 50%

Early-stop
ρ = 60%

OPT-2.7B 10.8 5.5 6.5 8.1 9.7
FLAN-T5-3B 12.0 6.1 7.2 9.0 10.8

Table 6: GPU memory consumption (in GigaBytes) of tensor importance evaluation

A.2 REDUCING THE COMPUTATIONAL COST OF DYNAMIC PROGRAMMING FOR TENSOR
SELECTION

In our proposed dynamic programming (DP) approach for tensor selection in Section 3.3, due to
the high volume of FLOPs in LLM fine-tuning, the value of Tfull could be very large. To reduce
the computational cost of DP, we can reduce the subproblem space by skipping two types of sub-
problems: 1) invalid ones, whose FLOPs constraint t exceeds the desired constraint (ρTfull); 2)
redundant ones, whose FLOPs to pass activation gradients to the maximally allowed depth (k) ex-
ceeds t. Our preliminary experiment show that, doing so on an OPT model with ρbp = 50% can
reduce the number of subproblems by 5.5× without affecting the optimality of training.

Model Tq = 1e1 Tq = 1e2 Tq = 1e3 Tq = 1e4 Tq = 1e5

OPT-2.7B 0.02/64.1/32.0 0.04/47.6/30.1 0.64/49.8/30.7 7.5/50.0/30.9 76.5/50.0/30.9
BLOOMZ-3B 0.0001/33.3/9.30 0.007/45.7/25.2 0.21/49.5/27.2 2.3/49.8/27.1 25.3/50.0/27.1
FLAN-T5-3B 0.04/64.9/36.5 0.25/57.1/36.5 3.5/55.3/36.7 41.8/51.8/36.7 449/50.0/36.7

Table 7: The impact of DP resolution Tq on fine-tuning OPT-2.7B, BLOOMZ-3B, and FLAN-T5-
3B LLMs, on the SciTLDR dataset with ρ = 50%. Each triplet [a/b/c] presents a) the percentage
of wall-clock time incurred by DP compared to full fine-tuning, b) the percentage of FLOPs after
reduction compared to full fine-tuning, and c) the testing ROUGE-1 score, respectively.

Besides, to further reduce the number of subproblems, we scale tensors’ FLOPs (tdw, tdy) by mul-
tiplying a factor of Z:

t̃dw = ⌊tdw · Z⌋ , t̃dy = ⌊tdy · Z⌋ , (9)

where Z =
Tq

Tfull
reduces the backropagation FLOPs to a resolution of Tq < Tfull. The overall time

complexity of DP is then reduced to O(N2Tq). On the other hand, such reduced resolution could
increase the ambiguity in DP and affect the training quality. To investigate such tradeoff between
the training quality and cost, we conducted preliminary experiments on multiple LLMs. Results

13

Published as a conference paper at ICLR 2024

in Table 7 show that, for both OPT-2.7B and BLOOMZ-3B models, setting Tq = 1e3 reduces the
DP overhead to < 1% without affecting the training quality. Similarly, for FLAN-T5-3B, choosing
Tq = 1e2 can retain good training quality with negligible overhead. On the other hand, when Tq

is too small, the solution of DP could be inaccurate and hence result in ineffective reduction of the
training FLOPs.

…

query_states = self.q_proj(hidden_states) * self.scaling

key_states = self._shape(self.k_proj(hidden_states), -1, bsz)

value_states = self._shape(self.v_proj(hidden_states), -1, bsz)

…

A piece of the LLM’s computing graph
represented in python code

Tensor-only representation based on tensors’ execution order

Kernel
2560x2560

Bias
2560x1

Kernel
2560x2560

Bias
2560x1

Kernel
2560x2560

Bias
2560x1

q_proj k_proj v_proj

Calculate and match
(𝒕𝒕𝒅𝒅𝒅𝒅, 𝒕𝒕𝒅𝒅𝒅𝒅) for each tensor

……

batch_size = 4
token_num = 512
token_dim = 2560

𝑡𝑡𝑑𝑑𝑑𝑑 = 4 × 512 × 2560 × 2560

𝑡𝑡𝑑𝑑𝑑𝑑 = 4 × 512 × 2560 × 2560

𝑡𝑡𝑑𝑑𝑑𝑑 = 0

𝑡𝑡𝑑𝑑𝑑𝑑 = 4 × 512 × 2560
Kernel: Bias:

𝑡𝑡𝑑𝑑𝑑𝑑 , 𝑡𝑡𝑑𝑑𝑑𝑑 𝑡𝑡𝑑𝑑𝑑𝑑 , 𝑡𝑡𝑑𝑑𝑑𝑑

…

Kernel: Bias: … Backpropagation formulas
for different types of tensors

…

Figure 5: An example of tensor FLOPs profiling in the OPT-2.7B model

A.3 AN EXAMPLE OF TENSOR FLOPS PROFILING IN THE OPT-2.7B MODEL

To better facilitate understanding, we further show an example in Figure 5 about how we profile
tensors in the OPT-2.7B models in our experiments. First, we convert the computing graph of
the LLM, which is implemented in Python code, into a tensor-only representation. The tensors
are ordered based on their execution orders in the forward pass, similar to the layer-level graph in
Figure 3. We then calculate each tensor’s FLOPs (tdy , tdy) based on the backpropagation formulas
discussed in Section 3.1. Such calculations are essentially counting the multiplications and being
added in their formulas.

Method Accuracy (%) PFLOPs Time (h)

LoRA 49.5 174.0 6.27
GT-0.5 59.2 130.5 4.69

Table 8: OPT-2.7B on PIQA dataset

Method Accuracy (%) PFLOPs Time (h)

LoRA 19.6 16.0 0.55
GT-0.5 28.7 12.0 0.50
GT-0.6 29.5 14.0 0.61

Table 9: OPT-2.7B on WebQuestion dataset

A.4 PERFORMANCE ON GENERATIVE QUESTION-ANSWERING TASKS

To better evaluate the performance of GreenTrainer on other tasks, we also conducted experi-
ments by using the OPT-2.7B model on WebQuestions and PIQA datasets for generative QA
tasks. The WebQuestions dataset contains 6,642 QA pairs using Freebase as the knowledge
base. The PIQA dataset focuses on multi-choice QA about physical knowledge with 21k QA
pairs. We adopt the prompt format ”question:{q}</s>answer:{a}</s>” for WebQuestions
and ”goal:{q}</s>sol1:{sol1}</s>sol2:{sol2}</s>label:{a}</s>” for PIQA,
where </s> is the EOS token for OPT models. The hyper-parameters for training are the same
as the ones described in Section 4. We evaluate the sentence-level accuracy which requires the gen-
erated answer to exactly match the ground truth. Note that for PIQA, the generated tokens are still
predicted from the entire dictionary of OPT embeddings instead of from the two choices: the first

14

Published as a conference paper at ICLR 2024

or the second one. As shown in Table 8 and Table 9, on both datasets, GreenTrainer (GT) achieves
significantly better accuracy and time efficiency compared to LoRA.

In particular, the results on the PIQA dataset are generally lower than those reported in Brown et al.
(2020). The reason for this accuracy gap is that the way we use the OPT model to generate answers
is more challenging than the setup in Brown et al. (2020). According to Section 2.4 in Brown et al.
(2020), it formulates the PIQA task as a multi-choice QA task where the answer is drawn from a
small and predefined candidate set (e.g., [“0”, “1”]), by comparing the probability scores only over
the candidate tokens. In comparison, we strictly cast the problem to open-ended generation, where
the candidate set is unknown. In that case, generating correct answers can be more difficult, because
the model could generate totally irrelevant answers and increase its chance of making mistakes.

A.5 IMPACT OF FREQUENCY OF TENSOR IMPORTANCE EVALUATION

Our design of GreenTrainer, by default, evaluates the importance of tensors and select the set of
trainable tensors based on such importance at the beginning of each training epoch. Using the tech-
nical approach described in Section 3.1, such tensor importance evaluation is very lightweight, and
our experiment results show that the overhead of importance evaluation is only 0.2% on SciTLDR
dataset and 0.01% on DialogSum dataset, with respect to the entire fine-tuning cost.

On the other hand, in certain cases, the tensor importances, calculated from the model gradient
changes, could exhibit non-negligible differences within one epoch. In these cases, the flexible
design of GreenTrainer will allow us to adaptively increase the frequency of tensor importance eval-
uation and the corresponding DP-based tensor selection. To demonstrate the impact of such more
frequent tensor importance evaluation and DP-based tensor selection, we conducted extra experi-
ments using OPT-2.7B model on the WebQuestions dataset and generative QA task, as shown in
Table 10.

Frequency of tensor importance evaluation Accuracy (%) Time (h)

Every 945 iterations (once per epoch) 28.4 0.50
Every 600 iterations 28.5 0.54
Every 400 iterations 28.2 0.56
Every 200 iterations 27.5 0.64

Table 10: Impact of tensor importance evaluation frequency

The results show that: (1) More frequent tensor importance evaluation brings only very small im-
provement on task accuracy. Considering the randomness in different training trials, we believe that
such accuracy improvement is negligible, and the accuracy could even drop down by 1% when the
frequency of evaluation is very high (every 200 iterations). We believe that this is due to accumu-
lation of tensor importance evaluation and tensor selection errors, which stem from the first-order
approximation in the tensor importance metric and the approximate solution in DP. Another possible
reason is that the tensor importances are calculated over the training dataset, and too frequent tensor
importance evaluation may make the training process overfit to the training dataset. (2) The training
cost steadily increases with the frequency of tensor importance evaluation. When the interval of
evaluation reduces from 945 iterations to 200 iterations, the training time increases by 28%.

In summary, performing more frequent tensor importance evaluation within each epoch brings little
improvement on the task accuracy but noticeably increase the training cost. We believe that the
tensor importances being evaluated once in each epoch would be sufficiently accurate for appropriate
selection of trainable tensors.

A.6 THE NECESSITY OF DYNAMIC TENSOR SELECTION

If the LLM fine-tuning uses a fixed training dataset, it is possible that using a fixed tensor selection
decided at the initial phase of training may not result in a significant model accuracy drop, com-
pared to runtime tensor selection. However, in practical LLM fine-tuning scenarios, this assumption
usually does not hold due to the following two reasons. First, in a lot of LLM fine-tuning scenarios,
such as online learning and model personalization, the model is continuously retrained using online
data, which is continuously generated at runtime with variant data distributions. Such variant data
distributions will surely result in different importances of tensors through the training procedure and

15

Published as a conference paper at ICLR 2024

hence require runtime tensor selection. Such online LLM fine-tuning scenarios recently become
more and more popular, especially with the possibility of deploying LLMs onto user’s personal mo-
bile devices such as smartphones. Second, even for a fixed training dataset, it is also possible that
the importances of some tensors may change as the training progresses. In these cases, dynamic
tensor selection could improve the trained model accuracy. To verify this, we conducted additional
experiments using the OPT-2.7B model on the WebQuestions dataset and generative QA task. As
shown in Table 11, dynamic tensor selection could make non-negligible contributions to improving
the task accuracy, with negligible increase of training cost.

Strategy Accuracy (%) Time (h)

Fixed tensor selection only in the first epoch of training 27.4 0.49
Dynamic tensor selection, once in each epoch 28.4 0.50

More frequent tensor selection (5 times in each epoch) 27.5 0.64

Table 11: Different strategies of tensor selection

Note that, such improvement of model accuracy would be dependent on the specific dataset and
model being used, but these experiment results above demonstrated the necessity of runtime tensor
selection. In addition, our experiment results also showed that such tensor importance evaluation
and selection indeed incur very little extra computing overhead.

16

	Introduction
	Background & Motivation
	Transformer Architectures for Text Generation
	The Need for Adaptive Backpropagation
	FLOPs Model of Backpropagation

	Method
	Tensor FLOPs Profiling
	Tensor Importance Evaluation
	Tensor Selection

	Experiments
	Training Cost & Accuracy
	The Impact of FLOPs Reduction Objective
	Efficacy of Tensor Importance Metrics
	Impact of LLM Size

	Conclusion
	Appendix
	Reducing the memory usage of tensor importance evaluation
	Reducing the computational cost of dynamic programming for tensor selection
	An example of tensor FLOPs profiling in the OPT-2.7B model
	Performance on generative question-answering tasks
	Impact of frequency of tensor importance evaluation
	The necessity of dynamic tensor selection

