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Abstract
When applying reinforcement learning from hu-
man feedback (RLHF), the reward is learned from
data and, therefore, always has some error. It
is common to mitigate this by regularizing the
policy with KL divergence from a base model,
with the hope that balancing reward with regular-
ization will achieve desirable outcomes despite
this reward misspecification. We show that when
the reward function has light-tailed error, opti-
mal policies under less restrictive KL penalties
achieve arbitrarily high utility. However, if error
is heavy-tailed, some policies obtain arbitrarily
high reward despite achieving no more utility than
the base model—a phenomenon we call catas-
trophic Goodhart. We adapt a discrete optimiza-
tion method to measure the tails of reward models,
finding that they are consistent with light-tailed
error. However, the pervasiveness of heavy-tailed
distributions in many real-world applications in-
dicates that future sources of RL reward could
have heavy-tailed error, increasing the likelihood
of reward hacking even with KL regularization.

1. Introduction
Kullback-Leibler (KL) divergence constraints in reinforce-
ment learning (RL) are employed to stay in regimes where
the objective is accurate enough. Some on-policy (Schul-
man et al., 2015; 2017) and many off-policy (Abdolmaleki
et al., 2018; Jaques et al., 2019) policy gradient algorithms
employ KL constraints or penalties during optimization to
prevent the policy from deviating too much from the data
collection distribution. This ensures that estimates of each
action’s advantage are reliable enough to update the policy
in a helpful way.

Reinforcement learning from human feedback (Christiano
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et al., 2017; Ziegler et al., 2020, RLHF) is a very popular
method to induce desirable behavior in language models.
RLHF starts with a base pre-trained model, then learns a
reward function from human annotator data. Next, it trains
an RL policy to maximize this reward, while penalizing high
KL divergence from the policy to the base model. RLHF
uses an on-policy algorithm and has accurate advantages,
but the reward function is always somewhat misspecified
compared to desired behavior, due to insufficient data, hu-
man biases, and other factors.

The main purpose of the KL penalty in RLHF is to limit
the consequence of reward modeling errors by keeping the
policy within a distribution similar to that on which it was
trained. Ideally, in the low-KL regime the reward model’s
errors are small enough that it provides correct updates to
the base model. Gao et al. (2023) empirically supports this
view: if the KL divergence in RLHF is allowed to grow too
much, with a misspecified reward, the model’s performance
on the true utility starts to decrease.

We ask: can we obtain good outcomes from misspecified
reward in RLHF by controlling the KL divergence? That
is, if there is some error between the true reward V and the
proxy reward U , can the KL help us to still optimize V ?
Using mathematical proof, we answer the question in the
negative for heavy-tailed errors: there exist policies which
have infinite proxy reward U , but whose KL with the base
model vanishes (these have undetermined V ). We term this
phenomenon “catastrophic Goodhart”, after Goodhart’s law.

If the misspecification errors are independent and light-
tailed, the KL divergence does suffice to guarantee good
outcomes. There may also be guarantees under weaker as-
sumptions, but assumptions that intuitively seem sufficient
are often not (see Section 6).

Possibly, other regularization schemes would guarantee
good outcomes for heavy-tailed errors, but this is not just
a problem of KL. We show that optimizing by condition-
ing on large reward U has similar outcomes in light- and
heavy-tailed regimes.

Empirically, open-source language reward models seem
to be light-tailed, which does not imply light-tailed errors
but suggests it (Section 5). However, the errors are likely
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not independent and, given the prevalence of heavy-tailed
distributions in the real world, error in future reward models
may also be heavy-tailed. In any case, the present success of
RLHF with misspecified rewards cannot be explained solely
by the KL regularization in its objective.

2. Background
2.1. KL divergence and KL regularization

Recall that KL divergence between two distributions P and
Q is defined as DKL(P∥Q) =

∑
x∈X P (x) log

(
P (x)
Q(x)

)
.

If we have two policies π, π0, we define DKL(π∥π0) as the
KL divergence between the distributions of actions taken
on the states in trajectories reached by π. That is, if Tr(π)
is the distribution of trajectories taken by π, we penalize
DKL(π∥π0) ≜ Es∈T,T∼Tr(π)[DKL(π(s)∥π0(s))].

In RLHF, it is common to use the regularization term
βDKL (π∥π0) to prevent the learned policy from deviating
too much from the base policy, which can prevent unstable
behavior or overfitting to the reward model. If our reward
model gives reward U , then the optimal policy for RLHF
with a KL penalty is argmaxπ E[U(π)]− βDKL (π∥π0) .

Often the regularization parameter β is dynamically ad-
justed to keep the DKL near some target value (Ziegler
et al., 2020).

2.2. Heavy-tailed distributions

A distribution P over R with cumulative distribution func-
tion (CDF) FP is heavy-tailed if its tail function F̄P (x) ≜
1 − FP (x) satisfies limx→∞ etxF̄ (x) = ∞ for all t > 0.
Heavy-tailed distributions are well-known in statistics to
have a higher probability of producing a single extreme
value. For example, if the sum of two independent variables
from heavy-tailed distributions is large, it is most likely due
to one extreme sample rather than two equally large samples.
(Wierman, 2013)

2.3. Reward misspecification and Goodhart’s Law

Reward misspecification has caused low-utility outcomes
in practice; for example, in (Clark & Amodei, 2016), an
RL agent trained to play a racing videogame according to
a misspecified reward function achieves a high score while
failing to complete the course.

Gao et al. (2023) introduce the concept of “overoptimiza-
tion”: optimizing for a proxy objective decreases perfor-
mance according to the true objective. This raises the ques-
tion: in general, when RLHF reward is misspecified, when
does the optimal policy produce high utility?

By applying the proxy reward and true reward functions to

a distribution over text (generated by an LLM), we get two
scalar random variables, which we call U for proxy reward
and V for true reward / utility. Then we can define the error
in the proxy reward as X ≜ U − V , so that U = X + V .
Framed this way, optimization for a proxy reward U is a mix
of desirable optimization for V and undesirable optimiza-
tion for X . The joint distribution of V and X determines the
limiting value of V as we apply more optimization. When
we say that reward misspecification can have negative ef-
fects, we mean that too much variance in X can "redirect"
the optimization pressure from V to X , and prevent utility
gain from optimization.

Reward misspecification is also studied by (Lambert & Ca-
landra, 2024), (Laidlaw et al., 2024), and others. Laidlaw et
al show that a KL penalty between action distributions can
be ineffective, and propose instead regularizing state occu-
pancy measure. Our results show an inherent weakness of
KL divergence, including when applied to state occupancy
measure.

3. Theoretical results
When applying KL regularization, the trained model is reg-
ularized towards some base policy π0. One would hope that
a KL penalty can produce good outcomes even in the case
of reward misspecification; that is, if the reward U is the
sum of true utility V and an error term X , we would hope
that optimal policies under a KL penalty achieve high V
even if the magnitude of X is large. We show that this is not
always the case: Corollary 1 of Theorems 1, 2, and 3 estab-
lishes that when X(π0) is heavy-tailed, there are arbitrarily
well-performing policies π with Eπ[V ] ≈ Eπ0

[V ]. How-
ever, Theorem 4 shows that when error is light-tailed and
independent of V , the optimal policy under a KL penalty
results in V > 0, and V can be made arbitrarily large. Thus,
the tails of the error distribution are crucial in determining
how much utility will result from optimization towards an
imperfect proxy.

Theorems 5 and 8 (Section B of the appendix) show that
the relationship of catastrophic Goodhart to heavy-tailed er-
ror is not just a quirk of KL divergence by using a different
model of optimization based on conditioning on high reward
values. Under this model (and given additional regularity
conditions), it is also true that heavy-tailed error results in
catastrophic Goodhart, and light-tailed error plus indepen-
dence results in arbitrarily large utility. All proofs are in the
appendix.

3.1. Heavy-tailed distributions

Theorem 1. Given any heavy-tailed reference distribution
Q over R with mean µQ, and any M, ϵ > 0, there is a
distribution P with mean µP > M and DKL(P∥Q) < ϵ.
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Outline of proof (see appendix for full proof): WLOG take
µQ = 0. If we set Pt to upweight the probability mass of
PrPt(X > t) to c/t for some c, t, then the mean of Pt will
be approximately at least c. As t → ∞, the KL divergence
DKL(Pt∥Q) will shrink to zero.

3.2. RLHF with KL penalty under heavy-tailed return
distribution

We now adapt our result to the case where the policy is a
language model and we are training it using RLHF. We are
now applying KL divergence over the policies rather than
the return distributions. We first formally define the prop-
erties of RLHF on language models that cause the result to
hold: namely, when when considered as a Markov decision
process (MDP), environmental transitions are deterministic
and return depends only on the final state reached.

Definition: A deterministic-transition MDP with Markovian
returns (DMRMDP) is an MDP (S,A, P,R) such that:

• The transition function P : S×A → S is deterministic,
i.e., for each state s ∈ S and action a ∈ A, there exists
a unique state s′ ∈ S such that P (s′|s, a) = 1.
In RLHF: the transition is appending the generated
token a to the context s.

• There is a set of sink states E ⊆ S that terminate a
trajectory, which is disjoint from the set of start states.
In RLHF: The sink states are sequences ending in
<EOS> or above a certain length.

• Returns are Markovian; that is, for any two trajec-
tories τ = (s1, a1, . . . , sn), τ

′ = (s′1, a
′
1, . . . , s

′
n), if

sn = s′n, then τ and τ ′ have identical return distribu-
tions. Equivalently, for the trajectory random variable
T = (S1, A1, . . . ) distributed according to any policy,
with return G, G⊥⊥(S<i, A<i) | Si for any i ≥ 1.
In RLHF: the return only depends on the full gener-
ated string, which is the final state.

The language model stochastically outputs the next token
a given s, and corresponds to the policy. A DMRMDP is
therefore a good model of RLHF.

Theorem 2. Let W = (S,A, P,R) be a deterministic-
transition MDP with Markovian returns. Given W we define
the function that takes policies to trajectories Tr : (S →
∆A) → ∆(S × A)∗, and the average return function g :
(S×A)∗ → R, which induces a function G : ∆(S×A)∗ →
∆R. Let π0 : S → ∆A be some base policy. If G ◦ Tr(π0)
is heavy-tailed with finite mean µQ, then for any M, ϵ > 0,
there is a policy π with mean return E[U |U ∼ G◦Tr(π)] >
M and Es∈T,T∼Tr(π)[DKL(π(s)∥π0(s))] < ϵ.

3.3. If V is light-tailed, EP [V ]−EQ[V ] → 0 as DKL→0

Theorem 3. If V is light-tailed and d = DKL(P∥Q) is
bounded, then EP [V ] is bounded, and EP [V ]−EQ[V ] → 0
as d → 0.

Corollary 1. Theorems 2 and 3 imply that when utility is
light-tailed, reward modeling errors make the proxy reward
heavy-tailed, and a policy π is regularized severely enough
to have KL divergence values approaching zero, the reward
E[U(π)] can go to infinity while utility E[V (π)] approaches
a value no higher than the base policy.

3.4. Light-tailed + independence imply E[V ] → ∞

Theorem 4. If U = X + V with X and V both
light-tailed, and the distribution of U is continuous,
and π∗(β) ≜ argmaxπ E[U(π)] − βDKL(π, π0), then
limβ→0+ E[V (π∗(β))] = ∞.

4. Experimental Methodology
Our theoretical results now raise the question of whether
the error in reward models is heavy-tailed or light-tailed in
practice. 1 If we observe the reward distribution to be light-
tailed, this is a strong indication that error is light-tailed.
2

To empirically test whether the reward is heavy-tailed, we
consider two lines of evidence: examining the distributions
directly through random sampling and temperature-1 sam-
pling, and finding adversarial token sequences that get high
rewards. We examine one small and one medium reward
model that performed reasonably well on RewardBench
(Lambert et al., 2023). The small model is an OpenAssis-
tant model based on Pythia 1.4B, and the medium model is
Starling 7B-alpha (Zhu et al., 2023)3.

For random sampling, we sample 30000 length-1024 se-
quences of uniformly random tokens and observe the distri-
bution of rewards assigned by both Pythia 1.4B and Llama
7B-chat. We also use Llama 7B-chat to generate 16000
length-133 sequences and observe the distribution of re-
wards assigned by Starling 7B-alpha.

Because sampling is inefficient at probing the extreme tail,
we also find token sequences that optimize Starling 7B-alpha
for reward. We considered Greedy Coordinate Gradient

1Note that distributions over a finite set are bounded and cannot
be heavy-tailed in a technical sense, and models with a finite
context window have a finite input space. We say that a distribution
of reward or error is heavy-tailed if it is well-modeled by a heavy-
tailed distribution on its support.

2It is possible for U to be light-tailed while X and V are both
heavy-tailed, but this is unusual and we do not expect it to happen
in practice.

3https://huggingface.co/berkeley-nest/Starling-RM-7B-alpha
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Figure 1. Plots of the distribution of reward from 30000 random
length-1024 token sequences to Starling 7B-alpha. Clockwise
from top left: The histogram shows a unimodal distribution with a
slight right skew. The normal probability plot indicates the data
are heavier-tailed than normal. The Hill estimator (error bars are
standard error) appears to be 0.20 for higher values but fluctuates
for lower values. The exponential probability plot of the right
half of the distribution is consistent with either light or heavy tails
(under heavy tails, the slope would go to infinity).

(GCG) from (Zou et al., 2023), a method used to find ad-
versarial suffixes that circumvent jailbreaking, but decided
on a faster version of GCG called Accelerated Coordinate
Gradient (ACG) from (Haize Labs, 2024). See Table B.1.1
for ACG hyperparameters.

Generating plots took about 5 GPU-hours on 1x Nvidia
H100, and running ACG took a further 8 hours.

5. Results
When sampling token sequences, both the Pythia model on
random inputs (Figure 5) and Starling 7B-alpha on Llama-
generated inputs (Figure 2) appear approximately normal
and, therefore, light-tailed. Starling on random inputs (Fig-
ure 1 is ambiguous, with the exponential Q-Q plot having an
outlier that could indicate a heavy-tailed distribution, but the
Hill estimator is consistent with a light-tailed distribution.
Because Llama-7B-chat is a more reasonable base model
than a completely random policy, we believe that Starling
7B-alpha is more likely to be light-tailed for the purposes of
our theoretical results.

The ACG results need some interpretation. The KL di-
vergence between two distributions P and Q if P is the
same as Q a fraction 1 − α of the time, but is some value
x a fraction α of the time is given by DKL(P∥Q) =

Figure 2. Plots of the reward distribution from 16000 token se-
quences generated by Llama 7B-chat of length ≤ 133, starting
with five random tokens. Clockwise from top left: A histogram
shows the reward distribution has a left skew. The normal prob-
ability plot suggests reward is approximately normal and thus
light-tailed. The Hill estimator plot should stabilize if the distribu-
tion is heavy-tailed, but it does not; thus, there is no evidence the
distribution is heavy-tailed. The exponential probability plot also
indicates light tails, because the curve is bending downwards.

[(1− α)q(x) + α] log
(

(1−α)q(x)+α
q(x)

)
+ (1 − α) log(1 −

α)(1− q(x)).

When α is small but much larger than q(x), we approximate
this to first order as DKL(P∥Q) ≈ α log

(
α

q(x)

)
. In Theo-

rems 1 and 2, we prove that when the error is sufficiently
heavy-tailed, a policy that gets extremely large reward a
small fraction of the time will achieve high expected re-
ward with low KL divergence. This is not the case here
because the rewards achieved through ACG were small and
the log-probabilities extremely negative. For example, a
policy that matches Llama 2-chat’s base reward 99% of the
time and uses the highest-reward input generated by ACG
α =1% of the time will have KL divergence from Llama
2-chat of α(log(α) − 1339.70) = 13.35 nats, but reward
only about α ∗ (2.2377− 0.3329) = 0.02571 greater than
the base model, far less than can be obtained with the same
KL divergence by conditioning.

6. Discussion and Limitations
6.1. How likely is catastrophic Goodhart?

The low-KL policies that result in catastrophic Good-
hart are not a unique optimal policy, just one family of
high-performing policies. When optimizing E[U(π)] −
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βDKL (π, π0), the outcome depends on RL training dy-
namics; it could be that DKL → 0 causing catastrophic
Goodhart, but more likely both terms will go to infinity,
potentially allowing V → ∞. Catastrophic Goodhart can
be prevented by using a light-tailed or bounded reward func-
tion.

Even so, catastrophic Goodhart is likely to occur in many
scenarios where KL regularization is naively employed in
an attempt to avoid Goodhart’s Law:

• If we maximize σ(E[U ]) + DKL(Tr(π)∥Tr(π0)),
where σ is a bounded function (e.g. sigmoid), all near-
optimal policies will have V ≈ 0. Since we can only
obtain so much reward from σ(E[U ]), it pays to make
the KL (and thus V) go to zero.

• If we cap KL to a finite value (or dynamically adjust
the KL penalty to target a finite KL, as done in Ziegler
et al. (2020), then E[V ] is also upper bounded by a
finite value (see Theorem 3), and we think it is likely
that E[V ] ≈ 0. Consider a toy model where an AI can
adjust three parameters: true quality V of responses,
frequency of reward hacking (producing actions with
extremely high X), and severity of hacking (value of
X on those actions). Adjusting the policy to increase
E[U ] without increasing KL increase the severity of
hacking while decreasing either frequency of hacking
or quality of responses. When E[U ] is already large,
decreasing quality has much better returns than de-
creasing frequency. This is similar to Theorems 5, 8
about hard-threshold optimization.

• Any way we maximize E[U(π)] − βDKL (π, π0) re-
sults in very large values of E[U(π)], and there are a
number of arguments that extreme optimization for an
imperfect proxy can result in decreased utility due to
tradeoffs between X and V ; e.g., the constrained re-
source scenario in (Zhuang & Hadfield-Menell, 2021).

6.2. Independence assumptions

Theorems 2 and 3 do not require any independence assump-
tion, but Theorems 4, 5, and 6 require that error X and
utility V are independent, which seems to be violated in
practice. Future work could weaken this assumption, al-
though intuitively obvious ways to weaken it result in the
statement being false. 4

4Suppose that error X is light-tailed conditional on any value
of V , but our proxy is merely unbiased (E[X|V = v] = 0 for all
v). Then the limit of V under optimization for X+V still depends
on the relationship between X and V . If they are independent,
Theorem 6 says that limt→∞ E[V |X + V ≥ t] = ∞. But if
V ∼ N(0, 1), and X|V ∼ N(0, 4) when V ∈ [−1, 1], otherwise
X = 0, then limt→∞ E[V |X + V ≥ t] = 0.

6.3. Stronger optimization methods

We did not search the entire space of token sequences, so
we cannot rule out that the reward is heavy-tailed enough
to cause catastrophic Goodhart in some situations. While it
is intractable to search the more than 102000 possible token
sequences, future work could get more evidence through
more powerful optimization methods.

6.4. Relation to previous overoptimization work

Gao et al. (2023) found that optimizing the reward of small
reward models causes overoptimization: a decrease in utility
with increasing optimization. However, we observed that
reward models are light-tailed, and (Theorem 4) that inde-
pendence combined with light-tailed error prevents overop-
timization. We think this discrepancy is explained by de-
pendence between error and utility. Policies optimized for
high error may activate features in the proxy reward models
that are undesirable according to the true utility function.
5 More research is needed to understand why high-error
completions have low utility and to design reward models
that do not suffer from this problem; Perhaps it is possible
to construct reward models whose errors are in directions
orthogonal to human preferences, so that the large-reward
completions do not have lower utility.

7. Conclusion
We have argued that the purpose of the KL divergence regu-
larization in RLHF is to mitigate reward misspecification.
However, we have also proven that when errors in the reward
function are heavy-tailed, it cannot serve this purpose: even
with zero KL divergence, there are policies that achieve very
high misspecified reward and no actual reward.

When errors are light-tailed and independent, the KL di-
vergence can mitigate misspecification, but when they are
dependent, this may not be possible. Thus, we must look
to places other than the KL objective to explain the current
success of RLHF and ensure its continued success in the
future.

Impact Statement
As this work aims to improve the safety of future ML sys-
tems by characterizing a possible failure mode of reward
misspecification in RLHF, we hope the social impact is
positive. We see no particular ethical issues to discuss.

5There are other explanations possible. Perhaps better opti-
mization methods would find heavy-tailed reward in open reward
models; or OpenAI’s reward models have heavy-tailed error (and
their results are straightforwardly explained by our Theorem 1),
while open reward models have light-tailed error.
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Figure 3. As t → ∞, the mean of X (blue bar) grows without bound while KL divergence DKL(Pt ∥Q) (orange bar) goes to 0. The
base distribution Q is a Student t-distribution with df = 3. In this case, high values of X are upweighted to 1/t0.8; upweighting them to
1/t would cause E[X] to converge to 1 while KL divergence goes to zero faster.

A. Proofs
A.1. Theorem 1

Restatement of Theorem 1. Given any heavy-tailed reference distribution Q over R with mean µQ, and any M, ϵ > 0, there is a
distribution P with mean µP > M and DKL(P∥Q) < ϵ.

Intuitively, in a heavy-tailed distribution, events with extremely high x are not very rare, so you don’t pay much of a KL penalty to
upweight them so they happen about 1/x of the time. This is visually illustrated in Figure A.1.

Proof. WLOG let µQ = 0. We construct a sequence of distributions {Pt} such that limt→∞ EPt [X] ≥ c for any constant c, and
limt→∞ DKL(Pt∥Q) = 0. We define Pt for any t > c thusly. Writing FPt(x) for the CDF PrX∼Pt(X ≤ x) and F̄Pt(x) for
1− FPt(x), we let

F̄_{P_t}(x) =

{
1− 1−c/t

FQ(t)
FQ(x) x ≤ t

c/t

F̄Q(t)
F̄Q(x) x > t

Intuitively, we rescale the part of the distribution to the right of t evenly to have total probability c/t, which is less than 1 because t > c.

We must check that limt→∞ EPt [X] = c. We can write

EPt [X] = FPt(t)EPt [X|X ≤ t] + F̄Pt(t)EPt [X|X > t]

= FPt(t)EQ[X|X ≤ t] + F̄Pt(t)EQ[X|X > t]

= FQ(t)EQ[X|X ≤ t] + F̄Q(t)EQ[X|X > t]+

(FPt(t)− FQ(t))EQ[X|X ≤ t] + (F̄Pt(t)− F̄Q(t))EQ[X|X > t]

= EQ[X] + (F̄Pt(t)−F̄Q(t))(EQ[X|X > t]− EQ[X|X ≤ t])

We know that EQ[X|X > t] > t because it is an integral of values strictly greater than t. Because EQ[X] = 0 is a weighted average of
EQ[X|X > t] and EQ[X|X ≤ t], and EQ[X|X > t] > 0, we know EQ[X|X ≤ t] < 0. So EQ[X|X > t]− EQ[X|X ≤ t] > t. We
also know that for sufficiently large t, (FPt(t)− FQ(t)) > 0. Intuitively, starting from Q, which has mean 0, Pt moves a probability
mass approaching c

t
from mean <0 to mean >t.

Now we can say

lim
t→∞

EPt [X] > lim
t→∞

[
EQ[X] + (F̄Pt(t)− F̄Q(t))(t− 0)

]
= lim

t→∞

(c
t
− F̄Q(t)

)
t = lim

t→∞
c− tF̄Q(t)

Because Q has a finite mean, limt→∞ tF̄Q(t) = 0, and so limt→∞EPt [X] ≥ c.

Now we check that limt→∞ DKL(Pt∥Q) = 0:

7



Catastrophic Goodhart: regularizing RLHF with KL divergence does not mitigate heavy-tailed reward misspecification

DKL(Pt∥Q) =

∫
R
log

Pt(dx)

Q(dx)
Pt(dx)

=

∫
x≤t

log
Pt(dx)

Q(dx)
Pt(dx) +

∫
x>t

log
Pt(dx)

Q(dx)
Pt(dx)

= FPt(t) log
FPt(t)

FQ(t)
+ F̄Pt(t) log

F̄Pt(t)

F̄Q(t)
since both ratios are constant

= FPt(t) log
1− c/t

FQ(t)
+ F̄Pt(t) log

F̄Pt(t)

F̄Q(t)

Since both 1− c/t and FQ(t) go to 1 as t → ∞, the left term goes to 0, and so

lim
t→∞

DKL(Pt∥Q) ≤ 0 + lim
t→∞

F̄Pt(t) log
F̄Pt(t)

F̄Q(t)

= lim
t→∞

c

t
log

c

tF̄Q(t)
≤ lim

t→∞

c

t
log

1

F̄Q(t)

= lim
t→∞

−c

t
log F̄Q(t) since t>c

Q is heavy-tailed, so by definition limt→∞ eatF̄Q(t) = ∞ for all a > 0. This implies that for every a > 0 there is a sufficiently large
tc so that for all t > tc, F̄Q(x) > e−at, which means that log F̄Q(t) > −at.

Therefore for every a > 0, limt→∞ DKL(Pt∥Q) ≤ limt→∞ −c/t log F̄Q(t) < limt→∞ −−act
t

= ac, which since KL divergence is
nonnegative means thatlimt→∞ DKL(Pt∥Q) = 0 as desired. ■

A.2. Theorem 2

Restatement of Theorem 2. Let W = (S,A, P,R) be a deterministic-transition MDP with Markovian returns. Given W , we define the
function that takes policies to trajectories Tr : (S → ∆A) → ∆(S ×A)∗, and the average return function g : (S ×A)∗ → R which
induces a function G : ∆(S ×A)∗ → ∆R. Let π0 : S → ∆A be some base policy. If G ◦ Tr(π0) is heavy-tailed with finite mean µQ,
then for any M, ϵ > 0, there is a policy π with mean return E[U |U ∼ G ◦ Tr(π)] > M and Es∈T,T∼Tr(π)[DKL(π(s)∥π0(s))] < ϵ.

Proof: We will exhibit a distribution of trajectories ρ such that DKL(ρ∥Tr(π0)) < ϵ and E[G(ρ)] > M , and then construct a policy π
with Tr(π) = ρ. Note that this proof applies for continuous action spaces if trajectories are replaced with measurable sets, but this would
make it harder to read.

Let ρπ0 = Tr(π0). We have a heavy-tailed distribution of return Q ≜ G(ρπ0) over R, so we can apply Theorem 1. But to define ρ, we
can construct Pt in the proof of Theorem 1 in a particular way. For any t > c, we need a Pt that uniformly upweights values of mean
return such that F̄Pt(t) = c/t. We can define ρt such that any trajectory τ is upweighted by a factor depending only on its mean return:

ρt(τ) =

{
1−c/t
FQ(t)

ρπ0(τ) g(τ) ≤ t
c/t

F̄Q(t)
ρπ0(τ) g(τ) > t

Then we can let Pt ≜ G ◦ ρt and the rest of the proof of Theorem 1 applies. Therefore, applying the theorem, we can let ρ = ρt
for sufficiently large t, and then µG◦ρ > M and DKL(G ◦ ρ,G ◦ ρπ0) < ϵ. By the chain rule for KL divergence, DKL(ρ, ρπ0) =
DKL(G ◦ ρ,G ◦ ρπ0) + Eγ∼G◦ρ[DKL(ρ(T )|G(T ) = γ ∥ ρπ0(T )|G(T ) = γ)]. Since we constructed ρ so that the probabilities of
each τ conditional on its return being γ are equal, the second term is zero, and we also have DKL(ρ, ρπ0) < ϵ.

Finally, since the KL divergence between trajectory distributions is the sum of KL divergence between policies at each action in the
trajectory, and each trajectory has at least one action, Es∈T,T∼Tr(π)[DKL(π(s)∥π0(s))] ≤ ET∼Tr(π)

∑
s∈T [DKL(π(s)∥π0(s))] =

DKL(ρ∥ρπ0) < ϵ as desired.

To define π such that Tr(π) = ρ, we let π(s, a) = Pr(ai = a|τ = (..., s, ai, ...) ∼ ρ).

Then, the probability that any trajectory τ = (s1, a1, . . . , an) is sampled is:

8
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Tr(π)(τ) =

n∏
i=1

π(si, ai) (1)

=

n∏
i=1

Pr(ai = a′
i|τ ′ = (..., s, a′

i, ...) ∼ ρ) (2)

=

n∏
i=1

Pr(ai = a′
i|τ ′ = (s′1, a

′
1, ..., s, a

′
i, ...) ∼ ρ, s<i = s′<i, a<i = a′

<i) (3)

= ρ(τ) (4)

In (2), returns are Markovian, so all trajectory prefixes ending in state s have the same distribution of returns under any policy. In the
construction of ρ, all trajectories with the same mean return have equal measure. Therefore, conditioning on earlier states and actions of τ
does not change the measure, so we can write (3). So Tr(π) = ρ as desired. ■

A.3. Theorem 3

Restatement of Theorem 3. If V is light-tailed, EQ[V ] is zero, and d = DKL(P∥Q) is bounded, then EP [V ] is bounded, and EP [V ] → 0
as d → 0.

Proof. Using Lagrange multipliers, we find that when KL divergence is minimized, we have P (V )[λ1 log
P (V )
Q(V )

+ λ2 −X] = 0 for some
constants λ1, λ2, so

log
P (V )

Q(V )
=

V − λ2

λ1
(5)

P (V ) = Q(V ) exp

(
V − λ2

λ1

)
= Q(V ) (6)

eV/λ_1e−λ_2/λ_1 = CQ(V )eV/λ_1 (7)

That is, the new PDF is an exponential tilting of the old PDF. Now, what is EP [V ]? It’s just
∫∞
−∞ CV eV/λ1Q(X) dV . If the distribution

of V is heavy-tailed distribution, this is ∞; if it is light-tailed, this is some finite value.

When d = 0, P and Q are identical, and E[V ] = 0. So by a continuity argument, EP [V ] → 0 as d → 0. ■

A.4. Theorem 4

Restatement of Theorem 4. If U = X + V with X and V both light-tailed, and the distribution of U is continuous, and π∗(β) ≜
argmaxπ E[U(π)]− βDKL(π, π0), then limβ→0+ E[V (π∗(β))] = ∞.

Proof. Fix some β. Using Lagrange multipliers, we find that for any event S, Prπ(S) = Prπ0(S)e
λU(S). Let c(β) be the median value of

U under the policy π∗(β); that is, Pr(U > c(β)|U ∼ G ◦ Tr(π∗(β))) = 1
2
. This exists because U has a continuous distribution. Then:

E[V |π] = 1

2
E[V |π, U < c] +

1

2
E[V |π, U ≥ c]

≥ 1

2
E[V |π, U < c] +

1

2
E[V |π]

lim
β→0+

E[V |π] ≥ lim
β→0+

1

2
E[V |π, U < c] + lim

β→0+

1

2
E[V |π]

The left term is c, while the right term is ∞, so the overall limit is ∞.

B. Conditioning as alternate model of optimization
Although we think a KL divergence penalty or cap is the most realistic setting for RLHF, it is not the only model of optimization
where heavy-tailedness of the error determines whether catastrophic Goodhart occurs. Consider another model of optimization where
U = X + V as before, but we simply condition on U being higher than some threshold t.6 In this case, we are interested in the quantity

6This could model a satisficing agent that takes random acceptable actions.
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Region Why its effect on E[V |c] is small Explanation

r1 = (−∞,−h(t)] P[V ∈ r1|c] is too low In this region, |V | > h(t) and X > t+ h(t), both
of which are unlikely.

r2 = (−h(t), h(t)) E[V |V ∈ r2, c] ≈ E[V |V ∈ r2] The tail distribution of X is too flat to change the
shape of V ’s distribution within this region.

r3=[h(t), t−h(t)] P [V ∈ r3 | c] is low, and V < t. There are increasing returns to each bit of optimiza-
tion for X, so it’s unlikely that both X and V have
moderate values. 8

r4 = (t− h(t),∞) P[V ∈ r4 | c] is too low X is heavier-tailed than V, so the condition that
V > t−h(t) is much less likely than X > t−h(t)
in r2.

Table 1. A summary of the proof strategy for Theorem 5.

limt→∞ E[V |X + V ≥ t]. If we slightly strengthen the heavy-tailedness and light-tailedness assumptions, heavy-tailed error results in
catastrophic Goodhart, while light-tailed error results in arbitrarily high expected utility.

B.1. Conditioning with heavy-tailed error produces catastrophic Goodhart

Theorem 5. Let X and V be two independent random variables with CDFs FX and FV and tail functions F̄V ≜ 1−FV , F̄X ≜ 1−FX

such that

• V has a finite mean.

• X is subexponential; that is, limx→∞
Pr(X1+X2>x)

Pr(X>x)
= 2 if X1, X2 are two independent samples from X . This is a slightly stronger

property than being heavy-tailed.

• The tail of V is sufficiently lighter than the tail of X such that limt→∞
tpF̄V (t)

F̄X (t)
= 0 for some p > 1.

Then limt→∞ E[V |X + V ≥ t] = E[V ]; that is, catastrophic Goodhart occurs in the limit of optimization for U = X + V .

The proof requires expressing the conditional expectation in question as
∫∞
−∞ vfV (v)Pr(X>t−v)∫∞
−∞ fV (v)Pr(X>t−v)

, then partitioning the interval (−∞,∞)

into four regions and bounding the integrand in the numerator above by a different quantity in each region.

In addition to the works cited in the main paper, we make reference to the textbook (Foss et al., 2013) throughout the proof. Many similar
results about random variables are present in the textbook.

B.1.1. PROOF SKETCH AND INTUITIONS

The conditional expectation E[V |X + V > t] is given by
∫∞
−∞ vfV (v)Pr(X>t−v)∫∞
−∞ fV (v)Pr(X>t−v)

, 7 and we divide the integral in the numerator into
4 regions, showing that each region’s effect on the conditional expectation of V is similar to that of the corresponding region in the
unconditional expectation E[V ].

The regions are defined in terms of a slow-growing function h(t) : R → R≥0 such that the fiddly bounds on different pieces of the proof
work out. Roughly, we want it to go to infinity so that |V | is likely to be less than h(t) in the limit, but grow slowly enough that the shape
of V ’s distribution within the interval [−h(t), h(t)] doesn’t change much after conditioning.

In Table B.1.1, we abbreviate the condition X + V > t as c.

Note that up to a constant vertical shift of normalization, the green curve is the pointwise sum of the blue and orange curves.

7We’ll generally omit dx and dv terms in the interests of compactness and conciseness; the implied differentials should be pretty clear.
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Figure 4. A diagram showing the region boundaries at −h(t), h(t), and t− h(t) in an example where t = 25 and h(t) = 4, along with a
negative log plot of the relevant distribution:

B.1.2. DEFINITIONS

To be more precise, we’re going to make the following definitions and assumptions:

Let fV (v) be the PDF of V at the value v. We assume for convenience that fV exists, is integrable, etc, though we suspect that this isn’t
necessary, and that one could work through a similar proof just referring to the tails of V . We won’t make this assumption for X . Let
FX(x) = Pr(X ≤ x) and F̄X(x) = Pr(X > x), similarly for FV and F̄V . Assume that

• V has a finite mean:
∫∞
−∞ vfV (v) dv converges absolutely.

• X is subexponential.

Formally, this means that limx→∞
Pr(X1+X2>x)

Pr(X>x)
= 2. This occurs roughly whenever X has tails that are heavier than e−cx for any

c and is reasonably well-behaved; counterexamples to the claim "long-tailed implies subexponential" exist, but they’re nontrivial to
exhibit. Examples of subexponential distributions include log-normal distributions, anything that decays like a power law, the Pareto
distribution,and distributions with tails asymptotic to e−xa

for any 0 < a < 1.

We require for V that its tail function is substantially lighter than X’s, namely that limt→∞
tpF̄V (t)

F̄X (t)
= 0 for some p > 1. (This implies

that F̄V (t) = O(F̄X(t)/t).)

With these definitions and assumptions, we can move on to the proof.

The unnormalized PDF of V conditioned on X + V ≥ t is given by fV (v)F̄X(t− v). Its expectation is given by
∫∞
−∞ vfV (v)F̄X (t−v)∫∞
−∞ fV (v)F̄X (t−v)

.

Meanwhile, the unconditional expectation of V is given by
∫∞
−∞ vfV (v).

We’d like to show that these two expectations are equal in the limit for large t. To do this, we’ll introduce Q(v) = F̄X (t−v)

F̄X (t)
. (More

pedantically, this should really be Qt(v), which we’ll occasionally use where it’s helpful to remember that this is a function of t.)

For a given value of t, Q(v) is just a scaled version of F̄X(t − v), so the conditional expectation of V is given by
∫∞
−∞ vfV (v)Q(v)∫∞
−∞ fV (v)Q(v)

.

But because Q(0) = 1, the numerator and denominator of this fraction are (for small v ) close to the unconditional expectation and 1,
respectively.

We’ll aim to show that for all ϵ > 0, we have for sufficiently large t that
∣∣∣∫∞

−∞ vfV (v)Qt(v)−
∫∞
−∞ vfV (v)

∣∣∣ < ϵ and∫∞
−∞ fV (v)Qt(v) ∈ [1 − ϵ, 1 + ϵ], which implies (exercise) that the two expectations have limiting difference zero. But first we

need some lemmas.
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B.1.3. LEMMAS

Lemma 6. There is h(t) depending on FX such that:

(a) limx→∞ h(t) = ∞

(b) limt→∞ t− h(t) = ∞

(c) limt→∞
F̄X (t−h(t))

F̄X (t)
= 1

(d) limt→∞ sup|v|≤h(t) |Q(v, t)− 1| = 0.

Proof. Lemma 2.19 from (Foss et al., 2013) implies that if X is long-tailed (which it is, because subexponential implies long-tailed), then
there is h(t) such that condition (a) holds and F̄X is h-insensitive; by Proposition 2.20 we can take h such that h(t) ≤ t/2 for sufficiently
large t, implying condition (b). Conditions (c) and (d) follow from being h-insensitive.

Lemma 7. Suppose that FX is whole-line subexponential and h is chosen as in Lemma 1. Also suppose that F̄V (t) = O(F̄X(t)/t).
Then Pr[X + V > t, V > h(t), X > h(t)] = o(F̄X(t)/t).

Proof. This is a slight variation on lemma 3.8 from (Foss et al., 2013), and follows from the proof of Lemma 2.37. Lemma 2.37 states that

Lemma 2.37. Let h be any increasing function on R+such that h(x) → ∞. Then, for any distributions F1, F2, G1, and G2

on R,

lim sup
x→∞

P {ξ1 + η1 > x, ξ1 > h(x), η1 > h(x)}
P {ξ2 + η2 > x, ξ2 > h(x), η2 > h(x)} ≤ lim sup

x→∞

F1(x)

F2(x)
· lim sup

x→∞

G1(x)

G2(x)
,

where ξ1, ξ2, η1, and η2 are independent random variables with respective distributions F1, F2, G1 and G2.

but it is actually proved that

P {ξ1 + η1 > x, ξ1 > h(x), η1 > h(x)} ≤

sup
z>h(x)

F1(z)

F2(z)
· sup
z>h(x)

G1(z)

G2(z)
· P {ξ2 + η2 > x, ξ2 > h(x), η2 > h(x)}. (8)

If we let F1 = FV , F2 = G1 = G2 = FX , then we get

P {X + V > t,X > h(t), V > h(t)}

≤ sup
z>h(t)

F̄V (z)

F̄X(z)
sup

z>h(t)

F̄X(z)

F̄X(z)
P
{
X +X ′ > t,X > h(t), X ′ > h(t)

}
= sup

z>h(t)

F̄V (z)

F̄X(z)
P
{
X +X ′ > t,X > h(t), X ′ > h(t)

}
(9)

where X,X ′ ∼ FX . Multiplying by t, we have

tP {X+V > t,X>h(t), V >h(t)} ≤ sup
z>h(t)

tF̄V (z)

F̄X(z)
P
{
X+X ′ > t,X>h(t), X ′>h(t)

}
, (10)

and because h(t) → ∞ as t → ∞ and F̄V (t) = O(F̄X(t)/t), we can say that for some c < ∞, limt→∞ supz>h(t)
tF̄V (z)

F̄X (z)
< c.

Therefore for sufficiently large t P {X + V > t,X > h(t), V > h(t)} ≤ c
t
P {X+X ′ > t,X>h(t), X ′>h(t)}.

By Theorem 3.6, P {X+X ′ > t,X>h(t), X ′>h(t)} is o(F̄X(t)), so the LHS is o(F̄X(t)/t) as desired.
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B.1.4. BOUNDS ON THE NUMERATOR

We want to show, for arbitrary ϵ > 0, that
∣∣∣∫∞

−∞ vfV (v)Q(v)−
∫∞
−∞ vfV (v)

∣∣∣ < ϵ in the limit as t → ∞. Since∣∣∣∫∞
−∞ vfV (v)Q(v)−

∫∞
−∞ vfV (v)

∣∣∣ ≤
∫∞
−∞ |vfV (v)(Q(v)− 1)| =

∫∞
−∞ |v| · fV (v) · |Q(v) − 1| it will suffice to show that the

latter quantity is less than ϵ for large t.

We’re going to show that
∫∞
−∞ |v| · fV (v) · |Q(v)− 1| is small by showing that the integral gets arbitrarily small on each of four pieces:

(−∞,−h(t)], (−h(t), h(t)), [h(t), t− h(t)], and (t− h(t),∞).

We’ll handle these case by case (they’ll get monotonically trickier).

Region 1: (−∞,−h(t)] Since
∫∞
−∞ vfV (v) is absolutely convergent, for sufficiently large t we will have

∫ −h(t)

−∞ |v|fV (v) < ϵ,
since h(t) goes to infinity by Lemma 1(a).

Since Q(v) is monotonically increasing and Q(0) = 1, we know that in this interval |Q(v)− 1| = 1−Q(v).

So we have
∫ −h(t)

−∞ |v| · fV (v) · |Q(v)− 1| =
∫ −h(t)

−∞ |v|fV (v)(1−Q(v)) <
∫ −h(t)

−∞ |v|fV (v) < ϵ as desired.

Region 2: (−h(t), h(t)) By lemma 1(d), h is such that for sufficiently large t, |Q(v) − 1| < ϵ∫∞
−∞ |v|fV (v)

on the interval

[−h(t), h(t)]. (Note that the value of this upper bound depends only on V and ϵ, not on t or h.) So we have
∫ h(t)

−h(t)
|v|fV (v)|Q(v)−1| <

ϵ∫∞
−∞ |v|fV (v)

∫ h(t)

−h(t)
|v|fV (v) < ϵ∫∞

−∞ |v|fV (v)

∫∞
−∞ |v|fV (v) = ϵ.

Region 3: [h(t), t− h(t)] For the third part, we’d like to show that
∫ t−h(t)

h(t)
vfV (v)(Q(v)− 1) < ϵ. Since

∫ t−h(t)

h(t)
vfV (v)(Q(v)−

1) <
∫ t−h(t)

h(t)
tfV (v)Q(v) = t

F̄X (t)

∫ t−h(t)

h(t)
fV (v)F̄X(t− v) it would suffice to show that the latter expression becomes less than ϵ for

large t, or equivalently that
∫ t−h(t)

h(t)
fV (v)F̄X(t− v) = o

(
F̄X (t)

t

)
.

The LHS in this expression is the unconditional probability that X + V > t and h(t) < V < t − h(t), but this event implies
X + V > t, V > h(t), and X > h(t). So we can write

∫ t−h(t)

h(t)

fV (v)F̄X(t− v) = Pr[X + V > t, h(t) < V < t− h(t)]

< Pr[X + V > t, V > h(t), X > h(t)] = o(F̄X(t)/t)

by Lemma 2.

Region 4: (t− h(t),∞) For the fourth part, we’d like to show that
∫∞
t−h(t)

vfV (v)Q(v) → 0 forlarge t.

Since Q(v) = F̄X (t−v)

F̄X (t)
< 1

F̄X (t)
, it would suffice to show

∫∞
t−h(t)

vfV (v) = o(F̄X(t)). But note that since limt→∞
F̄X (t−h(t))

F̄X (t)
= 1 by

Lemma 1(c), this is equivalent to
∫∞
t−h(t)

vfV (v) = o(F̄X(t− h(t))), which (by Lemma 1(b)) is equivalent to
∫∞
t

vfV (v) = o(F̄X(t)).

Note that
∫∞
t

vfV (v) = t
∫∞
t

fV (v) +
∫∞
t

(v − t)fV (v) = tF̄V (t) +
∫∞
t

F̄V (v), so it will suffice to show that both terms in this sum
are o(F̄X(t)).

The first term tF̄V (t) is o(F̄X(t)) because we assumed limt→∞
tpF̄V (t)

F̄X (t)
= 0 for some p > 1.

For the second term, we have for the same reason
∫∞
t

F̄V (v) <
∫∞
t

F̄X (v)
vp = F̄X(t)

∫∞
t

v−p = t1−p

p−1
F̄X(t) = o(F̄X(t)).

B.1.5. BOUNDS ON THE DENOMINATOR

For the denominator, we want to show that limt→∞
∫∞
−∞ fV (v)Qt(v) = 1 =

∫∞
−∞ fV (v), so it’ll suffice to show |

∫∞
−∞ fV (v)(Qt(v)−

1)| = o(1) as t → ∞. Again, we’ll break up this integral into pieces, though they’ll be more straightforward than last time. We’ll look at
(−∞,−h(t)), [−h(t), h(t)], and (h(t),∞).

• |
∫ −h(t)

−∞ fV (v)(Q(v)− 1)| =
∫ −h(t)

−∞ fV (v)(1−Q(v)) <
∫ −h(t)

−∞ fV (v).

– But since h(t) goes to infinity, this left tail of the integral will contain less and less of V ’s probability mass as t increases.

• |
∫ h(t)

−h(t)
fV (v)(Q(v)− 1)| ≤

∫ h(t)

−h(t)
fV (v)|Q(v)− 1|
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Figure 5. Histogram and normal probability plot of reward assigned by Pythia RM to random length-1024 token sequences. The Q-Q plot
suggests the distribution is approximately normal, which is much lighter-tailed than exponential.

• ≤ sup|v|≤h(t) |Q(v, t)− 1|
∫ h(t)

−h(t)
fV (v) ≤ sup|v|≤h(t) |Q(v, t)− 1|

– By Lemma 1(d) we know that this goes to zero for large t.

• |
∫∞
h(t)

fV (v)(Q(v)− 1)| =
∫∞
h(t)

fV (v)(Q(v)− 1) <
∫∞
h(t)

fV (v)Q(v).

But for sufficiently large t we have h(t) > 1, so we obtain
∫∞
h(t)

fV (v)Q(v) <
∫∞
h(t)

vfV (v)Q(v) <
∫∞
−∞ vfV (v)Q(v) = o(1) by the

results of the previous section. This completes the proof.

B.2. Conditioning with light-tailed error produces arbitrarily high utility

Theorem 8. Let X,V be independent random variables such that limt→∞
F̄X (t+1)

F̄X (t)
= 0. (This implies that X has tails that are dominated

by e−cx for any c, though it’s a slightly stronger claim because it requires that X not have large jumps in the decay of its tails.) Then for
any V with a finite mean which has no upper bound, limt→∞ E[V |X + V > t] = ∞.

Theorem 8 generalizes a consequence of the "Regressional Goodhart Identity" in (Gao et al., 2023).

Proof. Let Pr(V > c+ 1) = p > 0, which exists by our assumption that V is unbounded.

Let E[V |V < c] = q. (If this is undefined because the conditional has probability 0, we’ll have the desired result anyway since then V
would always be at least c.)

Observe that for all t, E[V |V < c,X + V > t] ≥ q (assuming it is defined), because we’re conditioning (V |V < c) on an event which
is more likely for larger v (since X and V are independent).

First, let’s see that limt→∞
P (V <c|X+V ≥t)

P (V >c+1|X+V ≥t)
= 0. This ratio of probabilities is equal to

∫ c
−∞ fV (v)F̄X (t−v)∫∞
c+1 fV (v)F̄X (t−v)

≤
∫ c
−∞ fV (v)F̄X (t−c)∫∞

c+1 fV (v)F̄X (t−c−1)
= F̄X (t−c)

F̄X (t−c−1)
·
∫ c
−∞ fV (v)∫∞
c+1 fV (v)

= F̄X (t−c)

F̄X (t−c−1)
· Pr(V <c)

Pr(V >c+1)
≤ F̄X (t−c)

F̄X (t−c−1)
· 1
p

which, by our assumption that limt→∞
F̄X (t+1)

F̄X (t)
= 0, will get arbitrarily small as t increases for any positive p.

Now, consider E[V |X + V ≥ t]. We can break this up as the sum across outcomes Z of E[V |Z,X + V ≥ t] · Pr(Z|X + V ≥ t) for
the three disjoint outcomes V < c, c ≤ V ≤ c + 1, and V > c + 1. Note that we can lower bound these expectations by q, c, c + 1

respectively. But then once t is large enough that Pr(V <c|X+V ≥t)
Pr(V >c+1|X+V ≥t)

< 1
c−q

, this weighted sum of conditional expectations will add to
more than c.

C. Additional figures
See figures 5, 6.
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Figure 6. Reward and log-probability for ACG-optimized inputs to Starling 7B-alpha.

Table 2. Hyperparameters for ACG
Parameter Value

Context length 133
Iterations 1000

Candidates per seq. position (k) 3
Annealing starting value 9
Annealing ending value 2

D. Hyperparameters for ACG
See table 2.

E. Assets
We use three models for our experiments: Starling 7B-alpha, Llama 2 7B-chat, and Pythia-1.4B. Starling was developed by Berkeley,
and Pythia by EleutherAI. Starling and Pythia models are licensed under Apache-2.0.9 10 Llama 2 models were developed by Meta and
licensed under a license published by Meta.11

9https://twitter.com/NexusflowX/status/1770532630645420474
10https://huggingface.co/EleutherAI/pythia-1.4b
11https://ai.meta.com/llama/license/
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