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We consider the problem of optimal repeated user nudging on online platforms when nudge effectiveness

is unknown and repeated use of the same nudge over time reduces its effectiveness. We model the optimal

nudging problem as an online learning problem with K-types (corresponding to different nudge-types), bandit

feedback and non-stationary rewards. Furthermore, our model also incorporates costs of designing new nudges

which are essential to ensure that they remain effective over time. We show that in the full information

setting (when all the model parameters are known), a cyclic policy which regenerates arms of a single

type after a fixed interval is optimal for maximizing the long-run-average-reward. Somewhat surprisingly,

we find that this cyclic policy incurs constant regret (independent of time) even in the finite time setting.

Leveraging ideas from this analysis, we reduce the online learning problem of optimizing repeated nudges

to learning the optimal nudge-type and the corresponding cycle-length and construct a Upper Confidence

Bound (UCB) based algorithm that incurs sublinear regret (Õ(
√
T )) which is rate-optimal in this setting.

Numerical experiments based on both synthetic data as well as a model calibrated with real-world data in an

EdTech setting show considerable improvement over benchmark methods and demonstrate the applicability

of the proposed framework.
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1. Introduction

Ensuring consistent user engagement is one of the foremost challenges that platforms face today.

With the average American spending about 7 hours per day interacting with digital media1, com-

petition for users’ attention is fierce, even for platforms designed to improve lives. For example, on

EdTech platforms, student retention in online courses can be as low as 5-10% (Reich and Ruipérez-

Valiente 2019). Similarly, in digital health, a recent study found that while 80% of adults were

willing to try digital health tools, only 10% had actually started using them (Rock Health 2020).

To address these engagement issues, platforms employ various techniques, from providing per-

sonalized content recommendations to monetary discounts. Another commonly used approach is

to utilize various forms of digital nudges - subtle design elements that guide user behavior without

restricting choice. Common nudges include personalized notifications, progress trackers, social com-

parisons, and gamification elements (Sunstein et al. 2022). Digital nudges have shown to be highly

1 https://datareportal.com/reports/digital-2022-global-overview-report
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effective in various settings (see, e.g., Kelders et al. (2012) for studies in healthcare and Goyal

et al. (2024) and references therein for recent studies in EdTech). Increased engagement in these

sectors can lead to better learning outcomes and improved health behaviors. Furthermore, digital

nudges are relatively cheap in comparison to other forms of user engagement related interventions

(e.g., monetary compensation). Hence, an efficient digital nudging strategy could be critical to the

success of a platform.

However, estimating efficient user nudging strategies can be challenging due to various reasons.

Nudges can highly vary in their effectiveness. For example, recent studies in health-care and ed-

ucation (Chang et al. 2023, Nazaret and Sapiro 2023, Milkman et al. 2024, Agrawal et al. 2023,

Goyal et al. 2024) have shown that nudges have highly differential effect with some nudges being

highly effective, while others showing very limited effect. Hence, platforms need to estimate nudge

preferences and design nudging strategies accordingly. To estimate nudge preferences, platforms

can either leverage existing data when available, or dynamically learn preferences through efficient

data-collection. This preference-learning and efficient nudging problem can be framed as a Bandit

problem (Chu et al. 2011). The bandit framework has a long history and researchers have leveraged

this framework in various contexts including pricing, donations, recommendations and health-care

amongst others (e.g., Li et al. 2010, Besbes and Zeevi 2015, Bastani et al. 2021, Singhvi and Singhvi

2022). The core idea of these algorithms is to randomize over available options to learn preferences,

and then efficiently manage the learning and earning tradeoff between randomizing and maximizing

engagement, or other outcomes (Lattimore and Szepesvári 2020). However, the nudging context

provides unique challenges that makes the direct application of existing algorithms particularly

challenging.

First and foremost is the non-stationary nature of nudge effectiveness on users. For instance

many empirical studies have shown that nudges lead to initial increase in user performance or

engagement but this effect tends to diminish over time as users become accustomed to it (Rogers

and Frey 2015, Asensio and Delmas 2019, Lichand and Christen 2020). This effect, often referred

to as the novelty effect Chen et al. (2020a), presents a significant challenge since, if not correctly

accounted for, it can lead to misleading interpretations of nudge effectiveness and complicate the

optimization process. Second, is the complexity of modeling and designing nudge interventions. In

particular, digital nudges encompass a diverse array of intervention types, each targeting distinct

behavioral mechanisms to influence user engagement.2 While these broad categories define the un-

derlying psychological principles at work, the digital nature of these nudges allows for virtually

2 These nudge categories include, but are not limited to, gamification elements that leverage intrinsic motivation and
competition, self-comparison nudges that promote personal growth and goal-setting, and peer-comparison nudges
that harness social influence and normative behavior.
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infinite variations in their presentation and implementation by dynamically adjusting visual ele-

ments, timing, wording, and interactive features. Consequently, a single nudge-type, targeting a

single behavioral mechanism can manifest in countless forms, each of which can be designed by

incurring additional design costs (Dhar et al. 2017, Harrison and Patel 2020, Tor 2023). Platforms

have to simultaneously minimize nudge design costs while maximizing user engagement. Hence,

to accurately model the online nudge preference learning and optimization problem one has to

carefully model the non-stationary effects of nudging while incorporating nudge design costs and

different nudge types.

1.1. Contributions

We highlight our main contributions below:

• Modeling of the learning with repeated nudging problem: We model the problem of repeated

nudging of users on online platforms where user preferences for different nudges are unknown,

and repeated usage of the same nudge reduces its effectiveness. Our framework also incorpo-

rates distinct characteristics of the nudging problem. Notably, we posit that nudges belong

to different types (for e.g., reminder nudges, peer comparison nudges, self-comparison nudges

etc.) and new nudges of any type can be generated at some fixed cost. We also model the

effect of nudge re-generation on rewards. Hence, in our learning problem the platform has to

not only decide what nudge to send, but also decide when to generate a new nudge. To the

best of our knowledge, our paper is the first paper that studies these tradeoffs in the learning

and nudging context.

• Characterizing a near-optimal policy under full information: To develop insights into the

structure of the optimal policy and achievable performance in our problem, we begin by

analyzing its full-information variant. In Theorem 1, we establish that a simple heuristic,

which sends only a single nudge type that regenerates after a fixed number of periods, remains

within a constant additive factor of the optimal reward at all times (and is therefore long-run-

average optimal as well). This result is significant, as the optimal policy—and consequently,

the optimal reward—may be computationally intractable, yet the proposed heuristic serves as

a simple and effective proxy. Interestingly, we show that this heuristic directly corresponds to

the celebrated Whittle Index policy, which is widely studied in the context of restless bandits

(Theorem 2).

• Rate-optimal online learning with finite-time guarantees: Following the intuition from the full-

information setting, we focus on efficiently learning the Whittle indices of each nudge type

in the finite-horizon learning setting. Analytically, we establish that our learning problem is

statistically as hard as the K-armed bandit problem by proving that a regret of Ω(
√
KT ) is
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unavoidable under non-anticipating policies (Theorem 3). We then show that our proposed

UCB algorithms, built on the widely used principle of Optimism under Uncertainty, achieve

rate-optimal regret (up to logarithmic terms) of order Õ
(√
|L|T

)
, where |L| denotes the

number of unknown parameters (Theorems 4 and 5). Our algorithms update estimates of the

unknown parameters in an episodic manner, with each episode converging, in the limit, to

a regeneration cycle of the underlying Whittle Index Policy. Our regret analysis leverages a

careful and novel adaptation of the well-known Elliptical Potential Lemma from the linear

bandits literature (see, e.g., Carpentier et al. (2020), Hamidi and Bayati (2023)) to derive

tight bounds in our setting, which may be of independent interest. Finally, to capture salient

aspects of learning in the presence of auxiliary information, we also extend our analysis to

linear models, where each arm type is associated with a static feature vector. We establish

similar performance bounds in this setting (Theorems 6 and 7), demonstrating the robustness

of our approach.

• Extensive numerical experiments to demonstrate the empirical effectiveness of the algorithm:

Finally, we perform extensive numerical experiments on synthetic data, and in parameter

settings inspired from a nudging intervention in the Early Childhood Education setting. We

benchmark the proposed algorithm against benchmark learning policies such as Upper Confi-

dence Bound and Thompson Sampling (TS) (Lattimore and Szepesvári (2020)), and find that

our algorithm considerably outperforms benchmark algorithms and is also robust to parame-

ter misspecification. Overall, the numerical results further enforce the practical applicability

of the proposed algorithm.

2. Literature Review

Our work relates to two primary streams of literature. On one hand, we model and analyze our

recommendation problem within the well-established bandit learning framework and develop a

novel algorithm with broad applicability across various domains. On the other hand, from an

applied perspective, our focus is on data-driven nudging in platforms designed for social good.

Bandits: The bandit framework aims to efficiently balance the tradeoff between learning and

earning in settings where user preferences are unknown and the platform’s objective is to learn

user preferences while maximizing rewards. For a comprehensive overview of the vast literature in

this area, we refer the interested readers to Bubeck and Cesa-Bianchi (2012), Slivkins et al. (2019),

Lattimore and Szepesvári (2020). Since the seminal work of Robbins (1952), numerous extensions

and modifications have been analyzed, including the case of non-stationary rewards and arms of

K-types, extensions most closely related to ours that we discuss in more detail next.

Non-stationary bandits generalize the classical multi-armed bandit problem to settings where

reward distributions evolve over time. Unlike stationary bandits, which assume fixed expected
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rewards, non-stationary models accommodate dynamic environments, making them particularly

relevant to applications such as dynamic pricing, adaptive resource allocation, and online recom-

mendation systems. To address challenges arising from non-stationarity, various strategies have

been proposed, including sliding window algorithms (Garivier and Moulines 2008), discounted-UCB

approaches (Kocsis and Szepesvári 2006), and meta-learning frameworks (Chen et al. 2020b), each

adapting to evolving reward distributions by prioritizing recent observations or detecting distribu-

tion shifts. A fundamental challenge in non-stationary bandits lies in balancing the exploitation

of currently high-reward arms with exploration to detect change points (Besbes et al. 2014). In

comparison, our work introduces a novel formulation of non-stationarity in rewards in the context

of nudges. Departing from prior work on non-stationary bandits, we consider a K-typed bandit

setting (Pandey et al. 2007, Baransi et al. 2014, Kalvit and Zeevi 2020) with an infinite number of

arms, each belonging to one of K types and exhibiting non-stationary decaying rewards. Crucially,

new arms can be generated at an additional cost, requiring the platform to jointly optimize arm

selection and arm regeneration. This structure not only captures reward decay but also enables

strategic intervention, allowing the platform to regulate the timing of arm regeneration and manage

shifts in reward dynamics.

From a modeling perspective, our work is closely related to studies on mortal bandits and rotting

bandits. Mortal bandit problems consider settings in which available arms can “die” or become

inactive over time (Chakrabarti et al. 2008, Tracà et al. 2020). These models are motivated by

applications in health care and marketing, where certain treatments or advertisements may become

unavailable as a study progresses. Research in this area typically focuses on developing strategies

that rapidly detect and adapt to the loss of arms, ensuring that decision-making remains efficient

and effective. Similarly, rotting bandit problems involve a potentially infinite number of arms,

each of which may degrade—or “rot”—over time as a function of its usage Levine et al. (2017),

Seznec et al. (2019). Our proposed model draws on ideas from both frameworks yet is substantially

different from either. In our model, much like in the mortal bandit framework, arms have a fixed

lifetime after which they become irrelevant. Moreover, we allow an arm’s rewards to “rot” as a

function of its age rather than the number of times it is pulled. Although this aspect differs from

the traditional rotting bandit model, we show that our model subsumes the standard model of

reward decay found in rotting bandits. This insight follows from the observation that the rotting

rewards model can be cast as a resting bandit problem, whereas our proposed problem is instead

a restless bandit problem where rewards of different arms can change, regardless of whether that

particular arm is pulled or not (Whittle 1980, 1988). In fact, we leverage the problem structure,

and an independent novel sample path based approach to show the optimality of a cyclic policy,

which also coincides with the Whittle Index Policy. Nevertheless, unlike most prior studies on



Kalvit, Singhvi: Learning for Repeated Nudging
6

Whittle Index, which primarily focus on the infinite-horizon average cost setting, we demonstrate

the near-optimality of our proposed policy in the finite horizon setting as well.

Digital Nudging: From an application perspective, our work addresses the problem of digital

nudging—particularly on platforms aimed at social good. Subtle digital interventions, such as

personalized notifications, progress trackers, and social comparisons, have been shown to effectively

guide user behavior while preserving choice (Sunstein et al. 2022). Empirical studies in healthcare

(Kelders et al. 2012) and education (Goyal et al. 2024) further illustrate that well-designed nudges

can significantly boost engagement and improve outcomes. However, these prior works generally

assume a static setting and do not explicitly account for the diminishing returns (the so-called

novelty effect) that occur when the same nudge is repeatedly employed (Rogers and Frey 2015,

Asensio and Delmas 2019, Chen et al. 2020a, Lichand and Christen 2020). In contrast, our work

models the learning problem of repeated nudging in which user preferences for different nudge types

are unknown and the effectiveness of a nudge decays with repetition. The study most closely related

to our work is Chen et al. (2020a), in which the authors employ a bandit learning model to optimize

digital nudge delivery on the Duolingo mobile app. That study also utilizes an exponential decay

model to account for the reduction in engagement resulting from repeated nudges. Nevertheless,

our work substantially differs from Chen et al. (2020a): while they assume that the decay model

parameters can be estimated separately, our approach jointly learns both the nudge effects and

their decay rates, and crucially incorporates the regeneration cost for designing a new nudge. This

comprehensive framework enables us not only to determine when a nudge’s effectiveness wanes, but

also to identify the optimal point at which it is beneficial for the platform to invest in generating

a new nudge rather than reusing an old one. Consequently, both our analytical approach and the

main insights diverge significantly from those of Chen et al. (2020a).

Outline of the Paper

§3 introduces our model and formally defines the problem. In §4, we characterize a near-optimal

policy for the full-information baseline setting, assuming perfect prior knowledge of all problem

primitives. §5 addresses the challenges posed by parameter uncertainty: §5.1 examines the fun-

damental statistical complexity of the problem, while §5.2.1 and §5.2.2 introduce two variants of

our rate-optimal learning algorithm, each tailored to different configurations of unknown parame-

ters. Numerical experiments comparing the performance of our algorithms against several baseline

policies are presented in §6. For brevity, discussions on model extensions incorporating auxiliary

covariate information are deferred to §H and §I in the supplementary material. Finally, all technical

developments, including proofs and ancillary results, are relegated to the appendices.
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3. Model and Problem Formulation

Notation. Before formally introducing our model, we review the key mathematical notation used

throughout this paper. We adopt the standard Landau convention, where f(t) =O(g(t)) (equiva-

lently, g(t) =Ω(f(t))) if there exists a positive constant C independent of t such that f(t)⩽Cg(t).

Moreover, if C is independent of all problem primitives, we refer to it as an absolute constant.

The notation Õ(·) is used to suppress polylogarithmic factors in O(·). For any N ∈N, we denote

[N ] = {1, . . . ,N}. For any w ∈R, ⌊w⌋ and ⌈w⌉ represent the greatest integer less than or equal to

w and the smallest integer greater than or equal to w, respectively. For any a, b ∈N, the modulo

operator is defined as a%b := a−⌊a/b⌋b. The indicator random variable for an event E is denoted

by 1{E}. The scalar inner product of vectors x, y ∈Rd is denoted by ⟨x, y⟩, while the outer prod-

uct of x with itself is denoted by x⊗ x ∈ Rd×d. The elliptical norm of x ∈ Rd with respect to a

symmetric positive definite matrix A∈Rd×d is defined as ∥x∥A :=
√
⟨x,Ax⟩.

In this section, we present a stylized model for optimizing nudge interventions. We consider a

universe of countably many arms indexed by N, each belonging to one of K possible arm types in

[K]. The type of an arm is an observable attribute specified by the mapping type :N→ [K]. For each

type κ∈ [K], there is an associated mean reward µκ ≥ 0, which is unknown a priori. For example, in

the nudging context, arms correspond to different nudges, and the K arm types represent different

nudge categories (e.g., reminder nudges might constitute one type, while peer-comparison nudges

form another). Similarly, mean reward µκ could then denote the average engagement due to sending

a new nudge of type κ to the user. The user interacts with the platform sequentially over T rounds.

In each round t ∈ [T ], the decision maker may either pull a new arm of type κ (i.e., one not yet

explored) by incurring a known cost cκ ∈ [0, µκ], or pull an old arm (i.e., one previously pulled) at

no additional cost. Pulling a new arm corresponds to generating a new nudge, whereas pulling an

old arm reuses an existing nudge, yielding a diminished reward.

More precisely, let At−1 ⊂ N denote the set of arms pulled up to round t− 1 (with A0 := ∅).

Then, the net expected reward from playing arm i in round t, conditional on type(i) = κ, is given

by:

Rew(i, t)|type(i) = κ

=


µκ− cκ if i /∈At−1,

µκ gκ
(
aget(i)

)
if i∈At−1 and aget(i)⩽M − 1,

−∞ otherwise,

where gκ : {0} ∪ [M − 1]→ R+ is a non-increasing mapping (possibly unknown) with gκ(0) = 1

for each κ ∈ [K], and aget(i) := t− t0(i) with t0(i) ∈ [t] denoting the first round in which arm i
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was pulled.3 Simply put, gκ
(
aget(i)

)
captures the decay in the efficacy of arm i since its initial

pull, and M represents the maximum life of the arm after which it is discarded. Figure 1 plots a

representative reward from different arm-types, as a function of the age of the arm pulled, with and

without the cost of regeneration. The underlying decay function follows a Logit specification (more

details on the parameter specification are provided in §6.1). Notice that different arm-types have

different decay patterns, and have heterogeneous regeneration costs. This heterogeneity allows for

the model to capture fairly general reward and cost structures.

In the sequential setting, we let πt denote the arm pulled in round t∈ [T ]. Then the net realized

reward rt is generated according to the following model:

rt = ξt +


µtype(πt)− ctype(πt) if πt /∈At−1

µtype(πt)gtype(πt)(aget(πt)) if πt ∈At−1 and aget(πt)⩽M − 1

−∞ otherwise

, (1)

where ξt is a mean-zero noise term satisfying Assumption 1 which is standard in the study of

Bandit learning algorithms (Lattimore and Szepesvári 2020).

Assumption 1 (Independent σ-Sub-Gaussian Noise) In each round t ∈ [T ], ξt ∼ subG(σ2),

generated independently of Ht−1 ∪ {πt}, where Ht−1 denotes the past history defined as Ht−1 :=

SigmaAlgebra{(πs, rs) : s∈ [t− 1]}.4

Figure 1 Representative expected reward outcomes for different arms and corresponding reward decay rates. On

the left, we plot the expected reward without accounting for cost of regeneration and on the right we

plot the expected reward after accounting for the cost of regeneration.

The decision maker’s objective is to maximize cumulative reward over T time periods. To formally

define this objective, we first define the set of feasible non-anticipating policies in our setting. The

3 A natural alternative is to model aget(i) as the number of times arm i has been pulled up to round t. Such a model
would be similar to the rotting bandits framework where reward decays as a function of the arm usage (Levine et al.
2017, Seznec et al. 2019). This would result in a “simpler” resting model in which our algorithms and results would
still apply; we omit the discussion for brevity.

4 See Definition 2 for details on sub-Gaussian random variables.
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sequence π := (πt : t∈ [T ]) is called a feasible policy if each πt is a non-anticipating mapping from

the history to actions, πt :Ht−1 7→N (possibly randomized). We will refer to πt(Ht−1) simply as πt.

The exhaustive set of feasible policies is denoted by Π. The decision maker’s problem of maximizing

cumulative expected rewards over T rounds is given by

sup
π∈Π

Eπ

∑
t∈[T ]

rt

 , (2)

where the expectation is w.r.t. all possible sources of randomness in the problem (rewards as well

as policy). We denote the optimal value of (2) when all problem primitives are known a priori by

OPTT . The regret5 incurred by policy π over the T rounds is then given by

R(T ) := OPTT −
∑

(κ,m)∈[K]×[M ]

(µκgκ(m− 1)−1{m= 1}cκ)Nκ,m(T ) , (3)

where Nκ,m(T ) denotes the number of rounds in [T ] in which an arm of type κ and age m −

1 is pulled by π. Using the Tower property of expectations, it can be shown that Eπ[R(T )] =

Eπ

[
OPTT −

∑
t∈[T ] rt

]
, and therefore, (2) is equivalent to the problem of minimizing the widely

studied metric of expected regret, given by

inf
π∈Π

Eπ[R(T )] . (4)

4. A Near-Optimal Static Index Policy Under Complete Information

This section aims to outline key properties of OPTT , the optimal value of (2) when all primitives,

including (µκ, gκ(·) : κ∈ [K]), are known a priori. To this end, we first impose a natural restriction

on the policy space Π to prune it to a tractable class Π0. We further show that this restriction incurs

no loss of optimality and preserves the achievability of OPTT within the pruned policy class. Finally,

we characterize a static index-based, age-triggered policy from Π0 that solves (2) near-optimally

and shed light on its connections to prior work on related models in the literature.

Definition 1 (No-Recall Policy) A policy π ∈ Π is referred to as a “no-recall policy” iff the

following implications hold for all rounds t, s∈ [T ] satisfying t+2⩽ s⩽ T :

1. πt ̸= πt+1 =⇒ πt ̸= πs.

2. type(πt) ̸= type(πt+1) =⇒ type(πt) ̸= type(πs).

We denote the exhaustive collection of such policies by Π0.

5 Note that this definition is occasionally used for pseudo-regret in the bandit literature; see, e.g., Slivkins et al. (2019).
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Informally, a no-recall policy is a non-anticipating policy that batches arms and types together,

where each arm is pulled only during consecutive rounds (referred to as an epoch henceforth) and

then discarded. In what follows, we show that, without loss of optimality, one can focus exclusively

on no-recall policies to solve the regret minimization problem.

Lemma 1 (Restricting to No-Recall Policies is Sufficient) For every π ∈ Π, there exists

some π′ ∈Π0 such that Eπ′

[∑
t∈[T ] rt

]
⩾Eπ

[∑
t∈[T ] rt

]
.

Details of the proof are deferred to §A.1 but follow from the monotonicity of the decay functions.

Specifically, in the presence of multiple arms of the same type at different ages, one can, without loss

of optimality, focus solely on the “youngest” arm of that type and discard all others. Consequently,

all pulls of an arm can be batched together. Moreover, batching arm types together is naturally

without loss of generality. We next leverage Lemma 1 to characterize a near-optimal solution to

(2) from the policy class Π0.

Theorem 1 (A Near-Optimal Age-Triggered Policy) For each (κ,m) ∈ [K] × [M ], define

the index

µ̄κ,m :=
µκ

∑m−1

t=0 gκ(t)− cκ
m

, (5)

and let (κ∗,m∗)∈ argmax(κ,m)∈[K]×[M ] µ̄κ,m. Then, the no-recall policy π∗ that keeps pulling an arm

of type κ∗ while its age is less than m∗ rounds, switches to a new arm of the same type thereafter

and repeats the process, satisfies for any T ∈N:

OPTT − cκ∗1{T%m∗ ̸= 0}⩽Eπ∗

∑
t∈[T ]

rt

⩽ OPTT ⩽ µ̄κ∗,m∗T . (6)

Further, when T%m∗ = 0 or cκ∗ = 0, all inequalities in (6) are tight, i.e., OPTT =Eπ∗

[∑
t∈[T ] rt

]
=

µ̄κ∗,m∗T .

Details of the analysis are deferred to §A.2, but in essence, the proof leverages Lemma 1 to

optimize over the pruned policy class Π0, identifying the structure of π∗ from the optimal objec-

tive value. Theorem 1 shows that, without any significant loss of optimality, it suffices to focus

exclusively on arms of type κ∗. Furthermore, the “smallest age” serves as a sufficient state de-

scriptor—tracking only the age of the most recently pulled type κ∗ arm suffices for near-optimal

performance6. Figure 2 demonstrates the structure of the optimal policy for the same setting as

6 A version of Theorem 1 can be shown to hold in the more general setting where the maximum lifetime M is
unbounded. However, we do not pursue this result at this level of generality, as practical scenarios typically satisfy
M <∞.
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that of Figure 1. In this case, the optimal policy generates a new arm with arm-type 4 after pulling

the arm for 7 consecutive periods and then discards it. Finally, a stationary, Markov, and deter-

ministic policy that prescribes pulling a fixed arm of type κ∗ repeatedly while its age is less than

m∗ rounds, then discarding it and replacing it with a new arm of the same type, remains within

cκ∗ of OPTT in value at all times.

Figure 2 Optimal policy structure of the age-triggered policy. The reward and decay parameters are selected

as in Figure 1. Notice that arm-type 0 yields the highest reward when a new arm of this type is

generated. Nevertheless, since rewards decay over time, the optimal policy in fact chooses arm-type 4

and regenerates in after 6 consecutive periods .

Before concluding this section, we show that the no-recall policy π∗ described in Theorem 1 is,

in fact, closely related to a well-known heuristic for a special class of Markov Decision Processes

known as Restless Bandits (Whittle 1988).

Theorem 2 (Connection to the Whittle Index Policy for Restless Bandits) Under

complete knowledge of all primitives, (2) is a special case of a restless K-armed bandit problem that

satisfies the Whittle-indexability condition. Moreover, the no-recall policy π∗ described in Theorem 1

matches the Whittle Index Policy, with static Whittle indices given by
(
maxm∈[M ] µ̄κ,m : κ∈ [K]

)
.

The details of this connection are fleshed out in §A.3. Several remarks are in order: (i) It is im-

portant to note that Theorem 1 does not follow from Theorem 2 or any prior result in the restless

bandit literature. Instead, our proof of optimality of the no-recall policy π∗ (which, incidentally,

happens to match the Whittle Index Policy) relies on an independent, novel sample-path-based

analysis that exploits our problem structure. (ii) Prior literature on the restless bandit problem,

beginning with the seminal works of Whittle (1980, 1988), primarily focuses on the infinite-horizon

average-cost formulation under indexability and additional technical conditions that are generally

hard to verify (only a few papers study finite-horizon formulations; see Hu and Frazier (2017),
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Zayas-Caban et al. (2019), Brown and Smith (2020), Zhang and Frazier (2021)). (iii) Moreover,

while the indexability condition ensures that the Whittle Index Policy is well-defined, it alone may

not be sufficient to guarantee the policy’s optimality (see, e.g., Weber and Weiss (1990)). (iv) Most

importantly, the notion of optimality adopted in the aforementioned references and in the broader

restless bandit literature differs from ours: there, optimality is defined w.r.t. K in an asymptotic

regime where the proportion of arms pulled in each round is held fixed (budget/activation con-

straint). In contrast, we show that the no-recall policy π∗ is near-optimal for any K ∈ N in our

setting, where exactly one arm is pulled in each round.

To conclude, we reiterate that the above connection to the Whittle Index Policy and the restless

bandit model is established solely for completeness of theoretical exposition and does not affect

our analyses or main results.

5. Regret Minimization Under Parameter Uncertainty

We now focus on the incomplete information setting where the mean reward vector (µκ : κ∈ [K]),

and potentially the decay kernels (gκ(·) : κ∈ [K]) as well, are unknown a priori, but can be esti-

mated from noisy observations. In §5.1, we establish a fundamental hardness result for the regret

minimization problem in (4), demonstrating that in the absence of prior knowledge of these pa-

rameters, no algorithm can achieve regret smaller than Ω
(√

T
)

uniformly across all parameter

configurations. Subsequently, in §5.2, we propose an adaptive learning algorithm that achieves a

near-optimal O
(√

T logT
)
regret.

5.1. Fundamental Statistical Complexity

In what follows, an “instance” of the problem refers to a specific parameter configuration,

{(µκ, σ, cκ, gκ(m)) : (κ,m)∈ [K]× [M − 1]}, along with the distribution of (ξt : t∈ [T ]). For clarity,

we will slightly overload notation to emphasize the dependence of achievable regret on the given

problem instance.

Theorem 3 (Lower Bound on Achievable Regret) Fix T ⩾K. Then, for every policy π ∈Π,

there exists a problem instance νπ such that Eπ[R(T ;νπ)] = Ω
(
σ
√
KT

)
, where the Ω(·) only hides

absolute constants.

The proof relies on a reduction to a K-armed bandit problem, leveraging Theorem 1 (see §C for

details). Informally, this implies that our problem is statistically at least as hard as a K-armed

bandit problem. In §5.2, we will see that this bound is, in fact, tight with respect to its leading

order in T and, depending on the dimension of the estimand (the mean reward vector, potentially

with the decay kernels as well), can also capture the correct order of dependence on K (up to

logarithmic factors in other primitives).
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5.2. An Optimism-based Approach for Learning the Whittle Index Policy

In this section, we propose an approach based on the celebrated optimism under uncertainty prin-

ciple from the multi-armed bandits literature (see, e.g., Slivkins et al. (2019)) to learn the static

Whittle indices
(
maxm∈[M ] µ̄κ,m : κ∈ [K]

)
for each arm type in an online, data-driven manner.

Recall that the mean reward vector (µi : i∈ [K]), and potentially also the decay kernels

(gi(·) : i∈ [K]), are initially unknown. We first address the case of known decay kernels in §5.2.1,

before investigating unknown decay kernels in §5.2.2.

5.2.1 Learning the Mean Reward Vector

A key challenge in learning the unknown mean reward vector lies in determining how to appropri-

ately use samples of varying “ages” for estimation. To address this, we propose in (7) a stratified

estimator, µ̂(t)
κ , for estimating the true mean reward µκ associated with arm-type κ, using obser-

vations collected from arms of type κ up to round t.

In what follows, for (κ,m, t) ∈ [K]× [M ]× [T ], let Nκ,j(t) denote the total number of samples

collected by the end of round t from type κ arms of age j − 1. We denote the empirical mean of

these samples by ν̂
(Nκ,j(t))
κ,j , with ν̂

(0)
κ,j := 0. Note that ν̂

(Nκ,j(t))
κ,j serves as an empirical estimate of

µκgκ(j− 1). Our stratified estimator, defined for (κ, t)∈ [K]× [T ], is given by

µ̂(t)
κ :=

∑
j∈[M ]

(
ρκ,j ν̂

(Nκ,j(t))
κ,j (1+Nκ,j(t))

gκ(j−1)

)
1+

∑
j∈[M ] ρκ,jNκ,j(t)

, (7)

where (ρκ,j : (κ, j)∈ [K]× [M ]) are hyper-parameters satisfying ρκ,j ⩾ 0 ∀ (κ, j) ∈ [K]× [M ] and∑
j∈[M ] ρκ,j = 1 ∀ κ∈ [K].

Remark 1 (Possible Stratifications) For any κ ∈ [K], the vector (ρκ,j : j ∈ [M ]) determines

how samples from type κ arms of different ages contribute to the estimation of µκ in (7). For

example, setting ρκ,1 = 1 would completely discard samples of age at least 1, while setting ρκ,j =

1/M ∀ j ∈ [M ] would assign equal weight to samples of all ages.

Our algorithm also relies on computing the following key estimation metrics, defined for each

(κ,m, t)∈ [K]× [M ]× [T ]:

µ̂(t)
κ,m :=

µ̂(t)
κ

∑
j∈[m] gκ(j− 1)− cκ

m
, (8)

radκ,m,t := 2σ


∑

j∈[M ]

√
α
(

ρκ,j
gκ(j−1)

)2

(1+Nκ,j(t)) log
(
1
δ

)
1+

∑
j∈[M ] ρκ,jNκ,j(t)


(∑

j∈[m] gκ(j− 1)

m

)
, (9)
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where µ̂(t)
κ is as defined in (7), σ is the sub-Gaussian parameter from Assumption 1, and α ⩾ 0

is a hyper-parameter that controls the confidence radius radκ,m,t of the estimate µ̂(t)
κ,m, henceforth

referred to as the exploration coefficient, and δ is the failure probability. An appropriately tuned

exploration coefficient guarantees that the estimate µ̂(t)
κ,m lies within ±radκ,m,t of the underlying

estimand µ̄κ,m (see (5)), with high probability.

We are now ready to present our algorithm for the case of known decay kernels. In what follows,

a “new” arm refers to one that has never been pulled before.

Algorithm 1 Decay-Rate Aware Optimistic Nudging (DRAWON)

• Input: Types [K], Max life M , sub-Gaussian param σ, Exploration coefficient α, Horizon T ,

Decay coefficients {gκ(j− 1) : (κ, j)∈ [K]× [M ]}, Weights {ρκ,j : (κ, j)∈ [K]× [M ]},

Costs {cκ : κ∈ [K]}, Failure probability δ.

• Initialize: Round t= 1.

• While t⩽ T

Fix (κt,mt)∈ argmax(κ,m)∈[K]×[M ]

{
µ̂(t−1)
κ,m + radκ,m,t−1

}
. (UCB rule)

Select a new arm of type κt; pull it for mt consecutive rounds.

t← t+mt.

Dynamics. At the beginning of each episode, Algorithm 1 commits to pulling a new arm of a

fixed type for a pre-specified number of rounds, after which the arm is discarded. Based on the

observed feedback, the parameter estimates of the unknown mean reward vector are updated. The

type and commitment time in each episode are chosen based on the UCB parameter estimates.

The underlying premise is that the algorithm tracks the best µ̄κ,m, eventually converging to the

Whittle Index Policy described in Theorem 1. The result below provides bounds on the regret

incurred during this process.

Theorem 4 (High Probability Regret Bounds for Algorithm 1) Fix exploration coeffi-

cient α and failure probability δ such that 1−2KMTδα > 0. Then, the regret of Algorithm 1 satisfies

the following w.p. at least 1− 2KMTδα:

R(t)⩽ max
κ∈[K]

cκ +4σ

√
2αKCt log

(
1+

t

K

)
log

(
1

δ

)
∀ t∈ [T ] , (10)

where

Ct :=
∑

s∈S1,t


∑

j∈[M ]

(
ρκs,j/ρκs,1

g2κs
(j− 1)

) ∑
j∈[ms]

gκs(j− 1)

2 , (11)

with S1,t ⊆ [t] denoting the subset of rounds until t in which the UCB rule applies.
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In essence, the result follows from a decomposition of regret over the episodes of the algorithm.

A tight upper bound on the sum of the corresponding UCB terms is then derived via a novel

and careful application of the Elliptical Potential Lemma (Carpentier et al. 2020), adapted to our

setting; we note that this result is typically used in the analysis of bandits with covariates and is

uncommon in the study of “simple” (covariate-free) bandits. Nonetheless, its necessity in analyzing

our model arises due to the complex interdependencies introduced by the decay kernels, for which

standard stochastic bandit proof techniques appear to be inadequate, yielding bounds that are

weaker by a factor of
√
M . Full details are deferred to §D. In what follows, we derive a bound from

(10) for the special case where ρκ,1 = 1 for all κ∈ [K].

Corollary 1 (Simple Mean Estimation Using Age-0 Samples) In the setting of Theo-

rem 4, if ρκ,1 = 1 for all κ∈ [K], then the following holds w.p. at least 1− 2KMTδα:

R(t) = max
κ∈[K]

cκ + Õ

√K(t+M) min

√M , max
κ∈[K]

∑
j∈[M ]

gκ(j− 1)

 ∀ t∈ [T ] . (12)

To see this, note that when ρκ,1 = 1 for all κ∈ [K], we obtain Ct =
∑

s∈S1,t

(∑
j∈[ms]

gκs(j− 1)
)2

⩽

(t+M)min

(
M, maxκ∈[K]

(∑
j∈[M ] gκ(j− 1)

)2
)
, leading to the bound in (12).

Effect of mean estimator selection: Corollary 1 suggests that relying solely on age-0 samples

for estimation is generally sufficient to achieve good regret performance when decays are “fast.”

Specifically, if
∑

j∈[M ] gκ(j− 1) is bounded above by an absolute constant C for each κ∈ [K], then

the upper bound in (12) matches the Ω
(√

Kt
)
lower bound from Theorem 3, up to logarithmic

factors, for t⩾M . This suggests that stratification offers no advantage in such cases. On the other

hand, when decays are “slow,” the upper bounds do not indicate which estimator is preferable.

However, we hypothesize that stratified estimation often results in improved numerical performance

in this regime.

5.2.2 Learning Decay Kernels Simultaneously

While the previous section assumed that the decay rate functions g were known, in this section

we analyze the case when neither the mean reward vector (µκ : κ∈ [K]) nor the decay coefficients

{gκ(j− 1) : (κ, j)∈ [K]× [M ]} are known a priori. Recall that ν̂
(Nκ,j(t))
κ,j is an estimator for µκgκ(j−

1), computed as the empirical mean of the Nκ,j(t) samples collected from type κ arms of age j− 1

by the end of round t. Our algorithm estimates the µκgκ(j − 1) values directly. To this end, we

redefine estimation metrics for (κ,m, t)∈ [K]× [M ]× [T ] as follows:

µ̂(t)
κ,m :=

1

m

∑
j∈[m]

ν̂
(Nκ,j(t))
κ,j − cκ

 . (13)
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radκ,m,t :=
2σ

m

∑
j∈[m]

√
α log

(
1
δ

)
1+Nκ,j(t)

. (14)

These are defined similarly to their counterparts in §5.2.1, except that they no longer rely on

prior knowledge of the decay kernels. We now present our algorithm for the case of unknown decay

kernels. In what follows, like before, a “new” arm refers to one that has never been pulled before.

Algorithm 2 Decay-Rate Agnostic Optimistic Nudging (DRAGON)

• Input: Types [K], Max life M , sub-Gaussian param σ, Exploration coefficient α, Horizon T ,

Failure probability δ, Costs {cκ : κ∈ [K]}.

• Initialize: Round t= 1.

• While t⩽ T

Fix (κt,mt)∈ argmax(κ,m)∈[K]×[M ]

{
µ̂(t−1)
κ,m + radκ,m,t−1

}
. (UCB rule)

Select a new arm of type κt; pull it for mt consecutive rounds.

t← t+mt.

Dynamics. The algorithm operates similarly to Algorithm 1, except that it uses the redefined

estimator µ̂(t−1)
κ,m and confidence radius radκ,m,t−1 (as per (13) and (14) respectively), in the UCB

rule. The result below provides an upper bound on the regret incurred by Algorithm 2.

Theorem 5 (High Probability Regret Bound for Algorithm 2) Fix exploration coefficient

α and failure probability δ such that 1−2KMTδα > 0. Then, the regret of Algorithm 2 satisfies the

following w.p. at least 1− 2KMTδα:

R(t)⩽ max
κ∈[K]

cκ +4σ

√
α log

(
1

δ

)√
2KM(t+M) log

(
1+

t+M

K

)
∀ t∈ [T ] .

Details of the analysis are deferred to §E, but follow a similar approach as in the proof of Theo-

rem 4. It is noteworthy that this Õ
(√

KMt
)
bound is relatively benign compared to the complexity

terms in general-purpose reinforcement learning approaches for finite-state, finite-horizon MDPs.

For instance, a direct implementation of the UCRL2 algorithm (Auer et al. 2008) yields a regret

bound of order Õ
(
D|S|

√
|A|t

)
, where the nominal size of the state space is |S| = O(MK), the

action space is of size |A|=O(K), and D denotes the MDP diameter, which is bounded above by

MK. The exponential improvement achieved in our setting arises from an explicit incorporation of

problem structure into the learning algorithm. Specifically, the structure of the near-optimal policy

π∗ characterized in Theorem 1 enables a state-space reduction from MK to KM , corresponding to

the actual dimensionality of the unknown parameter space.
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Calibrating the maximum life parameter: Thus far, we have treated the maximum life parameter

M as an independent model primitive. However, in practice, M could potentially be an endogenous

parameter, as the viable life of any arm is intrinsically linked to its decay characteristics. In the

following, we present a method to calibrate M using benign knowledge of other model primitives.

To this end, we impose a mild assumption on the mean rewards and costs associated with each

type.

Assumption 2 (Cost-to-Reward Ratio) cκ ⩽ βµκ holds for each κ ∈ [K], where β < 1 is a

known constant.

The assumption posits that the decision maker is a priori aware of a meaningful upper bound

on the cost-to-reward ratio for each arm type. Based on this information and prior knowledge of

the decay kernels, we now present a formal result for calibrating the max life parameter M .

Proposition 1 (Sufficient Max Life of an Arm) Suppose that Assumption 2 holds, and that

fκ(m) is an upper bound on gκ(m) for each (κ,m) ∈ [K] × N. If M is an upper bound on

maxκ∈[K]Mκ, whereMκ := inf {m∈N : fκ(m)⩽ 1−β}, then inf (arg supm∈N µ̄κ,m)⩽M ∀ κ∈ [K].

We defer the proof to §F. A direct implication of Proposition 1 is that, under the proposed

calibration of M , the value supm∈N µ̄κ,m is attained at some m∗
κ ∈ [M ] for each type κ ∈ [K].

Consequently, it suffices to discard any arm once it reaches M rounds of age. In what follows, we

provide examples of M that satisfy Proposition 1, derived from standard choices for decay kernels.

Example 1 (Light-Tailed Decays) If fκ(m) = aκ exp(−bκm) for some aκ, bκ > 0, then it suffices

to set M =maxκ∈[K]Mκ, whereMκ =
⌈

1
bκ

log
(

aκ
1−β

)⌉
.

Example 2 (Heavy-Tailed Decays) If fκ(m) = aκm
−bk for some aκ, bκ > 0, then it suffices to

set M =maxκ∈[K]Mκ, whereMκ =

⌈(
aκ
1−β

) 1
bκ

⌉
.

Finally, in more practical settings when a meaningful upper-bound on the cost-to-reward ratio

is not readily available, we recommend over-estimating the max-life parameter based on numerical

results in §6 that show the robustness of the algorithm to the max-life parameter.

6. Numerical Experiments

We now compare the empirical performance of the proposed algorithms with state-of-the-art bench-

mark algorithms using both synthetic (§6.1) as well as real-world data (§6.2).
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Benchmark Algorithms: We implement benchmark algorithms based on Upper Confidence

Bounds and Thompson Sampling, the two most widely used algorithms in academic research for

online learning problems.

1. Decay-Aware and Decay-Agnostic Benchmark UCB Algorithms: We consider two-versions of

the classical UCB algorithm for multi-armed bandit problems as proposed by Auer (2002),

(one for the decay aware and the other for the decay agnostic case). The algorithms rely on a

direct cost-to-reward comparison for arm selection and regeneration decisions instead of the

Whittle index rule that the proposed DRAWON (Algorithm 1) and DRAGON (Algorithm 2)

algorithms rely on. We present the exact pseudo-code for the benchmark algorithms in §J.

2. Decay-Aware and Decay-Agnostic Benchmark TS Algorithms: We also implement two different

versions of the Thompson Sampling algorithm (Lattimore and Szepesvári (2020)) that uses a

sampling based approach for exploration and is widely used due to its ease of implementation.

As before, the algorithms use a direct cost-to-reward comparison to decide which arms to pull

and when to regenerate them. We present the pseudo-code for the algorithm and additional

details on the sampling strategy in §J.

6.1. Synthetic Data Experiments

Data generation: Recall that in our setting K denotes distinct arm types where each arm-

type i∈ [K] is characterized by a base mean reward µi, a decay function gi(·), and a regeneration

cost ci. We generate these parameters as follows: (i) Each µi ∼ U[0.5,1] where U[a, b] denotes a

uniform random variable between a and b; (ii) Given µi, we let the cost parameter ci ∼U[µi
2
, µi];

(iii) For each arm type i, we specify a maximum life M , so that gi(age) is only meaningful for

age∈ {0, . . . ,M − 1}. We experiment with different decay functions that we discuss in-more detail

below; (iv) Finally, we let T = 10,000 and whenever an arm of type κ is pulled in period t, rewards

are generated according to the reward model (1) specified in §3 with εt ∼N (0,1).

Decay functions and optimal policy structure: Recall that the decay function gi(.) plays

a crucial role in our setting since it determines the structure of the optimal policy. We implement

two natural parametric forms of the decay functions discussed in more detail below.

Exponential decay function: The exponential decay function captures an initial drop in rewards,

followed by a more gradual tapering off from subsequent usage. The reward from pulling an arm

of type κ and age j is given by:

gκ(j) = µκ exp (−λκj) , (15)

where µκ is the baseline effect of pulling arm κ of age 0 sampled as discussed before and λκ
7

denotes the decay rate associated with using an arm of type κ. In Figure 3, we plot representative

7 The exact functional form of λk = c2 + c3U [0,2] where c2 and c3 are independent constants. This functional form
allows for substantial variability in decay rates across different arm-types.
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µκgκ(.), the realized reward (after accounting for the cost of regeneration, and finally the rewards

for the clairvoyant Whittles Index based optimal policy.

Figure 3 Reward structure and optimal policy structure. Note that here the cost of regeneration is constant

across arms for ease of exposition. Notice that while Arm-type 4 yields the highest reward when a new

arm of this type is generated. Nevertheless, since rewards decay over time, the optimal policy in fact

chooses arm-type 2 with a cycle-length of 5 before regenerating the arm again.

Logit decay function: The Logit functional form allows for rewards to remain relatively stable

when the arm’s age is small. Nevertheless, as the arm-age goes up, the reward experiences a sharp

drop and stabilizes again. In this case, the reward from pulling an arm of type k and age j is

defined as:

gk(j) =
µk

1+ exp(βkj)
, (16)

µk and βk are arm-specific parameters selected to ensure that substantial variability in the reward

decay rates. As in the exponential decay case, In Figure 1, we plot representative µκgκ(.), the

realized reward (after accounting for the cost of regeneration, and finally the rewards for the

clairvoyant Whittles Index based optimal policy in the Logit case (Figure 2).

Regret comparison: In Figure 4, we plot the regret of the proposed DRAWON (Algorithm

1) algorithm and compare it to the benchmark algorithms in the decay-aware case. Note that

in this case all algorithms are provided with complete information on the decay function g but
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nevertheless have to learn the initial reward µκ. On the left, we plot regret results from the case

when the underlying decay model is exponential, and on the right we plot regret results from the

case when the underlying decay model is Logit. We find that the proposed algorithm considerably

outperforms the benchmark algorithms. This difference can be attributed to sub-optimal action

selection under the benchmark algorithms since they do not track the right cycle-averaged reward

metric to optimize. For instance, notice that the representative optimal policies in the exponential

and Logit case (Figure 3 and Figure 2) neither pulls the arm-type that maximizes the initial reward

(µκ), nor the one that maximizes the cost adjusted initial reward (µκ− cκ). Since the benchmark

algorithms use a direct cost-to-reward comparison, they end up taking suboptimal actions in this

setting.

Figure 4 Cumulative regret comparison between the proposed DRAWON Algorithm and the UCB and TS Algo-

rithms when all algorithms have access to the decay rate function g. On the left, we plot cumulative

regret in the case when g follows an exponential decay. On the right, we plot cumulative regret in the

case when g follows the logistic or s-shaped decay. In both cases the proposed DRAWON algorithm

considerably outperforms both the benchmark algorithms.

Similarly, in Figure 5, we plot the regret of different benchmark algorithms in the decay-agnostic

case. That is, no algorithm is provided with the information of the decay function g. As before,

the proposed DRAGON Algorithm (Algorithm 2) substantially outperforms other benchmark al-

gorithms in this setting as well. In fact, the performance gap between benchmark algorithms and

DRAGON Algorithm considerably increases in compare to the decay-aware case. This is because in

this case the decay parameters are also unknown and hence all algorithms need to learn additional

parameters from the adaptively collected data.

Robustness to max-life parameter M : Recall that our proposed model and algorithms rely

on the max-life parameter M which signifies the maximum time the platform is willing to use a

nudge since its generating. Since it practice, the exact value of this parameter might be hard to
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Figure 5 Cumulative regret comparison between the proposed DRAGON Algorithm and the UCB and TS Algo-

rithms when all algorithms have access to the decay rate function g. On the left, we plot cumulative

regret in the case when g follows an exponential decay. On the right, we plot cumulative regret in the

case when g follows the logistic or s-shaped decay. In both cases the proposed DRAGON algorithm

considerably outperforms both the benchmark algorithms.

estimate a-priori, in this section we test the robustness of the proposed algorithm to this parameter.

In Figure 6, we plot the cumulative regret of the proposed DRAGON algorithm under different

values of the max-life parameter. As expected, the cumulative regret goes up as M increases but

nevertheless, the increase is not substantial (in comparison to the performance of the benchmark

algorithms) and hence we conclude that the algorithm is robust to parameter miss-specification in

M .

Figure 6 Cumulative regret comparison of the proposed DRAGON Algorithm (Algorithm 2) for different values

of the max life parameter M. Notice that the algorithm is robust to the selection of M and converges

to the optimal policy in a comparable time across all the values of M .
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6.2. Case Study: EdTech Platforms

We now present simulation results from a model calibrated based on recent empirical results on

the effect of repeated nudging of users on Rocket Learning, one of India’s largest nonprofit EdTech

startups dedicated to enhancing early childhood education (Goyal et al. 2024). We start this sec-

tion by briefly discussing the setting; how we calibrated the ground truth model and simplifying

assumptions; and finally present simulation results.

Rocket Learning and Digital Nudging: Rocket Learning (RL) works alongside state and national

government bodies to connect parents from public schools and day-care centers (referred to in

Hindi as “Anganwadi”) through digital communities, primarily using WhatsApp groups. Every

physical classroom corresponds to an online group that includes both parents and the class teacher.

Through these virtual communities, Rocket Learning provides age-appropriate, play-based mate-

rials to support learning beyond the classroom (Goyal et al. 2024).

One of the central challenges that RL as well as other digital platforms face is that of consistent

user engagement. Hence, RL uses various interventions, including digital nudging, to keep users

engaged. The current paper leverages results from a large-scale Randomized Control Trial involving

nearly 150,000 parents to test the effects of one-on-one user nudging on RL’s platform (Goyal et al.

(2024)). The experiment tested the effectiveness of two types of behavioral nudges: peer-comparison

and self-comparison nudges. WhatsApp groups were randomly assigned to one of the two treatment

arms (or the control arm) and parents in these groups were nudged with the corresponding nudge

over a four week-period, once every week. Both the nudges were found to be highly effective,

leading up to a 8-13.5% average improvement in daily engagement on the WhatsApp groups. Most

importantly, the authors also estimate long-term temporal effects of behavioral nudges. Figure 7

(Figure 5 of Goyal et al. 2024) demonstrates the estimated temporal effect of both the nudges.

Note that Week 0 denotes the start of the experiment and the experiment ran for 4 weeks. Hence,

weeks -3, -2 and -1 denote pre-treatment weeks and weeks 4, 5 6 and 7 denote post-treatment

weeks. Interestingly, both nudges show differential trends. While peer-comparison nudges show

very limited decrease in effectiveness due to repeated usage, self-comparison nudges show more

pronounced decrease in effectiveness over time. In what follows, we discuss how we leverage these

estimates to generate a ground-truth model for our experimental evaluations.

Generating a ground-truth model: Recall from §3 that our modeling framework considers each

nudge-type κ to be associated with a mean-reward µκ, a decay function gκ(.) and a cost of arm-

regeneration cκ. The temporal effects estimated from the RCT can be readily used to estimate all

the three parameters. In particular, estimates from Week 0 and Week 1 can be used to estimate

both µκ and cκ. Recall that cκ denotes the cost of creating new nudges. While designing new nudges

of any type can be relatively cheap (in comparison to the relative gains from engaging additional
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Figure 7 Long-Term Temporal Effects Estimated in Goyal et al. (2024). Using a large-scale RCT, the authors

estimate long-term temporal effects of digital nudging on user engagement. The RCT experimented

with peer and self comparison nudges where users were sent identical nudges over the course of 4

weeks (week 0,1,2 and 3). Weeks 4 and onward constitutes post-treatment data. The plot at the top

estimates treatment effect of the peer-comparison nudge while the plot on the bottom constitutes

treatment effect for the self-comparison nudge. We use these treatment effects estimates to caliberate

our ground-truth model.

users, especially in the EdTech context), there is an inherent adoption cost that platforms pay when

introducing new interventions or nudges. This cost reflects the initial warm-up phase when users

get accustomed to the new intervention. For example, notice that the estimated effect at the start

of the experiment (Week 0) is in fact smaller than the effect in Week 1 for both the nudge-types.

This difference in fact reflects the “cost” of nudging users with new nudges. Letting Ψt
k denote the

point estimate of the effect of nudge k in period t, then we have that

Ψ0
k = µκ− cκ & Ψ1

k = µκ =⇒ cκ =Ψ1
k−Ψ0

k ,∀k ∈ {peer, self} .

Hence, we have that cpeer = 0.6 and µpeer = 0.15. Similarly, cself = 0.015 and µself = 0.09. Notice

that as expected, the cost of nudging is higher for the peer-comparison nudge which is the more

complex intervention amongst the two interventions. Finally, since the same nudge was sent from
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weeks 0 to 3, we can leverage these values to estimate gκ. In fact, since we do not put parametric

assumptions on g(.), we simply let gκ(0) = 1 and

gκ(j) =max
{
1,

Ψj
κ

Ψ1
κ

}
, ∀j ∈ [1,2,3], κ∈ {self, peer} . (17)

Since the experiment ran for four weeks, to estimate gκ(j),∀j > 3, we consider two different heuris-

tics. The first heuristic simply uses (17) from the post-treatment periods (weeks 4-7) to estimate

gκ(j),∀j ∈ [4,5,6,7]. Letting the max-life parameter be M = 8 completes the ground-truth specifi-

cation in this case. Table 1 presents the estimated gκ(.) from this approach.

Table 1 Non-Parametric Estimates of the Decay Function

j 0 1 2 3 4 5 6 7

gpeer 1.00 1.00 0.99 0.93 0.83 0.83 0.67 0.67
gself 1.00 1.00 0.89 0.78 0.56 0.28 0.28 0.00

Alternatively, our second heuristic extrapolates data from the experiment using different curve

fitting methods to estimate the decay parameter for later periods. Figure 8 plots the result from

these extrapolations. Note that we estimate three different parametric decay functions (linear,

exponential and S-shaped Logit functions). Since the data from the experimental periods is limited,

we also re-estimate the decay functions using both in-treatment as well as post-treatment data

(Figure 8, on the right). Finally, we let the max life parameter M = 15 since in the RL’s context,

this would mean using the same nudge for 4 months at most. Nevertheless, as discussed before, the

performance of the proposed algorithm is robust to the selection of this parameter. Finally, as a

note of caution, we note that our proposed model also assumes that new nudges of the same type

leads to reward regeneration. In practice, platforms run continuous experimentation with many

interventions and hence this modeling assumption might be easy to verify. Nevertheless, since RL’s

nudging experiment did not use multiple types of the same nudge, we cannot verify this assumption

from the data, and consider it a limitation of the experimental results presented in the following

section.

Regret Results: Each ground truth model can be used to generate a corresponding clairvoyant

policy, and in-turn compare different benchmark algorithms in terms of their cumulative regret.

Since we estimate one non-parametric ground truth model and six parametric ground-truth models,

this leads to a total of seven different potential settings to benchmark different algorithms. Since

in practice, the decay functions are hardly known in advance, we consider the decay agnostic

setting. In Figure 9, we plot cumulative regret from three different ground-truth settings: (i) the

non-parametric estimation; (ii) the parametric Logit based estimation using only in-treatment
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Figure 8 Parametric Estimates of the decay function gself and gpeer. We leverage the long term temporal effects

estimated from the RCT to estimate the decay functions. The top (bottom) row plots results from

estimating gself (gpeer). Each plot contains outputs from fitting three different parametric functions:

linear, exponential and S-shaped Logit functions. Plots on the left only use data from during-treatment

weeks while plots on the right use data from all the seven weeks.

data (4 weeks); and (iii) the parametric Logit based estimation using both in-treatment and post-

treatment data (7 weeks). In each case, the proposed algorithm considerably outperforms the

benchmark algorithms in terms of cumulative regret. In fact, the cumulative regret of DRAGON

is one sixth of the regret of the benchmark algorithms. This improvement directly translates to

increased engagement of users on the platform. We find similar insights in the other four settings

but relegate these results to §J for the sake of brevity.

7. Concluding Remarks

In this work, we examine the challenge of repeatedly nudging users on online platforms, taking

into account initially unknown nudge effectiveness and the diminished impact of reusing the same

nudge over time. We model the problem using an online learning framework with multiple nudge

types, bandit feedback, and non-stationary rewards, while also incorporating the costs of creat-

ing new nudges to maintain their effectiveness. Under full information (when all parameters are

known), we show that a cyclic policy, which periodically regenerates a single nudge type, maxi-

mizes the long-run average reward and, somewhat surprisingly, achieves constant regret in finite

horizons. Building on these insights, we reduce the broader online learning problem to determin-

ing both the optimal nudge type and its cycle length, and we propose a UCB-based algorithm
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Figure 9 Cumulative Regret comparison between the proposed DRAGON and the benchmark algorithms on

the calibrated model. On the left, we consider results from considering the ground truth model using

non-parametric estimation. In the middle, we plot regret results from the case when the ground truth

model considers the logit parametric model but only considers the data from the 4 weeks of treatment.

Finally, the plot of the right also considers the logit function to estimate the ground truth model but

uses data from seven weeks to estimate the ground truth.

that achieves sublinear near-optimal regret guarantees. Numerical experiments using both syn-

thetic data and real-world data from an EdTech setting highlight considerable improvements over

benchmark methods, illustrating the practical relevance and efficacy of the proposed framework.

There are several potential directions for future work. We highlight two that are particularly

relevant and closely related to our current model. First, an important extension would be to study

scenarios where rewards diminish across episodes, i.e., regeneration is “lossy.” This would corre-

spond not only to a nudge becoming stale over time but also to its type losing effectiveness, making

the model more reflective of real-world intervention dynamics. Second, a more realistic setting

would involve the platform operating under a budget constraint for regenerating interventions, a

characteristic feature of many social impact operations. However, both these extensions introduce

a fundamentally more complex setting that requires a first-principles analysis to characterize op-

timal performance. In such cases, existing algorithms and results would no longer directly apply.

We leave these investigations to future work.
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A. Analysis of the Complete Information Setting
A.1. Proof of Lemma 1

If π ∈Π0, the claim trivially holds for π′ = π (note that Π0 ⊂Π). Therefore, without loss of gener-

ality, suppose that π ∈Π\Π0. Then, we know that at least one of the implications in Definition 1

is false for some t, s ∈ [T ] s.t. t + 2 ⩽ s ⩽ T . There are two exhaustive and mutually exclusive

possibilities:

1. Implication (1) is false for some t, s∈ [T ] s.t. t+2⩽ s⩽ T .

2. Implication (1) is always true, but implication (2) is false for some t, s∈ [T ] s.t. t+2⩽ s⩽ T .

We address the two cases separately below, presenting an algorithmic approach to prove the stated

assertion.

Case I: Implication (1) is false for some t, s.

In this case, define

τ1 :=min{t∈ [T ] : πt ̸= πt+1 and ∃ s∈ {t+2, · · · , T} s.t. πt = πs}.

τ2 :=min{s∈ {t+2, · · · , T} : πτ1 = πs}.

Then, note that {π1, · · · , πτ1}∩{πτ1+1, · · · , πτ2−1}=∅. Consider now an alternative policy π′ whose

arm-pull sequence is given by

π′
t :=


πt for 1⩽ t⩽ τ1
πτ1 for t= τ1 +1

πt−1 for τ1 +2⩽ t⩽ τ2
πt for t⩾ τ2 +1.

It follows that the cumulative T -round payoff of π′ is weakly greater than that of π, owing to

the non-increasing property of the decay kernels. If π′ ∈Π0, the claim is proved. If not, the same

argument can be applied iteratively until a policy π′′ satisfying implication (1) is constructed. If π′′

violates implication (2), one can construct a new policy by simply rearranging the epochs to “stack”

identical arm types together (this operation preserves implication (1) as well as the cumulative

T -round payoff). The resulting policy, denoted by π′′′, will then satisfy both implications and have

a T -round cumulative payoff that is necessarily weakly greater than that of π.

Case II: Implication (1) is always true, but implication (2) is false for some t, s.

By the same “stacking” argument as discussed above, we can construct a policy π′ from π that

satisfies implication (2) while preserving implication (1) as well as the T -round cumulative payoff.

Combining the two cases proves the assertion. □
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A.2. Proof of Theorem 1

By Lemma 1, we know that there exists a no-recall policy that solves (2) optimally and achieves

OPTT . We will therefore, without loss of generality, focus only on policies in Π0.

Fix π ∈Π0. Let Mκ denote the number of distinct type κ arms pulled by π, and let ℓκ,m denote

the length of the mth epoch of type κ (defined for m∈ [Mκ]). Then, observe that

Eπ

∑
t∈[T ]

rt

=
∑
κ∈[K]

∑
m∈[Mκ]

(
µκ

ℓκ,m−1∑
n=0

gκ(n)− cκ

)
1{ℓκ,m ⩾ 1}⩽

†

∑
κ∈[K]

∑
m∈[Mκ]

µ̄κ∗,m∗ℓκ,m = µ̄κ∗,m∗T ,

(18)

where (†) follows from the definition of µ̄κ∗,m∗ in (5). Since π is arbitrary, this implies

OPTT = sup
π∈Π

Eπ

∑
t∈[T ]

rt

=
a
sup
π∈Π0

Eπ

∑
t∈[T ]

rt

⩽
b
µ̄κ∗,m∗T , (19)

where (a) is due to Lemma 1, and (b) follows from (18). Now consider the no-recall policy π∗

described in Theorem 1, and observe that

Eπ∗

∑
t∈[T ]

rt

= µ̄κ∗,m∗m∗
⌈
T

m∗

⌉
−

(
µκ∗

m∗−1∑
n=T%m∗

gκ∗(n)

)
1{T%m∗ ⩾ 1}

⩾
†
µ̄κ∗,m∗m∗

⌈
T

m∗

⌉
−

(
µκ∗

m∗−T%m∗−1∑
n=0

gκ∗(n)

)
1{T%m∗ ⩾ 1}

= µ̄κ∗,m∗m∗
⌈
T

m∗

⌉
− cκ∗1{T%m∗ ⩾ 1}−

(
µκ∗

m∗−T%m∗−1∑
n=0

gκ∗(n)− cκ∗

)
1{T%m∗ ⩾ 1}

⩾
‡
µ̄κ∗,m∗m∗

⌈
T

m∗

⌉
− cκ∗1{T%m∗ ⩾ 1}− µ̄κ∗,m∗(m∗−T%m∗)1{T%m∗ ⩾ 1}

= µ̄κ∗,m∗

(
m∗
⌈
T

m∗

⌉
− (m∗−T%m∗)1{T%m∗ ⩾ 1}

)
− cκ∗1{T%m∗ ⩾ 1}

= µ̄κ∗,m∗T − cκ∗1{T%m∗ ⩾ 1}

⩾
⋆
OPTT − cκ∗1{T%m∗ ⩾ 1} , (20)

where (†) follows from the monotonicity of the decay kernels, (‡) follows from the definition of

µ̄κ∗,m∗ in (5), and (⋆) follows from (19). Finally, note that π∗ satisfies (18). Combining everything

establishes the stated assertion. □

A.3. Proof of Theorem 2

The problem in (2) can be seen as a special case of a restless K-armed bandit problem. To show

this, we reformulate the problem as a Markov Decision Process (MDP).

To this end, first note that, for each arm type, one can, without loss of optimality, focus ex-

clusively on the “youngest arm.” This significantly reduces the dimensionality of the problem and

leads to the following MDP formulation:
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There are K Markov bandit processes, each with a common state space of {0, . . . ,M − 1}, where
the state s∈ [M −1] of any process denotes the age of the youngest arm of the corresponding type.

State 0 indicates the absence of any viable arm to pull (which occurs when the maximum life M is

exceeded for all living arms), and the process can only be continued by generating a “new” arm.

In what follows, we will refer to process κ simply as “arm κ,” and we use Sκ(t) to denote its

state at the beginning of round t∈N.
Action space. We will use a1

κ(t) = 1 if arm κ is played in round t and a1
κ(t) = 0 otherwise. Sim-

ilarly, a2
κ(t) = 1 if arm κ is regenerated at time t and a2

κ(t) = 0 otherwise. If an arm is regenerated,

it must also be played, i.e., a2
κ(t)⩽ a1

κ(t) ∀ κ ∈ [K], ∀ t. Thus, the feasible ordered set of actions

(a1
κ, a

2
κ) in any state is {(0,0), (1,0), (1,1)}.

Rewards. For each κ∈ [K], the reward function Rκ(Sκ, a
1
κ, a

2
κ) is defined as:

Rκ(Sκ, a
1
κ, a

2
κ) =


0 if a1

κ = 0 and a2
κ = 0

µκgκ(Sκ)− cκ1{Sκ = 0} if a1
κ = 1 and a2

κ = 0

µκ− cκ if a1
κ = 1 and a2

κ = 1 ,

where the state Sκ takes values in {0, · · · ,M − 1}.
Transition Kernels. For each (κ, t)∈ [K]×N, state transitions are specified by the rules:

1. If Sκ(t) = 0, then

Sκ(t+1)=


0 if a1

κ(t) = 0 and a2
κ(t) = 0

1 if a1
κ(t) = 1 and a2

κ(t) = 0

1 if a1
κ(t) = 1 and a2

κ(t) = 1 .

2. If Sκ(t)∈ [M − 2], then

Sκ(t+1)=


Sκ(t)+ 1 if a1

κ(t) = 0 and a2
κ(t) = 0

Sκ(t)+ 1 if a1
κ(t) = 1 and a2

κ(t) = 0

1 if a1
κ(t) = 1 and a2

κ(t) = 1 .

3. If Sκ(t) =M − 1, then

Sκ(t+1)=


0 if a1

κ(t) = 0 and a2
κ(t) = 0

0 if a1
κ(t) = 1 and a2

κ(t) = 0

1 if a1
κ(t) = 1 and a2

κ(t) = 1 .

The infinite-horizon average-cost formulation of the problem in (2) is then given by:

sup
π

lim inf
T→∞

Eπ

 1

T

∑
t∈[T ]

∑
κ∈[K]

Rκ

(
Sκ, a

1
κ(t), a

2
κ(t)

)
s.t.

∑
κ∈[K]

a1
κ(t) = 1 ∀ t

a2
κ(t)⩽ a1

κ(t) ∀ κ∈ [K], ∀ t

a1
κ(t), a

2
κ(t)∈ {0,1} ∀ κ∈ [K], ∀ t .
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Lagrangian Problem:

sup
a1· (·),a2· (·)

L(λ) = lim inf
T→∞

E

 1

T

∑
t∈[T ]

∑
κ∈[K]

Rκ

(
Sκ(t), a

1
κ(t), a

2
κ(t)

)
− λ

∑
κ∈[K]

a1
κ(t) − 1


s.t. a2

κ(t)⩽ a1
κ(t) ∀ κ∈ [K], ∀ t

a1
κ(t), a

2
κ(t)∈ {0,1} ∀ κ∈ [K], ∀ t .

The Lagrangian objective can be simplified to

L(λ) = lim inf
T→∞

E

 1

T

∑
t∈[T ]

∑
κ∈[K]

Rκ

(
Sκ(t), a

1
κ(t), a

2
κ(t)

)
−λ

∑
κ∈[K]

a1
κ(t)+λ


=

lim inf
T→∞

E

 1

T

∑
t∈[T ]

∑
κ∈[K]

(
Rκ

(
Sκ(t), a

1
κ(t), a

2
κ(t)

)
−λa1

κ(t)
)+λ .

Define

R̃κ

(
Sκ(t), a

1
κ(t), a

2
κ(t)

)
:=Rκ

(
Sκ(t), a

1
κ(t), a

2
κ(t)

)
−λa1

κ(t) .

Then, we have that

L(λ) =

lim inf
T→∞

E

 1

T

∑
t∈[T ]

∑
κ∈[K]

R̃κ

(
Sκ(t), a

1
κ(t), a

2
κ(t)

)+λ ,

which is separable in the arms. Letting

ηκ(λ) := lim inf
T→∞

E

 1

T

∑
t∈[T ]

R̃κ

(
Sκ(t), a

1
κ(t), a

2
κ(t)

) ,

we can write the decoupled problem for arm κ as

Pκ(λ) := sup
a1κ(·),a2κ(·)

ηκ(λ) (21)

s.t. a2
κ(t)⩽ a1

κ(t) ∀ t

a1
κ(t), a

2
κ(t)∈ {0,1} ∀ t .

Lemma 2 The optimal value of (21), starting from any initial state Sκ(1) ∈ {0, · · · ,M − 1}, is

given by

Pκ(λ) =

(
max
m∈[M ]

(
µκ

∑m−1

t=0 gκ(t)− cκ
m

)
−λ

)+

.
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Proof of Lemma 2.

Define

µ̄κ,m :=
µκ

∑m−1

t=0 gκ(t)− cκ
m

for m∈ [M ].

m∗ := inf

(
argmax
m∈[M ]

µ̄κ,m

)
.

V ∗(s) :=


0 if s= 0

(µ̄κ,m∗ − µ̄κ,s)s if 1⩽ s⩽m∗

0 if m∗ < s⩽M − 1 .

(22)

Without loss of generality, assume that λ⩽ µ̄κ,m∗ . We will show that the following holds:

µ̄κ,m∗ −λ+V ∗(s) =


max{V ∗(0) , µκ− c−λ+V ∗(1)} if s= 0

max{V ∗(s+1) , µκgκ(s)−λ+V ∗(s+1) , µκ− c−λ+V ∗(1)} if s∈ [M − 2]

max{V ∗(0) , µκgκ(M − 1)−λ+V ∗(0) , µκ− c−λ+V ∗(1)} if s=M − 1
(23)

Note that (23) is Bellman’s equation for the infinite-horizon average-cost dynamic program in (21).

We will now show that the vector (V ∗(s) : s= 0, . . . ,M − 1) defined in (22) satisfies (23).

Note that µκ − c− λ+ V ∗(1) = µ̄κ,m∗ − λ. The s = 0 case is easily verified. Now consider s ∈
[m∗− 1]. Note that

µκgκ(s)−λ+V ∗(s+1)− (µκ− c−λ+V ∗(1)) = µκgκ(s)−λ+(µ̄κ,m∗ − µ̄κ,s+1)(s+1)− (µ̄κ,m∗ −λ)

= (µ̄κ,m∗ − µ̄κ,s)s

= V ∗(s)

⩾ 0 .

Also note that µ̄κ,m∗ is the average of {µκ− cκ, µκgκ(1), . . . , µκgκ(m
∗− 1)}. By the definition of m∗,

it follows that µκgκ(m
∗ − 1) ⩾ µ̄κ,m∗ must necessarily hold (else it would imply µ̄κ,m∗−1 > µ̄κ,m∗ ,

leading to a contradiction). Therefore, we have µκgκ(s)⩾ µ̄κ,m∗ for all s∈ {0, . . . ,m∗− 1}. Finally,
note that

µκgκ(s)−λ+V ∗(s+1)= µ̄κ,m∗ −λ+V ∗(s).

Thus, the case of s∈ [m∗− 1] is verified as well. Lastly, note that for m∗ ⩽ s⩽M − 1, we have

µκ− c−λ+V ∗(1)− (µκgκ(s)−λ+V ∗(s+1)) = µ̄κ,m∗ −µκgκ(s)⩾ µ̄κ,m∗ −µκgκ(m
∗)⩾

†
0 ,

where (†) again follows from the definition of m∗. Thus, we have verified that (23) holds when

λ⩽ µ̄κ,m∗ . From the theory of infinite-horizon average-cost dynamic programming (see, e.g., Propo-

sition 5.5.1 in Bertsekas (2012)), it then follows that Pκ(λ) = µ̄κ,m∗ −λ whenever λ⩽ µ̄κ,m∗ .

Similarly, when λ > µ̄κ,m∗ , one can show that the “always idle” policy solves a similar Bellman

equation with Ṽ ∗(s) = 0 for all s ∈ {0, . . . ,M − 1}, achieving Pκ(λ) = 0. We skip the details for

brevity. Combining the two results proves the assertion. □
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Lemma 3 Consider the decoupled problem for any arm κ, Pκ(λ). Then Pκ(λ) is indexable. That

is, let Sκ(λ) denote the set of all states for which it is optimal to idle (i.e., a1
κ(t) = 0). Then Sκ(λ)

increases monotonically as λ increases from 0 to +∞. Furthermore, let Wκ(s) denote the Whittle

Index in state s which is defined as the infimum charge λ that makes the passive and the best of

the active decisions equally desirable. Then, we have that

Wκ(s) := max
m∈[M ]

(
µκ

∑m−1

t=0 gκ(t)− cκ
m

)
.

Before we prove this result, we make some observations about the Whittle index computed in

Lemma 3. (i) The Whittle index for any arm is independent of s which implies that unlike con-

ventional restless bandit problems, the Whittle index computation in our case is not expensive

since it needs to be performed only once. (ii) The optimal arm to pull is stationary and does not

change over time. Hence, this implies that we continue to pull the same arm repeatedly instead of

switching between different arms over time.

Proof of Lemma 3: Recall that the Whittle index of a state is the infimum λ that makes the

no-pull decision equivalent to the pull decision in that state. We know from (the proof of) Lemma 2

that for λ< µ̄κ,m∗ , the optimal policy, starting from initial state s∈ {0, . . . ,M − 1}, is to continue

pulling the arm (without regeneration) until state 0 is reached and then switch to the periodic

policy characterized by cycle length m∗.

Next, note that for any initial state s, when λ> µ̄κ,m∗ , the optimal policy is to make the no-pull

decision at all times (also follows from Lemma 2). Hence, the smallest charge λ that makes the

pull and no-pull decisions equivalent in state s is

W (s) = µ̄κ,m∗ .

Note that this result also shows the indexability of the decoupled problem since, if λ⩽W (s),

then S(λ) is an empty set. Otherwise, when λ>W (s), we have S(λ) = {0, . . . ,M − 1}. That is, it

includes all states. Hence, this proves the final result. □

B. Online Learning: Technical Preliminaries

Below, we present the key technical definitions and facts used in the regret analysis, adapted from

Vershynin (2018).

Definition 2 (sub-Gaussianity) A real-valued random variable W is said to be sub-Gaussian

with variance proxy σ2 (aka σ-sub-Gaussian, where σ⩾ 0), denoted by W ∼ subG(σ2), iff

E[W ] = 0 and E[exp (θW )]⩽ exp

(
σ2θ2

2

)
∀ θ ∈R.
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Fact 1 (sub-Gaussianity with scale) If W ∼ subG(σ2), then aW ∼ subG(a2σ2) for any a∈R.

Fact 2 (sub-Gaussian tail bound) Fix c ⩾ 0 and δ ∈ (0,1]. If W ∼ subG(σ2), then

max
{
P
(
W ⩾ σ

√
2c log (1/δ)

)
, P
(
W ⩽−σ

√
2c log (1/δ)

)}
⩽ δc.

Fact 3 (Sum of independent sub-Gaussian random variables) Suppose (Wi : i∈ [n]) is a

collection of n independent random variables satisfying Wi ∼ subG(σ2
i ) for each i ∈ [n]. Then,∑

i∈[n]Wi ∼ subG
(∑

i∈[n] σ
2
i

)
.

C. Lower Bound: Proof of Theorem 3

Fix horizon T , policy π ∈Π, costs cκ = 0 ∀ κ∈ [K], and suppose that the noise ξt is i.i.d. Gaussian

with variance σ2 in each round t∈ [T ]. Then,

Eπ[R(T )] =Eπ

OPTT −∑
t∈[T ]

rt

=
†
Eπ

µκ∗T −
∑
t∈[T ]

rt

 , (24)

where (†) follows using Theorem 1.

Now consider a K-armed bandit problem endowed with i.i.d. Gaussian rewards with unknown

means (µκ : κ∈ [K]) and variance σ2. We will use r̄t to denote the reward realized in round t of

this problem, and Π̄ to denote the natural class of history-dependent, non-anticipating policies for

the problem.

Claim 1 For every π ∈Π, there exists some π̄ ∈ Π̄ such that Eπ̄

[∑
t∈[T ] r̄t

]
⩾Eπ

[∑
t∈[T ] rt

]
.

Proof of Claim 1.

Consider an arbitrary policy π ∈Π. Construct a policy π̄ ∈ Π̄ as follows: whenever π prescribes

pulling an arm of type κ in the original problem (either new or old), π̄ prescribes pulling the

arm with mean µκ in the K-armed bandit problem. The claim then follows from the monotonicity

property gκ(m− 1)⩽ gκ(m) for all (κ,m) ∈ [K]× [M − 1], together with the assumption that the

costs satisfy cκ = 0 for all κ∈ [K]. □

Invoking Claim 1 in (24), we obtain Eπ[R(T )] ⩾ Eπ̄

[
µκ∗T −

∑
t∈[T ] r̄t

]
, where the policy π̄ ∈

Π̄ satisfies the condition in Claim 1. Note that Eπ̄

[
µκ∗T −

∑
t∈[T ] r̄t

]
represents the (expected

cumulative) regret of π̄ in the aforementioned K-armed bandit problem.

From standard multi-armed bandit theory (see, e.g., Theorem 15.2 in Lattimore and Szepesvári

(2020)), we know that for every policy π̄ ∈ Π̄, there exists a mean reward vector (µκ : κ∈ [K]) such

that Eπ̄

[
µκ∗T −

∑
t∈[T ] r̄t

]
=Ω

(
σ
√
KT

)
. Thus, it follows that for every policy π ∈Π, there exists

an instance ν of the original problem such that Eπ[R(T ;ν)] = Ω
(
σ
√
KT

)
. □
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D. Regret Analysis of Algorithm 1

First, we adapt the following key lemma from Slivkins et al. (2019) to our setting.

Lemma 4 (Clean Execution of Algorithm 1) Define “clean event”

E :=
⋂

κ∈[K]
m∈[M ]
t∈[T ]

{∣∣µ̂(t)
κ,m− µ̄κ,m

∣∣⩽ radκ,m,t

}
,

where µ̄κ,m, µ̂
(t)
κ,m and radκ,m,t are as defined in (5), (8) and (9) respectively. Then, one has that

P(E)⩾ 1− 2KMTδα.

Proof of Lemma 4. Recall that ν̂
(n)
κ,j denotes the empirical mean of n samples from type κ arms of

age j− 1. Then, note that

F :=
⋂

κ∈[K]
j∈[M ]
n∈[T ]

∣∣∣ν̂(n)
κ,j −µκgκ(j− 1)

∣∣∣⩽ 2σ

√
α log

(
1
δ

)
1+n

⊆E. (25)

We know that
(
ν̂
(n)
κ,j −µκgκ(j− 1)

)
∼ subG(σ2/n). Then, it follows from Fact 2 that P(F c) ⩽

2KMTδ
2αn
1+n ⩽ 2KMTδα. The claim now follows using (25). □

The next result is adapted from Lemma 11 of Abbasi-Yadkori et al. (2011).

Lemma 5 (Elliptical Potential Lemma) Let Sj,t ⊆ [t] denote the subset of rounds until t in

which an arm of age j− 1 is played by Algorithm 1. Then, the following holds for any t∈N:

∑
s∈S1,t

(
ρκs,1

1+
∑

j∈[M ] ρκs,jNκs,j(s− 1)

)
⩽ 2K log

(
1+

t

K

)
.

Proof of Lemma 5.

Let {xk : k ∈ [K]} be the collection of standard basis vectors of RK , with each xk being 1 in its

kth coordinate, and 0 everywhere else. Let I be the identity matrix in RK×K . Recall that Nk,j(t)

denotes the number of rounds in [t] in which a type k arm of age j− 1 is played by the algorithm.

Define for t∈N the following:

Vt := I +
∑
j∈[M ]

∑
u∈Sj,t

ρκu,j(xκu ⊗xκu) ,

Note that ∥xκs∥
2

V −1
s−1

= 1
1+

∑
j∈[M ] ρκs,jNκs,j(s−1)

. Observe that Vt can also be expressed as:

Vt = I +
∑
u∈[t]

ρκu,ageu(πu)+1(xκu ⊗xκu) .
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Finally, note that

∑
s∈S1,t

(
ρκs,1

1+
∑

j∈[M ] ρκs,jNκs,j(s− 1)

)
=
∑

s∈S1,t

∥∥√ρκs,1xκs

∥∥2
V −1
s−1

=
∑

s∈S1,t

∥∥√ρκs,ages(πs)+1xκs

∥∥2
V −1
s−1

⩽
∑
s∈[t]

∥∥√ρκs,ages(πs)+1xκs

∥∥2
V −1
s−1

⩽
†
2 log (det(Vt))

⩽
‡
2K log

(
1+

t

K

)
,

where (†) follows using Lemma 11 of Abbasi-Yadkori et al. (2011), and (‡) follows using the

Determinant-Trace inequality (see, e.g., Lemma 10 of Abbasi-Yadkori et al. (2011)). □

D.1. Proof of Theorem 4

Recall that S1,t ⊆ [t] is the subset of rounds until t in which the UCB rule applies. Let s̄t be the

largest element of S1,t, and define τt := t− s̄t + 1. Note that τt ⩽ ms̄t ⩽ M . Then, the regret of

Algorithm 1 after t rounds is given by

R(t) = OPTt−

 ∑
s∈S1,t\{s̄t}

µ̄κs,msms +µκs̄t

τt−1∑
u=0

gκs̄t
(u)− cκs̄t


⩽
†
µ̄κ∗,m∗t−

 ∑
s∈S1,t\{s̄t}

µ̄κs,msms +µκs̄t

τt−1∑
u=0

gκs̄t
(u)− cκs̄t


=

∑
s∈S1,t\{s̄t}

(µ̄κ∗,m∗ − µ̄κs,ms)ms + µ̄κ∗,m∗τt−

(
µκs̄t

τt−1∑
u=0

gκs̄t
(u)− cκs̄t

)

=
∑

s∈S1,t\{s̄t}

(µ̄κ∗,m∗ − µ̄κs,ms)ms + µ̄κ∗,m∗τt− µ̄κs̄t ,ms̄t
ms̄t +µκs̄t

ms̄t−1∑
u=τt

gκs̄t
(u)

=
∑

s∈S1,t

(µ̄κ∗,m∗ − µ̄κs,ms)ms +µκs̄t

ms̄t−1∑
u=τt

gκs̄t
(u)− µ̄κ∗,m∗(ms̄t − τt)

⩽
‡

∑
s∈S1,t

(µ̄κ∗,m∗ − µ̄κs,ms)ms +µκs̄t

ms̄t−τt−1∑
u=0

gκs̄t
(u)− µ̄κ∗,m∗(ms̄t − τt)

⩽
∑

s∈S1,t

(µ̄κ∗,m∗ − µ̄κs,ms)ms−
(
µ̄κ∗,m∗ − µ̄κs̄t ,ms̄t−τt

)
(ms̄t − τt)+ cκs̄t

⩽
∗
cκs̄t

+
∑

s∈S1,t

(µ̄κ∗,m∗ − µ̄κs,ms)ms

⩽ max
κ∈[K]

cκ +
∑

s∈S1,t

(µ̄κ∗,m∗ − µ̄κs,ms)ms , (26)

where (†) follows from Theorem 1, (‡) follows since µκ ⩾ 0 and gκ(u) is non-increasing in u for any

κ∈ [K], (∗) follows since (κ∗,m∗)∈ argmax(κ,m)∈[K]×[M ] µ̄κ,m and ms̄t ⩾ τt.
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Clean Execution.

Suppose the “clean event” E defined in Lemma 4 is true. Then, one has

µ̄κs,ms +2radκs,ms,s−1 ⩾
†
µ̂(s−1)
κs,ms

+ radκs,ms,s−1 ⩾
∗
µ̂
(s−1)
κ∗,m∗ + radκ∗,m∗,s−1 ⩾

‡
µ̄κ∗,m∗ ,

where (†) and (‡) follow since E is true and (∗) holds since the UCB rule applies in round s. We

therefore have that

µ̄κ∗,m∗ − µ̄κs,ms ⩽ 2radκs,ms,s−1

= 4σ


∑

j∈[M ]

√
α
(

ρκs,j
gκs (j−1)

)2

(1+Nκs,j(s− 1)) log
(
1
δ

)
1+

∑
j∈[M ] ρκs,jNκs,j(s− 1)


(∑

j∈[ms]
gκs(j− 1)

ms

)

⩽
†
4σ

√√√√α
(∑

j∈[M ]

(
ρκs,j

g2κs (j−1)

))
log
(
1
δ

)
1+

∑
j∈[M ] ρκs,jNκs,j(s− 1)

(∑
j∈[ms]

gκs(j− 1)

ms

)
. (27)

where (†) follows using the Cauchy-Schwarz inequality, together with
∑

j∈[M ] ρκs,j = 1. Combining

(26) and (27), we have that the following holds under the “clean event” E:

R(t)−max
κ∈[K]

cκ

⩽ 4σ

√
α log

(
1

δ

) ∑
s∈S1,t

√√√√√(∑j∈[M ]

(
ρκs,j

g2κs (j−1)

))(∑
j∈[ms]

gκs(j− 1)
)2

1+
∑

j∈[M ] ρκs,jNκs,j(s− 1)

⩽
†
4σ

√√√√√α log

(
1

δ

)∑
s∈S1,t


∑

j∈[M ]

(
ρκs,j/ρκs,1

g2κs
(j− 1)

) ∑
j∈[ms]

gκs(j− 1)

2
 ∑

s∈S1,t

{
ρκs,1

1+
∑

j∈[M ] ρκs,jNκs,j(s− 1)

}

⩽
‡
4σ

√√√√√2αK log

(
1+

t

K

)
log

(
1

δ

) ∑
s∈S1,t


∑

j∈[M ]

(
ρκs,j/ρκs,1

g2κs
(j− 1)

) ∑
j∈[ms]

gκs(j− 1)

2 ,

where (†) follows using the Cauchy-Schwarz inequality, and (‡) follows from Lemma 5. □

E. Regret Analysis of Algorithm 2

We proceed by establishing a “clean execution” result for Algorithm 2, analogous to Lemma 4.

Lemma 6 (Clean Execution of Algorithm 2) Define “clean event”

E :=
⋂

κ∈[K]
m∈[M ]
t∈[T ]

{∣∣µ̂(t)
κ,m− µ̄κ,m

∣∣⩽ radκ,m,t

}
,

where µ̄κ,m, µ̂
(t)
κ,m and radκ,m,t are as defined in (5), (13) and (14) respectively. Then, one has that

P(E)⩾ 1− 2KMTδα.
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Proof of Lemma 6. Recall that ν̂
(n)
κ,j denotes the empirical mean of n samples from type κ arms of

age j− 1. Then, note that

F :=
⋂

κ∈[K]
j∈[M ]
n∈[T ]

∣∣∣ν̂(n)
κ,j −µκgκ(j− 1)

∣∣∣⩽ 2σ

√
α log

(
1
δ

)
1+n

⊆E. (28)

We know that
(
ν̂
(n)
κ,j −µκgκ(j− 1)

)
∼ subG(σ2/n). Then, it follows from Fact 2 that P(F c) ⩽

2KMTδ
2αn
1+n ⩽ 2KMTδα. The claim now follows using (28). □

The next result is adapted from Lemma 11 of Abbasi-Yadkori et al. (2011).

Lemma 7 (Elliptical Potential Lemma) Let Sm,t ⊆ [t] denote the subset of rounds until t in

which an arm of age m− 1 is played by Algorithm 2. Then, the following holds for any m ∈ [M ]

and t∈N: ∑
s∈Sm,t

(
1

1+Nκs,m(s− 1)

)
⩽ 2K log

(
1+
|Sm,t|
K

)
.

Proof of Lemma 7.

Let {xk : k ∈ [K]} be the collection of standard basis vectors of RK , with each xk being 1 in its

kth coordinate, and 0 everywhere else. Let I be the identity matrix in RK×K . Recall that Nk,m(t)

denotes the number of rounds in [t] in which a type k arm of age m−1 is played by the algorithm.

Define for m∈ [M ] and t∈N the following:

Vm,t := I +
∑

s∈Sm,t

xκs ⊗xκs ,

with the convention that Vm,t := I if Sm,t = ∅. Then, note that ∥xκs∥
2

V −1
m,s−1

= 1
1+Nκs,m(s−1)

. We

know from Lemma 11 of Abbasi-Yadkori et al. (2011) that
∑

s∈Sm,t
∥xκs∥

2

V −1
m,s−1

⩽ 2 log (det(Vm,t)).

By the Determinant-Trace inequality (Lemma 10 of Abbasi-Yadkori et al. (2011)), det(Vm,t) ⩽

(1+ |Sm,t|/K)
K
. Combining everything establishes the stated assertion. □

E.1. Proof of Theorem 5

Let Sm,t ⊆ [t] denote the subset of rounds until t in which an arm of age m − 1 is played by

Algorithm 2. Then, similarly to the derivation of (26) in the analysis of Algorithm 1, one can show

that the regret of Algorithm 2 after any t rounds is bounded as

R(t)⩽ max
κ∈[K]

cκ +
∑

s∈S1,t

(µ̄κ∗,m∗ − µ̄κs,ms)ms . (29)

Clean Execution.
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Suppose the “clean event” E is true. Consider round s∈ S1,t. Then, one has

µ̄κs,ms +2radκs,ms,s−1 ⩾
†
µ̂(s−1)
κs,ms

+ radκs,ms,s−1 ⩾
∗
µ̂
(s−1)
κ∗,m∗ + radκ∗,m∗,s−1 ⩾

‡
µ̄κ∗,m∗ ,

where (†) and (‡) follow since E is true and (∗) holds since the UCB rule applies in round s∈ S1,t.
We therefore have that

µ̄κ∗,m∗ − µ̄κs,ms ⩽ 2radκs,ms,s−1 =
4σ

ms

∑
j∈[ms]

√
α log

(
1
δ

)
1+Nκs,j(s− 1)

. (30)

Combining (29) and (30),

R(t)⩽ max
κ∈[K]

cκ +4σ

√
α log

(
1

δ

) ∑
s∈S1,t

∑
j∈[ms]

1√
1+Nκs,j(s− 1)

⩽
†
max
κ∈[K]

cκ +4σ

√
α log

(
1

δ

)√√√√t∗
∑

s∈S1,t

∑
j∈[ms]

(
1

1+Nκs,j(s− 1)

)

= max
κ∈[K]

cκ +4σ

√
α log

(
1

δ

)√√√√t∗
∑

m∈[M ]

∑
s∈Sm,t∗

(
1

1+Nκs,m(s− 1)

)

⩽
‡
max
κ∈[K]

cκ +4σ

√
α log

(
1

δ

)√√√√2Kt∗
∑

m∈[M ]

log

(
1+
|Sm,t∗ |
K

)

⩽ max
κ∈[K]

cκ +4σ

√
α log

(
1

δ

)√
2KMt∗ log

(
1+

t∗

K

)

⩽
⋆
max
κ∈[K]

cκ +4σ

√
α log

(
1

δ

)√
2KM(t+M) log

(
1+

t+M

K

)
,

where (†) follows using Jensen’s inequality with t∗ :=
∑

s∈S1,t
ms, (‡) follows using Lemma 7, and

(⋆) follows since t∗ < t+M . □

F. Proof of Proposition 1

Fix κ∈ [K]. Consider an arbitrary m⩾M . Then, note that

µ̄κ,m− µ̄κ,m+1 =

(
µκ

∑m−1

u=0 gκ(u)− cκ
m

)
−
(
µκ

∑m

u=0 gκ(u)− cκ
m+1

)

=
1

m+1

(
µκ

∑m−1

u=0 gκ(u)− cκ
m

−µκgκ(m)

)

⩾
†

1

m+1

(
µκ− cκ +µκ(m− 1)gκ(m)

m
−µκgκ(m)

)
=

µκ

m(m+1)

(
1− gκ(m)− cκ

µκ

)
⩾
‡

βµκ− cκ
m(m+1)

⩾
⋆
0 ,
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where (†) follows using the monotonicity of gκ(·) and non-negativity of µκ, (‡) follows since gκ(m)⩽

gκ(M)⩽ fκ(M)⩽ 1− β, and finally (⋆) follows from Assumption 2. Since m⩾M is arbitrary, it

follows that µ̄κ,M ⩾ µ̄κ,m ∀ m ⩾ M . Therefore, one has inf (arg supm∈N µ̄κ,m) ⩽ M ∀ κ ∈ [K], as

asserted. □

G. Regret Analysis of Algorithm 3

First, we adapt the following key lemmas from Abbasi-Yadkori et al. (2011) to our setting.

Lemma 8 (High Probability Confidence Ellipsoids) Fix failure probability δ ∈ (0,1] and for

t= 1,2, · · · , consider the sequence of confidence ellipsoids generated by Algorithm 3:

Θt :=

{
θ ∈Rd :

∥∥∥θ̂t− θ
∥∥∥
Vt

⩽ αt

}
, (31)

where Vt, θ̂t, and αt are as defined in (38), (39), and (42) respectively. Define “clean event”

E := {θ∗ ∈Θt ∀ t= 0,1,2, · · ·}. (32)

Then, one has that P(E)⩾ 1− δ.

Proof of Lemma 8. The result follows instructively from Theorem 2 of Abbasi-Yadkori et al.

(2011). We skip the steps for brevity. □

Lemma 9 (Elliptical Potential Lemma) In the setting of Lemma 8, if λ ⩾max(1,L2), then

the following holds for all t= 1,2, · · · :∑
s∈St

∥xκs∥
2

V −1
s−1

⩽ 2d log

(
1+

L2|St|
λd

)
.

Proof of Lemma 9. The result follows instructively by combining Lemma 10 and 11 of Abbasi-

Yadkori et al. (2011). We skip the steps for brevity. □

G.1. Proof of Theorem 6

Suppose the “clean event” E in (32) is true. Let (κ∗,m∗) ∈ argmax(κ,m)∈[K]×[M ] µ̄κ,m(θ
∗). Recall

that St ⊆ [t] denotes the subset of rounds until t in which the UCB rule applies. Then, similarly to

the derivation of (26) in the analysis of Algorithm 1, one can show that the regret of Algorithm 3

after any t rounds is bounded as

R(t)⩽ max
κ∈[K]

cκ +
∑
s∈St

(µ̄κ∗,m∗(θ∗)− µ̄κs,ms(θ
∗))ms

= max
κ∈[K]

cκ +
∑
s∈St

(
µ̄κ∗,m∗

(
θ̂s−1

)
− µ̄κs,ms

(
θ̂s−1

))
ms +

∑
s∈St

(
µ̄κ∗,m∗(θ∗)− µ̄κ∗,m∗

(
θ̂s−1

))
ms
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=+
∑
s∈St

(
µ̄κs,ms

(
θ̂s−1

)
− µ̄κs,ms(θ

∗)
)
ms

⩽
†
max
κ∈[K]

cκ +
∑
s∈St

(radκs,ms,s−1− radκ∗,m∗,s−1)ms +

(∑
j∈[m∗] gκ∗(j− 1)

m∗

)∑
s∈St

〈
xκ∗ , θ∗− θ̂s−1

〉
ms

=+
∑
s∈St

〈xκs , θ̂s−1− θ∗
〉 ∑

j∈[ms]

gκs(j− 1)

 , (33)

where (†) follows since (κs,ms) is chosen by the UCB rule in round s ∈ St. Now observe that for

any round s∈ St and any κ∈ [K],∣∣∣〈xκ, θ̂s−1− θ∗
〉∣∣∣⩽

‡
∥xκ∥V −1

s−1

∥∥∥θ̂s−1− θ∗
∥∥∥
Vs−1

⩽
∗
∥xκ∥V −1

s−1

(
σ

√
d log

(
1+ (s− 1)L2/λ

δ

)
+
√
λS

)
=
$
αs−1∥xκ∥V −1

s−1
, (34)

where (‡) follows from the Cauchy-Schwarz inequality, and (∗) follows from (31) since θ∗ ∈Θs−1

(the clean event E is true, by assumption), and ($) follows from (42). Combining (33) and (34),

R(t)⩽ max
κ∈[K]

cκ +
∑
s∈St

(radκs,ms,s−1− radκ∗,m∗,s−1)ms +

(∑
j∈[m∗] gκ∗(j− 1)

m∗

)∑
s∈St

αs−1∥xκ∗∥V −1
s−1

ms

=+
∑
s∈St

αs−1∥xκs∥V −1
s−1

∑
j∈[ms]

gκs(j− 1)


=
⋆
max
κ∈[K]

cκ +2
∑
s∈St

αs−1∥xκs∥V −1
s−1

∑
j∈[ms]

gκs(j− 1)


⩽ max

κ∈[K]
cκ +2αt

∑
s∈St

∥xκs∥V −1
s−1

∑
j∈[ms]

gκs(j− 1)


⩽
†
max
κ∈[K]

cκ +2αt

√√√√√(∑
s∈St

∥xκs∥
2

V −1
s−1

)∑
s∈St

 ∑
j∈[ms]

gκs(j− 1)

2

⩽
‡
max
κ∈[K]

cκ +2αt

√√√√√2d log

(
1+

L2t

λd

)∑
s∈St

 ∑
j∈[ms]

gκs(j− 1)

2
⩽ max

κ∈[K]
cκ +2max

κ∈[K]

∑
j∈[M ]

gκ(j− 1)

αt

√
2dt log

(
1+

L2t

λd

)
,

where (⋆) follows from (41), (†) using the Cauchy-Schwarz inequality, and (‡) using Lemma 9. We

have thus proved both (43) and (44). The bound in (45) follows from (43) by observing that

∑
s∈St

 ∑
j∈[ms]

gκs(j− 1)

2

⩽
∑
s∈St

m2
s ⩽M

∑
s∈St

ms <M(t+M).

□
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H. Incorporating Feature-Based Learning

In practical scenarios, auxiliary information is often available and can be leveraged to reformulate

the learning problem within a structured feature space that is potentially low-dimensional. This

transformation may enable faster learning rates that scale with the ambient feature dimension d

rather than K, which is particularly beneficial when d≪K. Below, we introduce a feature-based

variant of our model and establish connections between its primitives and those of the original

(feature-free) model.

Each type κ∈ [K] is associated with a (static) feature vector xκ ∈Rd, satisfying ∥xκ∥2 ⩽L. The

mean reward µκ for type κ is given by

µκ := ⟨xκ, θ
∗⟩, (35)

where θ∗ ∈Θ0 ⊆Rd is a latent parameter satisfying ∥θ∗∥2 ⩽ S. For ease of technical exposition, we

assume a linear model; however, our analytical approach and techniques can be extended to more

complex models, such as generalized linear models (McCullagh and Nelder 1989).

For clarity, we revisit the sequential learning setting under the feature-rich model below. However,

this follows directly from our original model (1) under the mapping (35).

Generative Model. The reward rt in round t is realized according to the model:

rt = ξt +


〈
xtype(πt), θ

∗
〉
− ctype(πt) if πt /∈At−1〈

xtype(πt), θ
∗
〉
gtype(πt)(aget(πt)) if πt ∈At−1 and aget(πt)⩽M − 1

−∞ otherwise.

, (36)

where ξt is a mean-zero noise term satisfying Assumption 1, At−1 ⊂ N denotes the set of arms

pulled up to and including round t− 1 (with A0 :=∅), and πt denotes the arm pulled in round t.

Objective. The goal is to maximize the cumulative expected reward:

sup
π∈Π

Eπ

∑
t∈[T ]

rt

, (37)

where the expectation is taken over all sources of randomness in the problem, including the rewards

and the policy. This is equivalent to minimizing the expected regret:

inf
π∈Π

OPTT −Eπ

∑
t∈[T ]

rt

,

where OPTT denotes the optimal value of (37) under ex ante knowledge of θ∗.

Remark 2 (Near-Optimal Policy) It is instructive to note that the value OPTT remains un-

changed in both the feature-rich and feature-less models and is attained (up to an O(1) additive loss)
by the age-triggered policy π∗ described in Theorem 1. Consequently, the online learning algorithm

we propose next for the feature-rich model also aims to learn π∗ from data.
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Learning Framework. We adapt the standard framework for learning in linear bandits (see,

e.g., Auer (2002), Dani et al. (2008), Rusmevichientong and Tsitsiklis (2010), Chu et al. (2011),

Abbasi-Yadkori et al. (2011)) to our setting, which we describe next.

In what follows, St ⊆ [t] denotes the subset of rounds up to t in which the UCB rule applies

(see Algorithm 3 below), κs := type(πs) denotes the type of the arm pulled in round s∈ St, and I
denotes the identity matrix in Rd×d. We define for (κ,m, t, θ)∈ [K]× [M ]× [T ]×Θ0 the following:

Vt := λI +
∑
s∈[St]

xκs ⊗xκs . (38)

θ̂t := V −1
t

∑
s∈[St]

rsxκs . (39)

µ̄κ,m(θ) :=

(
⟨xκ, θ⟩

∑
j∈[m] gκ(j− 1)− cκ

m

)
. (40)

radκ,m,t := αt∥xκ∥V −1
t

(∑
j∈[m] gκ(j− 1)

m

)
, (41)

with the convention that V0 := λI, radκ,m,0 := α0∥xκ∥V −1
0

(∑
j∈[m] gκ(j−1)

m

)
, and θ̂0 := θ0, where θ0 is

some known parameter in the parameter set Θ0. Note that µ̄κ,m(θ) represents the long-run-average

value of an age-triggered policy parameterized by type κ and cycle length m when the underlying

model is θ. Algorithm 3 aims to optimize this value over the space of types [K] and cycle lengths

[M ] using an ℓ2-regularized least-squares estimator (RLSE), θ̂t, for the true latent model θ∗, defined

with respect to a λ-regularized covariance matrix Vt. Lastly, radκ,m,t denotes the confidence radius

of θ̂t along the direction of xκ in the elliptical norm induced by V −1
t , further modulated by the

exploration coefficient αt.

Algorithm 3 Decay-Aware Feature-Based Optimistic Nudging

• Input: Types [K], Max life M , Feature vectors {xκ : κ∈ [K]}, Parameter set Θ0,

Decay coefficients {gκ(j− 1) : (κ, j)∈ [K]× [M ]}, Costs {cκ : κ∈ [K]}, Horizon T ,

Regularization param λ, Exploration sequence (α0, α1, · · ·), Initial estimate θ0 ∈Θ0.

• Initialize: Round t= 1, RLSE θ̂0 = θ0 .

• While t⩽ T

Fix (κt,mt)∈ argmax(κ,m)∈[K]×[M ]

{
µ̄κ,m

(
θ̂t−1

)
+ radκ,m,t−1

}
. (UCB rule)

Select a new arm of type κt; pull it for mt consecutive rounds.

Observe feedback and update RLSE θ̂t+mt−1.

t← t+mt.

Dynamics. Algorithm 3 is an adaptation of the celebrated LinUCB algorithm (Chu et al. 2011)

to our setting (additionally incorporating regularization to address the initial cold-start problem).
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The algorithm operates episodically: at the end of each episode, the RLSE of θ∗ is updated based

on the observed feedback. It then commits to an arm type and duration for the next episode based

on the UCB rule, which is computed using optimistic estimates of the target long-run-average

value. This ensures progressively improving performance over time as the RLSE converges and the

algorithm approximates π∗ more closely. The precise regret rates achieved depend on the specifics

of the estimation metrics described in (38), (39), and (41).

Remark 3 (Data Requirements for RLSE Computation) Note that only the feedback from

samples of age 0 is used in computing the RLSE. While incorporating samples of higher age is pos-

sible, it complicates the theoretical analysis and generally does not lead to meaningful improvements

in the regret upper bound, as noted in §5.2.1.

Remark 4 (Unknown Decay Kernels) A version of Algorithm 3 for the case of unknown decay

kernels (à la §5.2.2) can also be designed and analyzed in a principled manner. For brevity, the

details of this extension are deferred to §I.

Theorem 6 (High Probability Regret Bounds for Algorithm 3) Fix failure probability δ ∈

(0,1] and set λ⩾max(1,L2). For t= 0,1, · · · , specify the exploration sequence as follows:

αt = σ

√
d log

(
1+ tL2/λ

δ

)
+
√
λS . (42)

For any t, let St ⊆ [t] denote the subset of rounds until t in which the UCB rule applies. Then, the

regret of Algorithm 3 satisfies the following w.p. at least 1− δ:

R(t)⩽ max
κ∈[K]

cκ +2αt

√√√√√2d log

(
1+

L2t

λd

)∑
s∈St

 ∑
j∈[ms]

gκs(j− 1)

2 ∀ t= 0,1, · · · (43)

Furthermore, both (44) and (45) also hold w.p. at least 1− δ:

R(t)⩽ max
κ∈[K]

cκ +2max
κ∈[K]

∑
j∈[M ]

gκ(j− 1)

αt

√
2dt log

(
1+

L2t

λd

)
∀ t= 0,1, · · · (44)

R(t)⩽ max
κ∈[K]

cκ +2αt

√
2dM(t+M) log

(
1+

L2t

λd

)
∀ t= 0,1, · · · (45)

Details of the analysis are deferred to §G. For a horizon of length T , one can set δ= 1/T to obtain

E[R(t)] = Õ
(
d
√
t
)
for all times t∈ [T ]. Note that the upper bounds scale as Õ

(
d
√
t
)
, compared to

Õ
(√

Kt
)
in the feature-less setting. Thus, Algorithm 3 can offer significant performance benefits

when d≪K. However, this potentially comes at the expense of computational complexity, as the
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implementation of the UCB rule now involves a rank-d matrix inversion, which can be computa-

tionally prohibitive. To mitigate this, one can compute the inverse efficiently using rank-1 updates

at the end of each episode without sacrificing performance.

Remark 5 (Comparison of Upper Bounds) Note that both (44) and (45) follow from (43).

Depending on the specifics of the decay kernels, one or the other may be tighter and therefore

preferred. The bound in (44) is tighter when the decays are “sharp,” and may potentially be inde-

pendent of M altogether.

Remark 6 (Improved Rates) Note that our regret upper bounds are a factor of
√
d away from

the optimal Õ(
√
dt) rate for the linear K-armed bandit problem (Chu et al. 2011). This gap can be

closed by employing more sophisticated learning algorithms, such as the one proposed in the cited

reference. However, we do not pursue these extensions in this work for brevity.

I. Incorporating Feature-Based Learning: General Model

As before, each type κ∈ [K] is associated with a (static) feature vector xκ ∈Rd, satisfying ∥xκ∥2 ⩽
L. For m ∈ [M ], the mean reward obtained by pulling a type κ arm of age m− 1 is denoted by

µκ,m and given by

µκ,m := ⟨xκ, θ
∗
m⟩ , (46)

where θ∗m ∈ Θ0 ⊆ Rd is a latent parameter satisfying ∥θ∗m∥2 ⩽ S. For each κ ∈ [K], the M mean

reward parameters satisfy µκ,1 ⩾ · · · ⩾ µκ,M . The M model parameters {θ∗1, · · · , θ∗M} ⊂ Θ0 are ex

ante unknown and will be estimated from online data. We will use θ̄∗ to denote the true parameter

configuration (θ∗1, · · · , θ∗M), θ̄ to denote a generic parameter configuration (θ1, · · · , θM) ∈ΘM
0 , and

ˆ̄θt to denote the configuration specified by the M parameter estimates
(
θ̂1,t, · · · , θ̂M,t

)
computed

at the end of round t∈ [T ], with the convention that ˆ̄θ0 :=
(
θ̂1,0, · · · , θ̂M,0

)
:= (θ1,0, · · · , θM,0), where

{θ1,0, · · · , θM,0} are some known parameters in the parameter set Θ0. Define for
(
κ,m, θ̄

)
∈ [K]×

[M ]×ΘM
0 the following:

µ̄κ,m

(
θ̄
)
:=

∑
j∈[m] µκ,j − cκ

m
=

∑
j∈[m]

〈
xκ, θ

∗
j

〉
− cκ

m
. (47)

For clarity, we revisit the sequential learning setting under the feature-rich model below. However,

this follows directly from our original model (1) under the mapping (46).

Generative Model. The reward rt in round t is realized according to the model:

rt = ξt +


〈
xtype(πt), θ

∗
aget(πt)+1

〉
− ctype(πt) if πt /∈At−1〈

xtype(πt), θ
∗
aget(πt)+1

〉
gtype(πt)(aget(πt)) if πt ∈At−1 and aget(πt)⩽M − 1

−∞ otherwise.

, (48)
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where ξt is a mean-zero noise term satisfying Assumption 1, At−1 ⊂ N denotes the set of arms

pulled up to and including round t− 1 (with A0 :=∅), and πt denotes the arm pulled in round t.

Objective. The goal is to maximize the cumulative expected reward:

sup
π∈Π

Eπ

∑
t∈[T ]

rt

, (49)

where the expectation is taken over all sources of randomness in the problem, including the rewards

and the policy. This is equivalent to minimizing the expected regret:

inf
π∈Π

OPTT −Eπ

∑
t∈[T ]

rt

,

where OPTT denotes the optimal value of (49) under ex ante knowledge of θ̄∗.

Remark 7 (Near-Optimal Policy) It is instructive to note that the value OPTT remains un-

changed in both the feature-rich and feature-less models and is attained (up to an O(1) additive loss)

by the age-triggered policy π∗ described in Theorem 1. Consequently, the online learning algorithm

we propose next for the feature-rich model also aims to learn π∗ from data.

The parameters (κ∗,m∗) of the age-triggered policy π∗ satisfy

(κ∗,m∗)∈ argmax
(κ,m)∈[K]×[M ]

µ̄κ,m

(
θ̄∗
)
. (50)

Learning Framework. In what follows, Sm,t ⊆ [t] denotes the subset of rounds up to t in which

an arm of age m− 1 is pulled, κs := type(πs) denotes the type of the arm pulled in round s, and

I denotes the identity matrix in Rd×d. We define for (κ,m, t)∈ [K]× [M ]× [T ] the following:

Vm,t := λI +
∑

s∈[Sm,t]

xκs ⊗xκs . (51)

θ̂m,t := V −1
m,t

∑
s∈[Sm,t]

rsxκs . (52)

radκ,m,t := αt

(∑
j∈[m] ∥xκ∥V −1

j,t

m

)
, (53)

with the convention that Vm,0 := λI, radκ,m,0 := α0

(∑
j∈[m] ∥xκ∥V −1

j,0

m

)
, and θ̂m,0 := θm,0, where θm,0

is some known parameter in the parameter set Θ0.
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Algorithm 4 Decay-Agnostic Feature-Based Optimistic Nudging

• Input: Types [K], Max life M , Feature vectors {xκ : κ∈ [K]}, Costs {cκ : κ∈ [K]}, Horizon T

Regularization param λ, Exploration sequence (α0, α1, · · ·),

Parameter set Θ0, Initial estimate (θ1,0, · · · , θM,0)∈ΘM
0 .

• Initialize: Round t= 1, RLSE ˆ̄θ0 = (θ1,0, · · · , θM,0) .

• While t⩽ T

Fix (κt,mt)∈ argmax(κ,m)∈[K]×[M ]

{
µ̄κ,m

(
ˆ̄θt−1

)
+ radκ,m,t−1

}
. (UCB rule)

Select a new arm of type κt; pull it for mt consecutive rounds.

Observe feedback and update RLSE ˆ̄θt+mt−1.

t← t+mt.

Theorem 7 (High Probability Regret Bound for Algorithm 4) Fix failure probability δ ∈
(0,1/M ] and set λ⩾max(1,L2). For t= 0,1, · · · , specify the exploration sequence as follows:

αt = σ

√
d log

(
1+ tL2/λ

δ

)
+
√
λS . (54)

Then, the regret of Algorithm 4 satisfies the following w.p. at least 1−Mδ:

R(t)⩽ max
κ∈[K]

cκ +2αt

√
2d(t+M)M log

(
1+

L2(t+M)

λd

)
∀ t= 0,1, · · ·

We observe that the upper bound is Õ
(
d
√
Mt
)
. A factor of

√
d can be further reduced using

more sophisticated learning algorithms, such as those following the approach of Chu et al. (2011).

This could potentially yield a bound of Õ
(√

dMt
)
, exhibiting a tight dependence on the actual

number of unknown scalar parameters (dM). However, we do not pursue such extensions in the

present paper for brevity.

I.1. Regret Analysis of Algorithm 4

First, we adapt the following key lemmas from Abbasi-Yadkori et al. (2011) to our setting.

Lemma 10 (High Probability Confidence Ellipsoids) Fix failure probability δ ∈ (0,1/M ],

and for m∈ [M ] and t= 1,2, · · · , consider the sequence of confidence ellipsoids generated by Algo-

rithm 3:

Θm,t :=

{
θ ∈Rd :

∥∥∥θ̂m,t− θ
∥∥∥
Vm,t

⩽ αt

}
, (55)

where Vm,t, θ̂m,t, and αt are as defined in (51), (52), and (54) respectively. Define “clean event”

E := {θ∗m ∈Θm,t ∀ m∈ [M ] ∀ t= 0,1,2, · · ·}. (56)

Then, one has that P(E)⩾ 1−Mδ.
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Proof of Lemma 10. The result follows instructively from Theorem 2 of Abbasi-Yadkori et al.

(2011). We skip the steps for brevity. □

Lemma 11 (Elliptical Potential Lemma) In the setting of Lemma 10, if λ⩾max(1,L2), then

the following holds for all m∈ [M ] and t= 1,2, · · · :

∑
s∈Sm,t

∥xκs∥
2

V −1
m,s−1

⩽ 2d log

(
1+

L2|Sm,t|
λd

)
.

Proof of Lemma 11. The result follows instructively by combining Lemma 10 and 11 of Abbasi-

Yadkori et al. (2011). We skip the steps for brevity. □

I.1.1 Proof of Theorem 7

Suppose the “clean event” E in (56) is true. Recall that (κ∗,m∗) ∈ argmax(κ,m)∈[K]×[M ] µ̄κ,m

(
θ̄∗
)
,

and that S1,t ⊆ [t] denotes the subset of rounds until t in which the UCB rule applies (see Algo-

rithm 4). Then, similarly to the derivation of (26) in the analysis of Algorithm 1, one can show

that the regret of Algorithm 4 after any t rounds is bounded as

R(t)⩽ max
κ∈[K]

cκ +
∑

s∈S1,t

(
µ̄κ∗,m∗

(
θ̄∗
)
− µ̄κs,ms

(
θ̄∗
))
ms

= max
κ∈[K]

cκ +
∑

s∈S1,t

(
µ̄κ∗,m∗

(
ˆ̄θs−1

)
− µ̄κs,ms

(
ˆ̄θs−1

))
ms +

∑
s∈S1,t

(
µ̄κ∗,m∗

(
θ̄∗
)
− µ̄κ∗,m∗

(
ˆ̄θs−1

))
ms

=+
∑

s∈S1,t

(
µ̄κs,ms

(
ˆ̄θs−1

)
− µ̄κs,ms

(
θ̄∗
))

ms

⩽
†
max
κ∈[K]

cκ +
∑

s∈S1,t

(radκs,ms,s−1− radκ∗,m∗,s−1)ms +
1

m∗

∑
s∈S1,t

∑
j∈[m∗]

〈
xκ∗ , θ∗j − θ̂j,s−1

〉
ms

=+
∑

s∈S1,t

∑
j∈[ms]

〈
xκs , θ̂j,s−1− θ∗j

〉
, (57)

where (†) follows since (κs,ms) is chosen by the UCB rule in round s∈ S1,t. Now observe that for

any round s∈ S1,t, j ∈ [ms], and any κ∈ [K],

∣∣∣〈xκ, θ̂j,s−1− θ∗j

〉∣∣∣⩽
‡
∥xκ∥V −1

j,s−1

∥∥∥θ̂j,s−1− θ∗j

∥∥∥
Vj,s−1

⩽
∗
∥xκ∥V −1

j,s−1

(
σ

√
d log

(
1+ (s− 1)L2/λ

δ

)
+
√
λS

)
=
$
αs−1∥xκ∥V −1

j,s−1
, (58)

where (‡) follows from the Cauchy-Schwarz inequality, and (∗) follows from (55) since θ∗j ∈Θj,s−1

(the clean event E is true, by assumption), and ($) follows from (54). Combining (57) and (58),

R(t)⩽ max
κ∈[K]

cκ +
∑

s∈S1,t

(radκs,ms,s−1− radκ∗,m∗,s−1)ms +
1

m∗

∑
s∈S1,t

∑
j∈[m∗]

αs−1∥xκ∗∥V −1
j,s−1

ms
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=+
∑

s∈S1,t

∑
j∈[ms]

αs−1∥xκs∥V −1
j,s−1

=
⋆
max
κ∈[K]

cκ +2
∑

s∈S1,t

∑
j∈[ms]

αs−1∥xκs∥V −1
j,s−1

⩽ max
κ∈[K]

cκ +2αt

∑
s∈S1,t

∑
j∈[ms]

∥xκs∥V −1
j,s−1

⩽
†
max
κ∈[K]

cκ +2αt

√
t∗
∑

s∈S1,t

∑
j∈[ms]

∥xκs∥
2

V −1
j,s−1

= max
κ∈[K]

cκ +2αt

√
t∗
∑

m∈[M ]

∑
s∈Sm,t∗

∥xκs∥
2

V −1
m,s−1

⩽
‡
max
κ∈[K]

cκ +2αt

√√√√2dt∗
∑

m∈[M ]

log

(
1+

L2|Sm,t∗ |
λd

)

⩽ max
κ∈[K]

cκ +2αt

√
2dt∗M log

(
1+

L2t∗

λd

)

⩽
$
max
κ∈[K]

cκ +2αt

√
2d(t+M)M log

(
1+

L2(t+M)

λd

)
,

where (⋆) follows using (53), (†) follows with t∗ :=
∑

s∈S1,t
ms using Jensen’s inequality, (‡) follows

using Lemma 11, and finally ($) follows since t∗ < t+M . □
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J. Additional Details on Benchmark Algorithms and Additional
Numerical Results

In this appendix, we first provide additional details on the benchmark UCB (Algorithm 5) and

TS (Algorithm 6) algorithms. Then, we also present results from additional numerical experiments

from §6 of the paper. Note that we only present benchmark algorithms for the decay aware setting

and skip the decay agnostic case for the sake of brevity.

Additional details on the benchmark algorithms: In comparison to the proposed DRAWON algo-

rithm (Algorithm 1), the benchmark algorithms only differ in their arm selection/regeneration rule.

Instead of estimating the Whittles Index, both the benchmark algorithms compute an estimate of

the current reward of each arm, given its age and type. Then, a regeneration decision is made by

a direct cost-to-reward comparison (see the If statement in both the algorithms).

Algorithm 5 Decay-Aware Benchmark UCB

• Input: Types [K], Max life M , sub-Gaussian param σ, Exploration coefficient α, Horizon T ,

Decay coefficients {gκ(j− 1) : (κ, j)∈ [K]× [M ]}.

• Initialize: Round t= 1.

• While 1⩽ t⩽ 2K

Pull a new arm of type 1+ t%K.

t← t+1.

• Let mκ = 0, ∀κ∈ [K].

• While 2K +1⩽ t⩽ T

For each k ∈ [K], compute µ̂t
κ according to the stratified estimator 7, with ρk,j = 1/M .

Let UCBt
k = µ̂t

κ +2σ
√

logT
Nκ(t)

where Nκ(t) denotes the number of arm pulls of type κ.

Let κt = argmaxk∈[K]UCBt
kgk(mk).

If, UCBt
κt
gκt(mκt)⩽UCBt

κt
gκt(0)− cκt

Let κt = argmaxk∈[K]UCBt
kgk(0)− ck.

Regenerate and pull arm κt; Also let mκt = 0.

Otherwise pull arm κt without regeneration.

For each k ∈ [K], mk→mk +1, t→ t+1.

Additional results from the numerical experiments: In Figure 10 we present additional numerical

results from the model calibrated with real-world data from an EdTech platform. We find identi-

cal insights: the proposed DRAGON algorithm substantially outperforms benchmark algorithms

regardless of how we generate the ground-truth model.
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Algorithm 6 Decay-Aware Benchmark Thompson Sampling

• Input: Types [K], max life M , sub-Gaussian param σ, horizon T , generation costs {cκ}κ∈[K],

decay coefficients {gκ(j− 1)}.

• While 1≤ t≤ 2K:

Pull a new arm of type (1+ (t− 1) mod K ).

t← t+1.

• Let mκ = 0, ∀κ∈ [K].

• While 2K +1≤ t≤ T :

For each κ∈ [K], compute µ̂t
κ according to the stratified estimator 7, with ρk,j = 1/M .

Sample θκ ∼N
(
µ̂κ, σ

2/Nκ

)
where Nκ(t) denotes the number of arm pulls of type κ.

Compute Rκ = θκ × gκ
(
mκ

)
.

κt← argmaxκ∈[K] Rκ.

If, Rκt ⩽Rκtgκt(0)− cκt

Let κt = argmaxk∈[K]Rkgk(0)− ck.

Regenerate and pull arm κt; Also let mκt = 0.

Otherwise pull arm κt without regeneration.

For each k ∈ [K], mk→mk +1, t→ t+1.
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Figure 10 Cumulative Regret comparison between the proposed DRAGON and the benchmark algorithms on the

calibrated model. The top left (top right) plot demonstrates cumulative regret when the underlying

ground-truth model is estimated using the exponential function (linear function) and data from both

in-treatment and post-treatment weeks. Similarly, the bottom left (bottom right) plot demonstrates

cumulative regret when the underlying ground-truth model is estimated using the exponential function

(linear function) and data from only in-treatment weeks.
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