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ABSTRACT

Off-policy learning enables a reinforcement learning (RL) agent to reason coun-
terfactually about policies that are not executed and is one of the most important
ideas in RL. It, however, can lead to instability when combined with function ap-
proximation and bootstrapping, two arguably indispensable ingredients for large-
scale reinforcement learning. This is the notorious deadly triad. The seminal work
Sutton et al. (2008) pioneers Gradient Temporal Difference learning (GTD) as the
first solution to the deadly triad, which has enjoyed massive success thereafter.
During the derivation of GTD, some intermediate algorithm, called A>TD, was
invented but soon deemed inferior. In this paper, we revisit this A>TD and prove
that a variant of A>TD, called A>t TD, is also an effective solution to the deadly
triad. Furthermore, this A>t TD only needs one set of parameters and one learning
rate. By contrast, GTD has two sets of parameters and two learning rates, making
it hard to tune in practice. We provide both asymptotic and finite sample analy-
sis for A>t TD, where the convergence rate is on par with the canonical on-policy
temporal difference learning.

1 INTRODUCTION

Off-policy learning (Watkins, 1989; Precup et al., 2000; Maei, 2011; Sutton et al., 2016; Li, 2019)
is arguably one of the most important ideas in reinforcement learning (RL, Sutton & Barto (2018)).
Different from on-policy learning (Sutton, 1988), where an RL agent learns quantities of interest of
a policy by executing the policy itself, an off-policy RL agent learns quantities of interest of a policy
by executing a different policy. This flexibility offers additional safety (Dulac-Arnold et al., 2019)
and data efficiency (Lin, 1992; Sutton et al., 2011).

Off-policy learning, however, can lead to instability if combined with function approximation and
bootstrapping, two other arguably indispensable techniques for any large-scale RL applications. The
idea of function approximation (Sutton, 1988) is to represent quantities of interest with parameter-
ized functions instead of look-up tables. The idea of bootstrapping (Sutton, 1988) is to construct
update targets for an estimator by using the estimator itself recursively. This instability resulting
from off-policy learning, function approximation, and bootstrapping is called the deadly triad (Baird,
1995; Sutton & Barto, 2018; Zhang, 2022).

The seminal work Sutton et al. (2008) pioneers the first solution to the deadly triad, called Gradient
Temporal Difference learning (GTD). Thereafter, GTD has been massively studied and enjoyed cel-
ebrated success (Sutton et al., 2008; 2009; Maei et al., 2009; Maei & Sutton, 2010; Maei et al., 2010;
Maei, 2011; Mahadevan et al., 2014; Liu et al., 2015; Du et al., 2017; Wang et al., 2017; Yu, 2017;
Xu et al., 2019; Wang & Zou, 2020; Wai et al., 2020; Ghiassian et al., 2020; Zhang et al., 2021a).
During the derivation of GTD in Sutton et al. (2008), an intermediate algorithm called A>TD was
invented but soon deemed inferior. In Sutton et al. (2008), it is said that “although we find this
algorithm interesting, we do not consider it further here because it requires O(K2) memory and
computation per time step”. Here, K refers to the feature dimension in linear function approxima-
tion. In this paper, we propose a variant of A>TD, called A>t TD, which has O(K) computation per
step, and the memory cost is O(K ln2 t). Here, t refers to the time step. Admittedly, ln2 t diverges
to∞ eventually. However, we argue that this memory cost is negligible in any empirical implemen-
tations. For example, our universe has an age of around 14 billion years. Consider a modern 3 GHz
CPU. Suppose that an RL agent runs 1 step every CPU clock and starts from the very beginning of
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our universe. Then until now it roughly has run T = 14 × 109 × 3.1536 × 107 × 3 × 109 ≈ 1027

steps. We then have ln2 T ≈ 4000. In light of this, we claim that A>t TD does not have any real
drawback in terms of memory compared with GTD.A>t TD, however, has only one set of parameters
and one learning rate. By contrast, GTD has two sets of parameters and two learning rates, making
it hard to tune in practice (Sutton et al., 2008). We prove that A>t TD eventually converges to the
same solution as GTD and enjoys the same convergence rate as the canonical on-policy TD. The
assumptions in our analysis are all standard.

2 BACKGROUND

In this paper, all vectors are columns. We use ‖·‖ to denote the `2 vector and matrix norm. We use
functions and vectors interchangeably when it does not confuse, e.g., if f is a function from S to R,
we also use f to denote a vector in R|S|, whose s-th element is f(s).

We consider an infinite horizon Markov Decision Process (MDP, Puterman (2014)) with a finite
state space S, a finite action space A, a reward function r : S × A → R, a transition function
p : S × S ×A → [0, 1], and a discount factor γ ∈ [0, 1). At time step 0, a state S0 is sampled from
some initial distribution p0. At time step t, an agent at a state St takes an action At ∼ π(·|St). Here
π : A× S → [0, 1] is the policy being followed. A reward Rt+1

.
= r(St, At) is then emitted, and a

successor state St+1 is sampled from p(·|St, At).

The return at time step t is defined as Gt
.
=
∑∞
i=0 γ

iRt+i+1, which allows us to define the state
value function as vπ(s)

.
= Eπ,p [Gt|St = s]. The value function vπ is the unique fixed point of

the Bellman operator Tπv
.
= rπ + γPπv. Here rπ ∈ R|S| is the reward vector induced by π,

defined as rπ(s)
.
=
∑
a π(a|s)r(s, a). Pπ ∈ R|S|×|S| is the transition matrix induced by π, i.e.,

Pπ(s, s′)
.
=
∑
a π(a|s)p(s′|s, a).

Estimating vπ is one of the most important tasks in RL and is called policy evaluation. Linear
function approximation is commonly used for policy evaluation (Sutton, 1988). Consider a feature
function x : S → RK that maps a state s to a K-dimensional feature x(s). We then use x(s)>w to
approximate vπ(s). Here w ∈ RK is the learnable weight. Let X ∈ R|S|×K be the feature matrix,
whose s-th row is x(s)>. The goal is then to adapt w such that Xw ≈ vπ . Linear TD (Sutton, 1988)
updates w iteratively as

wt+1
.
= wt + αt

(
Rt+1 + γx>t+1wt − x>t wt

)
xt. (1)

Here, we use xt
.
= x(St) as shorthand. Under mild conditions, the iterates {wt} in (1) converge

almost surely (Tsitsiklis & Roy, 1996).

It is commonly the case that we want to estimate vπ without actually sampling actions from π due
to various concerns, e.g., safety (Dulac-Arnold et al., 2019), data efficiency (Lin, 1992; Sutton et al.,
2011). Off-policy learning makes this possible. In particular, instead of sampling At according
π(·|St), off-policy method samples At according to another policy µ. Here, the policy π is called
the target policy and the policy µ is called the behavior policy. For the rest of the paper, we always
consider the off-policy setting, i.e.,

At ∼ µ(·|St), Rt+1 = r(St, At), St+1 ∼ p(·|St, At). (2)

Since the behavior policy µ is different from the target policy π, importance sampling ratio is used to
account for this discrepancy, which is defined as ρ(s, a)

.
= π(a|s)

µ(a|s) . In particular, we use as shorthand
ρt

.
= ρ(St, At). Off-policy linear TD then updates w iteratively as

wt+1
.
= wt + αtρt

(
Rt+1 + γx>t+1wt − x>t wt

)
xt. (3)

It is well-known (Sutton et al., 2008) that if off-policy linear TD converged, it would converge to a
w∗ satisfying

Aw∗ + b = 0, (4)

where

A
.
=X>Dµ(γPπ − I)X, b

.
= X>Dµrπ. (5)
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Here, dµ is the stationary distribution of the Markov chain induced by the behavior policy µ, andDµ

is a diagonal matrix with the diagonal being dµ. Unfortunately, the possible divergence of off-policy
linear TD in (3) is well documented (Baird, 1995; Sutton et al., 2016; Sutton & Barto, 2018). This
divergence exercises the deadly triad.

Instead of using off-policy linear TD in (3) to find w∗, one natural approach for policy evaluation in
the off-policy setting is then to solve Aw+ b = 0 directly, probably with stochastic gradient descent
on the objective L(w)

.
= ‖Aw + b‖2. The on-policy version of this objective (i.e., with µ = π) is

first introduced in Yao & Liu (2008) to derive preconditioned TD. The off-policy version considered
in this paper is first used by Sutton et al. (2008) to derive GTD, and this objective is called the
norm of the expected TD update (NEU) in Sutton et al. (2009). The gradient of L(w) can be easily
computed as∇L(w) = 2A>(Aw + b). One can, therefore, update w as

wt+1
.
= wt − αtA>(Awt + b).

Since we do not know A and b, we need to estimate A>(Awt + b) with samples. The idea of A>TD
in Sutton et al. (2008) is to estimate A> as

A> ≈ 1
t+1

∑t
i=0 ρi(γxi+1 − xi)x>i

and to estimate Awt + b as

Awt + b ≈ ρt
(
Rt+1 + γx>t+1wt − x>t wt

)
xt.

As said in Sutton et al. (2008), A>TD is “essentially conventional TD(0) prefixed by an estimate of
the matrix A>”. Apparently, computing and store this estimate of A> requires O(K2) computation
and memory per step, if we use a moving average implementation. And it is unclear whether this
A>TD is convergent. Having deemed this A>TD inferior, Sutton et al. (2008) rewrite the gradient
as

∇L(w) = A>(Aw + b) = A>X>Dµ (Tπ(Xw)−Xw)

and use a secondary weight ν ∈ RK to approximate X>Dµ (Tπ(Xw)−Xw), yielding the follow-
ing well-known GTD algorithm

δt
.
=Rt+1 + γx>t+1wt − x>t wt,

νt+1
.
=νt + αt (ρtδtxt − νt) ,

wt+1
.
=wt + αtρt(xt − γxt+1)x>t νt. (GTD)

The convergence and finite sample analysis of GTD is well established (Sutton et al., 2008; 2009;
Liu et al., 2015; Wang et al., 2017; Yu, 2017).

3 A>
t TD: REVISITING THE DESIGN CHOICE OF A>TD

In this paper, we refine the idea of A>TD via estimating A> with a single sample at time t+f(t) as

A> ≈ ρt+f(t)

(
xt+f(t) − γxt+f(t)+1

)
x>t+f(t),

where f : N→ N is an increasing gap function. This yields the following novel algorithm:

δt
.
=Rt+1 + γx>t+1wt − x>t wt,

wt+1
.
=wt + αtρt+f(t)

(
xt+f(t) − γxt+f(t)+1

)
x>t+f(t)ρtδtxt. (A>t TD)

We call it A>t TD to highlight that it uses a single sample to estimate A>. In (A>t TD), the term
ρt+f(t)ρt

(
Rt+1 + γx>t+1wt − x>t wt

)
is a scalar, the computational complexity of which is only

O (K). If we compute the remaining term
(
xt+f(t) − γxt+f(t)+1

)
x>t+f(t)xt from right to left, the

computational complexity is still O (K). In other words, the computational complexity of (A>t TD)
is the same as (GTD). The price we pay here is that we cannot start (A>t TD) until the (f(0) + 1)-th
step, and we need to maintain a memory storing

xt, ρt, xt+1, ρt+1, . . . xf(t), ρf(t), xf(t)+1. (9)
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The size of this memory is O (f(t)). We will soon prove that the memory can be as small as
Ω(ln2(t)). We argue that this memory overhead is negligible in any empirical implementations. The
gain is that we now do not need an additional weight vector, making the algorithm easy to use. We
will have a few assumptions on the gap function f shortly to facilitate the theoretical analysis. But
one example could simply be

f(t) = bln2(t+ 1)c,

where b·c is the floor function. In other words, the choice of the gap function is simple and does not
depend on any unknown problem structure. To understand how this gap function works, we consider
a case where f(t) = 0∀t. Then we are essentially estimating A> and Awt+ b with the same sample
(xt, Rt+1, xt+1). We will then for sure run into the well-known double sampling issue1. By using
the gap function, we use the sample at time t + f(t) to estimate A> and the sample at time t to
estimate Awt + b. Despite that those two samples are still correlated due to the Markovian nature of
the data stream (2), the increasing f(t) gradually reduces the correlation. The theoretical analysis
in the following two sections confirms that such a simple gap function is enough to guarantee the
desired convergence to w∗ with a desired convergence rate.

We do note that throughout the paper we consider the canonical RL setting where only Markovian
samples are available. If instead i.i.d. samples are available, addressing the aforementioned doubling
sampling issue then becomes more straightforward – one can simply use two independent samples
to estimate A> and Awt + b. A>TD with i.i.d. samples are thoroughly investigated in Yao (2023)
and we refer the reader to Yao (2023) for more details.

4 ASYMPTOTIC CONVERGENCE ANALYSIS OF A>
t TD

In this section, we provide an asymptotic convergence analysis of (A>t TD). The major techni-
cal challenge lies in the increasing gap function. If f(t) was a constant function, say f(t) ≡ t0,
then one would be able to easily analyze (A>t TD) via constructing an augmented Markov chain
with states Yt

.
= {St, At, . . . , St+t0 , At+t0 , St+t0+1}, evolving in a finite space (S × A)t0+1 ×

S. Suppose the origin Markov chain {St} is ergodic, this new chain {Yt} would also be er-
godic. Classical convergence results (e.g., Proposition 4.7 of Bertsekas & Tsitsiklis (1996))
can then take over. When f(t) is increasing, the augmented chain, however, would be Yt

.
={

St, At, . . . , St+f(t), At+f(t), St+f(t)+1

}
which evolves in an infinite space

⋃∞
i=1(S × A)i × S.

Even if the origin chain {St} is ergodic, the new chain {Yt} still behaves poorly in that it never
visits the same augmented state twice. This rules out the possibility of applying most, if not all, ex-
isting convergence results in the stochastic approximation community (e.g., Benveniste et al. (1990);
Kushner & Yin (2003); Borkar (2009)). To proceed, we instead use the skeleton iterates technique
introduced by Qian et al. (2024). The key idea of this skeleton iterates technique is to divide the
non-negative real axis into intervals of length {Tm} and examine the updates interval by interval.
Importantly, we will require this {Tm} to diminish, in a rate coordinated with the gap function f(t)
and the learning rate αt.

Besides the skeleton iterates technique, another important ingredient is the mixing of joint state
distributions in Markov chains. Consider a general Markov chain {Yt}. Assume the chain is ergodic
and let dY denote its invariant distribution. Then the convergence theorem (see, e.g., Levin & Peres
(2017)) yields limt→∞ Pr(Yt = y) = dY(y). This convergence is uniform in y and is geometrically
fast. Exploiting this convergence, we are able to prove the convergence of joint state distributions,
i.e.,

lim
t→∞

Pr
(
Yt = y, Yt+f(t) = y′

)
= dY(y)dY(y′).

Intuitively, this means the dependence between Yt and Yt+f(t) diminishes as t goes to infinity (cf.
Lemma 7.1 in Vempala (2005)). In (A>t TD), this means the bias resulting from the correlation of
the two samples at time t + f(t) and time t diminishes gradually. Having introduced the two main
ingredients in our analysis, we are now ready to formally describe our main results. We start with
(standard) assumptions we make.

1It is well-known that in general E[XY ] 6= E[X]E[Y ].
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Assumption 4.1 The Markov chain induced by the behavior policy µ is finite, irreducible, and
aperiodic. And µ covers π, i.e., ∀(s, a), π(a|s) > 0 =⇒ µ(a|s) > 0.

Assumption 4.2 The feature matrix X has a full column rank. The matrix A defined in (5) is
nonsingular.

Assumptions 4.1 and 4.2 are standard in the analysis of linear TD methods (see, e.g., Tsitsiklis &
Roy (1996); Wang et al. (2017)).

Assumption 4.3 The learning rates {αt} have the form of αt = Cα
(t+1)ν , for some ν ∈ ( 2

3 , 1].

Assumption 4.3 considers learning rates of a specific form. This is mostly for ease of presentation.

Assumption 4.4 The gap function f(t) : N→ N is increasing and satisfies ∀χ ∈ [0, 1),∑∞
t=0 χ

f(t) < ∞. Moreover, there exist constants τ ∈ (0, 3ν−2
2ν ) and Cτ > 0 such that ∀t, f(t) ≤

Cτα
−τ
t .

Assumption 4.4 is the most “unnatural” assumption we make and prescribes how the gap function
should be chosen. Intuitively, those conditions prevent the gap function from growing too fast.
Despite seemingly complicated, Lemma 15 in the appendix confirms that simply setting

f(t) = bh(t) ln(t+ 1)c (10)

with any non-negative increasing function h(·) converging to∞ as t→∞ fulfills the first condition
of Assumption 4.4. Here bxc is the floor function denoting the largest integer smaller than x. A
concrete example satisfying Assumption 4.3 and 4.4 is

ν =1, h(t) = ln(t+ 1), f(t) = bln2(t+ 1)c, τ = 0.1. (11)

We are now ready to present our main results.

Theorem 1 Let Assumptions 4.1, 4.2, 4.3, & 4.4 hold. Then the iterates {wt} generated by (A>t TD)
satisfies

lim
t→∞

wt = w∗ a.s.,

where w∗ is the TD fixed point defined in (4).

Proof Following Qian et al. (2024), we define a sequence {Tm}m=0,1,... as

Tm = 16 max(Cα,1)
(η+1)(m+1)η , (12)

where Cα is defined in Assumption 4.3 and η is some constant such that
1

2(1−τ) < η < ν
2−ν , (13)

where ν and τ are defined in Assumption 4.3 and 4.4 respectively. Notably, despite that we follow
the skeleton iterates technique in Qian et al. (2024), our analysis is more challenging than Qian et al.
(2024) in that they only need to coordinate {Tm} with the learning rate αt but we need to coordinate
{Tm} with both the learning rate αt and the gap function f(t). As a result, Qian et al. (2024)
only require η ∈ ( 1

2 ,
ν

2−ν ) but we further require η > 1
2(1−τ) , which significantly complicates the

analysis.

We now follow Qian et al. (2024) and divide the real line into intervals with approximate length
{Tm}. To this end, we define a sequence {tm} as t0

.
= 0,

tm+1
.
= min

{
k|
∑k−1
t=tm

αt ≥ Tm
}
, m = 0, 1, . . . (14)

For simplicity, define

ᾱm
.
=
∑tm+1−1
t=tm

αt, m = 0, 1, . . .

Now, the real line has been divided into intervals of lengths {ᾱm}m=0,1,.... The following properties
of this segmentation will be used repeatedly.

5
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Lemma 2 For all m ≥ 0 and t ≥ tm, we have αt ≤ T 2
m.

The proof is provided in Section C.1.

Lemma 3 For all m ≥ 0, we have ᾱm ≤ 2Tm.

The proof is provided in Section C.2. We do note that the above two lemmas are analogous to
Lemmas 1 & 2 of Qian et al. (2024) but the analysis is more challenging due to the requirement of
η > 1

2(1−τ) . Following Qian et al. (2024), we now investigate the iterates {wt} interval by interval.
Telescoping (A>t TD) yields

wtm+1
= wtm +

∑tm+1−1
t=tm

αt(−Â>t+f(t)Âtwt − Â
>
t+f(t)b̂t), (15)

where we have used shorthand Ât
.
= ρtxt(γxt+1 − xt)> and b̂t

.
= ρtRt+1xt. For ease of presenta-

tion, we define for all m > 0,

qm = wtm +A−1b. (16)

Then, our goal is to show that {qm} converges to 0. Plugging in (16) into (15) yields

qm+1 = qm +
∑km+1−1
t=tm

αt(−Â>t+f(t)Âtwt − Â
>
t+f(t)b̂t)

= qm +
∑km+1−1
t=tm

αt

[
−Â>t+f(t)Ât

(
wt +A−1b

)
− Â>t+f(t)

(
b̂t − ÂtA−1b

)]
= qm + g1,m + g2,m + g3,m + g4,m,

where

g1,m =
∑tm+1−1
t=tm

αt(−A>Aqm) = −ᾱmA>Aqm,

g2,m =
∑tm+1−1
t=tm

αt

(
A>A− E

[
Â>t+f(t)Ât|Ftm+f(tm)

])
qm

−
∑tm+1−1
t=tm

αtE
[
Â>t+f(t)

(
b̂t − ÂtA−1b

)
|Ftm+f(tm)

]
,

g3,m =
∑tm+1−1
t=tm

αt

(
E
[
Â>t+f(t)Ât|Ftm+f(tm)

]
− Â>t+f(t)Ât

)
qm

+
∑tm+1−1
t=tm

αt

(
E
[
Â>t+f(t)

(
b̂t − ÂtA−1b

)
|Ftm+f(tm)

]
− Â>t+f(t)

(
b̂t − ÂtA−1b

))
,

g4,m =
∑tm+1−1
t=tm

αtÂ
>
t+f(t)Ât

[
qm −

(
wt +A−1b

)]
.

Here Ft denotes the σ-algebra until time t, i.e., Ft
.
= σ(w0, S0, A0, . . . , St−1, At−1, St). We use

the following lemmas to bound each term above. In Qian et al. (2024), they do not have terms
like f(t) (cf. f(t) = 0). As a result, their wt+1 is adapted to Ft. But in our analysis, due to
the dependence on Ât+f(t), wt+1 is not adapted to Ft and is only adapted to Ft+f(t). This greatly
complicates the analysis, and we will repeatedly use Lemma 14 to address this challenge. Moreover,
Assumption 4.2 implies that the matrix A>A is positive definite, i.e., there exists a constant β > 0
such that for all w,

w>A>Aw ≥ β‖w‖2. (17)

This β plays a key role in the following bounds. The finiteness of the MDP and Assumptions 4.1
& 4.2 ensure the existence of a constant H <∞ such that

supt max
{∥∥∥Ât∥∥∥,∥∥∥b̂t∥∥∥, ‖A‖, ‖b‖,∥∥∥ÂtA−1b

∥∥∥} ≤ H.
Lemma 4 If e2TmH

2 ≤ 2, then for all t such that tm ≤ t < tm+1, we have∥∥qm − (wt +A−1b
)∥∥ ≤ 8TmH

2(‖qm‖+ 1).

The proof is provided in Section C.3.

Lemma 5 If 2H4Tm ≤ β, then ‖qm + g1,m‖2 ≤ (1− βTm)‖qm‖2.
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The proof is provided in Section C.4.

Lemma 6 If Tm ≤ 1, then

‖g2,m‖ ≤ CMT 2(1−τ)
m (H + 1)

(
Cτ + L(f, χ) + 1

1−χ

)
(‖qm‖+ 1),

where L(f, χ) =
∑∞
t=0 χ

f(t), Cτ is defined in Assumption 4.4, and CM is defined in Lemma 14.
Notably, L(f, ·) is finite due to Assumption 4.4.

The proof is provided in Section C.5.

Lemma 7 ‖g3,m‖ ≤ 8TmH
2(‖qm‖+ 1) and E

[
g3,m|Ftm+f(tm)

]
= 0.

The proof is provided in Section C.6.

Lemma 8 If e2TmH
2 ≤ 2, then ‖g4,m‖ ≤ 8T 2

mH
4(‖qm‖+ 1).

The proof is provided in Section C.7. Putting all the bounds together, the following lemma shows
that the sequence {‖qm‖}m≥0 is a supermartingale sequence.

Lemma 9 If Tm ≤ min
(

β
2H4 , 1,

ln(2)
2H2

)
, then there exists a scalar D such that

E
[
‖qm+1‖2|Ftm+f(tm)

]
≤
(

1− βTm +DT
2(1−τ)
m

)
‖qm‖2 +DT

2(1−τ)
m ,

where τ is defined in Assumption 4.4. In particular, when DT 2(1−τ)
m ≤ 1

2βTm, we have

E
[
‖qm+1‖2|Ftm+f(tm)

]
≤
(
1− 1

2βTm
)
‖qm‖2 +DT

2(1−τ)
m . (18)

The proof is provided in Section C.8. The supermartingale convergence theorem can then take over
to show the convergence of {qm}.

Lemma 10 limm→∞ ‖qm‖ = 0 a.s.

The proof is provided in Section C.9. With all the established lemmas, we can draw our final
conclusion using Lemma 4. Since both Tm and qm converges to 0 almost surely, the difference
between wt + A−1b and qm converges to 0 almost surely. As a result, we can conclude that{
wt +A−1b

}
t=0,1,...

converges to 0, i.e., {wt} converges to −A−1b almost surely, which com-
pletes the proof.

5 FINITE SAMPLE ANALYSIS OF A>
t TD

Theorem 1 proves the asymptotic convergence of (A>t TD). The price we pay is a memory of size
Ω
(
ln2 t

)
(cf. (9)). If the convergence is fast, e.g., O

(
1
t

)
, the memory increases reasonably slowly,

and we argue that the memory overhead is acceptable. If, however, the convergence is too slow, the
memory may still become too large. To make sure that (A>t TD) is a practical algorithm, therefore,
requires performing a finite sample analysis. To this end, we, in this section, provide a finite sample
analysis of a variant of (A>t TD), which adopts an additional projection operator and updates {wt}
iteratively as

δt
.
=Rt+1 + γx>t+1wt − x>t wt (19)

wt+1
.
=Γ
(
wt + αtρt+f(t)

(
xt+f(t) − γxt+f(t)+1

)
x>t+f(t)ρtδtxt

)
,

where Γ : RK → RK is a projection operator onto a ball of a radius B. The update (19) dif-
fers from (A>t TD) only in that it adopts an additional projection operator Γ. We, therefore, call it

7
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Projected A>t TD. We show that the convergence rate of our Projected A>t TD is on par with the con-
vergence rate of the canonical on-policy linear TD in Bhandari et al. (2018), up to a few logarithm
terms. Notably, adding a projection operator is a common practice in finite sample analysis of TD
algorithms (see, e.g., Liu et al. (2015); Wang et al. (2017); Bhandari et al. (2018); Zou et al. (2019))
to simplify the presentation. Techniques from Srikant & Ying (2019) can indeed be used to perform
finite sample analysis of the original (A>t TD). This, however, complicates the presentation, and we,
therefore, leave it for future work. We now present our main results.

Theorem 11 Let B be large enough such that ‖w∗‖ ≤ B. Consider learning rates in the form of
αt = Cα

t+1 . Let Assumptions 4.1, 4.2, & 4.4 hold. Then there exists a constant C0 such that as long
as Cα ≥ C0, the iterates {wt} generated by Projected Direct GTD (19) satisfy

E
[
‖wt − w∗‖2

]
= O

(
f(t) ln(t)

t

)
.

The proof of Theorem 11 is provided in Section A. Theorem 11, together with (10), confirms that
the convergence rate of Projected A>t TD is reasonably fast. In particular, if the configuration in (11)
is used, the convergence rate of Projected A>t TD is on-par with the on-policy linear TD (Bhandari
et al., 2018) up to logarithmic factors.

6 EXPERIMENTS

Figure 1: The NEU of compared algorithms. The curves are averaged over 30 independent runs,
and the shaded areas correspond to the standard errors.

We now empirically compare (A>t TD) with naive off-policy linear TD in (3) and (GTD) on the noto-
rious Baird’s counterexample (Baird, 1995). Details of Baird’s counterexample are included in Ap-
pendix D. We use a constant learning rate for each algorithm, tuned from {0.001, 0.005, 0.01, 0.05},
minimizing the NEU (NEU(w) .= ‖Aw + b‖) at the end of the training, which is 104 steps. We found
the best-performing learning rate is always 0.001.

In Figure 1 (left), the gap function in (A>t TD) is set to f(t) = bln2(t+1)c as suggested in (11). The
naive off-policy linear TD diverges as expected (Baird, 1995; Sutton & Barto, 2018). Both (GTD)
and (A>t TD) converge as expected. It is, however, worth mentioning that the NEU of (A>t TD) drops
faster than that of (GTD) at the beginning, and the learning curve of (A>t TD) has less oscillation.
We conjecture that the advantages of (A>t TD) in Baird’s counterexample result from the elimination
of the secondary weight vector. Notably, we do not mean to claim that (A>t TD) is winning (GTD) in
all cases. Instead, this case study of (A>t TD) and (GTD) in Baird’s counterexample only serves as
initial evidence to initiate a more ambitious and thorough empirical comparison in more benchmark
tasks, which we leave for future work.

In Figure 1 (right), we additionally test other choices of the gap function to investigate empirically
how slow the gap function can grow without incurring divergence. Notably, none of the newly
added gap functions in Figure 1 (right) satisfies Assumption 4.4. It turns out that even if the gap
function grows as slow as ln(ln(t+ 1) + 1), (A>t TD) still converges in Baird’s counterexample.
This suggests that the requirement in Assumption 4.4 is only sufficient but not necessarily neces-
sary. In practice, the memory overhead incurred by the gap function can be much smaller than that

8
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prescribed by Assumption 4.4. For example, in Baird’s counterexample, the memory overhead is
only bln

(
ln
(
104 + 1

)
+ 1
)
c = 2. Pushing Assumption 4.4 to its limit and finding the slowest gap

function is an interesting and rewarding future work. We conjecture that if certain knowledge of
the transition function of the MDP can be incorporated into the design of the gap function, the gap
function can be greatly slowed down.

7 RELATED WORK

It is worth mentioning that the memory in A>t TD is conceptually different from the buffer for expe-
rience replay (Lin, 1992; Mnih et al., 2015), though both store previous transitions. A replay buffer
is typically used to sample mini-batch data randomly. But A>t TD only deterministically uses the
first and the last entries in the memory.

Instead of minimizing NEU, Feng et al. (2019) propose to minimize a kernel loss based on the
Bellman error (cf. Baird (1995)). In the Markovian setting we consider in this paper, Feng et al.
(2019) develop a gradient estimator of this kernel loss. This gradient estimator is consistent as the
size of the replay buffer grows to infinity. However, other than the consistency, no convergence
analysis is provided. Indeed, as demonstrated in Section 4, analyzing the almost sure convergence
of such algorithms is extremely challenging, and no standard stochastic approximation tools apply.
We conjecture that our new analysis techniques in Section 4 could further help build an almost sure
convergence of their algorithms under certain kernels with some moderate regularization.

GTD is one of the many possible methods to address the deadly triad issue. Other methods include
emphatic TD methods (Mahmood et al., 2015; Sutton et al., 2016; Hallak et al., 2016; Zhang &
Whiteson, 2022; He et al., 2023), target networks (Zhang et al., 2021b; Fellows et al., 2023; Che
et al., 2024), and density ratio methods (Hallak & Mannor, 2017; Liu et al., 2018; Nachum et al.,
2019; Zhang et al., 2020). We refer the reader to Ghiassian & Sutton (2021); Ghiassian et al. (2024)
for more thorough empirical study of off-policy prediction algorithms.

8 CONCLUSION

In this paper, we revisit the derivation of the seminal GTD algorithm. We demonstrate that the
idea behind the A>TD algorithm can lead to a new off-policy policy evaluation algorithm A>t TD
that is as competitive as GTD in terms of both asymptotic convergence, convergence rate, and per-
step computation cost. A>t TD does incur additional memory cost, which we argue is negligible
in any empirical implementations. The main advantage of A>t TD over GTD is that it has only
one set of parameters and one learning rate. It is well documented that the two learning rates in
GTD are hard to tune in many empirical problems. As said in Sutton et al. (2008), “we are still
exploring different ways of setting the step-size parameters” (of GTD). It is worth noting again
that the main contribution of this work is the rediscovery of the A>TD idea, leading to the A>t TD
algorithm. Although this work indeed includes empirical study, and the empirical study indeed
demonstrates some advantages of A>t TD over GTD in the tested domain, the empirical study is
surely very preliminary. We leave a more thorough empirical study for future work.
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Hamid Reza Maei, Csaba Szepesvári, Shalabh Bhatnagar, Doina Precup, David Silver, and
Richard S. Sutton. Convergent temporal-difference learning with arbitrary smooth function ap-
proximation. In Advances in Neural Information Processing Systems, 2009.
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A PROOF OF THEOREM 11

Proof We first define a few shorthands. We use ḡ(w) and gt(w) to denote the true gradient and its
stochastic estimate at time t, respectively, i.e.,

ḡ(w) =−A>(Aw + b),

gt(w) =− Â>t+f(t)(Âtw + b̂t).

We further define

Λt(w) = 〈w − w∗, gt(w)− ḡ(w)〉,

where we recall that w∗ is defined in (4). The following lemma states several useful properties of
the functions defined above.

Lemma 12 There exist constants Cg and CLip such that for all w, w′ with ‖w‖, ‖w′‖ ≤ B, we
have

max {gt(w), ḡ(w),Λt(w)} ≤ Cg,

〈w − w′, ḡ(w)− ḡ(w′)〉 ≤ −β‖w − w′‖2,
max {‖gt(w)− gt(w′)‖, ‖ḡ(w)− ḡ(w′)‖, |Λt(w)− Λt(w

′)|} ≤ CLip‖w − w′‖.

We recall that β is defined in (17).

The proof is provided in section C.10.

Lemma 13 For all time t and 0 < k < t, we have the following bound

‖E [Λt(wt)]‖ ≤ CgCαCLip ln

(
t

t− k

)
+ 2B(B + 1)CM

{
1 k < f(t− k)

χf(t) + χt−(t−k+f(t−k)) k ≥ f(t− k)
.

The proof is provided in section C.11.

We are now ready to decompose the error as

E
[
‖wt+1 − w∗‖2

]
≤E

[
‖Γ(wt + αtgt(wt))− w∗‖2

]
≤E

[
‖Γ(wt + αtgt(wt))− Γ(w∗)‖2

]
≤E

[
‖wt + αtgt(wt)− w∗‖2

]
=E

[
‖wt − w∗‖2 + α2

t ‖gt(wt)‖
2

+ 2αt〈wt − w∗, gt(wt)〉
]
.

Since ḡ(w∗) = 0, we have

〈wt − w∗, gt(wt)〉
=〈wt − w∗, gt(wt)− ḡ(wt) + ḡ(wt)− ḡ(w∗)〉
=Λt(wt) + 〈wt − w∗, ḡ(wt)− ḡ(w∗)〉,

yielding

E
[
‖wt+1 − w∗‖2

]
≤E

[
‖wt − w∗‖2 + α2

t ‖gt(wt)‖
2

+ 2αt〈wt − w∗, gt(wt)〉
]

≤E
[
‖wt − w∗‖2 + α2

t ‖gt(wt)‖
2

+ 2αtΛt(wt) + 2αt〈wt − w∗, ḡ(wt)− ḡ(w∗)〉
]
.

13
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Applying Lemma 12, we get

E
[
‖wt+1 − w∗‖2

]
≤E

[
‖wt − w∗‖2 + α2

tC
2
g + 2αtΛt(wt)− 2αtβ‖wt − w∗‖2

]
=(1− 2αtβ)E[‖wt − w∗‖2] + α2

tC
2
g + 2αtE[Λt(wt)].

Plugging in αt = Cα
t+1 and multiplying both sides by (t+ 1), we have

(t+ 1)E
[
‖wt+1 − w∗‖2

]
≤(t+ 1)

(
1− 2β

Cα
t+ 1

)
E[‖wt − w∗‖2] + (t+ 1)

(
Cα
t+ 1

)2

C2
g + (t+ 1) · 2 Cα

t+ 1
E[Λt(wt)]

≤ (t+ 1− 2βCα)E[‖wt − w∗‖2] +
C2
αC

2
g

t+ 1
+ 2CαE[Λt(wt)].

Let C0 = 1
2β . Then as Cα ≥ C0, 2βCα ≥ 2βC0 = 1. Hence, t + 1 − 2βCα ≤ t. Since

E
[
‖wt+1 − w∗‖2

]
≥ 0, we have

(t+ 1)E
[
‖wt+1 − w∗‖2

]
≤ tE

[
‖wt+1 − w∗‖2

]
+
C2
αC

2
g

t+ 1
+ 2CαE[Λt(wt)]

Applying the inequality recursively,

TE
[
‖wT − w∗‖2

]
≤
T−1∑
t=0

(
C2
αC

2
g

t+ 1
+ 2CαE[Λt(wt)]

)

=C2
αC

2
g

T∑
t=1

1

t
+ 2Cα

k∑
t=0

E[Λt(wt)] + 2Cα

T−1∑
t=k+1

E[Λt(wt)]

≤C2
αC

2
g [ln(T ) + 1] + 2Cα

k∑
t=0

E[Λt(wt)] + 2Cα

T−1∑
t=k+1

E[Λt(wt)],

where the last inequality comes from the bound for harmonic numbers. Applying Lemma 12 again
yields

TE
[
‖wT − w∗‖2

]
≤C2

αC
2
g [ln(T ) + 1] + 2Cα

k∑
t=0

Cg + 2Cα

T−1∑
t=k+1

E[Λt(wt)]

=C2
αC

2
g [ln(T ) + 1] + 2kCαCg + 2Cα

T−1∑
t=k+1

E[Λt(wt)]. (20)

Now, we will use Lemma 13 to bound the last summation. Firstly, we take

k
.
= 2f(T ).

Secondly, Assumption 4.4 suggests that for some τ ∈ (0, 3ν−2
ν ),

f(t) ≤ Cτα−τt = Cτ

(
Cα

(t+ 1)ν

)−τ
=
Cτ (t+ 1)τν

Cτα
.

Since ν ≤ 1, τν < 3ν−2
ν = 3ν − 2 ≤ 1. Hence, there exists a constant T0 such that for all T ≥ T0,

we have

2f(T ) ≤ 2Cτ (T + 1)τν

Cτα
< T.

14
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For the rest of the argument, we will assume that T ≥ T0, and we will then have 2f(T ) < T .

As f is increasing, for all t ∈ (k, T ), we have

k = 2f(T ) ≥ 2f(t) ≥ f(t− k).

So for t > k,

E[Λt(wt)] ≤ CgCαCLip ln

(
t

t− k

)
+ 2B(B + 1)CM

(
χf(t) + χk−f(t−k)

)
(Lemma 13)

≤ CgCαCLip ln

(
t

t− k

)
+ 4B(B + 1)CMχ

f(t),

where the last inequality uses the fact that for all t ∈ (k, T ),

k − f(t− k) = 2f(T )− f(t− k) > 2f(t)− f(t) = f(t).

Summing them up then yields
T−1∑
t=k+1

E[Λt(t)]

≤
T−1∑
t=k+1

(
CgCαCLip ln

(
t

t− k

)
+ 4B(B + 1)CMχ

f(t)

)

≤CgCαCLip
T−1∑
t=k+1

(ln(t)− ln(t− k)) + 4B(B + 1)CM

T∑
t=k+1

χf(t)

≤CgCαCLip

(
T−1∑
t=k+1

ln(t)−
T−1∑
t=k+1

ln(t− k)

)
+ 4B(B + 1)CM

∞∑
t=0

χf(t)

≤CgCαCLip

(
T−1∑
t=k+1

ln(t)−
T−k−1∑
t=1

ln(t)

)
+ 4B(B + 1)L(f, χ)

≤CgCαCLip

(
T−1∑
t=T−k

ln(t)−
k∑
t=1

ln(t)

)
+ 4B(B + 1)L(f, χ)

≤CgCαCLip

(
T−1∑
t=T−k

ln(t)− ln[t− (T − k − 1)]

)
+ 4B(B + 1)L(f, χ)

≤CgCαCLip
T−1∑
t=T−k

log

[
t

t− (T − k − 1)

]
+ 4B(B + 1)L(f, χ)

≤CgCαCLip
T−1∑
t=T−k

log(T ) + 4B(B + 1)L(f, χ)

≤CgCαCLipk log(T ) + 4B(B + 1)L(f, χ), (21)

where second last inequality holds because

log

[
t

t− (T − k − 1)

]
≤ log(T )

holds for all T − k − 1 < t < T and L(f, χ) =
∑∞
t=0 χ

f(t) <∞ due to Assumption 4.4.

Plugging (21) into (20) then yields

TE[‖wT − w∗‖2]

≤C2
αC

2
g [ln(T ) + 1] + 2kCαCg + 2Cα[CgCαCLipk log(T ) + 4B(B + 1)L(f, χ)]

=C2
αC

2
g [ln(T ) + 1] + 2kCαCg + 2CgC

2
αCLipk log(T ) + 8CαB(B + 1)L(f, χ),

15
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Since we have defined k .
= 2f(T ), we have that for T ≥ T0,

E[‖wT − w∗‖2]

≤
C2
αC

2
g [ln(T ) + 1]

T
+

4f(T )CαCg
T

+
4CgC

2
αCLipf(T ) log(T )

T
+

8CαB(B + 1)L(f, χ)

T
.

Thus, for all T , we have

E[‖wT − w∗‖2] = O
(
f(T ) ln(T )

T

)
,

which completes the proof.

B AUXILIARY LEMMAS

Lemma 14 Let Assumption 4.1 hold. Then there exists a constant CM > 0 and χ ∈ [0, 1) such that∥∥∥E [Ât]−A∥∥∥ ≤ CMχt, (22)∥∥∥∥E [Â>t+kÂt]− E
[
Ât+k

]>
E
[
Ât

]∥∥∥∥ ≤ CMχk, (23)∥∥∥E [Â>t+kÂt|Fl]−A>A∥∥∥ ≤ CM {1 t < l

χk + χt−l t ≥ l . (24)

Similarly, ∥∥∥E [b̂t]−A∥∥∥ ≤ CMχt,∥∥∥∥E [Â>t+k b̂t]− E
[
Ât+k

]>
E
[
b̂t

]∥∥∥∥ ≤ CMχk,∥∥∥E [Â>t+k b̂t|Fl]−A>b∥∥∥ ≤ CM {1 t < l

χk + χt−l t ≥ l .

Proof For the simplicity of display, we include the proof only for the first half of the lemma. The
second half is identical up to change of notations and is, therefore, omitted to avoid verbatim.

Define an augmented chain {Yt} evolving in

Y .
= {(s, a, s′) ∈ S ×A× S | dµ(s) > 0, µ(a|s) > 0, p(s′|s, a) > 0}

as

Yt
.
= (St, At, St+1).

According to the definition of Ft, it can be easily seen that Yt is adapted to Ft+1. Assumption 4.1
immediately ensures that {Yt} is also ergodic with a stationary distribution

dY (y) = dµ(s)µ(a|s)p(s′|s, a).

Here we have used y as shorthand for (s, a, s′). Define functions

Â(y)
.
=ρ(s, a)x(s) (γx(s′)− x(s))

>
,

b̂(y)
.
=ρ(s, a)x(s)r(s, a).

It can then be easily computed that

Ât =Â(Yt),

A =
∑
y

dY (y)Â(y).

16
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Assumption 4.1 ensures that the chain {Yt} mixes geometrically fast. In other words, there exist
constants χ ∈ [0, 1) and C0 > 0 such that for any t and k,

max
y

∑
y′

|Pr(Yt+k = y′|Yt = y)− dY (y′)| ≤ C0χ
k.

This is a well-known result, and we refer the reader to Theorem 4.7 of Levin & Peres (2017) for
detailed proof. Then we have∥∥∥E [Ât]−A∥∥∥

=

∥∥∥∥∥∑
y

Pr(Yt = y)Â(y)−
∑
y

dY (y)Â(y)

∥∥∥∥∥
≤
∑
y

‖Pr(Yt = y)− dY (y)‖
∥∥∥Â(y)

∥∥∥
≤max

y

∥∥∥Â(y)
∥∥∥∑

y

‖Pr(Yt = y)− dY (y)‖

≤HC0χ
t,

which completes the proof of (22). Similarly, we have∥∥∥E [Â>t+kÂt]− E
[
Ât+k

]
E
[
Ât

]∥∥∥
=

∥∥∥∥∥∥∥
∑
y′

∑
y

Pr(Yt+k = y′, Yt = y)Â(y′)>Â(y)−

∑
y′

Pr(Yt+k = y′)Â(y′)

>(∑
y

Pr(Yt = y)Â(y)

)∥∥∥∥∥∥∥
=

∥∥∥∥∥∥
∑
y′

∑
y

(Pr(Yt+k = y′, Yt = y)− Pr(Yt+k = y′) Pr(Yt = y))A(y′)>Â(y)

∥∥∥∥∥∥
≤max

y′

∥∥∥Â(y′)>
∥∥∥max

y

∥∥∥Â(y)
∥∥∥
∥∥∥∥∥∥
∑
y′

∑
y

(Pr(Yt+k = y′, Yt = y)− Pr(Yt+k = y′) Pr(Yt = y))

∥∥∥∥∥∥
≤H ·H

∑
y′

∑
y

|Pr(Yt+k = y′, Yt = y)− Pr(Yt+k = y′) Pr(Yt = y)|

≤H2
∑
y′

∑
y

|Pr(Yt+k = y′|Yt = y) Pr(Yt = y)− Pr(Yt+k = y′) Pr(Yt = y)|

≤H2
∑
y′

∑
y

|Pr(Yt+k = y′|Yt = y)− Pr(Yt+k = y′)|Pr(Yt = y)

≤H2
∑
y′

∑
y

|Pr(Yt+k = y′|Yt = y)− Pr(Yt+k = y′)|

≤H2
∑
y′

∑
y

|Pr(Yt+k = y′|Yt = y)− dY (y′)|+ |dY (y′)− Pr(Yt+k = y′)|

≤H2
∑
y

∑
y′

|Pr(Yt+k = y′|Yt = y)− dY (y′)|+
∑
y′

|Pr(Yt+k = y′)− dY (y′)|


≤H2

∑
y

(
C0χ

k + C0χ
t+k
)

≤2H2|Y|C0χ
k,

17
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which proves (23). This also suggests ∀l,∥∥∥∥E [Â>t+kÂt | Fl]− E
[
Ât+k | Fl

]>
E
[
Ât | Fl

]∥∥∥∥ ≤ 2H2|Y|C0χ
k.

To see this, we consider the two cases of whether l < t separately.

Case 1: l < t. Then, by the Markov property,∥∥∥∥E [Â>t+kÂt | Fl]− E
[
Ât+k | Fl

]>
E
[
Ât | Fl

]∥∥∥∥
=

∥∥∥∥E [Â>t+kÂt | Yl]− E
[
Ât+k | Yl

]>
E
[
Ât | Yl

]∥∥∥∥
≤2H2|Y|C0χ

k.

Case 2: l ≥ t. Then Ât is deterministic given Fl. and∥∥∥∥E [Â>t+kÂt | Fl]− E
[
Ât+k | Fl

]>
E
[
Ât | Fl

]∥∥∥∥
=

∥∥∥∥E [Â>t+kE [Ât | Fl] | Fl]− E
[
Ât+k | Fl

]>
E
[
Ât | Fl

]∥∥∥∥
=

∥∥∥∥E [Ât+k | Fl]> E
[
Ât | Fl

]
− E

[
Ât+k | Fl

]>
E
[
Ât | Fl

]∥∥∥∥
=0.

Lastly, combining the geometrical convergence suggested in (22) and the geometrically decaying
correlation implied by (23), we can prove (24) in the following manner. First,∥∥∥E [Â>t+kÂt|Fl]−A>A∥∥∥
≤
∥∥∥∥E [Â>t+kÂt|Fl]− E

[
Ât+k|Fl

]>
E
[
Ât|Fl

]
+ E

[
Ât+k|Fl

]>
E
[
Ât|Fl

]
−A>A

∥∥∥∥
≤
∥∥∥∥E [Â>t+kÂt|Fl]− E

[
Ât+k|Fl

]>
E
[
Ât|Fl

]∥∥∥∥+

∥∥∥∥E [Ât+k|Fl]> E
[
Ât|Fl

]
−A>A

∥∥∥∥
≤2H2|Y|C0χ

k +

∥∥∥∥E [Ât+k|Fl]> E
[
Ât|Fl

]
− E

[
Ât+k|Fl

]>
A+ E

[
Ât+k|Fl

]>
A−A>A

∥∥∥∥
≤2H2|Y|C0χ

k +

∥∥∥∥E [Ât+k|Fl]> (E
[
Ât|Fl

]
−A)

∥∥∥∥+
∥∥∥(E

[
Ât+k|Fl

]
−A)>A

∥∥∥
≤2H2|Y|C0χ

k +

∥∥∥∥E [Ât+k|Fl]>∥∥∥∥∥∥∥E [Ât|Fl]−A∥∥∥+
∥∥∥(E

[
Ât+k|Fl

]
−A)>

∥∥∥‖A‖
≤2H2|Y|C0χ

k +H
∥∥∥E [Ât|Fl]−A∥∥∥+H

∥∥∥E [Ât+k|Fl]−A∥∥∥
≤2H2|Y|C0χ

k +H
(∥∥∥E [Ât|Fl]−A∥∥∥+

∥∥∥E [Ât+k|Fl]−A∥∥∥) .
We now bound the last term. For t < l, we use the trivial bound∥∥∥E [Ât|Fl]−A∥∥∥+

∥∥∥E [Ât+k|Fl]−A∥∥∥ ≤ 4H.

For t ≥ l, both Yt and Yt+k are not adapted to Fl. We, therefore, have∥∥∥E [Ât|Fl]−A∥∥∥+
∥∥∥E [Ât+k|Fl]−A∥∥∥ ≤ HC0χ

t−l +HC0χ
t+k−l ≤ 2HC0χ

t−l.

Combining the results, we obtain∥∥∥E [Â>t+kÂt|Fl]−A>A∥∥∥ ≤ 2H2|Y|C0χ
k +

{
4H2 t < l

2H2C0χ
t−l t ≥ l

=

{
2H2|Y|C0 + 4H2 t < l

2H2|Y|C0χ
k + 2H2C0χ

t−l t ≥ l , (Since χ ≤ 1)
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which completes the proof of (24).

Lemma 15 If the gap function f(t) = bh(t) ln(t)c where h is a non-negative, increasing function
tending to infinity, then

∑∞
t=0 χ

f(t) for all χ ∈ (0, 1).

Proof Firstly, we should note that for all t, bh(t) ln(t)c > h(t) ln(t)− 1. Therefore, take arbitrary
χ ∈ (0, 1),

∞∑
t=0

χf(t) ≤
∞∑
t=0

χh(t) ln(t)−1 =
1

χ

∞∑
t=0

eln(χ)h(t) ln(t) =
1

χ

∞∑
t=0

tln(χ)h(t).

Since h is increasing in t and tending to infinity, there exists a T such that got all t ≥ T ,
f(t) ≥ − 2

ln(χ) . Then, for all t ≥ T , tln(χ)h(t) ≤ t−2. Thus, by comparison test and p-test, we can

conclude that
∑∞
t=0 χ

f(t) ≤
∑∞
t=0 t

−2 <∞.

C PROOF OF TECHNICAL LEMMAS

C.1 PROOF OF LEMMA 2

Proof We proceed via induction on m. In particular, we prove the following two inequalities for all
m:

tm ≥
mη+1

16 max(Cα, 1)
, (25)

αt ≤T 2
m,∀t ≥ tm. (26)

Base Case m=0: Obviously we have

t0 = 0 =
0η+1

16 max(Cα, 1)
,

so (25) holds for m = 0. Since η ∈ (0, 1], we have

T0 =
16 max(Cα, 1)

η + 1
≥ 8 max(Cα, 1).

Hence, for all t ≥ t0 = 0,

αt =
Cα

(t+ 1)ν
≤ Cα ≤ 8 max(Cα, 1)2 ≤ T 2

0 .

So (26) holds.

Induction Step: Suppose (25) and (26) hold for m = k. We now verify them for m = k + 1.
Letting m = k in (26) yields

Tk ≤
tk+1−1∑
t=tk

αt (Defintion of {tm} in (14))

≤
tk+1−1∑
t=tk

T 2
k = (tk+1 − tk)T 2

k .

Dividing both sides by Tk yields

tk+1 − tk ≥
1

Tk
=

(η + 1)(k + 1)η

16 max(Cα, 1)
.
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Consequently, we have

tk+1 ≥tk +
(η + 1)(k + 1)η

16 max(Cα, 1)

≥ kη+1

16 max(Cα, 1)
+

(η + 1)(k + 1)η

16 max(Cα, 1)
,

where the last inequality results from inductive hypothesis (25). Since (η+1)(k+1)η

16 max {Cα,1} is monotoni-
cally increasing in k, we have

(η + 1)(k + 1)η

16 max(Cα, 1)
≥
∫ k+1

k

(η + 1)(k + 1)η

16 max(Cα, 1)
=

(k + 1)η+1

16 max(Cα, 1)
− kη+1

16 max(Cα, 1)
.

We have thus verified (25) for m = k + 1, i.e.

tk+1 ≥
kη+1

16 max(Cα, 1)
+

(k + 1)η+1

16 max(Cα, 1)
− kη+1

16 max(Cα, 1)
=

(k + 1)η+1

16 max(Cα, 1)
.

To verify (26) for m = k + 1, we will make use of our just proven (25) with m = k + 1. Take
arbitrary t ≥ tk+1. As αt = Cα

(t+1)ν is a monotonically decreasing in t, we have

αt ≤ αtk+1
=

Cα
(tk+1 + 1)ν

≤ Cα
tνk+1

.

Using (25) with m = k + 1, we get

αt ≤
Cα
tνk+1

≤ Cα(
1

16 max(Cα,1) (k + 1)η+1
)ν ≤ 16νCα max(Cα, 1)ν

(k + 2)(η+1)ν

(
k + 2

k + 1

)(η+1)ν

.

As k+2
k+1 ≤ 2 for k ≥ 0 and η, ν ∈ (0, 1], we have(

k + 2

k + 1

)(η+1)ν

≤ 2(η+1)ν .

Moreover, since Cα ≤ max(Cα, 1), we have

Cα max(Cα, 1)ν ≤ max(Cα, 1)1+ν .

Thus we have

αt ≤
16νCα max(Cα, 1)ν

(k + 2)(η+1)ν

(
k + 2

k + 1

)(η+1)ν

≤ 2(η+5)ν max(Cα, 1)1+ν

(k + 2)(η+1)ν
.

Using η, ν ∈ (0, 1], we have

0 ≤(η + 5)ν ≤ 6,

max(Cα, 1)1+ν ≤max(Cα, 1)2.

The definition of η in (13) implies

2η < (η + 1)ν.

Hence, we get

αt ≤
2(η+5)ν max(Cα, 1)1+ν

(k + 2)(η+1)ν
≤ 64 max(Cα, 1)2

(k + 2)2η
.

The second inequality in (13) together with the fact that ν ∈ (0, 1] implies that η < 1. Consequently,
we have (η + 1)2 < 4. Therefore, 64 < 256

(1+η)2 and

αt ≤
64 max(Cα, 1)2

(k + 2)2η
≤ 256 max(Cα, 1)2

(η + 1)2(k + 2)2η
=

(
16 max(Cα, 1)

(η + 1)(k + 2)η

)2

= T 2
k+1.

We have now verified that (26) holds for m = k + 1, which completes the induction.
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C.2 PROOF OF LEMMA 3

Proof The fact that ν ∈ (0, 1) and (13) implies

η <
ν

2− ν
≤ ν.

The fact that η ∈ [0, 1] implies

16

η + 1
> 8.

Consequently, we have

Tm =
16

η + 1

max(Cα, 1)

(m+ 1)η
> 8

Cα
(m+ 1)ν

= 8αm.

The definition of {tm} in (14) implies that tm+1 − tm ≥ 1 for all m ≥ 0, so we have

tm ≥ m.

Moreover, because αt = Cα
(t+1)ν is decreasing in t, for all t ≥ tm ≥ m, we have

αt ≤ αm ≤
Tm
8
.

The definition of {tm} in (14) also implies that
∑tm+1−2
t=tm

αt < Tm. Then we have

ᾱm =

tm+1−1∑
t=tm

αt =

tm+1−2∑
t=tm

αt + αtm+1−1 ≤ Tm +
Tm
8

=
9Tm

8
≤ 2Tm,

which completes the proof. Note here we have used the convention that
∑j
t=i αt

.
= 0 if i > j.

C.3 PROOF OF LEMMA 4

Proof For all t ≥ 0,∥∥wt+1 +A−1b
∥∥

=
∥∥∥(wt +A−1b

)
+ αtÂ

>
t+f(t)

(
Ât(wt +A−1b)− ÂtA−1b+ b̂t

)∥∥∥
≤
∥∥wt +A−1b

∥∥+ αt

∥∥∥Â>t+f(t)

∥∥∥(∥∥∥Ât∥∥∥∥∥wt +A−1b
∥∥+

∥∥∥ÂtA−1b
∥∥∥+ ‖b̂t‖

)
≤
∥∥wt +A−1b

∥∥+ αtH
(
H
∥∥wt +A−1b

∥∥+H +H
)

=
∥∥wt +A−1b

∥∥+ αtH
2
(∥∥wt +A−1b

∥∥+ 2
)

(27)

Therefore, by adding 2 to both sides, we get∥∥wt+1 +A−1b
∥∥+ 2 ≤ (1 + αtH

2)
(∥∥wt +A−1b

∥∥+ 2
)
.

Applying the inequality iteratively, we have that for all t satisfying tm ≤ t ≤ tm+1

∥∥wt +A−1b
∥∥+ 2 ≤

(∥∥wtm +A−1b
∥∥+ 2

) tm+1∏
j=tm

(1 + αtH
2) ≤ eᾱmH

2 (∥∥wtm +A−1b
∥∥+ 2

)
,

where for the last two inequalities, we used the fact that

tm+1−1∏
j=tm

(1 + αtH
2) ≤ exp

tm+1−1∑
j=tm

αtH
2

 = exp
(
ᾱmH

2
)
.
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As ᾱm ≤ 2Tm (Lemma 3) and e2TmH
2 ≤ 2,∥∥wt +A−1b

∥∥+ 2 ≤ eᾱmH
2 (∥∥wtm +A−1b

∥∥+ 2
)

≤ e2TmH
2 (∥∥wtm +A−1b

∥∥+ 2
)

≤ 2
(∥∥wtm +A−1b

∥∥+ 2
)
.

Hence, ∥∥wt +A−1b
∥∥ ≤ 2

(∥∥wtm +A−1b
∥∥+ 1

)
. (28)

Therefore, for all tm ≤ t ≤ tm+1, we have∥∥(wt +A−1b
)
− qm

∥∥
=
∥∥(wt +A−1b

)
−
(
wtm +A−1b

)∥∥
≤

∥∥∥∥∥∥
t−1∑
j=tm

(
wj+1 +A−1b

)
−
(
wj +A−1b

)∥∥∥∥∥∥
≤

t−1∑
j=tm

∥∥(wj+1 +A−1b
)
−
(
wj +A−1b

)∥∥
=

t−1∑
j=tm

∥∥∥αjÂ>j+f(j)

(
Âj(wt +A−1b)− ÂjA−1b+ b̂j

)∥∥∥
≤
tm+1−1∑
j=tm

αtH
2
(∥∥wt +A−1b

∥∥+ 2
)

(Similar to (27))

≤
tm+1−1∑
j=tm

αtH
2
(
2
∥∥wtm +A−1b

∥∥+ 4
)

(Using (28))

=2ᾱmH
2
(∥∥wtm +A−1b

∥∥+ 2
)

≤4TmH
2
(∥∥wtm +A−1b

∥∥+ 2
)

(Using Lemma 3)

≤8TmH
2
(∥∥wtm +A−1b

∥∥+ 1
)

=8TmH
2 (‖qm‖+ 1) ,

which completes the proof.

C.4 PROOF OF LEMMA 5

Proof

‖qm + g1,m‖2 = ‖qm − ᾱmA>Aqm‖2 =
∥∥(I − ᾱmA>A) qm∥∥2

= q>m
(
I − ᾱmA>A

)> (
I − ᾱmA>A

)
qm

= ‖qm‖2 − 2ᾱmq
>
mA
>Aqm + ᾱ2

m

∥∥A>Aqm∥∥2

≤ ‖qm‖2 − 2ᾱmβ‖qm‖2 + ᾱ2
m

∥∥A>∥∥2‖A‖2‖qm‖2

≤ ‖qm‖2 − 2ᾱmβ‖qm‖2 + ᾱ2
mH

4‖qm‖2

≤ ‖qm‖2 − 2ᾱmβ‖qm‖2 + 2ᾱmTmH
4‖qm‖2 (Lemma 3)

≤ ‖qm‖2 − 2ᾱmβ‖qm‖2 + ᾱmβ‖qm‖2 (Assumption of this Lemma)

≤ (1− βᾱm) ‖qm‖2

≤ (1− βTm) ‖qm‖2. (Definition of Tm in (14))
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C.5 PROOF OF LEMMA 6

Proof

‖g2,m‖ ≤

∥∥∥∥∥
tm+1−1∑
t=tm

αt

(
A>A− E

[
Â>t+f(t)Ât|Ftm+f(tm)

])
qm

∥∥∥∥∥
+

∥∥∥∥∥
tm+1−1∑
t=tm

αtE
[
Â>t+f(t)

(
b̂t − ÂtA−1b

)
|Ftm+f(tm)

]∥∥∥∥∥
≤
tm+1−1∑
t=tm

αt

∥∥∥A>A− E
[
Â>t+f(t)Ât|Ftm+f(tm)

]∥∥∥‖qm‖
+

tm+1−1∑
t=tm

αt

∥∥∥E [Â>t+f(t)

(
b̂t − ÂtA−1b

)
|Ftm+f(tm)

]∥∥∥
≤
tm+1−1∑
t=tm

αt

∥∥∥A>A− E
[
Â>t+f(t)Ât|Ftm+f(tm)

]∥∥∥‖qm‖
+

tm+1−1∑
t=tm

αt

∥∥∥E [Â>t+f(t)b̂t −A
>b|Ftm+f(tm)

]∥∥∥
+

tm+1−1∑
t=tm

αt

∥∥∥E [A>b− Â>t+f(t)ÂtA
−1b|Ftm+f(tm)

]∥∥∥
=

tm+1−1∑
t=tm

αt

∥∥∥A>A− E
[
Â>t+f(t)Ât|Ftm+f(tm)

]∥∥∥‖qm‖
+

tm+1−1∑
t=tm

αt

∥∥∥E [Â>t+f(t)b̂t −A
>b|Ftm+f(tm)

]∥∥∥
+

tm+1−1∑
t=tm

αt

∥∥∥E [A>A− Â>t+f(t)Ât|Ftm+f(tm)

]
A−1b

∥∥∥
≤
tm+1−1∑
t=tm

αt

∥∥∥A>A− E
[
Â>t+f(t)Ât|Ftm+f(tm)

]∥∥∥‖qm‖
+

tm+1−1∑
t=tm

αt

∥∥∥E [Â>t+f(t)b̂t −A
>b|Ftm+f(tm)

]∥∥∥
+

tm+1−1∑
t=tm

αt

∥∥∥E [A>A− Â>t+f(t)Ât|Ftm+f(tm)

]∥∥∥∥∥A−1b
∥∥.

To bound the last three terms, we will consider separately whether tm + f(tm) < tm+1. If tm +
f(tm) ≥ tm+1, then applying Lemma 14 yields

‖g2,m‖ ≤
tm+1−1∑
t=tm

αtCM‖qm‖+

tm+1−1∑
t=tm

αtCM +

tm+1−1∑
t=tm

αtCMH

=CM (‖qm‖+H + 1)

tm+1−1∑
t=tm

αt.
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Since αt = Cα
(1+t)ν is a decreasing function in t, we have

‖g2,m‖ ≤ CM (‖qm‖+H + 1)

tm+1−1∑
t=tm

αtm

= CM (‖qm‖+H + 1)(tm+1 − tm)αtm
≤ CM (‖qm‖+H + 1)f(tm)αtm .

Assumption 4.4 suggests f(t) ≤ Cτα−τt , so

‖g2,m‖ ≤ CM (‖qm‖+H + 1)Cτα
−τ
t αtm

≤ CMCτ (‖qm‖+H + 1)α1−τ
t .

Because αt ≤ T 2
m for t ≥ tm (Lemma 2),

‖g2,m‖ ≤ CMCτ (‖qm‖+H + 1)T 2(1−τ)
m

≤ CMCτ (H + 1)T 2(1−τ)
m (‖qm‖+ 1).

For the general case where tm + f(tm) < tm+1, we break the summation
∑tm+1−1
t=tm

into two parts,

i.e.
∑tm+f(tm)−1
t=tm

and
∑tm+1−1
t=tm+f(tm) and apply Lemma 14 separately. We have

‖g2,m‖ ≤
tm+f(tm)−1∑

t=tm

αt

∥∥∥A>A− E
[
Â>t+f(t)Ât | Ftm+f(tm)

]∥∥∥‖qm‖
+

tm+1−1∑
t=tm+f(tm)

αt

∥∥∥A>A− E
[
Â>t+f(t)Ât | Ftm+f(tm)

]∥∥∥‖qm‖
+

tm+f(tm)−1∑
t=tm

αt

∥∥∥E [Â>t+f(t)b̂t −A
>b | Ftm+f(tm)

]∥∥∥
+

tm+1−1∑
t=tm+f(tm)

αt

∥∥∥E [Â>t+f(t)b̂t −A
>b | Ftm+f(tm)

]∥∥∥
+

tm+f(tm)−1∑
t=tm

αt

∥∥∥E [A>A− Â>t+f(t)Ât | Ftm+f(tm)

]∥∥∥∥∥A−1b
∥∥

+

tm+1−1∑
t=tm+f(tm)

αt

∥∥∥E [A>A− Â>t+f(t)Ât | Ftm+f(tm)

]∥∥∥∥∥A−1b
∥∥

≤
tm+f(tm)−1∑

t=tm

αtCM‖qm‖+

tm+1−1∑
t=tm+f(tm)

αtCM

(
χf(t) + χt−[tm+f(tm)]

)
‖qm‖

+

tm+f(tm)−1∑
t=tm

αtCM +

tm+1−1∑
t=tm+f(tm)

αtCM

(
χf(t) + χt−[tm+f(tm)]

)

+

tm+f(tm)−1∑
t=tm

αtCMH +

tm+1−1∑
t=tm+f(tm)

αtCM

(
χf(t) + χt−[tm+f(tm)]

)
H

≤CM (‖qm‖+H + 1)

tm+f(tm)−1∑
t=tm

αt +

tm+1−1∑
t=tm+f(tm)

αt

(
χf(t) + χt−[tm+f(tm)]

) .
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Because αt = Cα
(1+t)ν is a decreasing function in t and αt ≤ T 2

m for t ≥ tm (Lemma 2), we get

‖g2,m‖ ≤ CM (‖qm‖+H + 1)

tm+f(tm)−1∑
t=tm

αtm + T 2
m

tm+1−1∑
t=tm+f(tm)

(
χf(t) + χt−[tm+f(tm)]

)
≤ CM (‖qm‖+H + 1)

f(tm)αtm + T 2
m

 tm+1−1∑
t=tm+f(tm)

χf(t) +

tm+1−1∑
t=tm+f(tm)

χt−[tm+f(tm)]



≤ CM (‖qm‖+H + 1)

[
f(tm)αtm + T 2

m

( ∞∑
t=0

χf(t) +

∞∑
t=0

χt

)]

Assumption 4.4 suggests that f(t) ≤ Cτα−τt and L(f, χ) =
∑∞
t=0 χ

f(t) <∞. Therefore,

‖g2,m‖ ≤ CM (‖qm‖+H + 1)

[
Cτα

−τ
tm αtm + T 2

m

(
L(f, χ) +

∞∑
t=0

χt

)]

≤ CM (‖qm‖+H + 1)

[
Cτα

1−τ
tm + T 2

m

(
L(f, χ) +

1

1− χ

)]
≤ CM (‖qm‖+H + 1)

[
CτT

2(1−τ)
m + T 2

m

(
L(f, χ) +

1

1− χ

)]
.

When Tm ≤ 1, we then have

‖g2,m‖ ≤ CMT 2(1−τ)
m (H + 1)

(
Cτ + L(f, χ) +

1

1− χ

)
(‖qm‖+ 1),

which completes the proof.
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C.6 PROOF OF LEMMA 7

Proof Firstly, we have

‖g3,m‖ ≤

∥∥∥∥∥
tm+1−1∑
t=tm

αt

(
E
[
Â>t+f(t)Ât|Ftm+f(tm)

]
− Â>t+f(t)Ât

)
qm

∥∥∥∥∥
+

∥∥∥∥∥
tm+1−1∑
t=tm

αt

(
E
[
Â>t+f(t)

(
b̂t − ÂtA−1b

)
|Ftm+f(tm)

]
− Â>t+f(t)

(
b̂t − ÂtA−1b

))∥∥∥∥∥
≤
tm+1−1∑
t=tm

αt

(∥∥∥E [Â>t+f(t)Ât|Ftm+f(tm)

]∥∥∥+
∥∥∥Â>t+f(t)

∥∥∥‖Ât‖) ‖qm‖
+

tm+1−1∑
t=tm

αt

(∥∥∥E [Â>t+f(t)

(
b̂t − ÂtA−1b

)
|Ftm+f(tm)

]∥∥∥+
∥∥∥Â>t+f(t)

∥∥∥(‖b̂t‖+
∥∥∥ÂtA−1b

∥∥∥))

≤
tm+1−1∑
t=tm

αt

(
E
[∥∥∥Â>t+f(t)Ât

∥∥∥|Ftm+f(tm)

]
+H ·H

)
‖qm‖

+

tm+1−1∑
t=tm

αt

(
E
[∥∥∥Â>t+f(t)

(
b̂t − ÂtA−1b

)∥∥∥|Ftm+f(tm)

]
+H(H +H)

)

≤
tm+1−1∑
t=tm

αt

(
E
[∥∥∥Â>t+f(t)

∥∥∥∥∥∥Ât∥∥∥|Ftm+f(tm)

]
+H2

)
‖qm‖

+

tm+1−1∑
t=tm

αt

(
E
[∥∥∥Â>t+f(t)

∥∥∥(∥∥∥b̂t∥∥∥+
∥∥∥ÂtA−1b

∥∥∥) |Ftm+f(tm)

]
+ 2H2

)

≤
tm+1−1∑
t=tm

αt
(
H2 +H2

)
‖qm‖+

tm+1−1∑
t=tm

αt
(
H(H +H) + 2H2

)
≤2ᾱmH

2(‖qm‖+ 2)

≤4TmH
2(‖qm‖+ 2) (Lemma 3)

≤8TmH
2(‖qm‖+ 1).

Secondly,

E
[
g3,m|Ftm+f(tm)

]
= 0

holds trivially, which completes the proof.

C.7 PROOF OF LEMMA 8

Proof

‖g4,m‖ =

∥∥∥∥∥
tm+1−1∑
t=tm

αtÂ
>
t+f(t)Ât

[
qm −

(
wt +A−1b

)]∥∥∥∥∥
≤
tm+1−1∑
t=tm

αt

∥∥∥Â>t+f(t)

∥∥∥‖Ât‖∥∥qm − (wt +A−1b
)∥∥.
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Then, by Lemma 4, we have

‖g4,m‖ ≤
tm+1−1∑
t=tm

αtH ·H · 8TmH2(‖qm‖+ 1)

= 8ᾱmTmH
4(‖qm‖+ 1),

which completes the proof.

C.8 PROOF OF LEMMA 9

Proof

‖qm+1‖2 =‖qm + g1,m + g2,m + g3,m + g4,m‖2

=‖qm + g1,m‖2 + ‖g2,m + g3,m + g4,m‖2 + 2(qm + g1,m)>(g2,m + g3,m + g4,m)

≤‖qm + g1,m‖2 + ‖g2,m + g3,m + g4,m‖2

+ 2(qm + g1,m)>g3,m + 2‖qm + g1,m‖‖g2,m + g4,m‖.

Lemma 5 implies that ‖qm + g1,m‖2 ≤ (1− βTm)‖qm‖2 and ‖qm + g1,m‖ = O(‖qm‖), Lemma 6

suggests that ‖g2,m‖ = O
(
T

2(1−τ)
m (‖qm‖+ 1)

)
, Lemma 7 suggests that ‖g3,m‖ = O(Tm(‖qm‖+

1)), and Lemma 8 suggests that ‖g4,m‖ = O
(
T 2
m(‖qm‖+ 1)

)
. Hence,

‖g2,m + g3,m + g4,m‖ ≤ ‖g2,m‖+ ‖g3,m‖+ ‖g4,m‖ = O(Tm(‖qm‖+ 1)),

and

‖g2,m + g4,m‖ = O
(
T 2(1−τ)
m (‖qm‖+ 1)

)
.

Moreover, both qm and g1,m = −ᾱmA>Aqm are adapted to Ftm+f(tm) and 7 implies that
E
[
g3,m|Ftm+f(tm)

]
= 0. We, therefore, have

E
[
(qm + g1,m)>g3,m|Ftm+f(tm)

]
= 0.

Lastly, putting everything together, we have

E
[
‖qm+1‖2|Ftm+f(tm)

]
≤(1− βTm)‖qm‖2 +O(Tm(‖qm‖+ 1))2 +O(‖qm‖)O

(
T 2(1−τ)
m (‖qm‖+ 1)

)
≤(1− βTm)‖qm‖2 +O

(
T 2(1−τ)
m (‖qm‖+ 1)2

)
≤(1− βTm)‖qm‖2 +O

(
T 2(1−τ)
m (‖qm‖2 + 1)

)
,

where the last inequality comes from the fact that (‖qm‖ + 1)2 ≤ 2(‖qm‖2 + 1). In conclusion,
there exists a constant D such that

E
[
‖qm+1‖2|Ftm+f(tm)

]
≤
(

1− βTm +DT 2(1−τ)
m

)
‖qm‖2 +DT 2(1−τ)

m ,

which completes the proof.

C.9 PROOF OF LEMMA 10

Proof To prove the lemma, we will invoke a supermartingale convergence theorem stated as follows.

Theorem 16 (Proposition 4.2 in Bertsekas & Tsitsiklis (1996)) Let Ym, Xm, and Zm, m ≥ 0 be
three sequences of random variables and let F̄m, m ≥ 0, be sets of random variables such that
F̄m ⊆ F̄m+1 for all m. Suppose that
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1. The random variables Ym, Xm, and Zm are non-negative and are functions of the random
variables in F̄m,

2. For each m, we have E
[
Ym+1|F̄m

]
≤ Ym −Xm + Zm,

3. There holds
∑∞
m=0 Zm <∞.

Then, we have
∑∞
m=0Xm < ∞ almost surely, and the sequence Ym converges almost surely to a

non-negative random variable Y .

In our case, we let

Ym =‖qm‖2,

Xm =
1

2
βTm‖qm‖2,

Zm =DT 2(1−τ)
m ,

F̄m =Ftm+f(tm).

The first condition of Theorem 16 holds trivially. For the second condition of Theorem 16 to hold,
we rely on (18) in Lemma 9. According to the definition of Tm in (12), we have

lim
m→∞

Tm = 0.

As a result, the condition

Tm ≤ min

(
β

2H4
, 1,

ln(2)

2H2

)
in Lemma 9 holds for sufficiently large m. Moreover, since

τ <
3

2
− 1

ν
(Assumption 4.4)

≤3

2
− 1

1
(Assumption 4.3)

=
1

2
,

we have

2(1− τ) > 1.

Consequently, the condition

DT 2(1−τ)
m ≤ 1

2
βTm,

which is equivalent to

T 2(1−τ)−1
m ≤ β

2D
,

also holds for sufficiently large m as limm→∞ Tm = 0. Crucially, D is deterministic because D
only depends on H , β, Cτ , CM , L(f, χ), and χ, which are all deterministic quantities. Therefore,
there always exists a finite and deterministic m0 such that the subsequence {Xm, Ym, Zm}m≥m0

verifies the second condition. Since η > 1
2(1−τ) , i.e. 2(1− τ)η > 1, by p-test, we can deduce that

∞∑
m=0

Zm =

∞∑
m=0

DT 2(1−τ)
m = D

∞∑
m=0

(
16 max(Cα, 1)

(η + 1)(m+ 1)η

)2(1−τ)

=
(16 max(Cα, 1))2(1−τ)D

(η + 1)2(1−τ)

∞∑
m=0

1

(η + 1)2(1−τ)η
<∞.
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The third condition of Theorem 16, therefore, also holds. All the conditions of Theorem 16 are now
verified for the subsequence {Xm, Ym, Zm}m≥m0

, which implies that the sequence
{
‖qm‖2

}
m≥0

converges and

1

2
β

∞∑
m=0

Tm‖qm‖2 <∞.

As η < 1, we have

∞∑
m=0

Tm =

∞∑
m=0

16 max(Cα, 1)

(η + 1)(m+ 1)η
=

16 max(Cα, 1)

η + 1

∞∑
m=0

1

(m+ 1)η
=∞.

Thus, ‖qm‖2 must converge to zero. Otherwise,
∑∞
m=0Xm = 1

2β
∑∞
m=0 Tm‖qm‖

2 diverges to
infinity. Thus, qm converges to 0 almost surely, which completes the proof.

C.10 PROOF OF LEMMA 12

Proof First, we prove the bounds for each function.

Bound for gt(·):

‖gt(w)‖ =
∥∥∥−Â>t+f(t)(Âtw + b̂t)

∥∥∥ ≤ ∥∥∥Â>t+f(t)

∥∥∥(‖Ât‖‖w‖+ ‖b̂t‖)

≤ H(HB +H) = H2(B + 1).

Bound for ḡ(·):

‖ḡ(w)‖ =
∥∥A>(Aw + b)

∥∥ ≤ ∥∥A>∥∥(‖A‖‖w‖+ ‖b‖) ≤ H(HB +B) = H2(B + 1).

Bound for Λt(·):

|Λt(w)| = |〈w − w∗, gt(w)− ḡ(w)〉| ≤ ‖w − w∗‖‖gt(w)− ḡ(w)‖
≤ (‖w‖+ ‖w∗‖)(‖gt(w)‖ − ‖ḡ(w)‖) ≤ (B +B)[H2(B + 1) +H2(B + 1)]

= 4H2B(B + 1).

Hence, by taking Cg = max{H2(B + 1), 4H2B(B + 1)}, we have the result stated. Second, we
prove the functions are Lipschitz.

gt(·) is H2-Lipschitz:

‖gt(w)− gt(w′)‖ =
∥∥∥−Â>t+f(t)(Âtw + b̂t) + Â>t+f(t)(Âtw

′ + b̂t)
∥∥∥ =

∥∥∥Â>t+f(t)Ât(w − w
′)
∥∥∥

≤
∥∥∥Â>t+f(t)

∥∥∥∥∥∥Ât∥∥∥‖w − w′‖ ≤ H2‖w − w′‖

ḡ(·) is H2-Lipschitz:

‖ḡ(w)− ḡ(w′)‖ =
∥∥−A>(Aw + b) +A>(Aw′ + b)

∥∥ =
∥∥A>A(w′ − w)

∥∥
≤
∥∥A>∥∥‖A‖‖w′ − w‖ ≤ H2‖w′ − w‖.
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Λt(·) is 2H2(3B + 1)-Lipschitz:

|Λt(w)− Λt(w
′)|

=|〈w − w∗, gt(w)− ḡ(w)〉 − 〈w′ − w∗, gt(w′)− ḡ(w′)〉|
=|〈w − w∗, gt(w)− ḡ(w)− (gt(w

′)− ḡ(w′))〉+ 〈w − w∗ − (w′ − w∗), gt(w′)− ḡ(w′)〉|
≤|〈w − w∗, gt(w)− ḡ(w)− (gt(w

′)− ḡ(w′))〉|+ |〈w − w′, gt(w′)− ḡ(w′)〉|
≤‖w − w∗‖‖gt(w)− ḡ(w)− (gt(w

′)− ḡ(w′))‖+ ‖w − w′‖‖gt(w′)− ḡ(w′)‖
≤(‖w‖+ ‖w∗‖)(‖gt(w′)− gt(w)‖+ ‖ḡ(w)− ḡ(w′)‖) + (‖gt(w′)‖+ ‖ḡ(w′)‖)‖w − w′‖
≤(B +B)(‖gt(w′)− gt(w)‖+ ‖ḡ(w)− ḡ(w′)‖) + [H2(B + 1) +H2(B + 1)]‖w − w′‖
≤2B(‖gt(w′)− gt(w)‖+ ‖ḡ(w)− ḡ(w′)‖) + 2H2(B + 1)‖w − w′‖
≤2B(H2‖w′ − w‖+H2‖w′ − w‖) + 2H2(B + 1)‖w − w′‖
=2H2(3B + 1)‖w − w′‖.

Therefore, by taking CLip = max{H2, 2H2(3B + 1)}, we have the result stated.

Lastly, we prove the following inequality regarding the inner product.

〈w − w′, ḡ(w)− ḡ(w′)〉 =
〈
w − w′,−A>(Aw + b) +A>(Aw′ + b)

〉
= −(w − w′)>A>A(w − w′) ≤ −β‖w − w′‖2,

where the last inequality holds due to (17).

C.11 PROOF OF LEMMA 13

Proof For any i ≥ 0, since wi lies in the ball for projection, we have

‖wi+1 − wi‖ = ‖Γ(wi + αigi(wi))− wi‖
= ‖Γ(wi + αigi(wi))− Γ(wi)‖
≤ ‖Γ(wi + αigi(wi)− wi)‖ (Γ(·) is non-expansive)
= ‖Γ(αigi(wi))‖
≤ ‖αigi(wi)‖
= αi‖gi(wi)‖
≤ αiCg. (Lemma 12)

Therefore, by telescoping, we can deduce that for all 0 < k < t,

‖wt − wt−k‖ ≤
t−1∑
i=t−k

‖wi+1 − wi‖ ≤
t−1∑
i=t−k

Cgαi = Cg

t−1∑
i=t−k

αi.

Because 1
t+1 is a decreasing function in t, for all i ∈ [t, t + 1], 1

t+1 ≤
1
i . As a consequence,

1
t+1 ≤

∫ t+1

t
1
i , and

t∑
i=t−k

1

i+ 1
≤

t∑
i=t−k

∫ i+1

i

1

j
≤
∫ t

t−k

1

i
= ln(t)− ln(t− k) = ln

(
t

t− k

)
.

In addition, given that αt = Cα
t+1 , we have

‖wt − wt−k‖ ≤ Cg
t−1∑
i=t−k

αi = Cg

t−1∑
i=t−k

Cα
i+ 1

≤ CgCα ln

(
t

t− k

)
.

Applying Lemma 12 again, we get

|Λt(wt)− Λt(wt−k)| ≤ CgCαCLip ln

(
t

t− k

)
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and hence

Λt(wt) ≤ Λt(wt−k) + CgCαCLip ln

(
t

t− k

)
. (29)

We now bound the expectation of Λt(wt−k) conditioning on Ft−k+f(t−k). In particular, we have

E
[
Λt(wt−k)|Ft−k+f(t−k)

]
=E

[
〈wt−k − w∗, gt(wt−k)− ḡ(wt−k)〉|Ft−k+f(t−k)

]
=E

[〈
wt−k − w∗, Â>t+f(t)(Âtwt−k +ˆ̂bt)−A>(Awt−k − b)

〉
|Ft−k+f(t−k)

]
=E

[〈
wt−k − w∗,

(
Â>t+f(t)Ât −A

>A
)
wt−k −

(
Â>t+f(t)b̂t −A

>b
)〉
|Ft−k+f(t−k)

]
.

As expectation and dot product are linear andwt−k is adapted toFt−k+f(t−k), we can further reduce
our expectations as

E
[
Λt(wt−k)|Ft−k+f(t−k)

]
=
〈
wt−k − w∗,

(
E
[
Â>t+f(t)Ât|Ft−k+f(t−k)

]
−A>A

)
wt−k −

(
E
[
Â>t+f(t)b̂t|Ft−k+f(t−k)

]
−A>b

)〉
≤‖wt−k − w∗‖

∥∥∥(E [Â>t+f(t)Ât|Ft−k+f(t−k)

]
−A>A

)
wt−k −

(
E
[
Â>t+f(t)b̂t|Ft−k+f(t−k)

]
−A>b

)∥∥∥
≤(‖wt−k‖+ ‖w∗‖)

(∥∥∥(E [Â>t+f(t)Ât|Ft−k+f(t−k)

]
−A>A

)
wt−k

∥∥∥+
∥∥∥E [Â>t+f(t)b̂t|Ft−k+f(t−k)

]
−A>b

∥∥∥)
≤(‖wt−k‖+ ‖w∗‖)

(∥∥∥E [Â>t+f(t)Ât|Ft−k+f(t−k)

]
−A>A

∥∥∥‖wt−k‖+
∥∥∥E [Â>t+f(t)b̂t|Ft−k+f(t−k)

]
−A>b

∥∥∥)
≤(B +B)

(∥∥∥E [Â>t+f(t)Ât|Ft−k+f(t−k)

]
−A>A

∥∥∥B +
∥∥∥E [Â>t+f(t)b̂t|Ft−k+f(t−k)

]
−A>b

∥∥∥)
≤2B

(∥∥∥E [Â>t+f(t)Ât|Ft−k+f(t−k)

]
−A>A

∥∥∥B +
∥∥∥E [Â>t+f(t)b̂t|Ft−k+f(t−k)

]
−A>b

∥∥∥) .
Applying Lemma 14, we get

E[Λt(wt−k)|Ft−k+f(t−k)] ≤ 2B(B + 1)CM

{
1 t < t− k + f(t− k)

χf(t) + χt−(t−k+f(t−k)) t− k + f(t− k) ≤ t .

Taking total expectations then yields

E[Λt(wt−k)] ≤ 2B(B + 1)CM

{
1 k < f(t− k)

χf(t) + χt−(t−k+f(t−k)) k ≥ f(t− k)
. (30)

Plugging (30) into the expectation of (29) yields

E[Λt(wt)] ≤ CgCαCLip ln

(
t

t− k

)
+ 2B(B + 1)CM

{
1 k < f(t− k)

χf(t) + χt−(t−k+f(t−k)) k ≥ f(t− k)
,

which completes the proof.

D ADDITIONAL EXPERIMENTAL DETAILS

The version of the Baird’s counterexample we use is illustrated in Figure 2.
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Figure 2: Baird’s counterexample from Chapter 11.2 of Sutton & Barto (2018). There are 7 states,
and for each state, there are 2 actions: dashed and solid. The solid action always leads to state 7,
whereas the dashed actions lead to state 1-6 with equal probability. The reward is 0 throughout, and
the discount factor is 0.99. The initial state is chosen at random with equal likelihood, and the initial
weight vector is set to (1, 1, 1, 1, 1, 1, 10, 1)>.
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