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ABSTRACT

As the inverse process of snapshot compressive imaging, the hyperspectral image
(HSI) reconstruction takes the 2D measurement as input and posteriorly retrieves
the captured 3D spatial-spectral signal. Built upon several assumptions, numer-
ous sophisticated neural networks have come to the fore in this task. Despite their
prosperity under experimental settings, it’s still extremely challenging for exist-
ing networks to achieve high-fidelity reconstructive quality while maximizing
the reconstructive efficiency (computational efficiency and power occupation),
which prohibits their further deployment in practical applications. In this pa-
per, we firstly conduct a retrospective analysis on aforementioned assumptions,
through which we indicate the imminent aspiration for an authentically practical-
oriented network in reconstructive community. By analysing the effectiveness and
limitations of the widely-used reconstructive backbone U-Net, we propose a Sim-
ple Reconstruction Network, namely SRN, just based on some popular techniques,
e.g., scale/spectral-invariant learning and identity connection. It turns out, under
current conditions, such a pragmatic solution outperforms existing reconstructive
methods by an obvious margin and maximize the reconstructive efficiency con-
cretely. We hope the proposed SRN can further contribute to the cutting-edge re-
constructive methods as a promising backbone, and also benefit the realistic tasks,
i.e., real-time/high-resolution HSI reconstruction, solely as a baseline.

1 INTRODUCTION

Hyperspectral imaging (HSI) refers to multi-channel imaging where each channel stores information
at a specific spectral wavelength for a fixed real-world scene (Plaza et al., 2009). By capturing
spatial intensity in a spectral-wise manner, hyperspectral images empower richer information than
traditional RGB image cubes and they have been applied in a wide range of scenarios, e.g., object
detection (Kim et al., 2012; Xu et al., 2015), remote sensing (Borengasser et al., 2007; Melgani &
Bruzzone, 2004; Yuan et al., 2017), medical image processing (Lu & Fei, 2014; Meng et al., 2020c)
etc. HSI can be captured and measured by snapshot compressive imaging (SCI) systems, which tend
to compress information of snapshots along the spectral axis into one single 2D measurement (Yuan
et al., 2021). The coded aperture snapshot spectral imaging (CASSI) system (Wagadarikar et al.,
2008; Meng et al., 2020b) forms one mainstream research direction among existing SCI systems
due to its passive modulation property (Llull et al., 2013; Wagadarikar et al., 2008; 2009; Yuan
et al., 2015).

The goal of HSI reconstruction is to transform the measurements into desired cubic hyperspectral
images. As a result, a dimensional-expansion mapping function (2D to 3D) is required, for which
reason such a mapping relationship approximation is deemed to be much harder than general image
regression tasks. By introducing domain expertise, previous research efforts have proposed a quite
number of reconstruction algorithms (Bioucas-Dias & Figueiredo, 2007; Liu et al., 2019; Miao et al.,
2019; Meng et al., 2020b; Wang et al., 2020; 2017; 2019; Yuan, 2016), among which deep neural
networks (Meng et al., 2020b;c; Miao et al., 2019; Wang et al., 2019; Wang et al., 2019; 2020; Zheng
et al., 2021) enable an effective way to faithfully bridge between input and output compositional
hierarchies (LeCun et al., 2015).
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Figure 1: Left: HSI reconstructions between the proposed SRN and several state-of-the-art methods.
The RGB reference (top-left) is shown to demonstrate the color. The reconstructed details are high-
lighted with yellow bounding boxes (zoom in for a clear comparison). Right: Comparison between
different HSI reconstruction methods in terms of PSNR (↑) and model size (↓).

1.1 MOTIVATION

While neural networks become increasingly prevalent in solving the HSI reconstruction problem,
their success is reliant on several idealistic hypotheses, which hardly holds in practical scenarios.
This prohibits the further application and exploration of HSI.

Proper Dataset Volume. The feasibility of learning in a universal sense can be defined by satisfying
a VC generalization bound Abu-Mostafa et al. (2012). From this perspective, deep neural networks
are considered to be high potential due to their high VC bound (which can be described as the
amount of free variables). Notably, the corresponding feasibility of neural networks is generally
determined by their model complexity and the volume of datasets. In the recent HSI reconstruction
methods, more increasingly complicated reconstructive networks have been proposed by assuming
the underlying dataset is sufficiently large so that the learning is feasible. This neglects the fact that
there’s limited data accessible. Under such circumstance, simpler model might be more promising.

Ideal reconstructive rate. Practically, any reconstructive algorithm appears with a substantial for-
ward model. For temporal-insensitive situations, the inverse model processes the measurements
at any reconstructive rate rrecon > 0, without considering cooperating with the forward model.
However, the reconstructive rate should be higher than (or at least equal to) capture rate of the for-
ward model, i.e., rrecon ≥ rcap > 0, for temporal-sensitive cases, i.e., real-time/high-speed HSI
reconstruction. For example, λ-net proposed by Miao et al. (2019) can be applied in reality with
rrecon > 30fps. More generally, reconstructive methods are always hypothetically deemed to be
efficient enough, i.e., compatible with any forward systems, which however probably suffers from
a deviation from current technical support. Considering the arbitrariness of the lower bound rcap,
we cannot determine an “ideal” reconstructive rate but only to maximize it, i.e., minimize the re-
constructive time. For neural network-based methods, eliminating the number of parameters and
computational burdens is a sound solution.

Unconstrained computing power. The success of the deep neural networks can largely attribute to
the overparameterization (Soltanolkotabi et al., 2018)—the parameters in neural networks are a lot
more than the training samples for a good representation learning. Actually, just by investing more
computing power P , the cornerstone which overparametrization is reliant upon, researchers have
made great progress in diverse applications (Thompson et al., 2020). Latent performance boost can
be further expected if more computing power is available, until one reaches the computing power
bottleneck P ∗. It turns out it’s difficult to solve such a bottleneck in practical. For example, to
conduct TSA-Net(Meng et al., 2020b) for high resolution (HR)-HSI restoration (1024×1024), the
required GPU memory would be unrestrictedly over 18Gb, which indicates dilemma encountered
by all high-performanced reconstructive methods with large model size.

1.2 CONTRIBUTIONS

In this study, bearing the limitations imposed by the scale of datasets, the capability of optical
systems, and the computational platform, we posit the possibility of network construction with min-
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imum inductive bias, based on an observation upon the reconstructive baseline U-net. We propose a
simple yet quite promising CNN reconstructive network, namely Simple Recon Net (SRN), whose
success is owing to revisiting and tailoring several practical techniques for HSI, i.e., spatial/spectral
invariant learning and residual learning. We summarize the contribution of this work as follows.

• The proposed SRN provides a new state-of-the-art by improving the previous one (Huang
et al., 2021) > 3dB in PSNR. Moreover, our approach presents clear perceptual improve-
ment across different spectral channels (Fig. 1 Left).

• We significantly shrink the model size (see Fig. 1 Right) without sacrificing the perfor-
mance, i.e., to most extent, we only use <1/3 parameters of GSM-based method (Huang
et al., 2021) and to the maximum, reduce FLOPs by > 34times as shown in Tab. 3, both
of which yield a higher temporal efficiency and computational efficiency. This makes real-
time/higher-resolution images reconstruction practically executable under restricted GPU
conditions.

• The proposed network can either be solely used as a baseline, or conjunctively referred
to as a backbone, contributing to more complicated methods, i,e., more sophisticated E2E
methods or unrolling methods.

2 RELATED WORKS

The basic idea of SCI is to modulate the high-dimensional signal using a higher frequency than the
capture rate of the camera. In this manner, a compressed coded frame obtained will include the
information in the high-dimensional signal and a high-performance algorithm can then be employed
to recover the desired data. For compression, the novel implementation of SCI, CASSI, uses a coded
aperture and a prism to conduct the (spatio-)spectral modulation.

Previously, iterative-based optimization algorithms predominate the field of HSI reconstruction by
approximating the image priors through diverse regularization techniques, i.e., the total variance
(TV) (Kittle et al., 2010; Wang et al., 2015; Wagadarikar et al., 2008), sparsity (Wang et al.,
2017; 2015), non-local similarity (NLS) (Wang et al., 2016; Fu et al., 2016), Markov Random
Field (MRF) (Tappen, 2007), Gaussian mixture model (Yang et al., 2015) etc, among which De-
SCI (Liu et al., 2019) achieves best performance on both video and spectral compressive imaging.
TwIST (Bioucas-Dias & Figueiredo, 2007) proposed a two-step Iterative shrinkage/thresholding al-
gorithm by modeling the reconstructive problem as a a linear observation model with a nonquadratic
regularizer (i.e., total variation). GPSR (M. A. T. Figueiredo et al., 2007) proposes to use gradient
projection (GP) algorithms to solve the inverse problem that is formulated as bound-constrained
quadratic programming (BCQP) process.

Inspired by the success of deep learning in other image translation problems, researchers have started
using deep learning to reconstruct hyperspectral images from CASSI measurements (Meng et al.,
2020b;c; Miao et al., 2019; Wang et al., 2019; Wang et al., 2019; 2020; Zheng et al., 2021), which can
be substantially divided into two streams: end-to-end neural networks (E2E-NN) models and others.
The former stream tends to directly learn a complete mapping function from measurements (always
packaged with masks) to estimated HSIs. Other researchers turns to introduce NN models into
conventional optimization algorithms, named deep unrolling/unfolding nad plug-and-play methods,
leading to lightweight and interpretable methods.

Proposed in Ronneberger et al. (2015), U-Net sat atop leaderboards regarding medical image track-
ing and segmentation, followed by which many variants have been derived in recent years, i.e., 3D
U-Net (Çiçek et al., 2016), Ternaus U-Net (Iglovikov & Shvets, 2018), MultiResUNet (Ibtehaz &
Rahman, 2020) and Attention U-Net (Oktay et al., 2018) etc. Typical investigation correlates such
a predominance with characteristics of medical images: 1) repeated tissue patterns and complicated
gradient distribution; 2) locally anomalous region and atypical noise distribution. U-Net intelligently
fits the above characteristics by firstly abstracts coarse information and then focus on localization
through simultaneously expansion and skip connection.

As a classical network structure, U-Net serves as the first precast backbone in HSI reconstruction,
among a series of famous architectures, and has been faithfully employed in both E2E and unrolling
methods. For example, the λ-net (Miao et al., 2019) is a dual-stage generative model which em-
ploys a U-Net and residual learning strategy. The TSA-Net (Meng et al., 2020b) which combined
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Figure 2: Illustration of HSI capturing and reconstruction. An optical system, CASSI (left blue
box, in which a 2D coded aperture and a disperse are displayed while other optical components
are omitted), compresses the hyperspectral signal F into a 2D measurement Y . For reconstruction
(right yellow box), we train the proposed Simple Recon Net (SRN), to learn an E2E mapping from
Y (initialized by shifted variants of coded aperture) to F̂ .

spatial-spectral self-attention with U-Net led to excellent results on both simulation and real data.
As a deep unfolding method, GAP-net (Meng et al., 2020a) utilizes 15-layer U-Net as a trained
denoiser in each stage. Recent Gaussian Scale Mixture Prior-based (GSM-based) baseline (Huang
et al., 2021) employing U-Net for two objects: a lightweight U-Net for approximating the regular-
ization parameters, another lightweight U-Net for estimating the local-mean of GSM prior. U-Net
has exemplified the rationality of uncomplicated neural network in field of HSI reconstruction, even
if considering the huge difference between the medical images and hyperspectral images. Actu-
ally, as reported in Tab. 1 and Tab. 2, U-net only achieves sub-optimal performance when solely
referred to as a reconstructive baseline, which reveals both the validity and the limitations of such a
generic solution. It turns out the performance of neural networks are sensitive to minor adjustments.
Compared with the U-Net, it’s possible to construct a “substitute network” that enables a significant
performance boost with mainstream techniques at hand.

3 METHODOLOGY

3.1 MATHEMATICAL MODEL OF CASSI

Recall that the key idea of SCI is to modulate the spatio-spectral signal with different modulation
patterns, and CASSI implemented this in a low cost way by a fixed mask plus a disperser. Given the
3D spectral cube (Fig. 2 left), denoted by F ∈ RNx×Ny×Nλ , where Nx, Ny , and Nλ represent the
spectral image’s height, width, and total number of wavelengths, respectively, we compute signal
modulation (implemented by the mask) in a channel-wisely way as F ′(:, :, nλ) = F (:, :, nλ)�M∗,
where F ′ ∈ RNx×Ny×Nλ represents the modulated signals, M∗ ∈ RNx×Ny refers to a pre-defined
physical mask governing on signal modulation, nλ ∈ [1, . . . , Nλ] indexes wavelengths, and� is the
Hadamard product. By passing F ′ to a disperser, the cube F ′ becomes tilted and could be sheared
along the y-axis. Let F ′′ ∈ RNx×(Ny+Nλ−1)×Nλ be the tilted cube, and λc be a reference wave-
length, i.e., F ′[:, :, nλc ] works like an anchor image that is not sheared along the y-axis, we have
F ′′(u, v, nλ) = F ′(x, y+d(λn−λc), nλ), where (u, v) locates the coordinate system on the detector
plane, λn denotes the nλ-th channel, λc refers to the anchored wavelength, and d(λn−λc) represents
a spatial shift of the nλ-th channel in F ′. Notably, since the sensor integrates all the light within
the wavelength range [λmin, λmax], we could model the compressed measurement at a detector
y(u, v) with the following integral: y(u, v) =

∫ λmax

λmin
f ′′(u, v, nλ)dλ, where f ′′ is the analog (con-

tinuous) representation of F ′′. To discretize this model, we have Y =
∑Nλ
nλ=1 F

′′(:, :, nλ) +G.
Y ∈ RNx×(Ny+Nλ−1) represents a 2D measurement, which, in essence, is a compressed frame
capturing the information, and G ∈ RNx×(Ny+Nλ−1) is a corresponding 2D measurement noise.

To simplify model notations, we define M ∈ RNx×(Ny+Nλ−1)×Nλ and F̃ ∈ RNx×(Ny+Nλ−1)×Nλ
as the shifted masks and signal frames of different wavelengths as follows: M(u, v, nλ) =

M∗(x, y + d(λn − λc)), F̃ (u, v, nλ) = F (x, y + d(λn − λc), nλ). By using M and F̃ , the
measurement Y could be reformulated as

Y =
∑Nλ
nλ=1 F̃ (:, :, nλ)�M(:, :, nλ) +G. (1)

It is usually easier to use the vectorized notations. Let y = vec(Y ) and g = vec(G) ∈ Rn
be the vectorization of matrices Y and G, where vec(·) concatenates all the columns of a matrix
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as one single vector. Similarly, we have f̃ (nλ) = vec(F̃ (:, :, nλ)), resulting in the vector f =

vec([f̃ (1) . . . f̃ (Nλ)]) ∈ RnNλ , where n = Nx(Ny + Nλ − 1). By defining the sensing matrix
as Φ = [D1, . . . ,DNλ ] ∈ Rn×nNλ , where Dnλ = Diag(vec(M(:, :, nλ))) is a diagonal matrix
expanded by vec(M(:, :, nλ)), rewrite equation 1 as

y = Φf + g. (2)

While obtaining the vectorized measure y is similar to compressive sensing (Donoho, 2006; Em-
manuel et al., 2006), the sensing matrix Φ has a very special structure. The recent studies (Jalali &
Yuan, 2019) have shown the signal can still be recovered even when Nλ > 1. Given the measure-
ment y captured by the camera and Φ calibrated upon pre-design, one critical and practical problem
of CASSI is to solve f used in equation 2, falling in the vein of inverse problem (Yuan et al., 2021),
for which we will propose a simple yet promising deep convolutional neural network below.

3.2 NETWORK DESIGN

The reconstructive function generates the 3D hyperspectral estimations from measurements. There-
fore, it would be better if one decompose the 2D measurements into 3D data cube beforehand. A
typical operation is to firstly initialize network input by conducting dot productions between the
measurement and each spectral channels of shifted variants of coded aperture, namely mask, with
an intention to mimic the Φ−1y according to equation 2:

FY [:, :, nλ] := shift(Mnλ � Y ), (3)

where nλ-th channel of FY ∈ RNx×Ny×Nλ is computed through Hadamard product, i.e., �, and
shift operation (raw output will be shifted into the desired tensor shape). Overall, the proposed
model aims to learn the mapping as G(·) : FY → F̂ , where F̂ denotes the reconstruction result. It
has been previously proved that network depth is one of the determining factors for the success of
estimation (Liang & Srikant, 2016; Telgarsky, 2016; Eldan & Shamir, 2016). We thereby preclude
complicated modules while maintain sufficient depth. The specific network structure is quite simple
and have the following function format:

gk =

{
g0, k = 0

g0 +
∑k
i=1 Ri(gi−1), k = 1, ...,K,

(4)

where gk is intermediate embedding at level k, g0 is initialized by a single convo-
lutional layer, i.e., g0 = CONV(FY ), where g0 ∈ RNx×Ny×Nγ . Note that
Nγ > Nλ, based on which we intend to do a “learnable spectral interpolation”.
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Figure 3: Illustration of the proposed Simple Recon Net
(SRN). Input g0 = CONV(FY ). All the Rk(·), k =
1, ...,K, are defined by CONV-RELU-CONV. To maximize
efficiency, rescaling pairs are inserted right after the inter-
mediate embeddings, indicated by ×. For example, in SRN
v2, we do downsample for g4 and then upsample for g12.

This provides more spectral redun-
dancy and thus enables the model to
better learn the connections among
different channels. For example,
adjacent spectral channels tend to
be more correlated to each other
in general HSIs. Rk(·) in equa-
tion 4 is just a non-linear fea-
ture transformer that bridges be-
tween different levels of embedding.
We simply set it as Rk(x) =
CONV(ReLU(CONV(x))). As
shown in Fig. 3, the main structure
of the proposed network includes K
different levels of embedding. Sym-
metric with the input initialization,
the final output is simply computed by a convolutional layer: F̂ = CONV(g∑) = CONV(gK +
g0). Identity connections (Bishop et al., 1995) are widely used in the whole network. In Sec. 4, we
show that such a simple network stands out among all existing reconstructive methods. Below we
will introduce several guidelines for model establishment, followed by which the proposed network
successfully learns the mapping function between cubic input-output data pairs.

3.2.1 SPATIAL/SPECTRAL INVARIANCE

5



Under review as a conference paper at ICLR 2022

In
pu
t:
25
6

Figure 4: Receptive field (RF) dimension and net-
work embedding depth comparison (U-Net (Miao
et al., 2019) v.s. Ours). U-Net unnecessarily ob-
serves a super large spatial area, at the end,i.e.,
532×532, while SRN finally focuses on a suf-
ficiently large neighborhood for approximation,
compared with the input spatial size denoted as
a vertical black bar.

As we mentioned in Sec. 2, U-net (Ronneberger
et al., 2015) is barely satisfactory in this field,
even being technically modified as in Miao
et al. (2019). This is determined by twofold rea-
sons: 1) Different characteristic between med-
ical images and HSIs (natural scenes) as illus-
trated in Sec. 2; 2) Different utilities: medical
image processing task is always more locally
focused while the HSI reconstruction tends to
be globally comprehensive.

It turns out the receptive field (RF) is important
for image tasks. As demonstrated by Luo et al.
(2016), for plenty of tasks, i.e., image classifi-
cation, dense prediction etc., RF should be suf-
ficiently large to capture the semantic informa-
tion (highest RF should be at least encompass
the raw input). In object detection, RF should
be cautiously determined. We argue that in low-
level regression tasks, its unnecessary for the
highest RF to cover the whole image but is sup-
posed to be large enough to capture the neigh-
boring for the estimated pixel. In Fig. 4, we compare the proposed model SRN with the U-Net
utilized by Miao et al. (2019) in terms of the spatial/spectral dimension. The highest RF of the
U-Net is much larger than the input (256 v.s. 532), which is oversized and thus improper. The
highest RF of proposed SRN, in comparison, makes more sense (256 v.s. 69). In SRN, concurrent
with such a linearly expanding behavior of RF, the spatial size intermediate embedding remains the
same, which is thus called “Spatial Invariance”.

To approximate the 3D signal in a rank minimization manner, previous researchers attempt to reduce
the spectral channels somewhere in the model, which turns out to be a lossy compression operation
and is avoided in our work. While in the proposed model, we simply treat the data cube as a whole
and thus keeps the spectral dimension constant through the main body (spectral invariant) after
expanding from Nλ = 28 to Nγ = 64.

3.2.2 EFFICIENCY MAXIMIZATION: TOWARD PRACTICAL APPLICATIONS

In practical application scenarios, performance and efficiency of the proposed method consist of a
paradox for all existing reconstructive methods, including our proposed network. For such a high-
performanced (as demonstrated by considerable experiments in 4) and concise network, we seek
to further maximize its efficiency at the expense of negligible performance descent. It turns out
the metric, floating point operations (FLOPs, i.e., amount of additions and multiplications), pro-
vides a favourable perspective of view, which 1) is inversely proportional to the reconstructive rate
mentioned in 1.1, 2) is positively related to the computing power. We minimize the FLOPs via
introducing rescaling manipulation-pairs, which are consist of a downsampling operation, i.e., a
convolutional layer with stride 2, and an upsampling operation (i.e., a convolutional layer followed
by PixelShuffle operation (Shi et al., 2016)). Spatial size will be doubled/halved by a single up-
sampling/downsampling operation. As annotated by Fig. 3, rescaling manipulations can be flexibly
inserted into model, i.e., right after the intermediate embeddings. Except for the initially proposed
network SRN v1, we further try two more variants: SRN v2 contains one rescaling pair, which
reduces the spatial size of g0 and recovers at g∑; SRN v3, in which second rescaling pair is inserted
in the after g4 and g12. Interestingly, experimental results below proves both of the variants are still
competitive to state-of-the-art performance (Tab. 1 and Tab. 2) in simulation.

4 EXPERIMENTS

Dataset. As in Meng et al. (2020b), we adopt the same 28 wavelengths distributed within the
range of 450nm to 650nm obtained by spectral interpolation manipulation for the HSIs, and conduct
experiments on the following two data type: 1) Simulation Data and 2) Real HSI data.
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Table 1: PSNR (dB) values by different algorithms on 10 scenes in the simulation dataset. Our
approach is denoted by v1: SRN w/o rescaling pair, v2: SRN with 1 rescaling pair, and v3: SRN
with 2 rescaling pair. Notably, v2 and v3 are provided to further reduce the FLOPs of v1 (see
Tab. 3) while still exhibiting a competitive performance over seven state-of-the-art methods.

Method Scene1 Scene2 Scene3 Scene4 Scene5 Scene6 Scene7 Scene8 Scene9 Scene10 Avg.

U-net 28.28 24.06 26.02 36.33 25.51 27.97 21.15 26.83 26.13 25.07 26.80
HSSP 31.07 26.30 29.00 38.24 27.98 29.16 24.11 27.94 29.14 26.44 28.93
λ-net 30.82 26.30 29.42 37.37 27.84 30.69 24.20 28.86 29.32 27.66 29.25

TSA-Net 31.26 26.88 30.03 39.90 28.89 31.30 25.16 29.69 30.03 28.32 30.24
GSM-based 32.38 27.56 29.02 36.37 28.56 32.49 25.19 31.06 29.40 30.74 30.28

PnP-DIP-HSI 32.70 27.27 31.32 40.79 29.81 30.41 28.18 29.45 34.55 28.52 31.30
GAP-net 33.62 30.08 33.07 40.94 30.77 33.60 27.41 31.25 33.56 30.36 32.47

SRN (v3) 32.85 28.61 31.27 39.42 29.93 32.81 26.26 30.87 31.74 29.84 31.36
SRN (v2) 33.16 29.08 32.19 39.81 30.43 33.22 26.69 31.50 31.69 29.98 31.77
SRN (v1) 34.42 30.98 33.11 41.58 31.87 35.38 28.26 33.38 33.75 31.75 33.45

Table 2: SSIM values by different algorithms on 10 scenes in the simulation dataset, which shows
the consistency with the above metric PSNR. Both of PSNR and SSIM indicate the promising per-
formance of proposed SRN on syhthetic testing data.

Method Scene1 Scene2 Scene3 Scene4 Scene5 Scene6 Scene7 Scene8 Scene9 Scene10 Avg.

U-net 0.822 0.777 0.857 0.877 0.795 0.794 0.799 0.796 0.804 0.710 0.803
HSSP 0.852 0.798 0.875 0.926 0.827 0.823 0.851 0.831 0.822 0.740 0.834
λ-net 0.880 0.846 0.916 0.962 0.866 0.886 0.875 0.880 0.902 0.843 0.886

TSA-Net 0.887 0.855 0.921 0.964 0.878 0.895 0.887 0.887 0.903 0.848 0.893
GSM-based 0.920 0.892 0.925 0.970 0.894 0.938 0.898 0.932 0.925 0.934 0.923

PnP-DIP-HSI 0.898 0.832 0.920 0.970 0.903 0.890 0.913 0.885 0.932 0.863 0.901
GAP-net 0.926 0.914 0.944 0.966 0.925 0.936 0.915 0.918 0.937 0.914 0.929

SRN (v3) 0.906 0.850 0.903 0.954 0.911 0.927 0.839 0.913 0.909 0.893 0.900
SRN (v2) 0.909 0.852 0.902 0.943 0.911 0.927 0.838 0.918 0.910 0.893 0.900
SRN (v1) 0.931 0.906 0.923 0.970 0.941 0.958 0.867 0.953 0.937 0.939 0.932

For simulation data, both CAVE (Park et al., 2007) synthetic dataset and KAIST (Choi et al., 2017)
synthetic dataset are applied in our simulation experiment. Regarding the training set, we create 205
1024×1024×28 large image examplers from 30 256×256×28 images from CAVE dataset by ran-
domly concatenating. Operations like rotation and rescaling are both used to magnify the robustness.
Training samples of size 256×256×28 will be further randomly cropped from the examplers. We
compare with other methods on the same ten different 256×256×28 HSIs abstracted from KAIST
dataset. For real HSI data, we augment the above training set by additional 37 HSI images in
KAIST (Choi et al., 2017) dataset, all of which will be cropped into 660×660×28 to match the
real-world measurement, which are abstracted by CASSI system developed in Meng et al. (2020b).

Training and Testing Procedure. The model is trained to minimize a mean squared error (MSE)
between the ground truth and output. For simulation experiment, reconstructive inputs can be com-
putationally acquired by mimicking the actual CASSI reproduced in Meng et al. (2020b). Notably,
the real-world captured measurements are disturbed by the noise introduced by the optical sys-
tem. Therefore, we add Gaussian noise with standard deviation randomly generated from the range
[0, 0.05] to mimic this scenario. For both simulation training/testing and real-wrold testing, the
identical mask are employed for a fair comparison.

Compared Methods. We compare with seven state-of-the-art reconstruction algorithms, includ-
ing U-Net (Ronneberger et al., 2015), HSSP (Wang et al., 2019), λ-net (Miao et al., 2019),
TSA-Net (Meng et al., 2020b), GSM-based method (Huang et al., 2021), PnP-DIP-HSI (Meng
et al., 2021) and GAP-net (Meng et al., 2020a), among which λ-net, TSA-Net and GSM-based
methods yield plausible results. Peak Signal-to-Noise Racial (PSNR) and Structural SIMilarity
(SSIM) (Wang et al., 2004) are used for a quantitative comparison. The PSNR is computed by
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Measurement RGB Reference Ground Truth HSSP !-Net TSA-Net GSM-based PnP-DIP-HSI GAP-net Ours
a

b

Figure 5: Comparison of reconstructed results for synthetic HSI on the flower pating scene. Six
state-of-the-art methods and our proposed method are included. The RGB reference is shown to
demonstrate the color (top-left). Our results recover the most details contained in real scene. For the
chosen regions a (yellow patch) and b (red patch), density curves of our result (bottom-left) show
highest correlations with the references (0.9792, 0.9975), which indicates the effectiveness of our
method within corresponding waveband (yellow: 565nm∼590nm; red: 625nm∼740nm).

PSNRch = 10 log10(
MAX2

I

MSEch
), where the channel-wise PSNR value will be gathered for average

computing and MAX2
I denotes the maximum pixel value in ground truth image I .

We implemented our model by PyTorch and trained it with the ADAM optimizer. There are K=16
network embeddings in main body. The learning rate was initialized as 4×10−4, decreased by half
every 50 epochs, for both simulation/real settings. We set batch size = 4 for the best validation
performance. The training is conducted on a NVIDIA TIATN RTX GPU on simulation data.

4.1 EXPERIMENTS ON SYNTHETIC DATA

As shown in both Tab. 1 and 2, the proposed method (i.e., our best model without rescaling, denoted
as SRN v1) has achieved the highest averaged PSNR and SSIM of 10 synthetic testing samples
as 33.45 dB and 0.932, respectively, which is an considerable breakthrough. Although the other
two versions of our model (i.e., the proposed method with 1 or 2 rescaling pairs, termed as, SRN
v2 and SRN v3) are mainly designed for reducing the computational cost, they also exhibit the
competitive performance compared with existing methods. Validated by three variants of our model,
the proposed method demonstrated great stability and effectiveness.
Fig. 5 visualizes the reconstructed results between six compared methods and our model. Our recon-
structed images contain the most details among four chosen spectral channels including 462.1nm,
498nm, 575.3nm and 625.1nm. We also plot the spectral density curves corresponding to two picked
regions ( box “a” and “b” in Fig. 5). The highest correlations (i.e., 0.9792, 0.9975) and highly co-
incidence between our curves and reference proves the spectral-wise effectiveness of our model. To
clearly check the reconstructive ability of the proposed model (i.e., (v1)), we put RGB reconstruc-
tions of eight 256×256×28 reconstructed simulation results in Fig. 7.

4.2 EXPERIMENTS ON REAL DATA

We validate the effectiveness of proposed method on hyperspectral images collected from
real scenes. We show one example of legoman in Fig. 6 (a) by comparing our method
with three best reconstructive methods, λ-net (Miao et al., 2019), TSA-Net (Meng et al.,
2020b) and GSM-based method (Huang et al., 2021), on 8 spectral channels. Our recon-
structive results are perceptually complete and demonstrate few artifact, which is obvious
on the “face” of the legoman. We pick a small red region for spectral-wise performance
verification and gets the highest correlation with the reference generated by a spectrometer.
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Figure 6: Real reconstructed hyperspectral images comparison between λ-net, TSA-Net, GSM-
based method and our method from the real-captured CASSI measurement of legoman scene. The
RGB reference is shown to demonstrate the color. By comparison, our results give little distortion
and artifact. Within the chosen region a (green patch), our reconstructed pixels yield the highest
correlation with the reference given by spectrometer, indicating the effectiveness of our method
within waveband of green, i.e., 500nm∼565nm.

Method #params (M) FLOPs (G) PSNR (dB)

U-net 31.32 58.99 26.80
λ-net 62.64 117.98 29.25
TSA-Net 44.25 80.08 30.24
GSM-based 3.76 646.35 30.28
SRN v1 1.25 81.84 33.45
SRN v2 1.44 25.07 31.77
SRN v3 1.62 18.57 31.36

Table 3: Analysis efficiency of the deep
learning-based algorithms, with a spa-
tial size of input as 256×256. The anno-
tation v1: SRN w/o rescaling pair, v2:
SRN with 1 rescaling pair, and v3: SRN
with 2 rescaling pair.

4.3 EFFICIENCY ANALYSIS

Model size. Besides the breakthroughs in terms of
performance, we further compare the model size and
floating-point operations (FLOPs) between four E2E
deep-learning-based methods and three variants of our
proposed method. As shown in Tab. 3, the proposed SRN
v1 (i.e., the one without rescaling pairs) contains only
2.82% trainable parameters compared with TSA-Net, less
than 1/3 params as GSM-based method. We reduces 96%
and 98% trainable parameters when compared with U-
net (Ronneberger et al., 2015) and λ-net, respectively.
The other two variants involve a little bit more trainable
parameters due to the additional covolutional layers introduced by the rescaling pairs. Our models
requires much less computing power and thus can be flexibly deployed, which benefits the real-time
reconstruction. We visualize the reconstructed high-resolution HSI, i.e.,1024×1024×28 in A.4.

Floating-Point Operations (FLOPs). Given the input of spatial shape 256×256, we count the
total amount of addition and multiplication for different deep learning-based model. As shown in
Tab. 3, the FLOPs of the proposed model without rescaling pairs is 81.84G, which are slightly more
than that of TSA-Net. The underlying intuition is that though the proposed model is rather small,
the amount of operations conducted in the model is still formidable, which limits the capacity of
processing large image patches. Similar problem shows on GSM-based method, which contains
over 30× FLOPs than SRN v3. As shown in Tab. 3, two variants (i.e., the bottom two models, SRN
v2 and SRN v3) mitigate this issue successfully. Typically, we reduce 69.4% FLOPs by using one
rescaling pairs, which is less than 1/3 the FLOPs of TSA-Net. If we further add one more rescaling
pair, the resulting FLOPs will be only 18.57G.

5 CONCLUSION AND FUTURE WORKS

We provided a simple yet promising method specially-designed for HSI reconstruction in this paper.
The proposed method outperformed existing methods, by setting a new state-of-the-art performance
with a negligible amount of model parameters. We alleviated the problem of inefficiency of neural
network-based reconstructive methods and thus make a step forward to practical application of HSI
reconstruction. Our method can not only be solely referenced as a baseline, also conjointly served
as a qualified backbone for future research in the HSI community.
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Table 4: Averaged PSNR/dB (↑), SSIM (↑), model size/M (↓) and FLOPs/G (↓) on Simplified Res-
Block (without Batch Bormalization) and normal ResBlock (containing Batch Normalization) in
simulation dataset. Batch size is kept as 4, learning rates is initialized as 0.0004 and will be reduced
by half every 50 epochs throughout the experiment. Apparently, there is no benefit for adding Batch
Normalization layer.

Batch
Normalization

SRN v1 SRN v2 SRN v3

PSNR SSIM # params FLOPs PSNR SSIM # params FLOPs PSNR SSIM # params FLOPs

SRN w/ BN 32.40 0.910 1.255 81.839262 31.69 0.894 1.440 25.065163 29.65 0.870 1.624 18.572380
SRN w/o BN 33.45 0.932 1.251 81.839260 31.77 0.900 1.436 25.065161 31.36 0.900 1.620 18.572378

A APPENDIX

A.1 EXPERIMENTAL SETTINGS

CAVE dataset. We used CAVE dataset (Park et al., 2007) to train our model for both simulation and
real data experiments. CAVE dataset contains 30 512×512 multispectral images corresponding to
wavelength of 400nm∼700nm. We generate 175 examplers of 1024×1024 spatial size by random
concatenation. To increase the robustness of the training set, images are randomly rotated before
concatenation. Besides, another 30 examplers are generated via directly rescaling the original ones.
For simulation, image patches of 256×256 spatial size are randomly cropped and then fed into
the model. For real hyperspectral images reconstruction, 660×660 images patches are randomly
cropped to be the training samples of our CNN model. For high-resolution image reconstruction,
1024×1024×28 examplers are directly fed into the model as training samples. Fig. 8 (a) shows
a rescaled training exampler at the wavelength of 453.3nm and (b) shows a concatenated training
exampler at the wavelength of 522.7nm.

KAIST dataset. KAIST (Choi et al., 2017) dataset contains 30 high-quality hyperspectral images
of spatial size 2704×3376. In simulation experiment, ten image patches of 256×256×28 are used
as the testing data. For real HSI reconstruction, 36 image patches of spatial size 1024×1024 are
abstracted and combined with above 205 sample for training purpose. For high-resolution image
reconstruction, 17 samples of spatial size 1024×1024 are used as the testing data. Fig. 8 (c) demon-
strates an example of testing image patch at 498.0nm wavelength, which is used for the third task.

Evaluation metric. Two widely-used validation criteria, Peak Signal-to-Noise Ratio (PSNR) and
Structural Similarity (SSIM) are used for quantitative comparison. SSIM is computed by

SSIM(x, y)=

[
2µxµy + C1

µ2
x + µ2

y + C1

]α
·
[

2σxσy + C2

σ2
x + σ2

y + C2

]β
·
[
σxy + C3

σxσy + C3

]γ
,

(5)

where µx, µy are local means, σx, σy are standard deviations, σxy is cross-covariance for image x
and y.

A.2 HYPER-PARAMETER TUNING

learning
rate

SRN v1 SRN v2 SRN v3

PSNR SSIM PSNR SSIM PSNR SSIM

0.0002 32.88 0.924 32.26 0.913 31.75 0.906
0.0004 33.45 0.932 31.77 0.900 31.36 0.900
0.0006 32.02 0.907 32.26 0.913 30.08 0.870

Table 5: Averaged PSNR (dB) and
SSIM values for different learning rate
in simulation experiment, where batch
size is kept as 4 and the learning rates is
reduced by half every 50 epochs.

In this experiment, we perform a number of trials
on simulation dataset, to find the optimal hyperpa-
rameter setting for the proposed reconstructive mod-
els. Specifically, ablation studies on batch normaliza-
tion layer 4, initial learning rate of 0.0002, 0.0004,
0.0006 (see Table 5 for averaged PSNR and SSIM val-
ues), and batch size of 2,4,8 (see Table 6 for aver-
aged PSNR and SSIM values) are involved in three ver-
sions of proposed model (SRN v1, SRN v2,SRN v3).

Besides, to further validate the superiority of Simplified
ResBlcok (RB) over normal ResBlock, we compare the
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Table 7: PSNR (dB) and SSIM values on 1024×1024×28 simulation testing data. Reconstruction is
conducted by SRN v2model (i.e., the model with one rescaling pair), where optimal hyperparameter
settings argued in Section A.2 are leveraged in the training phase.

scene 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Avg.

PSNR 28.78 29.97 30.40 31.74 33.31 30.96 34.56 34.46 34.49 27.28 34.95 33.07 31.88 33.36 29.20 29.85 30.03 31.66

SSIM 0.869 0.913 0.943 0.937 0.956 0.958 0.958 0.962 0.956 0.821 0.945 0.948 0.819 0.928 0.937 0.886 0.926 0.921

model size, FLOPs (FLoating-point OPerations) and quantitative evaluations (averaged PSNR and
SSIM) on both settings by only adding the Batch Normalization (Ioffe & Szegedy, 2015) layer be-
hind the first convolutional layer in each Simplified ResBlock (RB) (shown in Table 4). For compari-
son, TSA-Net (Meng et al., 2020b) achieves 30.15dB and 0.893 respectively, with 44.25M parame-
ters and 80.08G FLOPs. Obviously, Batch Normalization layers not only result in more parameters
and FLOPs, also undermine the performance. As demonstrated in the three tables above, we choose
the optimal hyperparameter setting according to our best model’s performance.

learning rate = 0.0004,

batch size = 4.
(6)

A.3 STATE-OF-THE-ART PERFORMANCE

batch size SRN v1 SRN v2 SRN v3

PSNR SSIM PSNR SSIM PSNR SSIM

2 32.24 0.909 31.44 0.894 31.02 0.888
4 33.45 0.932 31.77 0.900 31.36 0.900
8 32.05 0.909 31.68 0.902 31.51 0.905

Table 6: Averaged PSNR (dB) and
SSIM values on different batch sizes in
simulation dataset. Initial learning rate
is kept as 0.0004 and reduced by half
every 50 epochs.

In this section, we visualize more reconstructed HSIs
produced by our best model, which is SRN v1 (i.e.,
the original model without rescaling pair). Firstly, we
add one additional simulation and one additional real re-
constructed results with spectral analysis (i.e., density
curves) in Fig. 9 and Fig. 10. For comparison, the same
sixteen spectral channels of reconstructed HSIs gener-
ated by λ-net (Miao et al., 2019), TSA-Net (Meng et al.,
2020b) and GSM-based method (Huang et al., 2021) are
also plotted, shown in Fig. 11∼Fig. 20. Better visualiza-
tion performance can be achieved by zooming in.

A.4 HIGH-RESOLUTION HSI RECONSTRUCTION

As compared in Fig. 1 right, our model outperforms the TSA-Net (Meng et al., 2020b) on simula-
tion data of spatial size 256×256 with only 2.82% trainable parameters. As compared in Tab. ??,
we outperforms GSM and concretely reduce FLOPs by > 34times, by comparison. Besides, the
variants of original model, which are equipped with rescaling pairs, can still achieve promising per-
formance with less than 1/3 FLOPs, as shown in Tab. 1 and Tab. 2. Both of the minimal model size
and insignificant amount of computing enables our method a perfect candidate for higher-resolution
hyperspectral image reconstruction. Therefore, we setup a simulation experiment—by directly us-
ing previous 1024×1024×28 examplers as training samples, we reconstruct high-resolution HSI
accordingly through SRN v2 model (i.e., the model with one rescaling pair). The testing set is
composed of 17 images patches of size 1024×1024×28 abstracted from KAIST dataset. We also
generate a 1024×1024 noise map as mask for training and testing. As far as we know, this is the first
time to reconstruct HSI at such a high resolution using deep learning-based method. Table 7 reports
the PSNR and SSIM values on all 17 scenes. Fig. 21∼Fig. 26 show the reconstructed images on 16
selected spectral channels.
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Table 8: PSNR (dB) and SSIM values on 256×256×28 simulation testing set. To create a well-
trained model that can easily adapt to diverse masks, We train SRN v2 model with masks gener-
ated from the same distribution, during which optimal hyperparameter settings (i.e., learning rate is
0.0004, batch size is 4) argued in Section A.2 are leveraged.

scene 1 2 3 4 5 6 7 8 9 10 Avg.

PSNR 32.56 28.41 31.18 39.19 29.51 33.21 26.32 31.27 32.05 29.82 31.35

SSIM 0.901 0.841 0.899 0.948 0.898 0.927 0.837 0.918 0.908 0.893 0.897

Figure 7: RGB reconstruction of eight reconstructed simulation results.

(a) Training Exampler: rescaling (b) Training Exampler: concatenation (c) High-resolution Ground Truth Image 
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Figure 8: 1024×1024 training/testing hyperspectral images for different tasks, shown on specific
wavelengths.
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Figure 9: Comparison of reconstructed results for synthetic HSI (Ironman and Donald Duck scene).
Six state-of-the-art methods and our method (right-column) are included. The RGB reference is
shown to demonstrate the color (Top-left). The spectral curves (bottom-left) are corresponding to
the boxes denoted in measurement.
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Figure 10: Reconstructed real HSI comparison between λ-net, TSA-Net, GSM-based method and
our proposed model v1, (i.e., with one rescaling pair) from the real CASSI measurement (top-left).
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Figure 11: Comparison of reconstructed results produced by λ-net Miao et al. (2019), TSA-
Net Meng et al. (2020b),GSM-based method (Huang et al., 2021) and our best model on simulation
dataset scene 1. Better visualization performance can be achieved by zooming in.

18



Under review as a conference paper at ICLR 2022

GSM-based

!-net

TSA-Net

Ours

Figure 12: Comparison of reconstructed results produced by λ-net Miao et al. (2019), TSA-
Net Meng et al. (2020b),GSM-based method (Huang et al., 2021) and our best model on simulation
dataset scene 2. Better visualization performance can be achieved by zooming in.
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Figure 13: Comparison of reconstructed results produced by λ-net Miao et al. (2019), TSA-
Net Meng et al. (2020b),GSM-based method (Huang et al., 2021) and our best model on simulation
dataset scene 3. Better visualization performance can be achieved by zooming in.
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Figure 14: Comparison of reconstructed results produced by λ-net Miao et al. (2019), TSA-
Net Meng et al. (2020b),GSM-based method (Huang et al., 2021) and our best model on simulation
dataset scene 4. Better visualization performance can be achieved by zooming in.
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Figure 15: Comparison of reconstructed results produced by λ-net Miao et al. (2019), TSA-
Net Meng et al. (2020b),GSM-based method (Huang et al., 2021) and our best model on simulation
dataset scene 5. Better visualization performance can be achieved by zooming in.
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Figure 16: Comparison of reconstructed results produced by λ-net Miao et al. (2019), TSA-
Net Meng et al. (2020b),GSM-based method (Huang et al., 2021) and our best model on simulation
dataset scene 6. Better visualization performance can be achieved by zooming in.
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Figure 17: Comparison of reconstructed results produced by λ-net Miao et al. (2019), TSA-
Net Meng et al. (2020b),GSM-based method (Huang et al., 2021) and our best model on simulation
dataset scene 7. Better visualization performance can be achieved by zooming in.
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Figure 18: Comparison of reconstructed results produced by λ-net Miao et al. (2019), TSA-
Net Meng et al. (2020b),GSM-based method (Huang et al., 2021) and our best model on simulation
dataset scene 8. Better visualization performance can be achieved by zooming in.
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Figure 19: Comparison of reconstructed results produced by λ-net Miao et al. (2019), TSA-
Net Meng et al. (2020b),GSM-based method (Huang et al., 2021) and our best model on simulation
dataset scene 9. Better visualization performance can be achieved by zooming in.
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Figure 20: Comparison of reconstructed results produced by λ-net Miao et al. (2019), TSA-
Net Meng et al. (2020b),GSM-based method (Huang et al., 2021) and our best model on simulation
dataset scene 10. Better visualization performance can be achieved by zooming in.
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Figure 21: 1024×1024×28 high-resolution HSI reconstruction (scene 4): Sixteen spectral channels
of ground truth HSI (upper two rows) and corresponding reconstructive results by SRN v2 model
(lower two rows). Better visualization performance by zooming in.
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Figure 22: 1024×1024×28 high-resolution HSI reconstruction (scene 6): Sixteen spectral channels
of ground truth HSI (upper two rows) and corresponding reconstructive results by SRN v2 model
(lower two rows). Better visualization performance by zooming in.
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Figure 23: 1024×1024×28 high-resolution HSI reconstruction (scene 7): Sixteen spectral channels
of ground truth HSI (upper two rows) and corresponding reconstructive results by SRN v2 model
(lower two rows). Better visualization performance by zooming in.
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Figure 24: 1024×1024×28 high-resolution HSI reconstruction (scene 8): Sixteen spectral channels
of ground truth HSI (upper two rows) and corresponding reconstructive results by SRN v2 model
(lower two rows). Better visualization performance by zooming in.
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Figure 25: 1024×1024×28 high-resolution HSI reconstruction (scene 15): Sixteen spectral channels
of ground truth HSI (upper two rows) and corresponding reconstructive results by SRN v2 model
(lower two rows). Better visualization performance by zooming in.
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Figure 26: 1024×1024×28 high-resolution HSI reconstruction (scene 17): Sixteen spectral channels
of ground truth HSI (upper two rows) and corresponding reconstructive results by SRN v2 model
(lower two rows). Better visualization performance by zooming in.
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