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Abstract

A number of benchmarks are based on graphs.001
Edges are typically split into train, validation002
and test splits, using a random partition. Leak-003
age has been discovered in a number of popu-004
lar benchmarks; FB15k has been replaced by005
FB15k-237 and WN18 has been replaced by006
WN18RR, though leakage has been reported007
even after these corrections. This paper will008
report a new type of leakage, A-leakage, on009
benchmarks for synonym-antonym classifica-010
tion. A-leakage infers labels for pairs of words011
in the test split, wi, wj , by exploiting labels on012
paths from wi to wj in the training split. We013
conclude that it is safer to split vertices, V , than014
edges, E.015

1 Introduction016

Consider graphs, G, where G = (V,E). V is a017

set of vertices and E is a set of edges. V is typi-018

cally a set of words/concepts: V = {w1, w2, ...},019

and E is a set of triples, (head, tail, rel), where020

head, tail ∈ V and rel ∈ R. R is typically a small021

set of relations. For one benchmark that will be022

discussed below, WN18, R is a set of 18 relations023

borrowed from WordNet.024

We will use the terms, dataset, to refer to data025

without standardized splits, and the term, bench-026

mark, to refer to a dataset plus standardized splits.027

Thus, for example, we will refer to WordNet as a028

dataset, and WN18 as a benchmark.029

Many benchmarks split G into train, validation030

and test splits by partitioning E into three sets. This031

paper will suggest that partitioning on E can lead032

to leakage in some cases. It is safer to split on033

V than to split on E. We will refer to splits on034

E as the standard construction of benchmarks on035

graphs.036

For some examples of the standard construction,037

consider the literature on knowledge graph comple-038

tion (KGC)1 (Nguyen, 2017; Wang et al., 2017; Yu039

1https://github.com/Sujit-O/pykg2vec

et al., 2019) as well as the literature on node2vec 040

(Grover and Leskovec, 2016), which will be dis- 041

cussed in the next two subsections. Both of these 042

literatures use a number of popular benchmarks 043

with standardized splits for train, validation and 044

test. 045

The training and validation splits are used to 046

learn a model. The model is then evaluated by how 047

well it predicts edges in the test split. If there is 048

leakage across splits, the integrity of these evalua- 049

tions is seriously undermined. 050

1.1 Node2Vec 051

Node2vec inputs a graph, G = (V,E), and output 052

an embedding, a matrix M ∈ RV×K , with K hid- 053

den dimensions. Nodes that are “close” in G will 054

be “close” in MMT , though performance on test 055

sets depends on many factors including the choice 056

of algorithms, various hyper-parameters such as 057

K, and many other details. The software pack- 058

age, nodevectors,2 supports several node2vec al- 059

gorithms including: ProNE3 (Zhang et al., 2019) 060

and GraRep4 (Cao et al., 2015). More examples 061

of graph benchmarks can be found here.5 These 062

citations and github repositories mention a number 063

of benchmarks that use the standard construction. 064

1.2 Knowledge Graph Completion (KGC) 065

Nguyen (2017) mentions a number of popular 066

datasets for KGC research: WordNet (Fellbaum, 067

1998), YAGO (Suchanek et al., 2007), Freebase 068

(Bollacker et al., 2008), NELL (Carlson et al., 069

2010), DBpedia (Lehmann et al., 2015). FB15k and 070

WN18 are two popular KGC benchmarks based on 071

Freebase and WordNet, respectively. Both FB15k 072

and WN18 use the standard construction to create 073

splits. 074

2https://pypi.org/project/nodevectors/
3https://github.com/THUDM/ProNE
4https://github.com/

benedekrozemberczki/GraRep
5http://snap.stanford.edu/node2vec/
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Relation Edges Reverse Edges
hypernyms 37,221 hyponyms 37,221

derivationally
related forms 31,867

member
meronym 7928 member

holonum 7928

has part 5142 part of 5148
synset domain

topic of 3335 member of
domain topic 3341

instance
hypernym 3150 instance

hyponym 3150

also see 1396
verb group 1220
member of

domain region 983 synset domain
region of 982

member of
domain usage 675 synset domain

usage of 669

similar to 86

Table 1: 18 Relations in WN18

Both FB15k and WN18 are known to suffer075

from leakage. As discussed in §4 of (Nguyen,076

2017), Toutanova and Chen (2015) and Dettmers077

et al. (2018) observed leakage involving reversible078

triples such as:079

• feline hyponym cat080

• cat hypernym feline081

As this example illustrates, links in WordNet usu-082

ally appear in pairs. The pairs are easy to derive083

from one another. Therefore, if one member of084

the pair should appear in one split, and the other085

member of the pair should appear in another split,086

as is the case for the feline/cat triples above, then087

there is leakage between the splits, undermining the088

integrity of evaluations based on the benchmark.089

Note that there are many more triples like the090

feline/cat, as shown in Table 1. All of the edges on091

the right hand side of Table 1 are redundant, and092

many of these redundant pairs are split across splits,093

introducing leaks that undermine evaluations based094

on WN18.095

To address this kind of leakage, FB15k has been096

replaced with FB15k-2376 and WN18 has been097

replaced with WN18RR.7098

The WN18RR construction addresses much of099

the leakage, but not all of it, by removing the dupli-100

cated links on the right hand side of Table 1.101

Unfortunately, this construction does not remove102

leakage involving derivationally related links, as103

discussed in Table 4 of (Church and Bian, 2021).104

6https://paperswithcode.com/dataset/
fb15k

7https://paperswithcode.com/dataset/
wn18

Dataset Splits
train val test

adj 5562 398 1986
noun 2836 206 1020
verb 2534 182 908

fallows 58,494 7190 7366
fallows-s 5886 753 777

Table 2: Sizes (edges) of synonym-antonym datasets

These derivationally related links also come in 105

pairs, but in this case, both the forward link and the 106

reverse link are expressed with the same relation, 107

and therefore, the WN18RR construction does not 108

address this leakage. Thus, while WN18RR does 109

not leak as badly as WN18, there are serious leaks 110

in both benchmarks. 111

1.3 Synonym/Antonym Classification 112

Leakage can also be found in other benchmarks 113

that use the standard construction. Consider the 114

synonym-antonym task discussed in (Nguyen et al., 115

2017). The task is to input a pair of words and 116

output a binary label: 0 (synonym) or 1 (antonym). 117

Sizes of the splits are shown in Table 2. 118

The first three benchmarks can be downloaded 119

from the supplemental materials of (Xie and Zeng, 120

2021).8 Fallows is based on an online thesaurus 121

(Fallows, 1898).9 Fallows-s is a random sample 122

of the edges in Fallows. Splits for Fallows and 123

Fallows-s will be posted on github. The standard 124

construction was used to create these splits. 125

The next section will discuss leakage in the 126

benchmarks in Table 2. 127

2 Paths and Leaks Across Splits 128

The splits can be viewed as sparse graphs, as shown 129

in Table 3. For comparison sake, SimLex10 (Hill 130

et al., 2015) and NRC-VAD11 (Mohammad, 2018) 131

are also shown in Table 3. 132

NRC-VAD is much larger than the other graphs 133

in Table 3, both in terms of words (V = 134

{w1, w2, ...}), but especially in terms of relations 135

on words (E = {(head, tail, rel)|head, tail ∈ 136

8https://aclanthology.org/2021.
acl-short.71/

9https://www.gutenberg.org/files/
51155/51155-0.txt

10https://aclweb.org/aclwiki/
SimLex-999_(State_of_the_art)

11https://saifmohammad.com/WebPages/
nrc-vad.html
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training set V E CC
adj 3315 5562 285

noun 3654 2836 1204
verb 1859 2534 199

fallows 15,466 58,494 32
fallows-s 6326 5886 907
SimLex 1028 999 151

NRC-VAD 20,007 20, 0072 1

Table 3: Vertices (V), edges (E) and connected compo-
nents (CC) in training sets. Graphs are sparse: E ≪ V 2.
SimLex-999 and NRC-VAD are shown for comparison.

V, rel ∈ R}). NRC-VAD is also a dense (fully-137

connected) graph, unlike the other rows which are138

sparse graphs with E ≪ V 2 with more connected139

components. Note that NRC-VAD has a single con-140

nected component, whereas the others have many141

more than just a single connected component.142

In general, the standard construction tends to143

split connected components. Note that fallows-s144

has many more connected components than fallows.145

Since fallows-s is a random sample of edges in fal-146

lows, the fact that fallows-s has more connected147

components than fallows illustrates the tendency148

for the standard construction to cut connected com-149

ponents into multiple components.150

Cutting connected components in this way intro-151

duces a risk of leakage. When parts of a component152

end up in one split, and the rest ends up in other153

splits, there is a risk that information could leak154

from one split to another if there are clues left be-155

hind providing hints about how to reconstruct the156

connected component.157

Table 4 suggests that path lengths provide hints158

for reconstructing components. Consider the 398159

edges, E = (wi, wj), in the validation set for adj.160

Table 4 reports that 99 of these 398 edges have161

a path of length 1 using edges from the training162

set. There are another 80 of 398 with a path of163

length 2. All but 90 of 398 are part of a connected164

component in the training set.165

When an edge in one split is part of a connected166

component in another split, it is likely that the label167

on the edge can be inferred from the labels associ-168

ated with the component in the other split. In this169

way, it is likely that information is leaking across170

splits, when edges are randomly assigned to splits171

under the standard construction.172

Consider the 99 edges of length 1. These are par-173

ticularly worrisome. There are 99 pairs like good174

Path Length adj noun verb fallows
0 2
1 99 59 60 946
2 80 7 15 3835
3 59 3 7 1156

4+ 70 2 35 639
NA 90 135 65 612

total 398 206 182 7190

Table 4: For most pairs of words in the validation set,
w1 and w2, there is a short path from w1 to w2 based on
edges in the training set. Path lengths were computed
with SciPy (Virtanen et al., 2020), selecting options for
undirected graphs.

and awful, where the same edge is in both train and 175

validation, but in reverse directions. This pair is 176

clearly leaking information between the training 177

split and validation split. 178

Edges of length 2 are not leaking as badly as 179

edges of length 1, but we are concerned about them. 180

Some examples from adj of length 2 paths are: 181

innocent → harmless (via harmful), fresh → old 182

(via aged), dead → deceased (via alive). 183

How can we exploit these paths to leak labels 184

across splits? Let A be the number of antonym 185

labels on a path from wi to wj . A is computed 186

based on edges in the training set. For the purposes 187

of computing A, edges in the training set will be 188

treated as undirected edges. 189

The decision trees in Figure 1 show how a 190

machine learning system can exploit the leakage. 191

These trees were created with rpart.12 These trees 192

suggest that an edge in a held out split (test/valida- 193

tion) is likely to be antonymous iff A is odd. We 194

will refer to this heuristic as A-leakage. Table 5 195

reports considerable A-leakage. 196

There are 4 trees in Figure 1. The two trees on 197

the left fit: gold ∼ A for two datasets: fallows and 198

adj. Based on these two trees, we obtained the sim- 199

pler trees on the right by fitting: gold ∼ A+A.odd. 200

Decision trees learn the simple rule, leakage de- 201

pends on the parity of A. It is not necessary to 202

know the exact value of A. The parity is more 203

than sufficient to predict many of the labels in the 204

validation and test splits based on the labels in the 205

training split. 206

12https://www.rdocumentation.org/
packages/rpart/versions/4.1-15/topics/
rpart
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fallows

A < 1

A >= 2

0
0.43

100%

0
0.05
53%

1
0.85
47%

0
0.16
6%

1
0.95
41%

yes no

fallows (with A.odd)

A.odd = 0

0
0.43

100%

0
0.06
59%

1
0.95
41%

yes no

adj

A < 1

A >= 2

A < 3

0
0.49

100%

0
0.06
32%

1
0.70
68%

0
0.19
20%

0
0.04
15%

1
0.62
5%

1
0.92
47%

yes no

adj (with A.odd)

A.odd = 0

0
0.49

100%

0
0.05
47%

1
0.89
53%

yes no

Figure 1: A-leakage: Decision trees learn to classify pairs as antonyms iff A is odd. There are three numbers
associated with each subtree: (A) a label (1/0), (B) Pr(1) and (C) coverage. By construction, at each level in the
tree, coverage sums to 1. (Decision trees were computed using the rpart package in R.)

Validation Test
Acc. Applic. Acc Applic.

adj 0.916 308/398 0.906 1482/1986
noun 0.930 72/206 0.983 302/1020
verb 0.872 118/182 0.882 587/908

fallows 0.945 6576/7190 0.949 6722/7366
fallows-s 0.683 223/753 0.694 241/777

Table 5: Evaluation of A-leakage heuristic which pre-
dicts an edge should be labeled as antonym iff A is odd.
Accuracies (acc) are computed over applicable edges
in Validation and Test sets. Edges in the validation/test
set, (wi, wj), are applicable if there is a path from wi

to wj based on (undirected) edges in the training set.
A counts the number of antonym labels on this path.
Denominators are borrowed from Table 2.

3 Conclusions207

This paper discussed leakage in a number of popu-208

lar benchmarks on graphs. Leakage has been pre-209

viously reported for a number of benchmarks such210

as WN18 and FP15k. There have been attempts211

to remedy these leaks by replacing WN18 with212

WN18RR, and replacing FP15k with FP15k-237.213

However, flaws with these remedies have also been214

previously reported.215

This paper reported some novel leaks in bench-216

marks for synonym-antonym classification. We217

introduced a novel exploit, A-leakage, that counts,218

A, the number of antonym labels on paths in the219

training set. The proposed heuristic infers labels 220

on edges in the test set, (wi, wj), from A on paths 221

connecting wi to wj in the training set. We found 222

that this heuristic is much better than chance for 223

a number of benchmarks that have been used in 224

the literature for synonym-antonym classification, 225

and therefore, information is leaking in ways that 226

seriously undermine the integrity of those evalua- 227

tions. In addition, we introduced a novel bench- 228

mark based on (Fallows, 1898), and found that that 229

benchmark is also leaking. 230

What should we do about all this leakage? First, 231

it may be necessary to retract papers based on 232

flawed evaluations. After that, we might attempt 233

to plug each new leak with corrections along the 234

lines of WN18RR and FP15k-237. We are con- 235

cerned, though, that future researchers will keep 236

finding new exploits. We may not be able to keep 237

up, if exploits are discovered faster than we can 238

deploy remedies. Perhaps, it would be safer and 239

more expedient to split graphs on V than to split 240

on E using the standard construction. 241

In related work, we decided to stop working on 242

synonym-antonym classification and focus on VAD 243

regression instead. The two tasks are similar, but 244

as shown in Table 2, NRC-VAD is larger and more 245

connected, making it easier to compare and contrast 246

different sampling methods, including sampling on 247

V as opposed to sampling on E. 248
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