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Abstract

A number of benchmarks are based on graphs.
Edges are typically split into train, validation
and test splits, using a random partition. Leak-
age has been discovered in a number of popu-
lar benchmarks; FB15k has been replaced by
FB15k-237 and WN18 has been replaced by
WNI18RR, though leakage has been reported
even after these corrections. This paper will
report a new type of leakage, A-leakage, on
benchmarks for synonym-antonym classifica-
tion. A-leakage infers labels for pairs of words
in the test split, w;, w;, by exploiting labels on
paths from w; to w; in the training split. We
conclude that it is safer to split vertices, V', than
edges, E.

1 Introduction

Consider graphs, G, where G = (V,E). Vis a
set of vertices and F is a set of edges. V is typi-
cally a set of words/concepts: V = {w,wo,...},
and F is a set of triples, (head,tail,rel), where
head,tail € V andrel € R. Ris typically a small
set of relations. For one benchmark that will be
discussed below, WN18, R is a set of 18 relations
borrowed from WordNet.

We will use the terms, dataset, to refer to data
without standardized splits, and the term, bench-
mark, to refer to a dataset plus standardized splits.
Thus, for example, we will refer to WordNet as a
dataset, and WN18 as a benchmark.

Many benchmarks split G into train, validation
and test splits by partitioning F into three sets. This
paper will suggest that partitioning on E can lead
to leakage in some cases. It is safer to split on
V' than to split on E. We will refer to splits on
E as the standard construction of benchmarks on
graphs.

For some examples of the standard construction,
consider the literature on knowledge graph comple-
tion (KGC)1 (Nguyen, 2017; Wang et al., 2017; Yu

'https://github.com/Sujit-0/pykg2vec

et al., 2019) as well as the literature on node2vec
(Grover and Leskovec, 2016), which will be dis-
cussed in the next two subsections. Both of these
literatures use a number of popular benchmarks
with standardized splits for train, validation and
test.

The training and validation splits are used to
learn a model. The model is then evaluated by how
well it predicts edges in the test split. If there is
leakage across splits, the integrity of these evalua-
tions is seriously undermined.

1.1 Node2Vec

Node2vec inputs a graph, G = (V, E), and output
an embedding, a matrix M € RY*X with K hid-
den dimensions. Nodes that are “close” in G will
be “close” in M M7, though performance on test
sets depends on many factors including the choice
of algorithms, various hyper-parameters such as
K, and many other details. The software pack-
age, nodevectors,” supports several node2vec al-
gorithms including: ProNE? (Zhang et al., 2019)
and GraRep* (Cao et al., 2015). More examples
of graph benchmarks can be found here.’> These
citations and github repositories mention a number
of benchmarks that use the standard construction.

1.2 Knowledge Graph Completion (KGC)

Nguyen (2017) mentions a number of popular
datasets for KGC research: WordNet (Fellbaum,
1998), YAGO (Suchanek et al., 2007), Freebase
(Bollacker et al., 2008), NELL (Carlson et al.,
2010), DBpedia (Lehmann et al., 2015). FB15k and
WNI18 are two popular KGC benchmarks based on
Freebase and WordNet, respectively. Both FB15k
and WN18 use the standard construction to create
splits.
https://pypi.org/project/nodevectors/
*https://github.com/THUDM/ProNE
*https://github.com/

benedekrozemberczki/GraRep
Shttp://snap.stanford.edu/node2vec/
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Relation Edges [ Reverse Edges
hypernyms 37,221 hyponyms 37,221
derivationally
related forms 31,867
member 7928 member 7928
meronym holonum
has part 5142 part of 5148
synset domain member of
topic of 3335 domain topic 3341
];nmance 3150 instance 3150
ypernym hyponym
also see 1396
verb group 1220
member of synset domain
domai . 983 . 982
omain region region of
dmember of 675 synset domain 669
omain usage usage of
similar to 86
Table 1: 18 Relations in WN18

Both FB15k and WNI18 are known to suffer
from leakage. As discussed in §4 of (Nguyen,
2017), Toutanova and Chen (2015) and Dettmers
et al. (2018) observed leakage involving reversible
triples such as:

» feline hyponym cat
* cat hypernym feline

As this example illustrates, links in WordNet usu-
ally appear in pairs. The pairs are easy to derive
from one another. Therefore, if one member of
the pair should appear in one split, and the other
member of the pair should appear in another split,
as is the case for the feline/cat triples above, then
there is leakage between the splits, undermining the
integrity of evaluations based on the benchmark.

Note that there are many more triples like the
feline/cat, as shown in Table 1. All of the edges on
the right hand side of Table 1 are redundant, and
many of these redundant pairs are split across splits,
introducing leaks that undermine evaluations based
on WN18.

To address this kind of leakage, FB15k has been
replaced with FB15k-237% and WN18 has been
replaced with WN18RR.’

The WN18RR construction addresses much of
the leakage, but not all of it, by removing the dupli-
cated links on the right hand side of Table 1.

Unfortunately, this construction does not remove
leakage involving derivationally related links, as
discussed in Table 4 of (Church and Bian, 2021).

*https://paperswithcode.com/dataset/
fbl5k

"https://paperswithcode.com/dataset/
wnl8

Dataset Splits
train val test
adj 5562 398 1986
noun 2836 206 1020
verb 2534 182 908
fallows | 58,494 7190 7366
fallows-s 5886 753 777

Table 2: Sizes (edges) of synonym-antonym datasets

These derivationally related links also come in
pairs, but in this case, both the forward link and the
reverse link are expressed with the same relation,
and therefore, the WN18RR construction does not
address this leakage. Thus, while WN18RR does
not leak as badly as WN18, there are serious leaks
in both benchmarks.

1.3 Synonym/Antonym Classification

Leakage can also be found in other benchmarks
that use the standard construction. Consider the
synonym-antonym task discussed in (Nguyen et al.,
2017). The task is to input a pair of words and
output a binary label: O (synonym) or 1 (antonym).
Sizes of the splits are shown in Table 2.

The first three benchmarks can be downloaded
from the supplemental materials of (Xie and Zeng,
2021).8 Fallows is based on an online thesaurus
(Fallows, 1898).” Fallows-s is a random sample
of the edges in Fallows. Splits for Fallows and
Fallows-s will be posted on github. The standard
construction was used to create these splits.

The next section will discuss leakage in the
benchmarks in Table 2.

2 Paths and Leaks Across Splits

The splits can be viewed as sparse graphs, as shown
in Table 3. For comparison sake, SimLex'? (Hill
et al., 2015) and NRC-VAD!! (Mohammad, 2018)
are also shown in Table 3.

NRC-VAD is much larger than the other graphs
in Table 3, both in terms of words (V =
{w1,wa,...}), but especially in terms of relations
on words (E = {(head,tail,rel)|head, tail €

Shttps://aclanthology.org/2021.
acl-short.71/

‘https://www.gutenberg.org/files/
51155/51155-0.txt

Uhttps://aclweb.org/aclwiki/
SimLex—-999_ (State_of_the_art)

"https://saifmohammad.com/WebPages/
nrc-vad.html
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training set \" E CC
adj 3315 5562 285

noun 3654 2836 1204

verb 1859 2534 199
fallows | 15,466 58,494 32
fallows-s 6326 5886 907
SimlLex 1028 999 151
NRC-VAD | 20,007 20, 007> 1

Table 3: Vertices (V), edges (E) and connected compo-
nents (CC) in training sets. Graphs are sparse: £ < V2.
SimLex-999 and NRC-VAD are shown for comparison.

V,rel € R}). NRC-VAD is also a dense (fully-
connected) graph, unlike the other rows which are
sparse graphs with £ < V2 with more connected
components. Note that NRC-VAD has a single con-
nected component, whereas the others have many
more than just a single connected component.

In general, the standard construction tends to
split connected components. Note that fallows-s
has many more connected components than fallows.
Since fallows-s is a random sample of edges in fal-
lows, the fact that fallows-s has more connected
components than fallows illustrates the tendency
for the standard construction to cut connected com-
ponents into multiple components.

Cutting connected components in this way intro-
duces arisk of leakage. When parts of a component
end up in one split, and the rest ends up in other
splits, there is a risk that information could leak
from one split to another if there are clues left be-
hind providing hints about how to reconstruct the
connected component.

Table 4 suggests that path lengths provide hints
for reconstructing components. Consider the 398
edges, F = (w;,w;), in the validation set for adj.
Table 4 reports that 99 of these 398 edges have
a path of length 1 using edges from the training
set. There are another 80 of 398 with a path of
length 2. All but 90 of 398 are part of a connected
component in the training set.

When an edge in one split is part of a connected
component in another split, it is likely that the label
on the edge can be inferred from the labels associ-
ated with the component in the other split. In this
way, it is likely that information is leaking across
splits, when edges are randomly assigned to splits
under the standard construction.

Consider the 99 edges of length 1. These are par-
ticularly worrisome. There are 99 pairs like good

Path Length | adj noun verb fallows
0 2

1| 99 59 60 946

2| 80 7 15 3835

31 59 3 7 1156

4+ | 70 2 35 639

NA | 90 135 65 612

total | 398 206 182 7190

Table 4: For most pairs of words in the validation set,
w1 and ws, there is a short path from w; to ws based on
edges in the training set. Path lengths were computed
with SciPy (Virtanen et al., 2020), selecting options for
undirected graphs.

and awful, where the same edge is in both train and
validation, but in reverse directions. This pair is
clearly leaking information between the training
split and validation split.

Edges of length 2 are not leaking as badly as
edges of length 1, but we are concerned about them.
Some examples from adj of length 2 paths are:
innocent — harmless (via harmful), fresh — old
(via aged), dead — deceased (via alive).

How can we exploit these paths to leak labels
across splits? Let A be the number of antonym
labels on a path from w; to w;. A is computed
based on edges in the training set. For the purposes
of computing A, edges in the training set will be
treated as undirected edges.

The decision trees in Figure 1 show how a
machine learning system can exploit the leakage.
These trees were created with rpart.!> These trees
suggest that an edge in a held out split (test/valida-
tion) is likely to be antonymous iff A is odd. We
will refer to this heuristic as A-leakage. Table 5
reports considerable A-leakage.

There are 4 trees in Figure 1. The two trees on
the left fit: gold ~ A for two datasets: fallows and
adj. Based on these two trees, we obtained the sim-
pler trees on the right by fitting: gold ~ A+ A.odd.
Decision trees learn the simple rule, leakage de-
pends on the parity of A. It is not necessary to
know the exact value of A. The parity is more
than sufficient to predict many of the labels in the
validation and test splits based on the labels in the
training split.

Phttps://www.rdocumentation.org/
packages/rpart/versions/4.1-15/topics/
rpart
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fallows

0
0.43
100%

GestA< 1w}

0.85
47%

A>=2
0 0 1
0.05 0.16 0.95
53% 6% 41%

adj

0.19
20%

A<3
0 1 1
0.04 0.62 0.92
15% 5% 47%

fallows (with A.odd)

0
0.43
100%

A.odd =0

0.06
59%

adj (with A.odd)

0
0.49
100%

A.odd =0 -no]
0 1
0.05 0.89
47% 53%

Figure 1: A-leakage: Decision trees learn to classify pairs as antonyms iff A is odd. There are three numbers
associated with each subtree: (A) a label (1/0), (B) Pr(1) and (C) coverage. By construction, at each level in the
tree, coverage sums to 1. (Decision trees were computed using the rpart package in R.)

Validation Test
Acc. Applic. Acc Applic.
adj | 0.916  308/398 | 0.906 1482/1986
noun | 0.930 72/206 0.983  302/1020
verb | 0.872  118/182 | 0.882  587/908
fallows | 0.945 6576/7190 | 0.949 6722/7366
fallows-s | 0.683  223/753 | 0.694  241/777

Table 5: Evaluation of A-leakage heuristic which pre-
dicts an edge should be labeled as antonym iff A is odd.
Accuracies (acc) are computed over applicable edges
in Validation and Test sets. Edges in the validation/test
set, (w;, w;), are applicable if there is a path from w;
to w; based on (undirected) edges in the training set.
A counts the number of antonym labels on this path.
Denominators are borrowed from Table 2.

3 Conclusions

This paper discussed leakage in a number of popu-
lar benchmarks on graphs. Leakage has been pre-
viously reported for a number of benchmarks such
as WN18 and FP15k. There have been attempts
to remedy these leaks by replacing WN18 with
WNI18RR, and replacing FP15k with FP15k-237.
However, flaws with these remedies have also been
previously reported.

This paper reported some novel leaks in bench-
marks for synonym-antonym classification. We
introduced a novel exploit, A-leakage, that counts,
A, the number of antonym labels on paths in the

training set. The proposed heuristic infers labels
on edges in the test set, (w;, w;), from A on paths
connecting w; to w; in the training set. We found
that this heuristic is much better than chance for
a number of benchmarks that have been used in
the literature for synonym-antonym classification,
and therefore, information is leaking in ways that
seriously undermine the integrity of those evalua-
tions. In addition, we introduced a novel bench-
mark based on (Fallows, 1898), and found that that
benchmark is also leaking.

What should we do about all this leakage? First,
it may be necessary to retract papers based on
flawed evaluations. After that, we might attempt
to plug each new leak with corrections along the
lines of WN18RR and FP15k-237. We are con-
cerned, though, that future researchers will keep
finding new exploits. We may not be able to keep
up, if exploits are discovered faster than we can
deploy remedies. Perhaps, it would be safer and
more expedient to split graphs on V' than to split
on E using the standard construction.

In related work, we decided to stop working on
synonym-antonym classification and focus on VAD
regression instead. The two tasks are similar, but
as shown in Table 2, NRC-VAD is larger and more
connected, making it easier to compare and contrast
different sampling methods, including sampling on
V' as opposed to sampling on E.
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