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ABSTRACT

Training generalist agents requires learning in complex, open-ended environ-
ments. In the real world, as well as in standard benchmarks, such environments
often come with large quantities of pre-collected behavioral data. Offline rein-
forcement learning presents an exciting possibility for leveraging this existing
data to kickstart subsequent expensive open-ended learning. Using offline data
with RL, however, introduces the additional challenge of evaluating values for
state-actions not seen in the dataset – termed the out-of-sample problem. One so-
lution to this is by allowing the agent to generate additional synthetic data through
rollouts in a learned dynamics model. The prevailing theoretical understanding
is that this effectively resolves the out-of-sample issue, and that any remaining
difficulties are due to errors in the learned dynamics model. Based on this un-
derstanding, one would expect improvements to the dynamics model to lead to
improvements to the learned policy. Surprisingly, however, we find that existing
algorithms completely fail when the true dynamics are provided in place of the
learned dynamics model. This observation exposes a common misconception in
offline reinforcement learning, namely that dynamics model errors do not explain
the behavior of model-based methods. Our subsequent investigation reveals a sec-
ond major and previously overlooked issue in offline model-based reinforcement
learning (which we term the edge-of-reach problem). Guided by this new insight,
we propose Reach-Aware Value Learning (RAVL), a value-based algorithm that is
able to capture value uncertainty at edge-of-reach states and resolve the edge-of-
reach problem. Our method achieves strong performance on the standard D4RL
benchmark, and we hope that the insights developed in this paper help to advance
offline RL in order for it to serve as an easily applicable pre-training technique for
open-ended settings.

1 INTRODUCTION

An agent’s potential capabilities are limited by the complexity of their environment (Jiang et al.,
2023; Wang et al., 2019) and thus, to produce generally capable agents, rich and open-ended envi-
ronments are required (Kirk et al., 2023). Making progress in such environments can often be slow;
however, open-ended environments (Küttler et al., 2020; Samvelyan et al., 2021; Wang et al., 2023)
often conveniently come with large pre-collected behavioral datasets (Guss et al., 2019; Hambro
et al., 2022; Kurenkov et al., 2023). Offline reinforcement learning (Offline RL, Ernst et al. (2005);
Levine et al. (2020)) is a powerful paradigm for training agents on pre-collected datasets, and as
such, represents an exciting opportunity for utilizing this data to accelerate downstream open-ended
learning (OEL) via pre-training a behavioral prior. This opportunity also applies to the real world,
which can be seen as a complex open-ended environment for which large quantities of pre-collected
data are readily available.

In applying offline RL, the central challenge is dealing with value estimation for counterfactual
actions not present in the dataset (termed the out-of-sample problem (Kostrikov et al., 2022)). A
naı̈ve approach results in inaccurate out-of-distribution values being propagated through to observed
state-actions, which can lead to pathological training dynamics (Kumar et al., 2019). There have
been many proposals to resolve this, with approaches largely falling into one of two categories:
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Figure 1: Our paper investigates the overlooked edge-of-reach problem in offline model-based reinforcement
learning, whereby states (in red) only reachable at the final step of a model rollout are liable to pathological
value overestimation. We show the boundaries of reachable states at each timestep of k-step rollouts from Ds.

model-free (An et al., 2021; Fujimoto & Gu, 2021; Fujimoto et al., 2019; Kostrikov et al., 2022;
Kumar et al., 2019; 2020) or model-based (Kidambi et al., 2020; Lu et al., 2022; Sun et al., 2023;
Yu et al., 2020).

Model-free methods typically address the out-of-sample problem by applying a form of conser-
vatism or constraint to avoid out-of-sample state-actions in the Bellman update. In contrast, model-
based methods (Kidambi et al., 2020; Sun et al., 2023; Yu et al., 2020), which are the focus of
this paper, aim to solve the out-of-sample problem by using a learned dynamics model (Janner
et al., 2019; Sutton, 1991) to allow the agent to collect additional observations for previously out-of-
sample state-actions. The current understanding is that these additional rollouts allow the agent to
collect corrective feedback for any misestimated values, thereby solving the out-of-sample problem
analogously to how it is avoided in online RL. With this understanding, model-based methods typi-
cally attribute any remaining difficulties to errors in the learned dynamics model, and algorithms are
subsequently motivated by avoiding model exploitation using some notion of dynamics uncertainty.

This understanding of model-based approaches naturally leads to the belief that improving the dy-
namics model should lead to stronger performance. However, in this paper, we begin by demon-
strating the surprising observation that existing offline model-based methods completely fail when
trained with the true error-free dynamics model (see Table 1). This exposes a gap in the current
predominant understanding of model-based offline RL methods. From our subsequent investigation,
we find that the combination of a fixed dataset with limited-horizon rollouts results in there being a
set of states which, under any policy, are only reachable in the final rollout step. For these edge-of-
reach states, even with the ability to collect additional data, the agent is never able to observe the
outcome of any actions from them. The result is pathological value overestimation closely related
to that seen with the out-of-sample problem in model-free methods. We term this the edge-of-reach
problem. Thus, contrary to common understanding, the out-of-sample problem key in model-free
methods can be seen to effectively persist in model-based methods.

We illustrate and investigate this phenomenon on a simple environment, and subsequently propose
Reach-Aware Value Learning (RAVL), a scalable solution based on value ensembles that are able to
capture the value uncertainty at edge-of-reach states. We demonstrate that RAVL which provides a
satisfying solution to the edge-of-reach problem on the simple environment, and moreover scales to
the standard D4RL (Fu et al., 2020) benchmark. Overall, the work presented in this paper exposes
and resolves a key and previously overlooked problem in offline RL, and we hope the insights devel-
oped will aid the design of stronger offline RL algorithms that will be useful in training behavioral
priors to accelerate OEL. To summarize, our contributions are as follows:

• We expose a gap in the current understanding of offline model-based RL algorithms using
experiments with the oracle dynamics model in Section 4.1. This leads us to identify the
existence of edge-of-reach states.

• We describe the edge-of-reach problem in Section 4.2 and carefully demonstrate the phe-
nomenon in a simple environment in Section 5, including experiments to verify that failure
stems from value overestimation of edge-of-reach states.

• In light of this new understanding, we propose Reach-Aware Value Learning (RAVL), a
natural solution to the edge-of-reach problem in Section 6. We show that our algorithm
provides an effective solution on the simple environment and also scales to achieve strong
performance on the standard offline RL benchmark, D4RL (Fu et al., 2020).
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2 BACKGROUND

2.1 REINFORCEMENT LEARNING AND VALUE FUNCTIONS

We consider the standard RL framework (Sutton & Barto, 2018), in which the environment is for-
mulated as a Markov Decision Process, M = (S,A, T,R, µ0, γ), where S and A denote the state
and action spaces, T (s′|s, a) and R(s, a) denote the transition and reward dynamics, µ0 the initial
state distribution, and γ ∈ (0, 1) is the discount factor. The goal in reinforcement learning is to learn
a policy π(a|s) that maximizes the expected discounted return:

π∗ = argmax
π

E

[ ∞∑
t=0

γtR(st, at) | s0 ∼ µ0(·), at ∼ π(· | st), st+1 ∼ T (· | st, at)

]
. (1)

The broad class of algorithms we consider are actor-critic (Konda & Tsitsiklis, 1999) methods which
jointly learn a policy π and state-action value function (Q-function). The Q-function Q(s, a) aims
to predict the expected discounted return conditional on starting at state s, taking action a, and
henceforth following the current policy. We then iterate between improving the policy relative to
the current Q-function (policy improvement) and fitting the Q-function to the current policy (policy
evaluation) to learn the optimal policy. The policy evaluation step relies on approximate dynamic
programming with Bellman updates, updating the Q-function using some dataset D as follows:

Qj+1 ← argmin
Q

E(s,a,r,s′)∼D,a′∼πj(·|s′)[(Q(s, a)︸ ︷︷ ︸
input

− [r + γQj(s′, a′)]︸ ︷︷ ︸
Bellman target

)2] (2)

2.2 OFFLINE REINFORCEMENT LEARNING AND THE OUT-OF-SAMPLE PROBLEM

In online RL, the agent is able to collect new on-policy data throughout training. By contrast, in the
offline setting, the algorithm has access only to a fixed offline dataset consisting of transition tuples
Doffline = {(si, ai, ri, s′i)}i=1,...,N collected by one or more behavioral policies πβ . The central
problem in offline learning is, therefore, the counterfactual action or out-of-sample problem:1 where
state-actions pairs (s′, a′) used to compute the targets in the Bellman update (see Equation (2)) may
not appear in the datasetDoffline. The consequence is that these out-of-sample state-actions are never
optimized due to never appearing as inputs in the Bellman update, meaning they are prone to being
erroneously misestimated. Further, when coupled with the max operator in policy improvement,
this misestimation means naı̈ve application of online algorithms often results in catastrophic training
dynamics and pathological overestimation of Q-values (Kumar et al., 2019).

2.3 OFFLINE MODEL-BASED METHODS

Model-based methods (Sutton, 1991) aim to solve the out-of-sample issue by allowing the agent to
collect additional synthetic data in a learned dynamics model M̂ = (S,A, T̂ , R̂, µ0, γ). T̂ (s′|s, a)
and R̂(s, a) denote the approximate transition and reward functions, and are commonly realized as
a deep ensemble (Chua et al., 2018; Lakshminarayanan et al., 2017). Synthetic data is then typically
generated as in MBPO (Janner et al., 2019) (see Algorithm 1) by sampling k-step trajectories (termed
rollouts) under the current policy, starting from states in the offline dataset Doffline.

3 RELATED WORK

Overestimation bias in Q-learning. Q-learning is a popular basis for many off-policy RL algo-
rithms, however, it has been shown to suffer from an overestimation bias stemming from the max-
imum operation maxa′∈A Q(s′, a′) in the Bellman update (van Hasselt et al., 2016). This problem
is exacerbated when combined with function approximation and bootstrapping, commonly known
as the deadly triad (van Hasselt et al., 2018) and can become even more problematic in the offline

1This is often referred to as the problem of evaluating values for ‘out-of-distribution’ state-actions (due
to a distribution shift between the policy used to sample the action and the behavior policy used to collect
Doffline). We choose to use the term ‘out-of-sample’ to highlight connections later on, but assuming that function
approximators generalize within-distribution, these are essentially interchangeable.
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setting due to the out-of-sample problem (Kumar et al., 2019). An effective approach to mitigat-
ing this issue is clipped double-Q learning (Fujimoto et al., 2018) (extending the original double-Q
learning (van Hasselt et al., 2016)) which proposes to learn two independent Q-functions and take
the minimum over them. Furthermore, this approach can be extended with a larger ensemble of
Q-functions to further control overestimation bias (An et al., 2021; Chen et al., 2021). As discussed
to in Section 2.2, overestimation bias and the subsequent pathological training dynamics is the main
barrier to transferring online RL algorithms to the offline setting, due to the lack of corrective feed-
back on out-of-sample state-actions. As such, there have been many attempts to address it.

Offline model-free methods. Offline model-free algorithms can broadly be divided by how they
deal with out-of-sample state-action pairs into action sampling-based methods and value pessimism-
based methods. Action sampling-based methods ensure that any state-actions used in the Bellman
update are close to the behavior policy πβ , such that they are in-distribution with respect to Doffline.
This may be done by updating in a SARSA (Sutton & Barto, 2018) fashion (Kostrikov et al., 2022),
by modeling πβ directly (Fujimoto et al., 2019), or by explicitly constraining the policy using some
measure of distance to πβ (Kumar et al., 2019). A related idea is to add a behavioral cloning loss
term (Fujimoto & Gu, 2021). On the other hand, value pessimism-based methods aim to regularize
the Q-function directly such that it produces low-value estimates for out-of-sample state-actions (An
et al., 2021; Kostrikov et al., 2021; Kumar et al., 2020). Of these, the most similar to our RAVL
algorithm is EDAC (An et al., 2021) which encourages values at out-of-distribution state-actions to
be low by minimizing over a Q-ensemble.

Offline model-based methods. As alluded to in Section 1, the prevailing view in the offline model-
based literature is that the ability to collect additional data in the model effectively resolves the
out-of-sample issue, as the agent is now able to observe the outcome of previously out-of-sample
state-actions. Thus, the primary concern stated for model-based methods is to account for errors
in the learned dynamics model in order to avoid model exploitation. A broad class of methods ex-
plicitly penalizes reward by dynamics uncertainty (Kidambi et al., 2020; Lu et al., 2022; Sun et al.,
2023; Yu et al., 2020), typically using variance over a dynamics ensemble. On the other hand, Rigter
et al. (2022) defines a two-player game between the policy and model, updating the model in order
to minimize the learned value function. This forces the policy to act conservatively in areas not
covered by the dataset, where model errors may be high. Matsushima et al. (2021) borrow ideas
from model-free approaches and use policy constraints, with the motivation that the model is likely
to be more accurate close to the behavior policy. Critically, all previously described methods draw
their motivation from dealing with dynamics model errors. Finally, most related to our method,
COMBO (Yu et al., 2021), penalizes value estimates for state-actions outside model rollouts. How-
ever, similarly to Yu et al. (2020), COMBO is theoretically motivated by the assumption that one
can perform infinite horizon model rollouts, which we later show overlooks serious implications.

4 THE EDGE-OF-REACH PROBLEM

In the following section, we describe the underlying motivation and focus of our paper: the edge-of-
reach problem. We begin by presenting a surprising result using the ground truth dynamics, from
which it follows. Next, we provide intuition for our hypothesis and theoretical proof of its effect on
offline model-based training. Finally, we connect the problem to the standard out-of-sample issue in
Appendix A, resulting in a unified view of model-free and model-based offline RL.

4.1 A SURPRISING RESULT: FAILURE WITH THE TRUE DYNAMICS MODEL

On the surface, the ability to collect additional data in model-based offline methods resolves the out-
of-sample issue in offline RL (see Section 2.2). The key remaining difference compared to online RL
therefore appears to be that: in online RL, data is collected with the true dynamics, while in offline
model-based RL, data is collected in an approximate dynamics model. As a result, most existing
offline model-based algorithms aim to mitigate the effect of dynamics model errors, for example by
penalizing using estimates of dynamics uncertainty (Sun et al., 2023; Yu et al., 2020) or terminating
after transitioning past a certain level of uncertainty (Kidambi et al., 2020).

Such an understanding would naturally lead us to expect that the ideal case would be to have a
perfect model with zero dynamics error. Surprisingly, we show this is not the case. In Table 1, we
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Table 1: We show, surprisingly, that if the true error-free dynamics are used in place of the learned dynamics
model, existing offline model-based algorithms fail (highlighted) on the D4RL MuJoCo v2 datasets. Our
baseline is MOPO (tuned results taken from Sun et al. (2023)). Oracle refers to replacing the learned dynamics
model in MOPO with the true dynamics function, making it equivalent to MBPO (the base optimizer for most
other offline model-based RL methods) with a perfect model. This change is described in pseudocode in
Algorithm 1. Normalized mean and standard deviation are shown over 6 random seeds.

Hopper Walker2d HalfCheetah
MOPO Oracle MOPO Oracle MOPO Oracle

random 31.7 9.5±1.1 7.4 -0.4±0.2 38.5 35.2±3.4
medium 62.8 17.2±11.1 84.1 7.2±1.6 73.0 72.9±8.6
mixed 103.5 71.5±32.2 85.6 7.9±1.9 72.1 72.2±4.1
medexp 81.6 6.1±6.8 112.9 7.7±2.1 90.8 84.9±17.6

demonstrate this on the D4RL (Fu et al., 2020) datasets. When the learned dynamics model used
in MOPO (Yu et al., 2020) is replaced with the true dynamics (labeled Oracle), most environments
fail to train at all. Furthermore, we note that other dynamics penalty-based offline model-based RL
algorithms (Kidambi et al., 2020; Sun et al., 2023) share the same base MBPO (Janner et al., 2019)
optimizer, hence this result indicates the failure of all existing methods. For clarity, we describe
this change firstly in terms of pseudocode in Algorithm 1, and also in terms of the relation to other
experiments we present throughout the paper in Appendix F.2.

4.2 THE EDGE-OF-REACH HYPOTHESIS

Our observation in Section 4.1 exposes a widespread misconception as to the true cause of issues in
offline model-based RL. In the following section, we informally describe our resulting hypothesis.
In offline model-based RL, synthetic data is collected by generating k-step rollouts. Crucially, k
(typically ≤ 5) is less than the true horizon of the environment (H = 1000 in MuJoCo (Todorov
et al., 2012)), and all rollouts begin from states sampled from the fixed offline dataset Doffline. Since
Doffline is typically limited, k-steps away from the dataset is unlikely to sufficiently cover the full
state space S. Consider states on the boundary of the space that rollouts are able to cover, i.e. states
which, under any policy, are only reachable in the final step of a rollout. For these states, even with
the ability to collect additional data, the agent is never able to observe the outcome of actions from
them. We term these edge-of-reach states (see red in Figure 1).

More concretely, denoting the rollout-augmented dataset Drollouts = {(si, ai, ri, s′i, a′i)}i=1,...,M ,
edge-of-reach states are those that appear as s′i but never, under any policy, appear as si. Crucially,
this means they are used to compute the Bellman targets in Q-learning, but never appear as inputs
to the Q-function and are hence themselves never updated. This makes them liable to erroneous
misestimation, which bootstrapping then propagates to previous state-actions, leading to poor value
estimates more widely. More significantly still, this misestimation coupled with the overestimation
bias in Q-learning can lead to pathological overestimation, with Q-values being driven upwards to
arbitrarily high values over training. We demonstrate this in Section 5 and Appendix B.2, and term
this the edge-of-reach problem. In short:

Edge-of-Reach Hypothesis: Limited horizon rollouts from a fixed offline dataset lead to the
existence of edge-of-reach states which, due to lack of corrective feedback, can cause patho-
logical value overestimation.

This is closely related to the out-of-sample problem in the model-free case, but focusing on the state,
rather than the action part of the state-action pair. Thus, contrary to common understanding, the out-
of-sample problem, which is key in model-free methods, can be seen to effectively persist in model-
based methods. We provide a more thorough comparison of the out-of-sample and edge-of-reach
problems in Appendix A, separating the problems into conditions required on states and actions
independently. This serves to provide a unified view of model-free and model-based approaches.

4.3 FORMALIZATION

We now formalize the intuitions presented in Section 4.2 and present theoretical grounding for the
edge-of-reach problem. Furthermore, we prove how errors can propagate to all transitions.
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Definition 1 (Edge-of-reach states). Consider a deterministic transition model T : S × A → S ,
a policy π : S → A, a distribution over starting states µ0(s), and a rollout length k. Given a
starting state s0, k-step rollouts are generated according to at ∼ π(·|st) and st+1 ∼ T (·|st, at) for
t = 0 . . . k − 1, giving (s0, a0, s1, . . . , sk). Let us use pt,π(s) to denote the marginal distributions
over st.

We define a state s ∈ S edge-of-reach with respect to T , µ0, and k if: for t = k, ∃π s.t. pt,π(s) > 0,
but, for t = 1, . . . , k − 1 and ∀ π, pt,π(s) = 0.

With stochastic transition models (e.g. Gaussian models), we may have the case that no state will
truly have zero density, and we relax this definition slightly to pt,π(s) < ϵ for some small ϵ. The
next proposition quantifies how errors in edge-of-reach states are propagated to preceding states.
Proposition 1. [Error propagation from edge-of-reach states] Consider a rollout of length k,
(s0, a0, s1, . . . , sk). Suppose that the state sk is edge-of-reach and the approximate value func-
tion Qj−1(sk, π(sk)) has error ϵ. Then, standard value iteration will compound error γk−tϵ to the
estimates of Qj(st, at) for t = 1, . . . , k − 1. Proof provided in Appendix E.

This is an analogous statement to that of Kumar et al. (2019); however, we highlight the significance
of the proposition in the context of model-based methods. We argue that this issue is the predominant
issue in offline model-based algorithms, since existing works (Janner et al., 2019; Lu et al., 2022)
have shown that modern dynamics models are typically accurate even to very high rollout lengths.

5 ANALYSIS WITH A SIMPLE ENVIRONMENT

In the previous section, we provided a plausible theoretical explanation and intuition for the patho-
logical results observed in Section 4.1. In this section, we empirically confirm this hypothesis with
careful analysis on a simple environment. First, we show that naı̈ve application of actor-critic al-
gorithms results in exploding Q-values and failure to learn despite using the true dynamics model.
Next, we verify that edge-of-reach states are the source of this problem by correcting value estimates
only at these states.

5.1 SETUP

We consider a simple 2D continuous grid world with a reward given according to an agent’s distance
from a fixed goal (shown in Figure 2(a)). Concretely, we denote states as (x, y) pairs, and consider

bounded 2D actions (δx, δy) which displace the agent, i.e. (x, y)
(δx,δy)−−−−→ (x + δx, y + δy) with

Figure 2: Experiments on the simple environment, illustrating the edge-of-reach problem and potential solu-
tions. (a) Reward function, (b) final (failed) policy with naı̈ve application of SAC, (c) final (successful) policy
with patching in oracle Q-values for edge-of-reach states, (d) final (successful) policy with RAVL, (e) returns
evaluated over training, (f) mean Q-values evaluated over training.

6



2nd Workshop on Agent Learning in Open-Endedness (ALOE) at NeurIPS 2023

|δx|, |δy| ≤ 1. Reward is exponentially decreasing away from the goal g = (4, 8), i.e. R(s, a) =
exp(− 1

2∥s − g∥22). The initial state distribution is centered around the origin, µ0 = U([−2, 2]2).
We train the agent using SAC (Haarnoja et al., 2018) as in Sun et al. (2023); Yu et al. (2020) with a
setup identical to our later D4RL benchmark experiments (see Appendix C for details). Finally, for
the data collection component, the agent is allowed to sample k = 10 step rollouts starting from the
initial state distribution µ0. We evaluate episode returns over H = 30 steps.

This environment serves to distill the offline RL problem into just the components relevant to the
edge-of-reach issue, namely a fixed start state distribution and limited rollout horizon k < H . Since
the actions are bounded, the set of edge-of-reach states can be defined exactly as those between the
red and orange boxes in Figure 2. There is no notion of an approximate dynamics model, as we are
demonstrating that issues arise even in the case of the agent having access to the true dynamics.

5.2 OBSERVING PATHOLOGICAL VALUE OVERESTIMATION

We may expect SAC to be able to learn a sensible policy, however, we observe that default SAC
(see blue in Figure 2) fails to train stably. We see pathological Q-value growth over training and
poor performance (Figure 2(c) and (d)). Looking at the rollout trajectories sampled over training
(see Figure 4) we observe the following behavior: (Before 25 epochs) Initially, the agent follows
the reward function, and performance increases. (Between 25 and 160 epochs) Value misestimation
takes over, and the policy begins to aim toward unobserved state-actions (since their values can
be misestimated and hence overestimated), and performance subsequently decreases. (After 160
epochs) The effect above compounds with each epoch, leading to the agent eventually reaching
edge-of-reach states. From this point onwards, the agent samples edge-of-reach states at which
it never receives any corrective feedback, and the consequent pathological value overestimation
results in a complete collapse in performance. Visualizing the final policy over S , we see the agent
aims towards an arbitrary edge-of-reach state with the highest (heavily overestimated) Q-value,
completely ignoring the reward function. We show an analogous result holds in larger environments
in Appendix B.2.

5.3 VERIFYING THE HYPOTHESIS USING VALUE PATCHING

Our hypothesis is that the source of this problem is value misestimation at edge-of-reach states.
We verify this with our SAC-OraclePatch experiments, in which we replace value estimates in the
Bellman targets with their true values. In yellow in Figure 2 we demonstrate that applying patching
solely for edge-of-reach states is sufficient to solve the problem. This is particularly compelling as
in practice only a very small proportion of states had correct values patched in (0.4% of states over
training). Of course, patching in true values is not possible in practice, thus in the next section we
develop a practical approximation to this. We show in Section 7.1 that our proposed method, RAVL
(see green in Figure 2), has a very similar effect to that of the ideal SAC-OraclePatch intervention
and completely resolves the edge-of-reach problem.

6 OUR METHOD: REACH-AWARE VALUE LEARNING (RAVL)

As verified in Section 5.3, the edge-of-reach problem stems from value overestimation at edge-of-
reach states. To resolve this issue, we therefore need to identify and correct values for this set of
states. Edge-of-reach states can be viewed as those that may be within-distribution with respect to
the set of nextstates s′ in Drollouts, but which are always out-of-distribution with respect to the states
s sampled (see Appendix A for a more detailed discussion). As such, we can use uncertainty esti-
mation and value pessimism ideas from model-free literature (see Section 3) to identify and apply
pessimism at these states (see Figure 3). Our resulting proposal is Reach-Aware Value Learning
(RAVL), an algorithm that unifies model-based training with Ensemble Diversified Actor-Critic
(EDAC, An et al. (2021)), the current state-of-the-art model-free value pessimism approach. Con-
cretely, RAVL involves training an ensemble of Ncritic Q-functions, each parameterized by ϕj , and
modifying Equation (2) to:

Qk+1 ← argmin
Q

E(s,a,r,s′)∼D,a′∼πk(·|s′)[(Q(s, a)︸ ︷︷ ︸
input

− r + γ min
j=1,...,Ncritic

Qk
ϕj
(s′, a′)]︸ ︷︷ ︸

Bellman target

)2] (3)
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As is standard in offline model-based RL, we optimize this objective using MBPO (Janner et al.,
2019) and SAC (Haarnoja et al., 2018). We apply the ensemble diversity promoting regularizer as
proposed in An et al. (2021). Full details and pseudocode are given in Appendix C. Note that, in
contrast to prior model-based methods, we do not include any dynamics uncertainty penalization.
This is discussed in Section 7.3.

The perspective taken in this paper allows us to directly transfer ideas from the model-free literature
for dealing with the out-of-sample problem and apply them to addressing the edge-of-reach issue
in the model-based setting. The resulting algorithm combines the strengths of both model-based
and model-free approaches: In model-free value pessimism approaches, pessimism is required for
all out-of-sample state-actions. By using the model, we are able to reduce the set of state-actions
requiring pessimism to primarily those from edge-of-reach states. The resulting algorithm can hence
be considered to be significantly less pessimistic.

7 EXPERIMENTAL RESULTS

In this section, we first evaluate RAVL on the simple environment from Section 5 and demonstrate
that it provides an effective solution to the edge-of-reach problem. Next, we show that RAVL scales
to strong performance on the standard D4RL benchmark. Finally, we compare RAVL to prior
dynamics uncertainty penalized methods and elucidate why they may work despite not explicitly
addressing the edge-of-reach problem. We provide full hyperparameters and a discussion of run-
time in Appendix D.

7.1 EVALUATION ON THE SIMPLE ENVIRONMENT

We first test RAVL on the simple environment from Section 5 (see green in Figure 2). We observe
that it achieves the same result as the theoretically optimal but practically impossible method of
patching in the true values at edge-of-reach states, SAC-OraclePatch. The Q-values are stabilized
over learning and match those of SAC-OraclePatch. In Figure 3, we demonstrate that RAVL works
by capturing value uncertainty at edge-of-reach states. As hoped, state-actions which transition to
edge-of-reach nextstates have significantly higher Q-value variance over the ensemble compared to
state-actions for which the nextstate remains within-reach.

Figure 3: Comparing variance over
the Q-value ensemble for state-
actions (s, a) for which the nextstate
s′ is and is not edge-of-reach. As de-
sired, RAVL is effective at captur-
ing the value uncertainty for state-
actions which transition to edge-of-
reach nextstates. (The simple envi-
ronment allows this analysis, since
we can exactly define the set of
edge-of-reach states.)

7.2 EVALUATION ON THE D4RL BENCHMARK

Next, we show that RAVL scales to the standard offline RL benchmark, D4RL (Fu et al., 2020).
We consider the MuJoCo (Todorov et al., 2012) v2 datasets in Table 2 and show that we can match
the performance of the current state-of-the-art in model-based method, MOBILE (Sun et al., 2023),
without the need for any explicit dynamics penalization. As well as being theoretically interesting
(see discussion Section 7.3), this is additionally beneficial in terms of running cost as MOBILE
requires computation of multiple transition samples to calculate its penalty. Compared to EDAC (An
et al., 2021), the model-free equivalent of our algorithm, RAVL achieves much higher performance
on the Halfcheetah mixed and medium environments. This represents a new state-of-the-art on
those datasets and shows the clear benefit of using additional synthetic model-based samples. Our
approach is far stronger than COMBO (Yu et al., 2021), a competing baseline that introduced a less
effective form of value conservatism into model-based methods.

8



2nd Workshop on Agent Learning in Open-Endedness (ALOE) at NeurIPS 2023

Table 2: A comprehensive evaluation of RAVL over the standard D4RL MuJoCo benchmark. We show the
mean and standard deviation of the final performance averaged over 6 seeds. Our simple approach matches the
state-of-the-art without any explicit dynamics penalization.

Model-Free Model-Based
Environment BC CQL EDAC MOPO COMBO RAMBO MOBILE RAVL (Ours)

Halfcheetah
medium 43.2 46.9 65.9 73.0 54.2 77.9 74.6 78.7±2.0
mixed 37.6 45.3 61.3 72.1 55.1 68.7 71.7 74.9±2.0
medexp 44.0 95.0 106.3 90.8 90.0 95.4 108.2 102.1±8.0

Hopper
medium 54.1 61.9 101.6 62.8 97.2 87.0 106.6 88.1±15.4
mixed 16.6 86.3 101.0 103.5 89.5 99.5 103.9 103.1±1.0
medexp 53.9 96.9 110.7 81.6 111.1 88.2 112.6 110.1±1.8

Walker2d
medium 70.9 79.5 92.5 84.1 81.9 84.9 87.7 86.3±1.6
mixed 20.3 76.8 87.1 85.6 56.0 89.2 89.9 83.0±2.5
medexp 90.1 109.1 114.7 112.9 103.3 56.7 115.2 115.5±2.4

7.3 REINTERPRETATION OF PRIOR METHODS

Finally, we compare RAVL to prior offline model-based algorithms, which overlooked the edge-of-
reach problem (see Section 4) and instead primarily sought to reduce learned dynamics exploitation.
We compare RAVL and MBPO (the base algorithm for most offline model-based approaches) which
both do not include any explicit dynamics penalty to prevent model exploitation. For these
algorithms, we find that the rewards collected in the model closely match, or else are lower, than
in the true environment (see Tables 3 and 6). We particularly note that these levels of observed
model reward could not lead to the levels of catastrophic value overestimation as seen for MBPO
in Appendix B.2. This finding provides further evidence that the edge-of-reach problem may be a
more accurate explanation for the issues seen in offline model-based methods.

Table 3: Per-step rewards with MBPO and RAVL in model rollouts are similar to those with the true dynamics,
indicating (as in Janner et al. (2019); Lu et al. (2022)) that the model is largely accurate for short rollouts. This
suggests that model exploitation is not the main issue. We provide numbers for a representative selection of
D4RL environments with the configurations from Table 2. Mean and standard deviation are shown over 1000
rollouts.

Hopper mixed Walker2d medexp Halfcheetah medium
Model True Model True Model True

MBPO 2.37±1.05 2.44±1.02 3.96±1.41 3.96±1.41 4.89±1.27 5.01±1.09
RAVL 2.44±1.07 2.45±1.03 4.15±1.37 4.15±1.37 4.91±1.24 5.01±1.11

This leads us to ask: What allows prior dynamics error-motivated methods to work despite ignor-
ing the critical edge-of-reach problem? To answer this, we investigate whether existing dynamics
penalties may help to accidentally mitigate the edge-of-reach problem. We confirm this in Figure 6,
showing that there is a positive correlation between the penalties in dynamics uncertainty methods
and RAVL’s effective penalty of value ensemble variance. This may be expected, as dynamics un-
certainty will naturally be higher further away fromDoffline, which is also where edge-of-reach states
are more likely to lie. We additionally note that, since the edge-of-reach problem is orthogonal to
dynamics misestimation, RAVL could be combined with appropriate model uncertainty penaliza-
tion (Lu et al., 2022; Sun et al., 2023; Yu et al., 2020) for environments with less accurate models.

8 CONCLUSION

In this paper, we develop a more complete understanding of the issues faced in offline model-based
reinforcement learning. Our practical algorithm, RAVL, is simple and combines the strengths of
model-free and model-based offline algorithms, achieving strong performance on the standard D4RL
benchmark without the need for any explicit dynamics penalization. We hope the analysis in our
paper inspires future development of more principled and well-motivated offline algorithms, and that
subsequent improvements will lead to offline RL being more readily applied to increasingly diverse
problem settings, particularly as a strong method for pre-training in open-ended environments.
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alisation in deep reinforcement learning. Journal of Artificial Intelligence Research, 76:201–264,
2023. 1

Vijay Konda and John Tsitsiklis. Actor-critic algorithms. Advances in neural information processing
systems, 1999. 3

Ilya Kostrikov, Rob Fergus, Jonathan Tompson, and Ofir Nachum. Offline reinforcement learning
with fisher divergence critic regularization. In Proceedings of the 38th International Conference
on Machine Learning, Proceedings of Machine Learning Research. PMLR, 2021. URL https:
//proceedings.mlr.press/v139/kostrikov21a.html. 4

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-
learning. In International Conference on Learning Representations, 2022. URL https://
openreview.net/forum?id=68n2s9ZJWF8. 1, 2, 4

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
q-learning via bootstrapping error reduction. In H. Wallach, H. Larochelle, A. Beygelzimer,
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SUPPLEMENTARY MATERIAL

A A UNIFIED PERSPECTIVE ON THE OUT-OF-SAMPLE AND
EDGE-OF-REACH PROBLEMS

We supplement the discussion in Section 4.2 with a more thorough comparison of the out-of-sample
and edge-of-reach problems, including how they relate to model-free and model-based approaches.

A.1 DEFINITIONS

Consider a dataset of transition tuples D = {(si, ai, ri, s′i, di)}i=1,...,N collected according to some
dataset policy πD(·|s). Compared to Section 2, we include the addition of a done indicator di,
where di = 1 indicates episode termination (and di = 0 otherwise). Transition tuples thus consist of
state, action, reward, nextstate, done. Consider the marginal distribution over state-actions ρDs,a(·, ·),
over states ρDs (·), and conditional action distribution ρDa|s(·|s). Note that ρDa|s(·|s) = πD(·|s). We
abbreviate x is in distribution with respect to ρ as x ∈dist ρ.

A.2 Q-LEARNING CONDITIONS

As described in Section 2.1, given some policy π, we can attempt to learn the corresponding Q-
function with the following iterative process:

Qk+1 ← argmin
Q

E(s,a,r,s′)∼D,a′∼π(·|s′)[(Q(s, a)︸ ︷︷ ︸
input

− [r + γ(1− d)Qk(s′, a′)]︸ ︷︷ ︸
Bellman target

)2] (4)

Q-learning relies on bootstrapping, hence to be successful we need to be able to learn accurate
estimates of the Bellman targets for all (s, a) inputs. Bootstrapped estimates of Q(s′, a′) are used in
the targets whenever d ̸= 1. Therefore, for all (s′, a′), we require:

Combined state-action condition: (s′, a′) ∈dist ρDs,a or d = 1.

In the main paper, we use this combined state-action perspective for simplicity, however, we can
equivalently divide this state-action condition into independent requirements on the state and action
as follows:

State condition: s′ ∈dist ρDs or d = 1,
Action condition: a′ ∈dist ρDa|s(s

′) (given the above condition is met and d ̸= 1).

Informally, the state condition may be violated if D consists of partial or truncated trajectories, and
the action condition may be violated if there is a significant distribution shift between πD and π.

A.3 COMPARISON BETWEEN MODEL-FREE AND MODEL-BASED METHODS

In offline model-free RL, D = Doffline, with πD = πβ . For the settings we consider, Doffline consists
of full trajectories and therefore will not violate the state condition. However, this may happen
in a more general setting with Doffline containing truncated trajectories. By contrast, the mismatch
between π (used to sample a′ in Q-learning) and πβ (used to sample a in the dataset Doffline) often
does lead to significant violation of the action condition. This exacerbates the overestimation
bias in Q-learning (see Section 3), and can result in pathological training dynamics and Q-value
explosion over training (Kumar et al., 2019).

On the other hand, in offline model-based RL, the dataset D = Drollouts is collected on-policy ac-
cording to the current (or recent) policy such that πD ≈ π. This minimal mismatch between πD

and π means the action condition is not violated and can be considered to be resolved due to the
collection of additional data. However, the procedure of generating the data D = Drollouts can be
seen to significantly exacerbate the state condition problem, as the use of short truncated-horizon
trajectories means the resulting dataset Drollouts is likely to violate the state condition. Due to lack
of exploration, certain states may temporarily violate the state condition. Our paper then considers
the pathological case of edge-of-reach states, which will always violate the state condition.
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B ADDITIONAL FIGURES

B.1 VISUALIZATIONS OF ROLLOUTS THROUGH TRAINING

In Figure 4, we provide a visualization of the rollouts sampled over training in the simple envi-
ronment for each of the algorithms analyzed in Figure 2 (see Section 5). This accompanies the
discussion of the behavior of SAC during training in Section 5.2.

Figure 4: A visualization of the rollouts sampled over training on the simple environment in Section 5. We note
the pathological behavior of the baseline SAC, and the success of the ideal intervention SAC-OraclePatch, and
our practically realizable method RAVL.

B.2 OBSERVING PATHOLOGICAL VALUE OVERESTIMATION ON THE D4RL BENCHMARK

In Figure 5, we show observations of pathological overestimation of Q-values on a representative
D4RL dataset when optimizing using MBPO (which corresponds to Ncritic = 2 and η = 0 in our
method). This confirms that despite the ability to gather additional on-policy data, the out-of-sample
issue effectively persists in model-based methods. RAVL is able to resolve this issue and achieve
state-of-the-art performance.

Figure 5: We observe an exponential increase in Q-values and resulting low performance on one of the D4RL
datasets using the baseline MBPO. We present results on Walker2d-medexp but note that similar trends are seen
across other D4RL datasets. RAVL is able to resolve these issues and achieve state-of-the-art performance.
This is a similar trend to that demonstrated in our simple environment in Figure 2(f). The figure shows (a)
D4RL normalized score and (b) mean Q-values evaluated over training. Approx Q∗ indicates the magnitude of
Q-values which would correspond to a normalized D4RL score of 100 with γ = 0.99. We show the mean and
standard deviation averaged over 6 seeds.
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B.3 COMPARISON BETWEEN DYNAMICS PENALTY AND RAVL

We provide a further comparison to Section 7.3 between our method and prior offline model-based
methods by comparing the dynamics uncertainty-based penalty used in MOPO with the variance
of the value ensemble of RAVL in Figure 6. We find there is a positive correlation between the
dynamics uncertainty-based penalty used in MOPO (Yu et al., 2020), and the variance of the value
ensemble of RAVL. This helps us in reinterpreting dynamics uncertainty-based methods and ex-
plaining why they may work despite not considering the crucial edge-of-reach problem.

Figure 6: We find that the dynamics uncertainty-based penalty used in MOPO (Yu et al., 2020) is positively
correlated with the variance of the value ensemble of RAVL, suggesting prior methods may unintentionally
address the edge-of-reach problem. Pearson correlation coefficients are 0.49, 0.43, and 0.27 for Hopper-mixed,
Walker2d-medexp, and Halfcheetah-medium respectively.

C IMPLEMENTATION DETAILS

In this section, we give full implementation details for RAVL. As is typical in offline model-based
reinforcement learning (Kidambi et al., 2020; Lu et al., 2022; Sun et al., 2023; Yu et al., 2020), we
use short MBPO (Janner et al., 2019) style rollouts. The agent is trained using the EDAC (An et al.,
2021) losses, a conservative ensemble-based algorithm based on SAC (Haarnoja et al., 2018). Our
transition model follows the standard setup in model-based offline algorithms, being realized as a
deep ensemble (Chua et al., 2018) and trained via maximum likelihood estimation. We summarize
the full algorithm in Algorithm 1 by providing pseudocode in terms of the baseline MBPO procedure
along with the changes we make for RAVL.

Algorithm 1: Pseudocode for offline MBPO (Janner et al., 2019), the base procedure used in offline model-
based methods. This amounts to training an approximate dynamics model on the offline dataset, and then
training an agent (generally SAC (Haarnoja et al., 2018)) on data generated with k-step rollouts of the current
policy in the learned dynamics model starting from a state in the original offline dataset. Existing methods
(see Section 3) add a dynamics uncertainty penalty (see blue), ostensibly to address model errors. “Oracle”
in Table 1 represents effectively removing this penalty as the approximate dynamics model is replaced by the
true dynamics which will have zero uncertainty. RAVL’s addition (see Section 6) to address the edge-of-reach
problem is shown in green.

Algorithm 1 MBPO + Additions in existing methods, in RAVL

1: Require: M̂ = (T̂ , R̂) learned environment model (trained on Doffline)
Add dynamics uncertainty penalty to M̂ .← Removed in “Oracle” as M̂ replaced by true M

2: Input: Rollout length k ≥ 1, real data ratio r ∈ [0, 1], Doffline offline dataset
3: Initialize: Drollouts = ∅ model replay buffer, πθ policy, Qϕ value ensemble
4: for epochs = 1, . . . do
5: (Collect data) Starting from states in Doffline, collect k-step rollouts in T̂ with πθ . Store data in Drollouts
6: (Train agent) Train πθ and Qϕ on Drollouts ∪ Doffline mixed with ratio r using EDAC for Q-ensemble
7: end for
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D HYPERPARAMETERS

For the D4RL (Fu et al., 2020) MuJoCo datasets presented in Section 7.2, we sweep over the fol-
lowing hyperparameters and list the optimal choices in Table 4.

• (EDAC) Number of Q-ensemble elements Ncritic, in the range {10, 50}

• (EDAC) Ensemble diversity weight η, in the range {1, 10, 100}

• (MBPO) Model rollout length k, in the range {1, 5}

• (MBPO) Real-to-synthetic data ratio r, in the range {0.05, 0.5}

The remaining model-based and agent hyperparameters are given in Table 5. We note that, similarly
to An et al. (2021), the Hopper environment performs better with Ncritic = 50 while Walker2d and
Halfcheetah perform better with Ncritic = 10; thus in practice, we only need to tune the remaining
three hyperparameters. Our implementation is based on the Clean Offline Reinforcement Learning
(CORL, Tarasov et al. (2022)) repository, released at https://github.com/tinkoff-ai/
CORL under an Apache-2.0 license. Our algorithm takes approximately 1 day to run on the standard
D4RL datasets using an A100 GPU for the full number of epochs.

Table 4: Variable hyperparameters for RAVL used in D4RL MuJoCo locomotion tasks.

Environment Ncritic η k r

HalfCheetah
medium 10 1 5 0.05
mixed 10 100 5 0.05
medexp 10 1 5 0.5

Hopper
medium 50 100 1 0.5
mixed 50 10 1 0.5
medexp 50 100 1 0.5

Walker2d
medium 10 10 1 0.5
mixed 10 1 5 0.05
medexp 10 1 1 0.5

Table 5: Fixed hyperparameters for RAVL used in D4RL MuJoCo locomotion tasks.

Parameter Value
epochs 3,000
gamma 0.99
learning rate 3× 10−4

batch size 256
buffer retain epochs 5
number of rollouts 50,000

E PROOF OF ERROR PROPAGATION RESULT

In this section, we provide a proof of Proposition 1. Our proof follows analogous logic to the error
propagation result of Kumar et al. (2019).

Proposition 1. [Error propagation from edge-of-reach states] Consider a rollout of length k,
(s0, a0, s1, . . . , sk). Suppose that the state sk is edge-of-reach and the approximate value func-
tion Qj−1(sk, π(sk)) has error ϵ. Then, standard value iteration will compound error γk−tϵ to the
estimates of Qj(st, at) for t = 1, . . . , k − 1. Proof provided in Appendix E.

Proof. Let us denote Q∗ as the optimal value function, ζj(s, a) = |Qj(s, a)−Q∗(s, a)| the error at
iteration j of Q-Learning, and δj(s, a) = |Qj(s, a)−T Qj−1(s, a)| the current Bellman error. Then
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first considering the t = k − 1 case,

ζj(st, at) = |Qj(st, at)−Q∗(st, at)| (5)
= |Qj(st, at)− T Qj−1(st, at) + T Qj−1(st, at)−Q∗(st, at)| (6)
≤ |Qj(st, at)− T Qj−1(st, at)|+ |T Qj−1(st, at)−Q∗(st, at)| (7)
= δj(st, at) + γζj−1(st+1, at+1) (8)
= δj(st, at) + γϵ (9)

Thus the errors at edge-of-reach states are discounted and then compounded with new errors at
Qj(sk−1, ak−1). For t < k − 1, the result follows from repeated application of Equation (8) along
the rollout.

F ADDITIONAL TABLES

F.1 FULL HORIZON MODEL ROLLOUTS

Complementary to Table 3, we show that returns for full horizon model rollouts (k = 1000) are
lower than the true returns in Table 6. This provides further evidence that model exploitation may
not be an issue even for long horizons. However, we note that learned dynamics models are not
expected to be accurate to this horizon, so returns may be arbitrarily inaccurate.

Table 6: Returns of MBPO and RAVL evaluated in the learned dynamics and reward model used for training
are always lower than the true returns, suggesting that model exploitation is not the main issue. We provide
numbers for a representative selection of D4RL environments with the configurations from Table 2. Normalized
mean and standard deviation are shown over 6 random seeds.

Hopper mixed Walker2d medexp Halfcheetah medium
Model True Model True Model True

MBPO 47.5±15.3 71.5±32.2 -0.2±-0.4 7.7±2.1 -501.6±45.6 72.9±8.6
RAVL 89.3±7.3 103.0±0.7 18.9±7.1 115.5±2.4 40.2±42.6 78.7±2.0

F.2 SUMMARY OF SETUPS USED IN COMPARISONS

Throughout the paper, we compare several different setups in order to identify the true underlying
issues in model-based offline RL. We provide a summary of them in Table 7. More comprehensive
descriptions of each are given in the main text and in relevant table and figure captions.

Table 7: We summarize the various setups used for comparisons throughout the paper. ‘*’ denotes application
to the simple environment (see Section 5). All methods use k-step rollouts from the offline dataset (or from a
fixed starting state distribution in the case of the simple environment).

Dynamics Model Agent Figures and Tables
Type Penalty Ncritic η

MOPO Ensemble ✓ 2 0 Table 1, Figure 6
Oracle True n/a 2 0 Table 1
MBPO (Offline) Ensemble ✗ 2 0 Tables 3, 6, Figure 5
RAVL (Ours) Ensemble ✗ > 2 > 0 Tables 2, 3, 6, Figure 5
SAC (Truncated Horizon)* True n/a 2 0 Figures 2, 4
RAVL (Ours)* True n/a > 2 > 0 Figures 2, 3, 4
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