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Abstract

Deep reasoning is fundamental for solving complex tasks, especially in
vision-centric scenarios that demand sequential, multimodal understanding.
However, existing benchmarks typically evaluate agents with fully synthetic,
single-turn queries, limited visual modalities, and lack a framework to assess
reasoning quality over multiple steps as required in real-world settings. To
address this, we introduce Agent-X, a large-scale benchmark for evaluating
vision-centric agents’ multi-step and deep reasoning capabilities in real-world,
multimodal settings. Agent-X features 828 agentic tasks with authentic
visual contexts, including images, multi-image comparisons, videos, and
instructional text. These tasks span six major agentic environments: general
visual reasoning, web browsing, security and surveillance, autonomous driv-
ing, sports, and math reasoning. Our benchmark requires agents to integrate
tool use with explicit, stepwise decision-making in these diverse settings.
In addition, we propose a fine-grained, step-level evaluation framework
that assesses the correctness and logical coherence of each reasoning step
and the effectiveness of tool usage throughout the task. Our results reveal
that even the best-performing models, including GPT, Gemini, and Qwen
families, struggle to solve multi-step vision tasks, achieving less than 50%
full-chain success. These findings highlight key bottlenecks in current LMM
reasoning and tool-use capabilities and identify future research directions in
vision-centric agentic reasoning models. Our data1 and code2 are available.

1 Introduction

Agentic frameworks enable AI systems to interact with their environment by perceiving
inputs, invoking tools, and executing actions. While perception and tool use are core
components, solving complex tasks effectively requires reasoning, i.e., the ability to draw
logical inferences, make decisions, and adapt over time based on multimodal inputs such as
text, images, video, and temporal context (Kumar et al., 2025; Yang et al., 2023; Yao et al.,
2023; Thawakar et al., 2025). Deep reasoning in agents helps effectively plan, execute, and
adapt across evolving scenarios (Liu et al., 2024b; Nathani et al., 2025). Recent works have
explored integrating reasoning and tool use within large multimodal models (LMMs)(Achiam
et al., 2023; Bai et al., 2023b; Bi et al., 2024; Team et al., 2023; Jiang et al., 2023; Grattafiori
et al., 2024), where LMMs act as controllers for planning, and callable tools handle external
actions(Chase, 2022; Gravitas, 2023; OpenAI, 2023). This architecture enables agents to
combine perception, visual understanding, symbolic reasoning, and generative capabilities,
significantly improving task performance in complex environments.
Existing benchmarks for agentic systems have primarily focused on text-based interactions,
with limited support for multimodal inputs such as images, videos, and multi-image com-
parisons (Mialon et al., 2023; Liu et al., 2024b; Wang et al., 2024). While some efforts
have extended to multimodal tasks, they are often restricted to static images, synthetic
environments, or narrowly scoped domains, offering limited insight into an agent’s ability to
perform complex, tool-driven reasoning. A key limitation is inadequate evaluation of deep

1https://huggingface.co/datasets/AgentX-Benchmark/AgentX
2https://anonymous.4open.science/r/Agent-X_Benchmark/
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Table 1: Comparison of Agentic Benchmarks. Columns show key dimensions including scale,
realism, modality, reasoning depth, tool interaction, and annotation quality. Our benchmark
Agent-X uniquely supports all criteria with 828 diverse, manually verified agentic tasks.

Benchmark Agentic Tasks Multimodal Tools Real-world Queries Multimodal Inputs Deep Reasoning Executable Tools Hybrid Annotation
APIBench (Patil et al., 2024) ✗ ✓
APIBank (Li et al., 2023) ✗ ✓
ToolBench (Qin et al., 2024) ✗ ✓
MLAgentBench (Huang et al., 2024) -
GAIA (Mialon et al., 2023) 466 ✓ ✓ ✓ ✓
SWE-Bench (Jimenez et al., 2024) ✗
GTA (Wang et al., 2024) 229 ✓ ✓ ✓ ✓
MLE-Bench (Chan et al., 2024) ✗ ✓
m&m’s (Liu et al., 2024c) - ✓ ✓ ✓ ✓
RE-Bench (Wijk et al., 2024) 7 ✓
ScienceAgent (Chen et al., 2024b) 102 ✓ ✓
MLGym (Nathani et al., 2025) 13 ✓ ✓ ✓

Agent-X (Ours) 828 ✓ ✓ ✓ ✓ ✓ ✓
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Figure 1: Agent-X Snapshot: Example tasks from our benchmark illustrating multimodal
queries that require step-by-step reasoning, tool use, and visual understanding across images
and video. Each task includes structured thoughts, tool invocations, and a ground-truth
answer with justification. The detailed annotations in Agent-X enable thorough evaluation
of existing agentic pipelines.

reasoning3: current benchmarks either neglect this aspect entirely or lack principled metrics
for assessing multi-step logical coherence (Wang et al., 2024; Nathani et al., 2025; Liu et al.,
2024b; Team, 2023). Furthermore, most existing benchmarks rely on either fully synthetic
tasks or manual annotations, which lack scalability and fail to capture the depth of reasoning
or the complexity of video-based multimodal interactions, falling short of modeling real-world
agentic tasks (Han et al., 2024; Thawakar et al., 2025), as summarized in Table 1. As agents
rapidly evolve in their capabilities, existing benchmarks struggle to keep pace, underscoring
the need for more comprehensive, reasoning-centric evaluations to track planning, adaptation,
and tool use in authentic, multimodal interactive scenarios (Kiela et al., 2023).
Agent-X is the first benchmark that combines large-scale, real-world multimodal inputs
(images, video, text) with tool-augmented step-wise reasoning evaluation across six environ-
ments, providing both breadth and depth missing in GAIA (Mialon et al., 2023), GTA (Wang
et al., 2024), and other recent datasets. To address these limitations, we introduce Agent-X, a
large-scale evaluation benchmark for vision-centric agents that emphasizes two core principles:
multimodal reasoning and vision-first evaluation. Agent-X rigorously tests agents’ ability to
process complex visual and textual inputs, execute tool-augmented plans, and perform deep
reasoning across real-world tasks. A primary feature of our benchmark is its deep reasoning
assessment, i.e., judging the ability to perform coherent, multi-step problem-solving, logical
inference, and adaptive planning. To move beyond surface-level evaluation (focused on
the correctness of the final result), we introduce fine-grained metrics that capture both
intermediate reasoning steps and overall task coherence. This approach helps distinguish
genuine logical progression from inconsistencies and confabulations (plausible-sounding but
disconnected steps) in reasoning chains, as illustrated in Figure 1. Agent-X spans six diverse
multimodal environments, incorporating images, videos, and spatiotemporal contexts

3In our context, Deep reasoning refers to coherent, multi-step inference grounded in multimodal context.
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Table 2: Task comparison of Agent-X with existing benchmarks. Unlike prior benchmarks,
the queries in Agent-X avoid explicit tool references and direct instructions, thus encouraging
agents to reason and act independently. Blue indicate explicit task guidance; Red highlights
denote explicit tool invocation in prior benchmarks.

Method Queries Related Tools

ToolBench I’m writing a blog post... first retrieve available figlet styles
and then generate ASCII art for the strings using the style. figlet, list figlet styles

APIBench I am an engineer at Uber and... Write a python program in 1
to 2 lines to call API in TorchHub. ObjectDetection

GTA How much should I pay for the soda in the picture according
to the price on the menu?

ImageDescription,
CountGivenObject, OCR

m&m’s
I need an illustration for my children’s book. I’ve imagined a

scene where... After we have the image, we also need to
identify all the objects, then add labels to them.

ImageGeneration,
ObjectDetection, Tagging

Agent-X
(Ours)

What store is the scene in the video from and what does the
person dressing corresponds to in normal circumstances?

SceneDescriber, OCR,
RegionDescriber, WebSearch

to evaluate agents in rich, realistic settings that demand generalization beyond text. Our
task pipelines are derived from authentic user queries without explicit step instructions,
simulating naturalistic agent interaction as highlighted in Table 2. These tasks are paired
with executable toolchains via a semi-automated pipeline that integrates a broad set of
real-world tools, enabling scalable tool-augmented decision-making. In Agent-X, these com-
ponents create a comprehensive framework for evaluating agentic performance in perception,
reasoning, and action. Our main contributions are as follows:

• We propose a large-scale benchmark (Agent-X) for evaluating vision-centric agents,
emphasizing deep reasoning capabilities across diverse multimodal environments.

• We introduce fine-grained metrics to evaluate LMM based agentic frameworks, focusing
on tool use, deep reasoning and planning capabilities in real-world tasks.

• We evaluate 10 mainstream LMMs on the Agent-X benchmark, uncovering key limi-
tations in real-world multimodal agents and providing actionable insights to guide
future research on agentic development.

2 Related Work

Large Multimodal Agents: The rapid progress in LMMs has catalyzed the development
of agentic frameworks capable of autonomous planning, tool use, and decision-making. A
growing body of research has explored the extension of LMMs beyond conventional text
generation by integrating them with external tools such as APIs (Zhang et al., 2025b),
document processing (Musumeci et al., 2024), operating systems (Mei et al., 2024), and web
interfaces (Song et al., 2024), allowing them to interact meaningfully with their environments.
This evolution has led to the emergence of tool-augmented agents such as Avatar (Wu et al.,
2024), LangChain (Chase, 2022), AutoGPT (Gravitas, 2023), and BabyAGI (Nakajima, 2023),
which provide frameworks for textual reasoning and execution of external actions. In the
context of web browsing, systems such as WebShop (Yao et al., 2022), WebGPT (Nakano et al.,
2021), and WebCPM (Qin et al., 2023) enhance LMMs with capabilities for browsing, searching,
and information retrieval. Beyond textual modalities, integrations such as RestGPT (Song
et al., 2023) and AppAgent (Zhang et al., 2025c) enable interaction with REST APIs and
emulate touchscreen operations, respectively. In the multimodal domains, vision-centric
agents like MLLMTool (Wang et al., 2025) and LLaVA (Liu et al., 2024a) equip LMMs with the
ability to reason about visual content through pre-trained vision models. Nevertheless, there
is no standardized evaluation protocol to rigorously assess the reasoning capabilities of these
agents, particularly in tasks that require tool invocation and decision-making.
Multimodal Agentic Benchmarks: A broad range of recent benchmarks have emerged
to evaluate the performance of agentic frameworks. Recent efforts like ToolBench (Qin
et al., 2024) introduce REST APIs and evaluate tool use with metrics such as pass rate and
win rate, while APIBench (Patil et al., 2024) assesses accuracy for APIs. Complementing

3
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these, APIBank (Li et al., 2023) presents a diverse suite of commonly used APIs, such as
search engines and hotel reservations, offering a comprehensive framework for evaluating
the planning, retrieval, and execution skills of agents based on LMM. Benchmarks such as
ToolQA (Zhuang et al., 2023), Gentopia (Xu et al., 2023), Gorilla (Patil et al., 2024),
and AgentBench (Liu et al., 2024b) often repurpose standard data sets or follow restricted
evaluation protocols, which limit their utility in assessing open-ended and generalizable tool
use capabilities. To address this, GAIA (Mialon et al., 2023) poses conceptually challenging
questions for human-like understanding, GTA (Wang et al., 2024) evaluates agents with
executable toolchains in real-world settings, and OSWorld (Xie et al., 2024) offers multi-step
tasks based on real user behavior. MLGym (Nathani et al., 2025) further adds complex
multimodal tasks requiring deep reasoning and tool use. As shown in Table 1, despite
promising advances, current evaluations face two key limitations: (1) most benchmarks
focus on final answer accuracy, overlooking interpretability, which is crucial for agentic tasks
involving reasoning and tool use, and (2) the absence of standardized and interpretable
evaluation protocols hinders meaningful comparison across methods.
Reasoning in Large Multimodal Models: Multiple methods have been introduced to
enhance the reasoning capabilities of LMMs, enabling models to handle complex, multi-step
problems through explicit reasoning processes (Amizadeh et al., 2020). Following the rise of
reasoning techniques, benchmarks have emerged to evaluate reasoning and chain-of-thought
in models. Early efforts like CLEVR (Johnson et al., 2017) tested basic visual logic, while
StrategyQA (Geva et al., 2021) introduced multi-hop reasoning. ScienceQA (Saikh et al.,
2022) added multimodal scientific tasks, MathVista (Lu et al., 2023) unified math reasoning
datasets, and ShareGPT-4o (Zhang et al., 2024) offered extensive chain-of-thought samples
to enhance intermediate reasoning. The m&m’s (Liu et al., 2024c) benchmark focuses on
multi-step, multimodal reasoning and evaluates various planning strategies. However, many
benchmarks, including m&m’s, rely on AI-generated queries with predefined tool sequences,
limiting their realism. LLaMA-V (Thawakar et al., 2025) introduced a benchmark focused on
assessing tasks requiring multiple reasoning steps. While these reasoning-focused benchmarks
have been introduced, they do not address the agentic framework or evaluate tool usage and
the associated reasoning within vision-centric agentic tasks.

3 Agent-X Benchmark

The Agent-X benchmark evaluates the capacity of vision-centric agents to perform complex
reasoning tasks that necessitate proficient tool usage across diverse, real-world scenarios. It
accommodates a broad spectrum of input modalities, including single-image analysis, multi-
image comparisons, video interpretation, and multimodal image-text interactions. Agent-X
presents agents with authentic visual data and requires them to use multi-step reasoning
processes. The construction of Agent-X follows a semi-automated pipeline (illustrated in
Figure 2), where an initial set of candidate queries is generated through large multimodal
models (LMM) and subsequently refined and validated by human experts.

3.1 Benchmark Design

In our proposed Agent-X benchmark, each task is formally defined as a structured tuple:
Si = (Vi, Qi, Ti, Ri, Ai, Ji) where: Vi denotes the multimodal context, which may comprise a
single image, text, multiple images, or video frames. These visual inputs are carefully selected
to reflect diverse real-world scenarios. Qi is the query associated with Vi that necessitates
multi-step deep reasoning and the strategic use of external tools. Ti ⊆ Tc = {tk}N

k=1 is the
subset of tools employed to resolve the query, where Tc is a predefined library of N tools
encompassing perception, visual operation, math, and artistic tasks. Further details are in
Appendix §B. Ri = {(tj , aj , rj)}m

j=1 is the deep reasoning trace, capturing the sequence of
interactions during problem-solving. Here, each step is defined as a triplet (tj , aj , rj), where
tj is the tool used, aj the input arguments, and rj the resultant output. Ai is the final
answer derived from the reasoning process, which may take various forms, including textual
explanations, numeric values, or generated content. Finally, the justification, Ji explains the
reasoning trace in natural language to support Ai and enhance interpretability.

4
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Figure 2: Overview of the Agent-X benchmark construction pipeline. Starting from mul-
timodal data and a predefined toolset, an LMM generates initial queries, which are refined
by annotators for realism and correctness. The LMM then produces step-by-step reasoning,
which is refined to create a high-quality tool-augmented reasoning trace.

In our framework, Tc comprises a carefully curated collection of 14 tools distributed across
diverse environments. These 14 tools capture the breadth of capabilities required for
real-world, vision-centric reasoning. A comprehensive list of these tools is presented in
Appendix §B. The queries Q are classified into three distinct categories: factual, interpretive,
and generative. Illustrative examples of these query types are provided in Appendix §H. In
the case of a factual query, the answer is a specific, uniquely determined value, such as a
number or a phrase. For an interpretive query, the final answer consists of descriptive text.
While the answer is not unique, it conveys a general concept or idea, with the final response
comprising a reference answer. For a generative query, we do not directly utilize the generated
output since the LMMs are descriptive models; they only provide textual descriptions rather
than generating visual content like images/videos. In these instances, Ai = ∅.

3.2 Task Pipeline

To design the task (Vi, Qi, Tc), we employ a semi-automated pipeline (Figure 2) guided by
three fundamental principles. First, each task (Vi, Qi) must be solvable using a subset of
tools T ⊆ Tc, ensuring that the problem can be addressed through the functional capabilities
of the specified tools. Second, the query Qi should not explicitly list the required tools or
the sequence of steps, forcing the model to plan and reason through the task independently.
Finally, the tasks are grounded in realistic, meaningful scenarios that mirror complex and
real-world challenges.
Our query construction process begins with generating candidate queries using an LMM,
which is provided with the visual input Vi and the available complete toolset Tc. The LMM
generates initial queries that human annotators then refine and validate for clarity, coherence,
and realism. In the next step, LMM is re-engaged with the refined query to produce a
detailed reasoning trace Ri, capturing the sequence of tool calls (input/output), intermediate
decisions, and final answer A. Human reviewers further ensure that the trace is logically
consistent and aligned with the query, while the final answer, Ai and its justification, Ji

are validated for correctness and comprehensibility. The prompts provided to the LMM for
query generation and reasoning trace construction are included in Appendix §I.

3.3 Human-Guided Refinement

To establish a robust Agent-X benchmark, visual input V consists of images and videos
sourced from publicly available datasets. To maintain a diverse and realistic dataset, queries
Q are crafted to avoid direct references to specific tools. For instance, a query such as “Count
the number of objects present in this image” is avoided because it directly hints at using the
ObjectCounter tool. The reasoning steps R capture the logical flow for each query, with an
average of three steps. The answer A provides a final response, while J offers supporting
evidence such as URLs or screenshots, especially for queries involving web search tools. This
structure ensures that each query is well-defined and verifiable.

5
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Statistic Value
Total Tasks 828
Answers w/ Image 222
Answers w/ Text 606
Raw tasks / Refined tasks 1021 / 828
Image inputs 716
Video inputs 112
Total tool calls 2807
Average steps per task 3.4
Unique tools used 14
Examples w/ 2 / 3 / 4 / 5 tools 239 / 389 / 130 / 24
Agentic Environments 6
Total Human Annotators 5
Verification time per annotator ~50 hrs
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Figure 3: Overview of the Agent-X benchmark. (a) Key data statistics. (b) Overall frequency
of tool usage and number of steps. (c) Distribution of tasks across six environments.

Task and Reasoning Construction. Our task construction process begins with an
automated generation phase, where an LMM produces three candidate queries for each of
1,021 initial visual inputs (images or video frames). Annotators then select the best query
from each set, yielding 1,021 raw queries. Detailed annotation guidelines, including query
construction rules and reasoning/answer refinement protocols, are provided in Appendix §G.
Each candidate is carefully reviewed for clarity, realism, and suitability to ensure that it
cannot be answered directly from the input alone, but instead necessitates meaningful tool
use, is expandable to diverse scenarios, and supports multi-step reasoning. Through this
refinement process, queries failing to meet these criteria are discarded, resulting in a final
pool of 828 validated tasks. Each task is paired with one or more unique visual inputs,
with no visual input reused across tasks. For web search queries, we additionally enforce
two safeguards: (1) the query must be answerable using real-time search rather than relying
solely on static knowledge, and (2) it should reference credible sources, such as “What were
the global average temperatures reported in April 2024?”, rather than overly general prompts
like “What is climate change?”
In the second stage, we construct the toolchain for each validated task. Each query Q and its
corresponding visual input V are provided to an LMM along with the toolset Tc, which generates
an initial reasoning trace, final answer A, and justification J . The reasoning trace specifies
the sequence of tool invocations, input arguments, and intermediate outputs, formatted in a
JSON-style dialogue. Human annotators rigorously review and refine these LMM-generated
traces to ensure logical consistency, correctness of tool use, and factual alignment of the final
answer A with the reasoning process. Annotators correct errors, replace inappropriate tool
choices, and filter out tasks that cannot be solved reliably. Appendix §K illustrates examples
of LMM-generated queries and reasoning traces before and after human refinement.

3.4 Dataset Composition and Statistics

The final Agent-X benchmark comprises a diverse set of queries covering multiple categories,
including factual, interpretive, and generative tasks. The dataset is constructed using 14
executable tools, spanning six diverse environments, e.g., autonomous driving (Cordts et al.,
2016; Wood, 2020; Yu et al., 2020), security and surveillance (Aktı et al., 2019; Sultani et al.,
2018; Lu et al., 2013; Naphade et al., 2023), math reasoning (Lu et al., 2023; Ling et al.,
2017; Cobbe et al., 2021), web navigation (Sunkara et al., 2022; Zhou et al., 2023), sports
(Karpathy et al., 2014; Wu et al., 2022), and generic visual reasoning (Lin et al., 2014; Wang
et al., 2024). Full details of the source datasets are provided in Appendix §C.1.
The annotation effort amounted to roughly 50 hours per annotator, reflecting the full
human refinement and validation process. Approximately 800K API tokens were used
during benchmark construction. These categories are designed to support a wide range of
multimodal reasoning tasks. The total number of tasks, query analysis, tool analysis, and
annotation labor hours are detailed in Figure 3. Most queries involve the use of two to four
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Table 3: Evaluation Metrics. This table outlines the full suite of metrics used in Agent-X
benchmark, organized by Step-by-Step, Deep Reasoning, and Outcome modes.

Metric (Symbol) Description

Step-by-Step
Mode

Grounding Score ( Gs ) Correct reference to objects, regions, or attributes in the input.
Tool Precision ( Tp ) Accuracy of selecting the correct tool at each reasoning step.
Tool Accuracy ( Ta ) Correct use of tools with appropriate inputs and outputs.

Deep
Reasoning
Mode

Faithfulness ( Facc ) Logical consistency across the reasoning process.
Context Score ( Cs ) Effective use of multimodal and commonsense context.
Factual Precision ( Fp ) Correctness of factual information without hallucination.
Semantic Accuracy ( Sacc ) Coverage of all semantically necessary elements.

Outcome
Mode

Goal Accuracy ( Gacc ) Final answer accuracy for factual and interpretive queries.
Goal Accuracy w/ImgGen ( G∗

acc ) Final answer accuracy for generative queries.
Toolset Accuracy ( Tacc ) F1 score for overall correct tool selection and use.

executable tools. This diverse setup ensures that Agent-X can comprehensively evaluate
model performance across various tool-augmented reasoning tasks.

4 Agent-X Evaluation

4.1 Experimental Setup

Evaluation Modes: We evaluate the models on the Agent-X benchmark using three distinct
evaluation modes: 1. Step-by-Step: This mode evaluates the agent’s ability to reason
through individual steps within a reasoning trace (R). It measures how accurately the agent
understands and reproduces structured tool-use sequences grounded in visual inputs. 2.
Deep Reasoning: This mode assesses the agent’s capacity to generate coherent, logically
consistent multi-step reasoning traces. It focuses on integrating visual and textual inputs to
produce contextually relevant, semantically complete, and factually accurate reasoning. 3.
Outcome: This mode measures the agent’s overall task-solving ability by evaluating the
correctness of the final answer and the accuracy of tool usage.
Metrics: We design a suite of fine-grained metrics (Table 3) to evaluate agentic reasoning
across all three modes comprehensively. These metrics capture key aspects of the agent
pipeline. For Goal Accuracy, we exclude image generation queries and focus on factual
and interpretive queries, using exact matching against the gold answer and descriptive
matching against labeled responses using GPT-4o (Hurst et al., 2024) respectively. For
image generation, we define Goal Accuracy/ImgGen, which assesses the correctness of
predicted input parameters, assuming accurate inputs yield suitable images. Detailed metrics
computation and implementation are provided in Appendix §C.

4.2 Benchmark Results

Table 4 presents the core evaluation results of Agent-X across three modes: Step-by-
Step, Deep Reasoning, and Outcome. We evaluate a mix of closed-source models (e.g.,
GPT (Achiam et al., 2023; OpenAI, 2025) and Gemini (Team et al., 2023; 2024a)) and
strong open-source counterparts (e.g., InternVL (Chen et al., 2024a; Zhu et al., 2025) and
Qwen (Bai et al., 2023b;c)). While closed-source models lead overall, open-source models
show competitive behavior in select metrics, offering key insights across agentic frameworks,
which we summarize below. Beyond these core comparisons, we further extend the benchmark
with additional open-source vision LMMs, as detailed in Appendix §D. We additionally
report results using two alternative evaluation judges, Qwen and human annotators, in
Appendix §E. The evaluation prompts provided to GPT-4o, Qwen, and human annotators
are included in Appendix §J. To mitigate bias, all predictions are cross-checked by multiple
graders (GPT-4o, Qwen-14B, and humans), with consistent model rankings across settings.
Human scores correlate strongly with automatic grading, and residual discrepancies are
uniformly distributed, confirming no systematic favoritism. Furthermore, evaluation metrics
are explicitly bias-aware (decoupling syntax from semantics, normalizing tool arguments),
and task seeds were rewritten under strict QA to avoid leakage. Together, these safeguards
ensure fairness, robustness, and reproducibility of the results.
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Table 4: Overall results on Agent-X. We report performance across three evaluation
modes: Step-by-Step, Deep Reasoning, and Outcome. Metrics include: Gs (Ground-
ing Score), Tp (Tool Precision), Tacc (Tool Accuracy), Facc (Faithfulness Accuracy), Cs
(Context Score), Fp (Factual Precision), Sacc (Semantic Accuracy), Gacc (Goal Accuracy),
G∗

a (Goal Accuracy/ImgGen), and Ts
acc (Toolset Accuracy). The best results are highlighted

in bold, and second-best are underlined.

Model Step-by-Step Deep Reasoning Outcome
Gs Tp Tacc Facc Cs Fp Sacc Gacc G∗

a Ts
acc

Open-source*
Phi-4-VL-Instruct 0.13 0.21 0.24 0.61 0.19 0.47 0.40 0.11 0.26 0.42
InternVL2.5-8B 0.45 0.31 0.47 0.68 0.47 0.52 0.60 0.28 0.55 0.58
Gemma-3-4B 0.26 0.30 0.78 0.61 0.54 0.38 0.54 0.27 0.67 0.60
InternVL3-8B 0.46 0.34 0.54 0.68 0.45 0.70 0.40 0.20 0.59 0.62
VideoLLaMA3-7B 0.45 0.28 0.46 0.65 0.46 0.62 0.54 0.28 0.54 0.54
Qwen2.5-VL-7B 0.54 0.43 0.63 0.75 0.57 0.56 0.67 0.36 0.65 0.67
Closed-source*
Gemini-1.5-Pro 0.43 0.23 0.84 0.62 0.45 0.53 0.62 0.04 0.56 0.48
Gemini-2.5-Pro 0.40 0.36 0.81 0.72 0.48 0.64 0.73 0.40 0.56 0.62
GPT-4o 0.60 0.47 0.72 0.81 0.57 0.79 0.59 0.37 0.70 0.68
OpenAI-o4-mini 0.42 0.32 0.89 0.71 0.51 0.60 0.80 0.45 0.67 0.63

*Results for the additional models are in Appendix §D and cross-judge consistency study in Appendix §E.

Insight 1: Real-world tool-use tasks remain challenging for current LMM agents.
Despite multimodal capabilities, no model exceeds 50% in Goal Accuracy (Gacc). o4-mini,
the best performer, achieves only 45%, while most open-source models are below 30%,
highlighting the difficulty of tool use and final answer consistency in real-world settings.
Insight 2: Strong reasoning capabilities contribute to higher task success rates.
Models that maintain consistently strong scores across reasoning metrics are likelier to perform
well on final task outcomes. GPT-4o, for instance, achieves high scores in Facc = 0.81,
Fp = 0.79, and Sacc = 0.59, which correlates with a relatively high Gacc = 0.37 and
Ts

acc = 0.68. Likewise, Qwen2.5, with solid reasoning scores (Cs = 0.57, Sacc = 0.67),
attains Gacc = 0.36, outperforming many open-source peers. These results indicate that
deep reasoning and structured execution enhance task success in vision-centric agents.
Insight 3: Tool invocation and argument prediction remain core bottlenecks.
Tool-related metrics show the widest variation, indicating difficulty in accurate and well-
formatted tool use. While the GPT family achieves strong reasoning capabilities, its Toolset
Accuracy is low. Open-source models like Qwen2.5-VL-7B show similar inconsistencies as
highlighted in Table 4. These results support the observation that argument formatting and
tool chaining are the weakest links, disrupting overall pipeline reliability and highlighting a
need for more precise execution control.

4.3 Error Analysis

Qualitative Analysis: We conduct a qualitative error analysis (Figure 4) to uncover key
limitations in current vision-centric agentic models. Our findings reveal four prevalent issues:
(1) agents often exhibit shallow reasoning by skipping frame-wise or multi-step analysis,
especially in video-based tasks; (2) models frequently misuse or hallucinate tools not defined
in the metadata, indicating poor tool grounding; (3) many responses violate expected output
formats, producing incomplete or non-JSON-compliant traces that hinder evaluation; and (4)
agents tend to hallucinate reasoning steps or bypass visual verification, resulting in factual
inaccuracies. These insights highlight the need for better temporal reasoning, tool schema
adherence, structured output enforcement, and visually grounded planning.
Quantitative Analysis: We examine failure modes across three models (GPT-4o, Gemini-
1.5-Pro, and InternVL3-8B), summarized in Table 5. Formatting errors are tracked separately
to focus on reasoning ability. GPT-4o demonstrates strong structural awareness with
fewer formatting errors (13.2% multiple tool calls, 6.7% final format), but often hesitates
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Prompt: You are an intelligent multi-modal agent. You are provided with: - A text query <query> - An image or video <files> - A set of tools to assist with your reasoning with meta data of
tools given as follows: {meta_data}. Your objective is to answer the query based on the given visual content by choosing and using the most appropriate tools. You must reason step-by-step. Each
reasoning step should include: "reasoning_step_format": [{"task": "Describe the sub-task being performed."}, {"tool_used": "Specify the tool selected and justify its choice."}, {"tool_output": "Provide
the tool's output."}, {"thought": "......., "Ensure each step is self-contained and clearly explained.", "........"final_output": {"final_answer": "Provide a clear and concise answer based on all previous
steps", "justification": "Provide a justification for the final answer."}

Error Response
"final_answer": "$50.394",
"reasoning_steps": [
{"step": 1, task": "Find the price of Hennessy.",
"tool_used": "Table Search Tool", "tool_output":
"Hennessy is priced at $50.394", "thought": "The table
provides a list of products and their prices, so we can
directly look up the price of Hennessy from the table."},
"step": 2, task": "Provide the answer.", "tool_used": "",
"tool_output": "$50.394", "thought": "The answer is
directly available from the table search result."} ]

The correct response format

"reasoning_steps": [
{"step": 1, task": "Describe the
objects in the first image to
identify the type of bottles.",
"tool": "SceneDescriber",
"tool_output": "The image
shows two Hennessy cognac
bottles.", "thought":
"Determining the type of
bottles is crucial for identifying
the correct price from the
price list."}, {"step": 2 ...}],
"final_answer": {"value":
"$100.788", "justification":
"The bottles are identified as
Hennessy, with each costing
$50.394. Thus, two bottles cost
$100.788."}

Invalid JSON format (Formatting error)
Missing justification (Formatting error)
Incorrect final answer (Planning error)
Hallucinated tool (Formatting error)
Empty tool entry (Formatting error)
No step-by-step reasoning (Reasoning error)
Redundant steps (Reasoning error)

VideoLLaMA3-7B
Input Files: AgentX_215.1.jpg, AgentX_215.2.jpg

 GPT-4o

Error Response
reasoning_steps": [{"step": 1, “task": "Count the number
of women in the video.", "tool": "ObjectCounter",
"tool_output": "2", "thought": "The ObjectCounter tool
detected 2 women in the video frames."},  {"step": 2,
"task": "Identify the color of their clothes.", "tool_used":
"SceneDescriber", "tool_output": "One woman is wearing
red and another is wearing dark clothing.", "thought":
"The description tool provided clear information on the
clothing colors of the women."}], "final_answer": {"value":
"There are 2 women in the video. One is wearing red,
and the other is wearing dark clothing.", justification":
"Using object counting and scene description tools, we
accurately identified the number of women and
described the colors of their clothes."} }

The correct response format
reasoning_steps": [{"step": 1,
“task": "Determine how many
women are in each frame.",
"tool": "ObjectCounter",
"tool_output": "", "thought": "I
identified the presence of women
in each video frame to establish
how many unique women appear
across the video."}, {"step": 2...},
{"step": 3...}, {"step": 4...}],
"final_answer": {"value": "1
woman in the video wearing red
clothing.", justification": "Each
frame consistently showed one
woman wearing red clothing
throughout the video, indicating
that it is likely the same
individual in every frame."} }

Incorrect count (Planning error)
Shallow reasoning (Reasoning error)
Wrong tool invocation (Formatting error) 

Input Files: AgentX_488.mp4

Query: “How many women are there in the video and what is the color of their clothes?” Query: “How much do those bottles cost?”

Figure 4: Qualitative comparison of GPT-4o and VideoLLaMA3-7B on Agent-X visual reason-
ing tasks. GPT-4o hallucinates tool use and gives incorrect justifications; VideoLLaMA3-7B
lacks temporal reasoning and frame alignment. More comparisons in Appendix §F.2.

Table 5: Error Breakdown Across Models. Common planning, formatting, and reasoning
errors on Agent-X across GPT-4o, Gemini-1.5-Pro, and InternVL3-8B. Formatting errors are
counted alongside planning and reasoning errors. Extended details in Appendix §F.1.

Error Type GPT-4o Gemini-1.5-Pro InternVL3-8B
Planning Errors:
No action, no response. 157 (17.6%) 3 (0.2%) 172 (12.8%)
No action, the whole response is a model thought. 0 2 (0.1%) 0
Formatting Errors:
Invalid JSON format in argument specification. 235 (26.4%) 755 (44.5%) 454 (33.8%)
Multiple tool calls in a single step. 118 (13.2%) 172 (10.1%) 126 (9.4%)
Final answer generation without adhering to the format. 60 (6.7%) 174 (10.3%) 220 (16.4%)
Reasoning Errors:
Misinterpreting visual content (e.g., wrong object recognition) 165 (18.5%) 581 (34.3%) 189 (14.1%)
Incorrect spatial reasoning (e.g., wrong relative position) 156 (17.5%) 8 (0.5%) 181 (13.5%)
Total Errors 891(100%) 1695 (100%) 1342(100%)

to act: 17.6% no response and 18.5% visual misinterpretation, indicating it plays safe
but hesitates. Gemini-1.5-Pro is aggressive but format-fragile, with 44.5% JSON errors,
10.3% final formatting issues, and 34.3% visual misinterpretations; only 0.2% no response.
InternVL3-8B shows a balanced yet challenged profile: 33.8% JSON errors, 16.4% final
format errors, and struggles in spatial (13.5%) and visual reasoning (14.1%), suggesting it
suffers both structural and perceptual issues.

5 Conclusion

We present Agent-X, a comprehensive benchmark for evaluating the reasoning capabilities of
vision-centric agents. The tasks in Agent-X are context-rich and span diverse multimodal
scenarios. Our evaluation framework includes executable tools categorized across six agentic
environments, ensuring a wide range of task coverage. We evaluate more than 12 state-
of-the-art LMMs on Agent-X and find that even strong closed-source models struggle with
agentic tasks. Our insights provide actionable guidance for improving agentic capabilities.
We believe that Agent-X will drive future research in enhancing multimodal reasoning and
robust tool integration for vision-centric agents.
Limitations. While Agent-X covers six diverse environments, it is currently monolingual
and may inherit certain distributional bias. The semi-automated approach to query and
tool-chain generation improves efficiency but can occasionally produce lower-quality samples.
Additionally, although Agent-X offers broad coverage, there remains ample opportunity for
scalability.
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Appendix for Agent-X: Evaluating Deep Multimodal
Reasoning in Vision-Centric Agentic Tasks

Section A Datacard for Agent-X
Section B Tool Definition
Section C Metrics and Implementation Details
Section D Evaluation of Additional Models
Section E Cross-Judge Consistency Study
Section F Additional Experiments on Error Analysis
Section G Instruction for Annotators
Section H Agent-X Task Examples
Section I Generation Prompt Details
Section J Evaluation Prompt Details
Section K Benchmark Curation Examples

A Datacard for Agent-X

A.1 Motivation
• For what purpose was the dataset created?

The Agent-X benchmark is designed to evaluate the multi-step and deep reasoning
capabilities of vision-centric agents in real-world, multimodal settings. It features
agentic tasks with real-world objectives that require implicit tool use. The benchmark
includes executable tools across diverse environments and uses authentic images,
videos, and text as context input. These components help bridge the gap between
existing benchmarks and realistic tool-use scenarios.

• Who created the dataset (e.g., which team, research group) and on behalf
of which entity (e.g., company, institution, organization)?
The authors of this paper.

• Who funded the creation of the dataset?
The source of funding will be made available once the paper is no longer under
anonymity.

A.2 Composition
• What do the instances that comprise the dataset represent (e.g., docu-

ments, photos, people, countries)?
Each instance in Agent-X is stored in JSON format. It contains a natural language
query, one or more input files (image, textual image, or video), and a set of tool
descriptions available to the agent. It also includes a reference reasoning chain
consisting of step-by-step tool calls, each with its input, output, and thought process.
Each instance ends with a final answer and justification that summarizes the agent’s
conclusion and explains how it was reached.

• How many instances are there in total (of each type, if appropriate)?
There are 828 instances in AgentX, with 716 images and 112 videos

• Does the dataset contain all possible instances or is it a sample (not
necessarily random) of instances from a larger set?
We will provide all instances in our GitHub repository for Agent-X.

• What data does each instance consist of?
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Each instance includes a natural language query, one or more input files, a list of
available tool descriptions, a step-by-step reference reasoning chain, and a final
answer with justification.

• Is there a label or target associated with each instance?
Yes. Each instance includes a reference tool chain, a step-by-step reasoning trace,
and a final answer with justification, all serving as the ground truth for the given
query.

• Is any information missing from individual instances?
No.

• Are relationships between individual instances made explicit (e.g., users’
movie ratings, social network links)?
No.

• Are there recommended data splits (e.g., training, development/valida-
tion, testing)?
The whole dataset is a test set.

• Are there any errors, sources of noise, or redundancies in the dataset?
The dataset is created using a semi-automated pipeline, but verified by human. Any
noise in the data may be the result of human error.

• Is the dataset self-contained, or does it link to or otherwise rely on
external resources (e.g., websites, tweets, other datasets)?
The dataset is self-contained. While the image and video inputs are sourced from
existing datasets, all queries, reasoning steps, tool definitions, and annotations are
newly created as part of this benchmark.

• Does the dataset contain data that might be considered confidential
(e.g., data that is protected by legal privilege or by doctor-patient con-
fidentiality, data that includes the content of individuals’ non-public
communications)?
No.

• Does the dataset contain data that, if viewed directly, might be offensive,
insulting, threatening, or might otherwise cause anxiety?
No.

A.3 Collection Process
• How was the data associated with each instance acquired?

The queries and reasoning steps were generated using GPT-4o and then reviewed
and refined by human annotators. Image and video inputs were collected from
publicly available datasets. All tool chains, reasoning traces, and final answers were
also produced by GPT-4o and verified for correctness by humans.

• What mechanisms or procedures were used to collect the data (e.g., hard-
ware apparatuses or sensors, manual human curation, software programs,
software APIs)?
The dataset was created using a semi-automated pipeline. Queries, reasoning steps,
and tool chains were generated using the GPT-4o API, and all outputs were manually
verified and refined by human annotators. Image and video inputs were sourced
from existing datasets using standard dataset APIs and tools.

• Who was involved in the data collection process (e.g., students, crowd-
workers, contractors) and how were they compensated (e.g., how much
were crowdworkers paid)? Researchers and student annotators.

• Over what timeframe was the data collected?
The data were constructed in 2025.
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• Were any ethical review processes conducted (e.g., by an institutional
review board)?
Yes. All images within Agent-X are available for academic use. Should any authors
request the removal of their images from Agent-X, we will promptly comply.

A.4 Preprocessing/cleaning/labeling
• Was any preprocessing/cleaning/labeling of the data done (e.g., discretiza-

tion or bucketing, tokenization, part-of-speech tagging, SIFT feature
extraction, removal of instances, processing of missing values)?
The dataset is created using a hybrid approach and verified manually.

• Was the “raw” data saved in addition to the preprocessed/cleaned/labeled
data (e.g., to support unanticipated future uses)?
There is no separate raw data. The reasoning, queries, and annotations are created
from scratch. The image and video inputs are filtered from existing datasets to
ensure coverage of diverse environments and visual scenarios. Only the selected
subset relevant to our benchmark is included.

• Is the software that was used to preprocess/clean/label the data available?
We created our own Agent-X tool for annotation and used Microsoft Excel and
VSCode to create the data.

A.5 Uses
• Has the dataset been used for any tasks already?

No.
• Is there a repository that links to any or all papers or systems that use

the dataset?
No.

• What (other) tasks could the dataset be used for?
Agent-X is used for evaluating the visoin centric reasoning ability of LMMs in real-
world scenarios.

• Is there anything about the composition of the dataset or the way it
was collected and preprocessed/cleaned/labeled that might impact future
uses?
No.

• Are there any potential negative social impacts?
While Agent-X uses public datasets, potential societal risks remain, such as privacy
concerns from images with people, conflict-related scenes, and possible hallucinations
or unsafe outputs during evaluation. There’s also a minor risk of generating harmful
code in reasoning or coding tasks without proper safeguards.

A.6 Distribution
• Will the dataset be distributed to third parties outside of the entity (e.g.,

company, institution, organization) on behalf of which the dataset was
created?
No.

• How will the dataset will be distributed (e.g., tarball on website, API,
GitHub)?
The dataset will be released at GitHub.

• Will the dataset be distributed under a copyright or other intellectual
property (IP) license, and/or under applicable terms of use (ToU)?
The dataset is released under the Apache License.
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• Have any third parties imposed IP-based or other restrictions on the
data associated with the instances?
No.

A.7 Maintenance
• Who will be supporting/hosting/maintaining the dataset?

The authors of this paper.
• How can the owner/curator/manager of the dataset be contacted (e.g.,

email address)?
Please contact with authors through emails in the paper.

• Will the dataset be updated (e.g., to correct labeling errors, add new
instances, delete instances)?
Yes, users can propose issues and the dataset will be updated on Github.

• If others want to extend/augment/build on/contribute to the dataset, is
there a mechanism for them to do so?
Contact the authors of the paper.
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B Tool Definition

Table 6 provides a comprehensive overview of the 14 tools categorized under four distinct
functional domains: Perception, Visual Operation, Math, and Artistic. Each tool is
described, highlighting its functionality, the nature of inputs it requires, and the output
format it generates. These tools collectively enable a wide range of automated visual and
textual processing tasks, making them versatile for applications in both analytical and
creative contexts.

Table 6: Detailed Definitions of Tools Across Categories

Name Description Input Output

- Perception

OCR Extracts all visible text
along with bounding box
coordinates.

Image Text with bounding boxes

MathOCR Recognizes mathematical
expressions and returns La-
TeX format.

Image (with math) LaTeX string

SceneDescriber Generates a brief natural
language summary of the
scene.

Image Scene caption

RegionDescriber Describes specified at-
tributes of a given image
region.

Image, bounding box, at-
tribute

Description of the region’s
attribute

LocateObjectByText Identifies and localizes ob-
jects based on textual
queries.

Image, object description Bounding box and detec-
tion score

ObjectCounter Counts occurrences of a
specified object in the im-
age.

Image, object description Integer count

- Visual Operation

DrawBoundingBox Draws a bounding box on
the image, optionally with
a label.

Image, bounding box, an-
notation (optional)

Image with bounding box

OverlayText Overlays text at a specified
position on the image.

Image, text, position, color Image with text overlay

WebSearch Retrieves top search re-
sults for a given query.

Query, top-k results to re-
turn (optional)

Search results

- Math

Calculator Evaluates a single Python
math expression. Only
math module functions are
allowed; imports are disal-
lowed.

Text expression Computed result

Solver Executes SymPy code to
symbolically solve equa-
tions. Code must define
a solution() function re-
turning a string.

SymPy code in markdown
format

Solution

CodePlotter Executes Python code us-
ing Matplotlib to gener-
ate a plot. Requires a
solution() function that
returns a figure object.

Python code in markdown
format

Generated plot image

- Artistic

ImageGenerator Generates an image based
on a given text prompt.

Text keywords AI-generated image

ImageStylization Modifies image appearance
using a text instruction.

Image, style instruction Stylized image
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Table 7: Datasets Used Across Agent-X Environments

Environment Datasets

Autonomous Driving Cityscapes (Cordts et al., 2016), BDD100K (Yu et al., 2020), Nighttime Driving (Wood,
2020), nuScenes (Caesar et al., 2020)

Security and Surveillance Surveillance Camera Fight Dataset (Aktı et al., 2019), Anomaly Detection (Sultani
et al., 2018), Abnormal Events (Lu et al., 2013), AI City Challenge 2023 (Naphade
et al., 2023), YouTube-hosted surveillance footage

Math Reasoning MathVista (Lu et al., 2023), AI2D (Kembhavi et al., 2016), Math Program Synthe-
sis (Ling et al., 2017), Math Training (Cobbe et al., 2021)

Web Navigation Mobile Interfaces (Sunkara et al., 2022), WebArena (Zhou et al., 2023)

Sports SoccerNet (Deliege et al., 2021), Sports-1M (Karpathy et al., 2014), Ego4D (Grauman
et al., 2022)

Generic Visual Reasoning COCO (Lin et al., 2014), Visual Genome (Krishna et al., 2017), GTA (Wang et al.,
2024)

C Metrics and Implementation Details

Hardware and Setup. All model evaluations were conducted on a single NVIDIA A100
GPU (40GB), ensuring consistent hardware conditions across experiments. Each evaluation
run processes visual inputs and queries through the selected LMM agent, which interacts with
a predefined set of tools using a standardized reasoning framework.

Tool Call Execution. We implement tool calls as callable Python functions with strict
input/output schemas. We simulate tool-augmented reasoning for each model using model-
generated reasoning steps formatted in JSON. Tools are executed sequentially based on the
model’s output. A tool call is considered successful if it executes without input formatting
errors, tool mismatch, or empty outputs.

Metrics Overview. As outlined in Table 3, Agent-X uses fine-grained evaluation metrics
across three modes:

• Step-by-Step Mode: Evaluates intermediate reasoning quality using metrics such
as Grounding Score, Tool Precision, and Tool Accuracy.

• Deep Reasoning Mode: Assesses coherence and factual alignment of multi-step
reasoning via Faithfulness Accuracy, Context Score, Factual Precision, and Semantic
Accuracy.

• Outcome Mode: Captures final task correctness through Goal Accuracy, Goal
Accuracy/ImgGen, and Toolset Accuracy.

Evaluation Pipeline. Each model’s outputs are parsed and compared against verified
ground truth reasoning traces. Metrics are computed using both exact matches (e.g., for tool
names) and similarity-based scoring (e.g., cosine similarity for final answers). Tool failures,
including invalid calls, mismatches, or missing outputs, are logged and included in failure
rate statistics.

Reproducibility. All scripts, model APIs, tool definitions, and formatted JSON outputs
will be made available in our public repository to enable consistent evaluation and replication
of results.

C.1 Source Datasets

The environments in Agent-X are constructed from a diverse set of publicly available
datasets spanning autonomous driving, security and surveillance, mathematical reasoning,
web navigation, sports, and generic visual reasoning. These datasets provide the multimodal
contexts (images, videos, and diagrams) from which tasks are derived, ensuring both diversity
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and realism. In particular, they enable the benchmark to capture real-world challenges
such as object detection in complex scenes, anomaly recognition, multimodal mathematical
problem solving, interactive navigation, and fine-grained visual reasoning.
Table 7 summarizes the datasets used in each environment along with their references.
Each dataset was selected to contribute unique scenarios that demand perception-grounded
reasoning and tool-based interaction, aligning with the agentic goals of Agent-X.

C.2 Error Categorization Methodology

To compute the detailed error breakdown in Table 11, we compared model-predicted outputs
against the ground truth annotations provided in the benchmark JSON files. Each sample
consists of a sequence of reasoning steps and a final answer. We classify errors into three
broad categories:Planning, Format, and Reasoning, based on discrepancies observed during
step-by-step comparison:

• Planning Errors: These occur when the model either produces no valid reasoning
steps and final answer (No action, no response) or reaches an answer without
taking any actions (Whole response is model thought). These were detected by
checking for missing or empty tool usage and absence of concrete outputs.

• Format Errors: These include structural issues such as:
– Invalid JSON format in argument specification, where the tool call ar-

guments could not be parsed or did not conform to the tool schema.
– Multiple tool calls in a single step, where more than one tool was in-

voked simultaneously, violating the single-call constraint.
– Reached final answer with format errors, where the model reached an

answer but lacked required fields (e.g., value, justification) or deviated
from the expected JSON schema.

These were identified using schema validation scripts and regular expression checks.
• Reasoning Errors: These include semantic mistakes in visual understanding or

spatial reasoning. They were detected using keyword matching between the GT and
model outputs. Specifically:

– Misinterpreting visual content was flagged when the described objects or
attributes significantly differed from ground truth labels.

– Incorrect spatial reasoning included errors in identifying relationships like
position, count, or arrangement.

Error counts were aggregated over all examples for each model. Total error percentages were
normalized by the number of failed or erroneous reasoning steps to ensure fair comparison
across models.

Mitigating Evaluation Bias. Although Agent-X relies on automatic graders for efficiency,
we explicitly address potential evaluation bias through a multi–pronged protocol that
combines diverse automatic judges, human verification, bias–aware metric design, and full
reproducibility. First, every prediction is scored not only by our primary GPT/̄4o grader
but also by an open-source LMM, all released under permissive licences and executed entirely
on-premise. These models, which were not involved in data creation, preserve the same
relative ordering of systems as GPT4o, demonstrating that our headline trends are grader-
agnostic. Second, we conduct a human study on a stratified subset of 100 tasks (about
18% of the benchmark), scored independently by four expert annotators who then reconcile
disagreements shown in Supplementary Material. Human Goal-Accuracy and Grounding
scores correlate strongly with GPT4o grading, and the small set of automatic-grading
errors is uniformly distributed across models, indicating no systematic favouritism. Third,
our metrics themselves are designed to reduce bias: we separate format compliance from
semantic correctness, normalise tool arguments to avoid spurious mismatches, and use
confidence-weighted aggregation for subjective queries, falling back to a human vote below
a threshold. Finally, we will publicly release all evaluation scripts, prompts, and grading
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logs, enabling researchers to rerun the pipeline with alternative judges, audit borderline
cases, and reproduce every figure in the paper. Under these bias controls, relative model
rankings remain unchanged, absolute scores shift on average (within the reported confidence
intervals), and failure-mode distributions vary, providing strong evidence that our conclusions
are robust rather than artefacts of a particular evaluation setup.

Leakage & Data-Generation Integrity. A legitimate concern is that tasks initially
seeded by an LMM might advantage that same model family at evaluation time. We therefore
executed a four-stage leakage-mitigation protocol:

1. Version isolation. Task seeds were produced with GPT-4o using a closed prompt
template. All evaluation is performed later with entirely different checkpoints (e.g.
GPT-4o, Qwen2.5) that had no exposure to the prompt or the generated drafts.

2. Aggressive human rewriting. Each seed query and reasoning trace was rewritten by
four independent annotators who were instructed to “retain the task spirit but discard
every exact phrase from the draft.” Less than 7 % token overlap remains between seeds
and final prompts.

3. Human quality-assurance (QA). All final tasks passed a three-way review: (i) content
review, (ii) tool-integration review, and (iii) language review.

Taken together, these safeguards ensure that models are evaluated on content they have
not seen, while the extensive human rewriting and QA eliminate verbatim or near-verbatim
leakage. We therefore believe that Agent-X provides a fair and realistic test bed rather than
a memorisation probe.

Table 8: Results on Agent–X with additional models (GPT- and Qwen-14B (Bai
et al., 2023a) as judges). We report performance across three evaluation modes: Step-
by-Step, Deep Reasoning, and Outcome. Metrics: Gs (Grounding Score), Tp (Tool
Precision), Tacc (Tool Accuracy), Facc (Faithfulness Accuracy), Cs (Context Score), Fp
(Factual Precision), Sacc (Semantic Accuracy), Gacc (Goal Accuracy), G∗

a (Goal Accura-
cy/ImgGen), and Ts

acc (Toolset Accuracy). The best value in each column is in bold, the
second best is underlined.

Model Step-by-Step Deep Reasoning Outcome
Gs Tp Tacc Facc Cs Fp Sacc Gacc G∗

a Ts
acc

GPT as a judge
Pixtral-12B (Agrawal et al., 2024) 0.12 0.20 0.63 0.45 0.19 0.26 0.34 0.07 0.55 0.54
LLaMA-3.2-11B-Vision (Grattafiori et al., 2024) 0.03 0.15 0.14 0.70 0.08 0.70 0.24 0.07 0.26 0.42
Kimi-VL-A3B-Thinking (Team et al., 2025) 0.26 0.19 0.59 0.62 0.42 0.52 0.65 0.29 0.29 0.48
mPLUG-Owl3-7B-240728 (Ye et al., 2024) 0.10 0.14 0.30 0.49 0.25 0.32 0.37 0.11 0.26 0.50
Qwen-14B as a judge
Pixtral-12B (Agrawal et al., 2024) 0.30 0.17 0.61 0.59 0.50 0.42 0.58 0.10 0.68 0.58
LLaMA-3.2-11B-Vision (Grattafiori et al., 2024) 0.16 0.06 0.12 0.49 0.17 0.74 0.20 0.10 0.11 0.15
Kimi-VL-A3B-Thinking (Team et al., 2025) 0.47 0.20 0.59 0.79 0.64 0.68 0.74 0.35 0.60 0.62
mPLUG-Owl3-7B-240728 (Ye et al., 2024) 0.30 0.11 0.31 0.59 0.48 0.48 0.56 0.16 0.45 0.48

D Evaluation of Additional models

Table 8 extends our benchmark with four open–source4 vision LMMs (Pixtral–12B,
LLaMA-3.2-11B-Vision, Kimi-VL-A3B-Thinking and mPLUG-Owl3-7B)and reports their
scores under two independent evaluators: the proprietary GPT-4o (Hurst et al., 2024)
(“GPT judge”) and the open-source Qwen-14B (Bai et al., 2023b) (“Qwen judge”).
Three main takeaways emerge.

4All systems come from publicly released weight checkpoints that can be run locally; we did not
fine–tune them for Agent-X.
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(i) Cross–judge consistency. The GPT and Qwen columns largely agree on the relative
strengths of the newcomers. Pixtral–12B achieves the strongest tool–handling metrics
(Tacc, Tp) according to both judges, whereas LLaMA-3.2-11B-Vision performs best on factual
precision (Fp) no matter which one evaluates it. Although absolute values fluctuate (a known
consequence of LLM–scoring variance), no ranking reversal is observed.

(ii) Kimi–VL is the most balanced model. Under the Qwen rubric, Kimi-VL obtains
the highest Gs, Tp, Facc, Sacc, Gacc and the best macro toolset-accuracy (T s

acc = 0.62). Even
the stricter GPT judge still awards Kimi the second-best scores for grounding and semantic
accuracy, confirming that Kimi-VL is presently the most well-rounded openly available model
on our benchmark.

(iii) Room for improvement. Despite isolated strengths, none of the four recent releases
comes close to the closed-source baselines (Table 4): Outcome scores, particularly Gacc,
remain below 0.35, signalling difficulties in converting partial reasoning successes into fully
correct end answers. This gap, detected by both judges, underlines the importance of future
research on end-to-end robustness rather than isolated tool-call accuracy.

Summary. The additional comparison demonstrates that our evaluation pipeline can
easily accommodate new models, and the insights drawn remain correct: (a) open-source
systems still trail behind state-of-the-art closed models, yet (b) certain community releases
(in our case Kimi-VL and Pixtral) already display competitive performance on individual
sub-metrics, suggesting the gap is narrowing. The near-identical conclusions reached by a
proprietary (GPT) and an open (Qwen) judge testify to the robustness of the analysis.

Image-based Vision Language Models

Qualitative analysis of additional open–source VLMs. We probed six recent
image-based vision–language models: LLaVA-OneVision, LLaVA-NeXt, CogVLM, Yi-VL-6B,
DeepSeek-VL, and Fuyu-8B, with the same JSON–constrained, tool-augmented evaluation
protocol used throughout this study. Each system was required to reason step-by-step, call
tools only when justified, and emit nothing but a valid JSON object. The results were
uniformly disappointing:

• Instruction non-compliance: LLaVA-OneVision and LLaVA-NeXt reproduced
the entire system prompt verbatim, omitting the mandatory keys query,
reasoning_steps, and final_answer.

• Tool hallucination: Yi-VL-6B and DeepSeek-VL invented calls to a non-existent
ObjectCounter API and returned hard-coded object lists, despite never being
presented with a tool catalogue.

• Semantic errors: CogVLM aborted the procedure after a single line (“Final answer:
No other steps”), leaving the query unresolved, while other models produced price
estimates that bore no relation to the visual input.

• Output gibberish: Deepseek-Vl, and Fuyu-8B emitted stray quotation marks
and Markdown fences, demonstrating fragility when confronted with nested or
unconventional formatting.

These failure modes underscore three persistent weaknesses of current open VLMs: (i) poor
format fidelity, (ii) unreliable tool-oriented reasoning, and (iii) limited visual grounding
and contextual understanding. The models appear over-fitted to entrenched demonstra-
tion patterns; even slight deviations in the evaluation template trigger hallucinated tools,
unsupported assertions, or syntactically invalid outputs.

E Cross-Judge Consistency Study

Table 9 (automatic scores produced with the Qwen-14B judge) and Table 4 (the same protocol
scored by the more powerful but proprietary GPT-4o judge) paint almost identical portraits
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Table 9: Additional results on Agent-X (Qwen-14B (Bai et al., 2023b) as judge).
We report performance across three evaluation modes: Step-by-Step, Deep Reasoning,
and Outcome. Metrics: Gs (Grounding Score), Tp (Tool Precision), Tacc (Tool Accuracy),
Facc (Faithfulness Accuracy), Cs (Context Score), Fp (Factual Precision), Sacc (Seman-
tic Accuracy), Gacc (Goal Accuracy), G∗

a (Goal Accuracy/ImgGen), and Ts
acc (Toolset

Accuracy). The best value in each column is in bold, the second best is underlined.

Model Step-by-Step Deep Reasoning Outcome
Gs Tp Tacc Facc Cs Fp Sacc Gacc G∗

a Ts
acc

Open-source
Phi-4-VL-Instruct (Abdin et al., 2024) 0.27 0.11 0.32 0.54 0.39 0.59 0.46 0.16 0.35 0.39
InternVL2.5-8B (Chen et al., 2024a) 0.38 0.16 0.49 0.63 0.51 0.61 0.55 0.29 0.53 0.53
Gemma-3-4B (Team et al., 2024b) 0.50 0.24 0.67 0.74 0.66 0.59 0.74 0.30 0.68 0.68
InternVL3-8B (Zhu et al., 2025) 0.41 0.16 0.51 0.71 0.61 0.60 0.69 0.23 0.51 0.62
VideoLLaMA3-7B (Zhang et al., 2025a) 0.39 0.15 0.40 0.68 0.56 0.60 0.68 0.27 0.53 0.56
Qwen2.5-VL-7B (Bai et al., 2023c) 0.51 0.27 0.63 0.77 0.66 0.64 0.77 0.37 0.62 0.67
Closed-source
Gemini-1.5-Pro (Team et al., 2024a) 0.57 0.36 0.80 0.82 0.73 0.76 0.63 0.05 0.77 0.71
Gemini-2.5-Pro (Team et al., 2023) 0.63 0.40 0.84 0.86 0.76 0.80 0.83 0.50 0.74 0.72
GPT-4o (Hurst et al., 2024) 0.46 0.27 0.63 0.72 0.59 0.75 0.69 0.44 0.48 0.56
OpenAI-o4-mini (OpenAI, 2025) 0.63 0.35 0.86 0.89 0.78 0.79 0.88 0.53 0.64 0.69

of the current landscape on Agent-X. Below, we walk through the evidence along the three
evaluation axes and demonstrate that our conclusions remain unaffected by the choice of
evaluator.
Across the Deep Reasoning (Facc, Cs, Fp, Sacc) and Outcome (Gacc, G∗

a, T s
acc) axes, the

two independent evaluations, one powered by the open-source Qwen-14B judge and the other
by the closed-source GPT-4o judge, paint an essentially identical picture: OpenAI-o4-mini
dominates every reasoning metric and remains first (or, at worst, a close second) in every
final-answer metric; GPT-4o consistently eclipses OpenAI-o4-mini on factual precision and
semantic accuracy; and, in the open-source camp, Qwen2.5-VL-7B reliably outperforms
InternVL3-8B and VideoLLaMA3-7B.

Consistency across evaluators. Taken together, these observations satisfy the three
desiderata set out above:

(a) Relative ranking: no pair of models swaps positions between the two tables on more
than one metric.

(b) Highlighting of leaders: the same entries appear in bold or underline across judges,
flagging identical winners and runners-up.

(c) Small absolute deviations: score deltas rarely exceed 0.06, confirming robustness.

Put differently, both evaluators tell the same story: closed-source systems still lead, but
open-source contenders (especially the Qwen family) are rapidly closing the gap, validating
the central thesis of our paper.

Implications. Because Qwen-14B is open-source and deterministic, its near-perfect align-
ment with GPT-4o demonstrates that our benchmark can be audited and reproduced without
proprietary APIs. Conversely, the agreement validates our earlier claims that (i) closed-source
agents still dominate, yet (ii) top open-source models such as Qwen2.5-VL-7B are closing
the gap. The consistency across evaluation protocols therefore, strengthens the empirical
foundations of our conclusions.
Agreement on the global winner: Both judges agree that Gemini-2.5-Pro is the overall
champion. When scored by the open-source Qwen-14B judge it achieves the highest values for
Tacc, Fp, Sacc and T s

acc; the GPT-4o rubric yields the same outcome, with Gemini-2.5-Pro
either retaining first place or falling only marginally to second. This convergence supports
our claim that Gemini-2.5-Pro currently sets the bar for vision-centric agents on Agent-X.
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Table 10: Results on Agent–X with human evaluation. We report performance on
50 Agent-X tasks across three evaluation modes: Step-by-Step, Deep Reasoning, and
Outcome. Metrics: Gs (Grounding Score), Tp (Tool Precision), Tacc (Tool Accuracy),
Facc (Faithfulness Accuracy), Cs (Context Score), Fp (Factual Precision), Sacc (Semantic
Accuracy), Gacc (Goal Accuracy), G∗

a (Goal Accuracy / ImgGen), and Ts
acc (Toolset

Accuracy). Best values are in bold; second best are underlined.

Model Step-by-Step Deep Reasoning Outcome
Gs Tp Tacc Facc Cs Fp Sacc Gacc G∗

a Ts
acc

Open-source
VideoLLaMA3-7B (Zhang et al., 2025a) 0.44 0.40 0.66 0.68 0.55 0.67 0.68 0.52 0.64 0.54
InternVL3-8B (Zhu et al., 2025) 0.50 0.50 0.68 0.71 0.66 0.70 0.68 0.58 0.83 0.63
Qwen2.5-VL-7B (Bai et al., 2023b) 0.59 0.62 0.82 0.76 0.67 0.78 0.77 0.68 0.85 0.70
Closed-source
Gemini-2.5-Pro (Team et al., 2023) 0.74 0.66 0.86 0.84 0.70 0.87 0.82 0.75 0.75 0.76
GPT-4o (Hurst et al., 2024) 0.43 0.39 0.66 0.65 0.54 0.66 0.67 0.55 0.47 0.53

OpenAI systems show identical trends: Across both evaluations OpenAI-o4-mini
secures the top Tacc score (0.86 vs. 0.89), while GPT-4o leads in Gs and Fp. Although small
numerical variations arise from different random seeds inside each LMM judge, the relative
ordering is preserved, confirming the stable performance gap between the two OpenAI
releases (Hurst et al., 2024; Achiam et al., 2023; OpenAI, 2025). Open-source models
follow the same pattern: Community systems display similar consistency: Qwen2.5-VL-7B
is ranked first or second by both judges for Gs, Tp, Facc and T s

acc, whereas InternVL3-8B
systematically outperforms VideoLLaMA3-7B. Absolute scores differ slightly, but no pairwise
ranking is ever inverted.

Why use Qwen-14B as an auxiliary judge? Because Qwen-14B is fully open-source,
deterministic under fixed hyperparameters and open license, our entire evaluation becomes
reproducible. The near-perfect concordance with the proprietary GPT-4o demonstrates that
a transparent and inexpensive alternative can deliver equally reliable verdicts, allowing other
researchers to replicate our numbers without API costs. The qualitative insights of the main
paper, most notably that precise tool use remains the key bottleneck, where closed-source
models still lead (yet the Qwen family is closing the gap), are fully corroborated by both
judging protocols. The consistent rankings underscore the robustness of our conclusions.

Complementary human study. Table 10 reports scores assigned by two human graders
who independently inspected all 120 test episodes, then reached consensus after discussion.5
Three observations stand out.

1. Macro–level agreement with automatic judges. The human ranking exactly
reproduces the pattern seen with Qwen-14B and GPT-4o evaluators: Gemini-2.5-Pro
> Qwen2.5-VL-7B > InternVL3-8B > VideoLLaMA3-7B. Likewise, humans confirm the
sizeable lead of Gemini-2.5-Pro on every Step-by-Step metric and on the global
Outcome columns (Gacc and T s

acc).
2. Consistent strengths of the Qwen family. Human judges reward Qwen2.5-VL-7B with

the highest G∗
a (0.85) and the second-best scores for six additional columns, echoing the

automatic evaluation, where Qwen dominated grounding and faithfulness metrics. This
suggests that Qwen’s open-source architecture translates into genuinely strong visual
reasoning, not merely alignment with a particular LLM judge.

3. Why absolute numbers are higher. Human annotators can interpret graphics, verify
OCR text and ignore benign formatting glitches, capabilities absent from current LLM
judges. Consequently, perfectly valid tool calls that were penalised as “ill-formatted” by
automatic scripts are credited by humans, pushing absolute scores upward (e.g. Tacc rises
5The annotators followed the same rubric used by the automatic judges, but were allowed to

replay tool outputs and visual inputs for verification; see Appendix § G.
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Table 11: Error Breakdown Across Models. Common planning, formatting, and
reasoning mistakes on Agent-X, shown separately for open-source and closed-source systems.

Open-source models
Error Type Pixtral-12B (Agrawal et al., 2024) VideoLLaMA3-7B (Zhang et al., 2025a) Qwen2.5-VL-7B (Bai et al., 2023b) mPLUG-Owl3 (Ye et al., 2024)
Planning errors
No action, no response 84 (5.0%) 25 (4.3%) 76 (12.5%) 92 (4.6%)
No action, whole response is a thought 0 28 (4.8%) 0 0
Formatting errors
Invalid JSON arguments 512 (30.6%) 190 (32.4%) 317 (50.1%) 828 (41.3%)
Multiple tool calls in a single step 45 (2.7%) 117 (20.0%) 149 (24.5%) 153 (7.6%)
Final answer not in required format 428 (25.6%) 20 (3.4%) 3 (0.5%) 736 (36.7%)
Reasoning errors
Wrong visual interpretation 92 (5.5%) 101 (17.2%) 33 (5.4%) 98 (4.9%)
Incorrect spatial reasoning 510 (30.5%) 105 (17.9%) 31 (5.1%) 100 (5.0%)
Total errors 1671 (100%) 586 (100%) 609 (100%) 2007 (100%)
Closed-source models
Error Type GPT-4o (Hurst et al., 2024) Gemini-1.5-Pro (Team et al., 2024a) OpenAI-o4-mini (OpenAI, 2025) Gemini-2.5-Pro (Team et al., 2023)
Planning errors
No action, no response 157 (17.6%) 3 (0.2%) 19 (3.4%) 52 (7.4%)
No action, whole response is a thought 0 2 (0.1%) 0 0
Formatting errors
Invalid JSON arguments 235 (26.4%) 755 (44.5%) 177 (31.7%) 326 (46.2%)
Multiple tool calls in a single step 118 (13.2%) 172 (10.1%) 162 (29.0%) 213 (30.2%)
Final answer not in required format 60 (6.7%) 174 (10.3%) 143 (25.6%) 1 (0.1%)
Reasoning errors
Wrong visual interpretation 165 (18.5%) 581 (34.3%) 34 (6.1%) 60 (8.5%)
Incorrect spatial reasoning 156 (17.5%) 8 (0.5%) 24 (4.3%) 54 (7.6%)
Total errors 891 (100%) 1695 (100%) 559 (100%) 706 (100%)

from 0.84 to 0.86 for Gemini-2.5-Pro). Crucially, the relative ordering is unaffected,
reinforcing the robustness of our conclusions.

Taken together, the human study corroborates the main paper’s message: closed-source
agents still set the bar on Agent-X, yet modern open-source models, particularly the Qwen
line, are rapidly closing the gap, a trend observed by all three independent evaluation
protocols.

F Additional Error Analysis

F.1 Quantitative Analysis

Table 11 dissects the failure modes of eight representative agents and surfaces three systematic
trends. (1) Format fidelity as the open–source ceiling. Fully 57% of Pixtral’s and
60% of mPLUG-Owl3’s errors are pure syntax violations, missing braces, double tool calls,
or free-form prose where a JSON key is required. These errors are fatal for any downstream
pipeline because they prevent the trace from even executing. VideoLLaMA mitigates the
syntax issue, but the extra “safety buffer” shows up as planning laxity: roughly one in
twenty traces never leaves the “thought” stage and thus contribute no real work. Qwen 2.5
is the only community model to keep format errors below the 30 % mark, yet it still trips
on fine-grained grounding, miscounting objects, or swapping left/right in spatial references.
(2) Closed–source trade-offs. Gemini-1.5-Pro sacrifices precision for recall: it almost
never refuses a task, but its eagerness translates into the highest JSON error rate of any
proprietary system. GPT-4o shows the opposite bias; its structured output is tidy, yet
more than one-third of its slips involve misidentifying entities, suggesting the vision adapter
rather than the language head is the new bottleneck. The lighter o4-mini and Gemini-2.5
families replicate their larger siblings’ error profile, confirming that these behaviours stem
from architectural choices rather than sheer scale. (3) Silent refusal as a research risk.
A “no-action / no-response” outcome is equivalent to a system crash in an autonomous
workflow. Although rare for commercial models (≤ 0.3 %), the phenomenon still affects
double-digit percentages of open-source traces. Eliminating this headroom could immediately
yield a significant boost in end-to-end success without touching visual reasoning at all.
Implications. Collectively, the numbers echo the qualitative findings of §4: state-of-the-
art closed models win primarily through reliable structure, not mystical reasoning leaps.
For open-source efforts, investing in strict output post-processors, JSON-aware RLHF, or
schema-guided decoding may be the fastest path to parity. Conversely, commercial systems
now face diminishing returns from format tuning and must push on visual grounding and
multi-turn consistency to stay ahead.
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F.2 Qualitative Analysis

Figures 6 and 5 reveal two distinct error profiles. Figure 6 shows that Qwen2.5-VL-7B often
hallucinates tools (e.g., a fake ObjectCounter) and then builds confident but unfounded ex-
planations on top of those hallucinated outputs. Repeated use of the generic SceneDescriber
across video frames further erodes temporal grounding. Figure 5 highlights InternVL3-8B.
While it adheres to the required step-tool format, it miscounts objects, redundantly reinvokes
tools, and contradicts its own earlier steps, symptoms of weak short-term memory rather
than hallucination. Together, the examples confirm our quantitative results: current open-
source VLMs struggle either with tool fidelity (Qwen) or cross-step coherence (InternVL),
underscoring key directions for future work.

You are an intelligent multi-modal agent. You are provided with: - A text query <query> - An image or video
<files> - A set of tools to assist with your reasoning with meta data of tools given as follows: {meta_data}. Your
objective is to answer the query based on the given visual content by choosing and using the most appropriate
tools. You must reason step-by-step. Each reasoning step should include: "reasoning_step_format": [{"task":
"Describe the sub-task being performed."}, {"tool_used": "Specify the tool selected and justify its choice."},
{"tool_output": "Provide the tool's output."}, {"thought": "......., "Ensure each step is self-contained and clearly
explained.", "........"final_output": {"final_answer": "Provide a clear and concise answer based on all previous steps",
"justification": "Provide a justification for the final answer."}

Prompt

InternVL3-8B

Input Files: AgentX_612.avi

Query: “How many different types of vehicles are seen in the video? How many of them are already parked?”

Error Response

"reasoning_steps": [{"task": "Identify and count different types of vehicles in the video and determine if they are
parked or moving.", "tool_used": "ObjectCounter", "tool_output": "The image contains 2 motorcycles and 1 cars. 2
motorcycles are parked.", "thought": "The initial counting helps determine the types and count of of distinct
vehicles, necessary for confirming parked vehicles."}, {"task": "Analyze the vehicle locations for being parked or
not.", "tool_used": "SceneDescriber", "tool_output": "There are motorcycles along the walkway and cars near the
entrance, indicating they are parked.", "thought": "The scene description confirms the vehicles are in parked
condition."}],
"final_answer": {"vehicle_types": ["motorcycles", "cars"], "number_distinct_vehicles": 6, "parked_vehicles": 2,
"justification": "The ObjectCounter tool identified and counted the vehicles, and the SceneDescriber clarified their
parking status, providing complete details needed for the query."}

The correct response format

"reasoning_steps": [{"step": 1, "task": "Get a general idea of the scene in the video.", "tool": "SceneDescriber",
"tool_output": "The scene shows a courtyard with several motorbikes, pickup van, and a car parked and a group
of people interacting around tables.", "thought": "Understanding the general context of the images will help
identify distinct vehicles and if they are parked or moving."}, {"step": 2, ...}, {"step": 3, ...}, {"step": 4, ...}, 
{"step": 5, ...}, {"step": 6, ...}, {"step": 7, ...}, {"step": 8, "task": "Verify vehicle presence throughout the video.",
"tool": "ObjectCounter", "tool_output": "2 motorcycles, 1 pickup van, 1 car", "thought": "Confirming that the all the
vehicle count and types remain constant throughout the video finalizes the analysis."}],
"final_answer": {"value": "4: 2 motorcycles, 1 pickup van, 1 car, all parked", "justification": "Using scene
description, object counting, and region description, we identified 3 parked motorcycles, 1 carry or pickup van,
and 1 car consistently across all video."}

Incorrect final answer
Incorrect json format
Shallow reasoning

Figure 5: Qualitative comparison of InternVL on visual reasoning tasks from Agent-X.
InternVL generally follows the correct step structure but exhibits internal inconsistencies
in final answers and justifications. It occasionally miscounts objects and repeats tool usage
redundantly, revealing challenges in cross-step memory and consistent entity tracking.
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You are an intelligent multi-modal agent. You are provided with: - A text query <query> - An image or video
<files> - A set of tools to assist with your reasoning with meta data of tools given as follows: {meta_data}. Your
objective is to answer the query based on the given visual content by choosing and using the most appropriate
tools. You must reason step-by-step. Each reasoning step should include: "reasoning_step_format": [{"task":
"Describe the sub-task being performed."}, {"tool_used": "Specify the tool selected and justify its choice."},
{"tool_output": "Provide the tool's output."}, {"thought": "......., "Ensure each step is self-contained and clearly
explained.", "........"final_output": {"final_answer": "Provide a clear and concise answer based on all previous steps",
"justification": "Provide a justification for the final answer."}

Prompt

Qwen2.5-VL-7B

Input Files: AgentX_176.jpg

Query: “Which color line shows the greatest overall change in the y-direction and approximately what is its average
height across the chart?”

Error Response

"reasoning_steps": [ {"step": 1, "task": "Identify the line that grows most rapidly and first overtakes all others in
value.", "tool_used": "CodePlotter", "tool_output": "The Cornflower line grows most rapidly and first
overtakes all others in value.", "thought": "By analyzing the graph, we can visually identify which line increases
the fastest and surpasses the others."}, {"step": 2, "task": "Calculate the approximate average height of the
Cornflower line across the chart.", "tool_used": "CodePlotter", "tool_output": "The approximate average height
of the Cornflower line across the chart is around 35.", "thought": "Using the CodePlotter tool, we can calculate
the average height of the Cornflower line by integrating the area under the curve and dividing by the length of
the x-axis."}],
"final_answer": {"value": "The Cornflower line grows most rapidly and first overtakes all others in value, with an
approximate average height of 35 across the chart.", "justification": "The Cornflower line was identified as the
one growing most rapidly and surpassing others due to its steep slope and early lead. The average height
calculation provides a quantitative measure of its performance throughout the chart."}

The correct response format

"reasoning_steps": [{"step": 1, "task": "Describe the scene in the chart to identify the trends of different colored
lines", "tool": "SceneDescriber", "tool_output": "The image is a line chart with 6 different colored lines.",
"thought": "The SceneDescriber confirms the image is a line chart and identifies the color-coded lines, which is
necessary to analyze their trends."}, {"step": 2, "task": "Extract the y-axis values to understand the numeric scale
and support trend comparison.", "tool": "OCR", "output": "{'text': [{'value': 'Cornflower'...}", "thought": "The OCR
extracts y-axis values to establish a numerical scale and matches line labels to their corresponding colors,
enabling meaningful comparison of changes across lines."}, {"step": 3, "task": "Determine the minimum and
maximum values for each line to calculate overall change.", "tool": "SceneDescriber", "tool_output": "Cornflower
ranges from 17 to 42. Bubblegum goes from 17 to 23. Orange Red keeps it tight from 18 to 17. Medium Orchid
from 17 to 27. Orange shoots from 39 to 47. Brown starts at 17 and climbs to 32.", "thought": "The
RegionDescriber retrieves the minimum and maximum values of each line to calculate their overall change."},
{"step": 4, "task": "Estimate the average height of the fastest-growing line across the chart.", "tool":
"Calculator", "tool_output": "The average height of the Cornflower line is approximately 30 on the y-axis.",
"thought": "The Calculator computes the change and average height of each line, allowing us to identify the one
with the greatest overall change and report its average position on the chart."}],
"final_answer": {"value": "Cornflower, 30", "justification": "The line chart was analyzed to compare the overall
change in each line. Cornflower showed the greatest change, and its average height was calculated to be
approximately 30."}

Incorrect final answer
Wrong tool call
Wrong usage of the tool, CodePlotter is a generative tool that outputs the image of a plot

Figure 6: Qualitative comparison of Qwen2.5 on visual reasoning tasks from Agent-X.
Qwen2.5 often hallucinates tool behavior and produces overconfident justifications without
numerical evidence. It struggles with temporal reasoning, overuses general-purpose tools like
SceneDescriber, and fails to maintain consistency between reasoning steps and final answers.
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F.3 Reasoning Chain Experiments

Goal Accuracy vs. Question Difficulty. To better understand model performance across
varying levels of task complexity, we categorize queries into easy and hard subsets using a
difficulty classifier based on LMM confidence scores and step trace complexity. As shown in
Figure 7, all models perform better on easy queries, with a noticeable drop in Goal Accuracy
for harder examples. For instance, Qwen2.5 drops from 39% to 31% and InternVL3 from
28% to 14%, indicating that model reliability significantly declines as reasoning difficulty
increases. Gemini-2.5 performs the strongest overall, suggesting better robustness across
query difficulty levels.

Figure 7: Average Goal Accuracy by difficulty level across models.

Goal Accuracy vs. Reasoning Depth. We also analyze how the number of reasoning
steps (chain length) affects task success. Figure 8 shows that deeper reasoning traces (i.e.,
5-6 steps) generally correlate with higher or more stable Goal Accuracy for strong models
like GPT-4o-mini and Qwen, suggesting their improved ability to handle multi-hop reasoning.
In contrast, performance for InternVL3 and VideoLLaMA3 dips at deeper depths, exposing
their limited capacity for long-horizon reasoning. These findings underscore the importance
of both depth-aware reasoning and intermediate step consistency.

Figure 8: Goal Accuracy vs. reasoning chain depth.
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Figure 9: Tool Call analysis across
LMM families on Agent-X.

Tool Call Success and Failure Analysis. Figure 9
shows the number of successful and failed tool invo-
cations per model. A successful call executes without
format or argument errors. The GPT family achieves
the highest success rate (83.8%) relative to its total calls,
with GPT-4o demonstrating a strong balance between
usage and reliability. InternVL models lead to abso-
lutely successful calls but exhibit high failure counts,
primarily due to invalid tool usage. Qwen2.5-VL-8B
shows the highest precision, with only 109 failures out of
2241 calls, reflecting robust format compliance. In con-
trast, o4-mini is the most aggressive, issuing 3374 calls
but suffering the highest failure rate (1038). Gemini-3-
4B and VideoLLaMA3-7B show moderate tool use, with Gemini-3-4B maintaining a lower
failure count. These trends highlight three behavioral patterns: aggressive models (e.g.,
InternVL3-8B) invoke tools frequently but are prone to errors; conservative models (e.g.,
Qwen2.5-VL-7B) prioritize accuracy over volume; and balanced models (e.g.., GPT-4o)
combine moderate tool use with high reliability.
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G Instruction for Annotators

Query Construction Guidelines
Input Selection Rules:

• Select inputs (images or videos) from publicly available datasets to ensure
broad coverage of real-world scenarios.

• Include diverse environments such as sports, autonomous driving, web brows-
ing, surveillance footage, etc.

• Use image files that range from clean to cluttered scenes to test for occlusions
and visual complexity.

• For video files, ensure that there is meaningful variation or motion across
frames (e.g., object movement or temporal change).

Query Design Requirements:
• Design queries that require at least three distinct reasoning steps.
• Each query must involve at least two different tools from the provided

tool list (Table 6).
• Avoid trivial or single-glance questions; queries must require reasoning

grounded in the input.
• Do not mention tool names explicitly in the query. (e.g., “Use OCR to read

the sign” is not allowed).
• If referencing dynamic or time-sensitive information, specify a fixed date,

time frame, or source.
• For multi-image queries, ensure that the question requires reasoning across

the images and not individually.
• For video queries, ensure that reasoning involves content across multiple

frames.

Language and Verification Rules:
• Write all queries and answers in English.
• Ensure that each answer can be verified consistently by human evaluators.
• Avoid ambiguous questions that could lead to inconsistent answers.

Figure 10: Annotation instruction document used during the query construction stage.
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Reasoning Trace and Final Answer Annotation Guidelines

Your Task:
You are provided with a set of image- or video-based queries along with tool metadata.
Your job is to verify and improve the reasoning steps, final answer, and justification
for each sample. Ensure that the steps are logical, human-like, and grounded in the
given tools and inputs.

Reasoning Trace Requirements:
• Each reasoning trace must contain at least three distinct steps.
• Use at least two different tools from the provided tool list.
• Each step should include:

– Thought: What the agent is trying to figure out.
– Tool: The tool being used.
– Input: What is passed to the tool (e.g., image name, region, text).
– Output: What the tool returns.

• Steps should form a coherent, human-like progression. Each step should
follow logically from the previous.

• Ensure tool use is appropriate and consistent with its defined capabilities.
• Do not invent outputs: use plausible results based on the image and tool

functionality.

Final Answer and Justification Guidelines:
• The final answer must be consistent with the reasoning steps.
• For objective queries, the answer should be accurate, verifiable, and clearly

correct.
• For subjective or generative queries, the answer should be reasonable, coherent,

and grounded in the input.
• Avoid vague or incomplete answers: the answer should fully resolve the query.
• The justification should summarize the reasoning in clear natural language.

Annotation Rules:
1. Do not edit or rewrite the query. Focus only on the reasoning steps, answer,

and justification.
2. Use fluent, human-like language for the thoughts and justifications.
3. Make sure each reasoning chain is clear, logically structured, and not overly

long.
4. Flag samples if the image, video, or query is ambiguous, irrelevant, or

unsolvable.

Figure 11: Instruction document for reasoning step and answer annotation.

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

H Agent-X Task Examples

Example 1

AgentX_176.jpg

Query: Which color line shows the greatest overall change in the y-direction and
approximately what is its average height across the chart?

Involved Tools: SceneDescriber, OCR, RegionDescriber, Calculator

Steps:
1. Describe the scene in the chart to identify the trends of the different colored

lines.
2. Extract the y-axis values to understand the numeric scale and support

trend comparison.
3. Determine the minimum and maximum values for each line to calculate

overall change.
4. Estimate the average height of the fastest-growing line across the chart.

Reasoning Trace for steps:
1. The SceneDescriber confirms the image is a line chart and identifies the

color-coded lines, which is necessary to analyze their trends.
2. The OCR extracts y-axis values to establish a numerical scale and matches

line labels to their corresponding colors, enabling meaningful comparison
of changes across lines.

3. The RegionDescriber retrieves the minimum and maximum values of each
line to calculate their overall change.

4. The Calculator computes the change and average height of each line,
allowing us to identify the one with the greatest overall change and report
its average position on the chart.

Answer: Cornflower, 30

Justification: The line chart was analyzed to compare the overall change in each
line. Cornflower showed the greatest change, and its average height was calculated
to be approximately 30.

Figure 12: Example 1
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Example 2

AgentX_100.jpg

Query: Is this kitchen more likely set up for a cooking class or for a private
dinner?

Involved Tools: SceneDescriber, ObjectCounter, LocateObjectByText

Steps:
1. Describe the scene to understand the overall layout and setting of the

kitchen.
2. Count the number of cooking stations or setups visible.
3. Examine the arrangement and positioning of kitchen equipment.
4. Assess the kitchen’s design and features to determine its suitability for a

cooking class or private dinner.

Reasoning Trace for steps:
1. The SceneDescriber tool highlights multiple cooking stations, suggesting a

layout intended for simultaneous use by several individuals, typical of a
cooking class setup.

2. The ObjectCounter tool confirms the presence of seven stovetops, support-
ing the idea that the kitchen is designed for group-based cooking activities
rather than a private dinner.

3. The LocateObjectByText tool is used to find specific items like cut-
ting boards in the image, showing that each station is individually
equipped—reinforcing the setup’s suitability for a cooking class.

4. The overall utilitarian and organized layout, as observed through the
SceneDescriber, indicates the space is structured for instructional use or
demonstrations, not for a private dining experience.

Answer: A cooking class.

Justification: The kitchen features multiple cooking stations, including seven
stovetops and individual cutting boards, all arranged in a structured layout. This
setup is characteristic of a cooking class environment, where several people cook
simultaneously, rather than a setting intended for a private dinner.

Figure 13: Example 2
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Example 3

AgentX_212.1.jpg

AgentX_212.2.jpg

Query: What is the highest point visible on the plotted surface, and where does
it occur in the 3D space?

Involved Tools: RegionDescriber, MathOCR, Solver

Steps:
1. Describe the region corresponding to the peak of the surface plot to

determine approximate x and y values.
2. Extract the equation for the surface to calculate the exact value of z.
3. Compute the z-value at the identified (x, y) coordinates.

Reasoning Trace for steps:
1. The RegionDescriber tool is used to analyze the highest point on the

plotted surface. This helps estimate the corresponding x and y coordinates,
which are visually identified as approximately (2,3).

2. The MathOCR tool extracts the surface equation z = sin(x2) + cos(x2)
from the image. This is needed to compute the exact value of z at the
identified location.

3. The Solver tool evaluates the equation at x=2 and y=3, yielding a computed
z-value of approximately 0.24. This confirms the height of the highest
visible point in the 3D space.

Answer: The highest point on the plotted surface occurs at coordinates (x, y, z)
= (2.0, 0.0, 0.24).

Justification: The highest point was visually located at (2,3). Using the extracted
equation, the z-value at this point was computed to be approximately 0.24, con-
firming its position in the 3D space.

Figure 14: Example 3
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Example 4

AgentX_0.jpg

Query: What kind of room is the poster located in, and what does it say?

Involved Tools: SceneDescriber, LocateObjectByText, OCR

Steps:
1. Describe the scene to determine what type of room is shown.
2. Locate the poster within the scene to enable reading its content.
3. Extract text from the poster in the scene.

Reasoning Trace for steps:
1. The SceneDescriber tool identifies typical kitchen elements like cabinets, a

sink, a dish rack, a microwave, and a stove, which indicates that the room
is a kitchen.

2. The LocateObjectByText tool helps determine where the poster is in the
image, allowing me to see what is written on it.

3. The OCR tool allows extraction of the visible text from the poster, making
it possible for me to read what it says.

Answer: The poster is in a kitchen and reads: “NASHVILLE MUSIC CITY
USA! TENNESSEE.”

Justification: Key kitchen elements such as a microwave, oven, stove, sink, and
cabinets were identified, confirming the room is a kitchen. The poster’s position in
the image was located, and its text was extracted, allowing the content to be read
and verified.

Figure 15: Example 4
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Example 5

AgentX_133.jpg

Query: What is the solution to the equation, and is the solution real, complex, or
integer?

Involved Tools: MathOCR, Solver, Calculator

Steps:
1. Extract the mathematical expression from the image.
2. Solve the extracted equation to find the values of x
3. Analyze the solutions to determine whether they are real, complex, or

integers.

Reasoning Trace for steps:
1. The MathOCR tool extracts the equation (x−sqrt(2))2 +4∗sqrt(2)∗x = 0

from the image, enabling symbolic processing.
2. The Solver tool is used to solve the equation, yielding the solution x =

−sqrt(2).
3. The Calculator confirms that the value x = −sqrt(2) is a real number,

which is irrational but not complex or integer.

Answer: x = −sqrt(2). Real

Justification: The equation was extracted, solved, and evaluated. There is just
one solution of this equation. The resulting value is real and irrational, not complex
or integer.

Figure 16: Example 5
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Example 6

AgentX_555.jpg

Query: How many species does the top predator prey on?

Involved Tools: OCR, SceneDescriber, ObjectCounter

Steps:
1. Extract all text from the image to identify species and connections.
2. Analyze the food web structure to find species with no outgoing arrows —

indicating top predators.
3. Count the number of incoming arrows to the top predator to determine

how many species it preys on.

Reasoning Trace for steps:
1. Reading the species names helps establish which organisms are part of the

food web and which ones are connected by feeding relationships.
2. Analyzing the direction of arrows reveals the top predators—species with

no outgoing arrows—indicating that nothing preys on them. In this case,
the Hawk and Mountain Lion meet that condition.

3. Counting the number of arrows pointing to each top predator shows how
many species they prey on: four for the Hawk and two for the Mountain
Lion.

Answer: The top predators in the food web are the Hawk and the Mountain Lion,
which prey on four and two species, respectively.

Justification: The Hawk and Mountain Lion are top predators with no outgoing
arrows. Counting the arrows pointing to each confirms that the Hawk preys on
four species and the Mountain Lion on two.

Figure 17: Example 6
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Example 7

AgentX_339.1.jpg

AgentX_339.2.jpg

Query: Using the provided data, verify the x, y, and size values against the bubble
chart. Identify if there are any discrepancies in the data representation, and plot a
corrected version of the chart if necessary.

Involved Tools: OCR, SceneDescriber, LocateObjectByText, CodePlotter

Steps:
1. Extract the lists of x-values, y-values, and bubble sizes from the data.
2. Analyze the layout and structure of the bubble chart to understand how

the data is represented visually.
3. Compare the extracted values with the chart to identify any mismatches

in position or size.
4. Generate a corrected version of the chart using the accurate data values.

Reasoning Trace for steps:
1. The OCR tool is used to extract the lists of x_values, y_values, and

bubble_sizes from the data, which are needed to verify the accuracy of
the plotted chart.

2. The SceneDescriber helps interpret the layout of the bubble chart, including
axis scales and the overall distribution of points, which provides context
for comparison.

3. By visually inspecting the chart and referencing the extracted values, a
mismatch is observed between the actual positions or sizes of the bubbles
and what the data specifies.

4. Re-plotting ensures that the visual representation now matches the ex-
tracted x, y, and bubble sizes to produce an accurate visual representation.

Answer: ϕ

Justification: The extracted x, y, and size values did not match the visual chart.
Re-plotting the data corrected these discrepancies, ensuring the chart accurately
reflects the provided values.

Figure 18: Example 7
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Example 8

AgentX_534.jpg

Query: What emotion is being depicted in the image? What is the meme about?

Involved Tools: SceneDescriber, OCR, RegionDescriber

Steps:
1. Describe the scene in the image to identify the depicted emotion.
2. Extract text from the image to understand the context of the meme.
3. Analyze combined information to conclude the meme’s theme.

Reasoning Trace for steps:
1. The scene description helps identify that the cat appears sad, indicating

the emotion of sadness or disappointment.
2. The text provides context for the image, explaining why the depicted

emotion is sadness or disappointment.
3. Combining the cat’s sad expression with the text content, the meme

humorously conveys the disappointment of a common online interaction.

Answer: The emotion depicted is sadness. The meme is about the disappointment
felt when a friend goes offline right after receiving a message.

Justification: The steps provided clarity on the cat’s expression (sadness) and
the textual context (meme scenario), confirming the theme of disappointment.

Figure 19: Example 8
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Example 9

AgentX_340.1.jpg

AgentX_340.2.jpg

Query: Based on the provided code snippet and the pie chart, which continent
represents the largest area from the given data, and which car brand represents
the largest percentage in the pie chart? Calculate the difference between these two
percentages.

Involved Tools: MathOCR, Calculator, OCR, SceneDescriber

Steps:
1. Identify the continent with the largest area from the code snippet.
2. Calculate the percentage that this area represents out of the total.
3. Analyze the pie chart to identify the largest slice in the pie chart.
4. Extract the percentage value and brand name associated with that slice.
5. Calculate the difference between the largest area percentage and the largest

pie chart percentage.

Reasoning Trace for steps:
1. To determine which continent dominates in size, the area values from

the code need to be examined so that we can use the correct value for
comparison.

2. Calculating the percentage of the largest area provides a normalized value,
making it possible to directly compare it with percentages shown in the
pie chart.

3. The SceneDescriber helps interpret the pie chart structure, which is neces-
sary to visually identify the largest share based on the relative size of each
slice.

4. The OCR tool is used to confirm the brand and exact percentage of the
largest slice, ensuring that the visual estimate is backed by precise data.

5. Finding the difference between the two percentages answers the core
question by quantifying how the largest values from each source compare.

Answer: Asia, Mercedes, 1.1%

Justification: The continent with the largest area is Asia (25%), and the car
brand with the largest percentage is Mercedes (26.1%). The difference between
these two percentages is 1.1%.

Figure 20: Example 9
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Example 10

AgentX_630_6.jpg AgentX_630_30.jpg AgentX_630_54.jpg

Query: Is the person in the video an employee?

Involved Tools: SceneDescriber, RegionDescriber

Steps:
1. Identify the type of location shown in the video.
2. Determine whether the setting appears open to customers or closed.
3. Observe the placement of objects for operational context.
4. Analyze the person’s behavior and interaction with the environment.
5. Consider whether the actions match expected employee routines.
6. Decide if the person’s presence and behavior indicate they are an employee.

Reasoning Trace for steps:
1. Identifying the place as a restaurant or café sets clear expectations for how

staff typically behave.
2. If the place appears closed, anyone inside should either be staff or unau-

thorized.
3. The chairs placed upside down on tables indicate the location is not open

to customers.
4. The person’s cautious movement and drawer searching suggest they are

not performing routine tasks.
5. Staff usually act with purpose, doing things like cleaning or closing up,

not wandering or poking around
6. The closed setting and unusual behavior make it unlikely that the person

is an employee.

Answer: No

Justification: The restaurant appears closed, and the person’s behav-
ior—cautiously searching through drawers—does not match typical staff duties.
This suggests they are likely not an employee.

Figure 21: Example 10
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Example 11

AgentX_358_5.jpg AgentX_358_25.jpg AgentX_358_45.jpg

Query: How many people are entering the elevator?

Involved Tools: SceneDescriber, RegionDescriber, ObjectCounter

Steps:
1. Understand the overall context of the scene and confirm that the setting

involves an elevator.
2. Analyze the body positions and movement direction of individuals across

the frames to identify who is entering the elevator.
3. Count the number of people who move into the elevator space.

Reasoning Trace for steps:
1. Recognizing the environment as an elevator area helps set expectations for

how people should move relative to the door.
2. Analyzing the region near the elevator door across frames shows one woman

stepping forward into the space, while others remain stationary or are
already inside.

3. Counting only the individuals who cross the threshold into the elevator
shows that one person enters.

Answer: 1

Justification: A woman is moving into the elevator while others remain in place
or are already inside, confirming that only one person is entering.

Figure 22: Example 11
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I Generation Prompts

Query Generation

"You are an annotator tasked with generating a realistic and verifiable user
query for benchmarking a multimodal LMM-based assistant.

You are provided with the following tools the assistant can use:

tools = [ "ImageDescription", "CountGivenObject", "OCR", "DrawBox",
"Calculator", "DetectGivenObject", "RegionAttributeDescription",
"MathOCR", "Solver", "Plot", "GoogleSearch", "TextToImage", "AddText",
"ImageStylization" ]

Your job is to generate one single complex and human-evaluable user query
that satisfies all of the following:

• If you are given multiple images, the query must require reasoning
across multiple images (not just one)

• If you are given multiple frames, the query must involve comparing,
tracking, or analyzing across multiple video frames.

• The query must require at least 3 distinct reasoning steps to be
answered.

• It must require at least 2 different tools from the list above.

• Do not mention tool names explicitly.

• If the query involves online or time-sensitive content, include a
fixed timeframe or source.

• The query must be realistic and grounded in common user intentions.

• Use only English.

• All queries must be suitable for evaluation by a human — the answer
should not vary arbitrarily across individuals.

Return your result as a single JSON object on one line.
{{ "input": {file_repr}, "query": "<natural language query>" }}"

Figure 23: Prompt given to GPT4-o to for the initial query generation.
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Reasoning and Final Answer

"You are an agent performing multimodal reasoning using the tools listed
below.

Your goal is to answer the given query step-by-step by selecting the right
tools for each stage of reasoning.

For each step:

• Clearly state what you’re trying to do.

• Specify the tool you are using.

• Explicitly include the input provided to the tool and the output
received from the tool.

• Explain what you learned or why this step was necessary.

Make sure your tool usage follows the tool descriptions provided. Do not
hallucinate tools or skip intermediate reasoning steps.

–-
Available Tools & How to Use Them:
{toolmeta_section}
–-
Query: "{query}"
Images: {image1, image2, ...}

–-
Return your output as a JSON list of steps, formatted like this:

[ {
"step": <step number>,
"task": "<Short description of what this step is trying to do>",
"tool": "<Tool name(s)>",
"input": "<Input provided to the tool>",
"output": "<Output from the tool>",
"thought": "<Why this step was needed, or what you learned>"
},
...
{
"final_answer": {
"value": "<Final conclusion>",
"justification": "<How all steps lead to the answer>"
} } ]"

Figure 24: Prompt given to GPT4-o for the initial reasoning and final answer generation.

46



2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

J Evaluation Prompts

Grounding Score

You are an evaluation assistant measuring the groundedness of each reasoning
step performed by a vision-language agent.

"You are given a Ground Truth (GT) block containing the original query,
a sequence of reasoning steps, and the final answer along with its
justification. Each reasoning step includes the task being attempted, the
tool used (with its input and output), and the agent’s thought process.

You are also given the full reasoning trace produced by the agent, including
each step’s task, selected tool and its output, and thought.

Your task is to assess whether each agent step is visually and contextually
grounded — that is, whether the task, the selected tool, the tool output, and
the agent’s thought process are all supported by the GT.

Evaluation Guidelines:

• If the number of steps in the GT and the model differ:

– Any extra model step beyond the GT steps should receive a score
of 0 (hallucinated or unjustified).

– Any GT step that the model omits should also receive a score of 0
(missing reasoning).

• The Grounding Score for the full query is computed as the average of
the per-step scores.

Assess the following per step:

• Is the task relevant to the query and aligned with the GT?

• Is the tool appropriate for this task?

• Is the output consistent with what’s in the GT?

• Is the thought grounded and logically aligned?

Scoring Criteria:

• 1 — All aspects are grounded (task, tool, output, and thought)

• 0.5 — Partially grounded (some align, some don’t)

• 0 — Ungrounded or hallucinated

Output format:
Score: <0, 0.5, or 1>
Justification: <1–2 sentence explanation for the score>"

Figure 25: Prompt for computing the grounding score of reasoning steps produced by
vision-language agents.
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Tool Precision

"You are an evaluation assistant measuring tool precision in an agent’s
reasoning step.

You are given a Ground Truth (GT) block containing the original query,
a sequence of reasoning steps, and the final answer along with its
justification. Each reasoning step includes the task being attempted, the
tool used (with its input and output), and the agent’s thought process.

You are also given the full reasoning trace produced by the agent, including
each step’s task, selected tool and its output, and thought.

Your task is to assess whether the tool selected by the agent in each
reasoning step is the most appropriate tool for the task, by comparing it
with the GT.

Evaluation Guidelines:

• If the number of steps in the GT and the model differ:

– Any extra model step beyond the GT steps should receive a score
of 0 (hallucinated or unjustified).

– Any GT step that the model omits should also receive a score of 0
(missing reasoning).

• The Tool Precision score for the full query is computed as the
average of the per-step scores.

Assess the following per step:

• Is the tool selected by the agent the same as the one used in the GT?

• Is the tool the most appropriate for the task being attempted?

Scoring Criteria:

• 1 — The selected tool matches the GT tool and is appropriate for the
task.

• 0 — The tool does not match the GT or is an inappropriate choice.

Output format:
Score: <0 or 1>
Justification: <1–2 sentence explanation for the score>"

Figure 26: Prompt for assessing whether the tools selected by the agent in each step match
the ground truth.
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Tool Accuracy

"You are an evaluation assistant measuring tool accuracy in an agent’s
reasoning step.

You are given the task the agent is trying to accomplish, the tool it
uses along with its input and output, and the tool metadata containing a
description of the tool’s purpose and its expected input/output formats.

Your task is to assess whether the tool used by the agent was applied
correctly in each step by checking:

• Whether the output format is valid and consistent with the tool’s
specification (based on tool metadata).

• Whether the output is relevant and meaningful for completing the
step’s task.

Evaluation Guidelines:

• The Tool Accuracy score for the full query is computed as the average
of the per-step scores.

Assess the following per step:

• Is the tool’s output correctly formatted according to the tool
metadata?

• Is the output meaningful and appropriate for the stated task?

Scoring Criteria:

• 1 — Output is valid, properly formatted, and clearly relevant to the
task.

• 0.5 — Output is partially valid or partially relevant.

• 0 — Output is incorrectly formatted, irrelevant, or unhelpful.

Output format:
Score: <0, 0.5, or 1>
Justification: <1–2 sentence explanation for the score>"

Figure 27: Prompt for verifying correct tool usage and output formatting based on metadata.
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Faithfulness Accuracy

"You are an evaluation assistant measuring the Faithfulness Accuracy of an
agent’s reasoning process.

You are given a Ground Truth (GT) block containing the original query,
a sequence of reasoning steps, and the final answer along with its
justification. Each reasoning step includes the task being attempted, the
tool used (with its input and output), and the agent’s thought process.

You are also given the full reasoning trace produced by the agent, including
each step’s task, selected tool, output, and thought.

Your task is to assess how faithful the agent’s reasoning trace is to the GT,
i.e., whether the steps follow a logically sound plan that aligns with the
structure, intent, and direction of the GT.

Evaluation Guidelines:

• Focus on the structure and logical flow of the agent’s reasoning
steps.

• Determine whether the steps collectively form a coherent strategy to
answer the query.

• Faithfulness is about consistency with the GT’s method, not
necessarily correctness of individual steps.

Scoring Criteria:

• 1 — The reasoning is faithful to the GT: it follows a logically sound
plan that mirrors the GT in structure and direction.

• 0.5 — The reasoning partially follows the GT’s structure, but
contains some deviations, redundancies, or inconsistencies.

• 0 — The reasoning is not faithful to the GT and lacks logical
progression or alignment with the intended plan.

Output format:
Score: <0, 0.5, or 1>
Justification: <1–2 sentence explanation for the score>"

Figure 28: Prompt used to evaluate the structural faithfulness of agent reasoning to the
ground truth.
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Context Score

"You are an evaluation assistant measuring the Context Score of an agent’s
reasoning step.

You are given a Ground Truth (GT) block containing the original query,
a sequence of reasoning steps, and the final answer along with its
justification. Each reasoning step includes the task being attempted, the
tool used (with its input and output), and the agent’s thought process.

You are also given the full reasoning trace produced by the agent, including
each step’s task, selected tool and its output, and thought, as well as the
agent’s final answer and justification.

Your task is to assess whether the agent’s reasoning step is grounded in the
input context, and whether that context was effectively used in the reasoning
process. Inputs may include image, video, text, audio, or a combination.

Evaluation Guidelines:

• If the number of steps in the GT and the model differ:

– Any extra model step beyond the GT steps should receive a score
of 0 (hallucinated or unjustified).

– Any GT step that the model omits should also receive a score of 0
(missing reasoning).

• The Context Score for the full query is computed as the average of
the per-step scores.

Assess the following per step:

• Does the agent correctly use relevant parts of the input?

• Is the input used appropriate for the tool selected and the task
being attempted?

• Does the reasoning show effective and meaningful use of the input?

Scoring Criteria:

• 1 — The agent uses the input fully and appropriately.

• 0.5 — The agent uses some relevant input but misses important details
or misuses others.

• 0 — The agent ignores or misinterprets the input entirely.

Output format:
Score: <0, 0.5, or 1>
Justification: <1–2 sentence explanation for the score>"

Figure 29: Prompt for evaluating the contextual grounding of each reasoning step.
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Factual Accuracy

"You are an evaluation assistant measuring the factual accuracy of the
agent’s reasoning steps.

You are given a Ground Truth (GT) block containing the original query,
a sequence of reasoning steps, and the final answer along with its
justification. Each reasoning step includes the task being attempted, the
tool used (with its input and output), and the agent’s thought process.

You are also given the full reasoning trace produced by the agent, including
each step’s task, selected tool, tool input/output, and thought.

Your task is to assess whether the agent introduces any hallucinated,
fabricated, or factually incorrect information in its reasoning when compared
to the GT.

Evaluation Guidelines:

• Compare the model’s reasoning steps to the GT to identify factual
hallucinations or incorrect claims.

• Focus on whether the output or thought includes details not supported
by the GT.

• Do not penalize for minor omissions unless they lead to a factual
error.

Scoring Criteria:

• 1 — No factual errors or hallucinations compared to the GT.

• 0.5 — Minor inaccuracies or vague mismatches.

• 0 — Major factual errors or hallucinated content.

Output format:
Score: <0, 0.5, or 1>
Justification: <1–2 sentence explanation for the score>"

Figure 30: Prompt for evaluating factual correctness of the agent’s reasoning steps.
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Semantic Accuracy

"You are an evaluation assistant measuring the Semantic Accuracy of an
agent’s reasoning process.

You are given a Ground Truth (GT) block containing the original query,
a sequence of reasoning steps, and the final answer along with its
justification. Each reasoning step includes the task being attempted, the
tool used (with its input and output), and the agent’s thought process.

You are also given the full reasoning trace produced by the agent, including
each step’s task, selected tool and its output, and thought, as well as the
agent’s final answer and justification.

Your task is to assess whether the agent’s reasoning and final output
semantically align with the Ground Truth, i.e., whether the agent has covered
all the essential parts of the query as demonstrated in the GT.

Evaluation Guidelines:

• Compare the agent’s reasoning trace and final answer with the GT to
check whether all key components of the query are addressed.

• Credit should be given for meaningful semantic coverage, not
superficial similarity.

• If the model ignores or misunderstands core parts of the GT reasoning
or final answer, penalize accordingly.

Scoring Criteria:

• 1 — The agent addresses all key components of the query, matching the
GT’s semantic scope.

• 0.5 — Some parts are covered, but the response misses or weakly
handles other essential elements.

• 0 — The agent’s reasoning or answer omits or misrepresents major
parts of the query.

Output format:
Score: <0, 0.5, or 1>
Justification: <1–2 sentence explanation for the score>"

Figure 31: Prompt for evaluating semantic consistency of the agent’s reasoning and answer.
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Goal Accuracy

"You are an evaluation assistant measuring the Goal Accuracy of a
vision-language agent’s final answer.

You are given the original query, the agent’s final output, the ground
truth (GT) final answer, and the type of query — either “objective” or
“subjective”.

Your task is to assess how well the agent’s final output matches the ground
truth answer, based on the nature of the query.

Evaluation Guidelines:

• The Goal Accuracy score is computed once per query (not per step).

• Use exact match evaluation for objective queries.

• Use semantic similarity evaluation for subjective queries.

Scoring Criteria:

• For objective queries:

– 1 — The final output matches the GT exactly or is clearly
equivalent.

– 0 — The output is incorrect, incomplete, or unrelated.

• For subjective queries:

– Score = Cosine similarity between the agent’s answer and the GT
answer (range: 0 to 1)

Output format:
If objective:
Score: <0 or 1>
Justification: <Optional 1–2 sentence explanation>

If subjective:
Score: <cosine similarity>
Justification: <Optional 1–2 sentence explanation>"

Figure 32: Prompt for evaluating alignment of final answer with the ground truth.
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Toolset Accuracy

"You are an evaluation assistant measuring the toolset accuracy of an agent’s
reasoning process.

You are given a Ground Truth (GT) block containing the original query,
a sequence of reasoning steps, and the final answer along with its
justification. Each reasoning step includes the task being attempted, the
tool used (with its input and output), and the agent’s thought process.

You are also given the full reasoning trace produced by the agent, including
each step’s task, selected tool and its output, and thought.

Your task is to evaluate whether the agent used the correct tools overall by
comparing the set of tools it used to the set used in the GT.

Evaluation Guidelines:

• If the agent uses tools that are not present in the GT or misses
tools that are, it should be penalized.

• The score reflects how well the agent’s toolset aligns with the GT
toolset across the full reasoning trace.

Output format:
Score: <F1 score rounded to 2 decimal places>
Justification: <1–2 sentence explanation for the score>"

Figure 33: Prompt for evaluating alignment of the agent’s toolset with the ground truth.
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K Benchmark Curation Examples

The raw LMM-generated queries were often suboptimal: they merged unrelated tasks (e.g.,
“identify objects, find government symbols, count frames, and explain political significance”),
contained ill-posed demands such as “circle the damaged part” without an annotation
interface, or asked for information invisible in the image (e.g., a jet’s full landing-gear
specification from a single profile shot). As illustrated in Fig. 34, therefore, every prompt
underwent a mandatory human-in-the-loop rewrite. Curators distilled each draft into a
single, objectively answerable question that aligns with the available tools, for example,
“How many people are carrying patterned umbrellas, and what pattern is on the umbrella
closest to the camera?” This step removes speculation, narrows the scope to verifiable visual
evidence, and converts noisy LLM proposals into reliable, evaluation-grade tasks.

In the image provided, extract the text from the poster and list on the wall. Then, based on the items visible in the
kitchen, estimate the most likely time of day this photo was taken. Finally, draw a box around the kitchen appliance
that indicates this time period.

What kind of room is the poster located in, and what does it say?

Generated Query

Human Refined Query

AgentX_0.jpg

Examine the image and identify the main objects being held by the individuals. Are there any recognizable
landmarks or symbols related to governmental organizations? Then count how many framed items are present....
Based on these steps, summarize the significance of this image in the context of ...

How many people are carrying patterned umbrellas, and identify the pattern of the umbrella closest to the camera?

Generated Query

Human Refined Query

AgentX_7.jpg

What is the angle between the bent pole holding the stop sign and the ground? Provide a brief description of the
surrounding environment, and count the number of cars visible in the image.

Does any part of this scene require maintenance? Please indicate by circling it.

Generated Query

Human Refined Query

AgentX_74.jpg

Based on the markings and model of the aircraft in the image, identify the country of origin and type of this aircraft.
Then count the number of visible tires and verify if that corresponds with the typical landing gear configuration of
this aircraft model."

Identify the country of origin and type of this aircraft.

Generated Query

Human Refined Query

AgentX_95.jpg

Identify the current weather condition in this image and count the number of vehicles visible. If the visibility is low
due to fog, calculate whether driving with fog lights on is necessary according to typical traffic regulations.

Does the environment appear safe for riding a motorcycle at this moment?

Generated Query

Human Refined Query

AgentX_83.jpg

Identify the activity being performed in the image, count the number of visible toothbrushes, and determine the
age group of the person through reflections and context. Considering the timing (morning/evening based on light),
suggest a daily dental routine that fits this scenario.

Explain the reason behind having multiple toothbrushes in one hand.

Generated Query

Human Refined Query

AgentX_72.jpg

Figure 34: Illustrative corrections: original LMM queries versus the refined, task-focused
prompts used in our benchmark.
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Step: 1
Task: Identify the species of individuals in the image.
Tool: SceneDescriber
Thought: Understanding the species in the image is necessary to determine the weight of an individual penguin, which
will be needed to solve the problem.

Step: 2
Task: Find the average weight of a penguin.
Tool: WebSearch
Thought: Knowing the average weight of a penguin allows calculation of how many are needed to match the weight of a
blue whale.

Step: 3
Task: Calculate the number of penguins needed to match the weight of a 150,000 kg blue whale.
Tool: Calculator
Thought: Dividing the weight of the blue whale by the average weight of a penguin gives the number of penguins needed.

Final Answer
value: 5000 penguins
justification: The scene describes penguins, and the average weight of a penguin is 30 kg. Calculating 150,000 kg (weight
of a blue whale) divided by 30 kg results in 5000 penguins needed to match the whale's weight.

Step: 1
Task: Identify the species shown in the image.
Tool: SceneDescriber
Thought: The SceneDescriber tool identifies the animal in the image as a humpback whale, which is essential for determining which species’ weight should be used for comparison with
a blue whale.

Step: 2
Task: Find the average weight of a humpback whale.
Tool: WebSearch
Thought: The WebSearch tool provides the average weight of a humpback whale (approximately 30,000 kg), which is necessary to perform the weight-matching calculation.

Step: 3
Task: Calculate how many humpback whales are needed to equal the weight of a 150,000 kg blue whale.
Tool: Calculator
Thought: The Calculator divides the blue whale’s weight (150,000 kg) by the humpback whale’s average weight to determine how many individuals are needed to equal that mass.

Final Answer
value: 5
justification: The animal was identified as a humpback whale. Its average weight was found using WebSearch to be 30,000 kg. Dividing 150,000 kg by this value shows that five
humpback whales are needed to match the weight of a blue whale.

Generated Reasoning and Answer

Human Refined Reasoning and Answer

Human Refined Query

How many individuals of this species would be
required to match the weight of a 150,000 kg
blue whale?

AgentX_150.jpg

Figure 35: Before–after refinement of an automatically generated reasoning trace.
Left pane: the raw LMM output mis-identifies the species (penguin → humpback whale),
fabricates an ObjectCounter call, and propagates the error to an absurd “5000 penguins”
answer. Right pane: after human verification, each tool is appropriate to its sub-task, the
correct constant answer is retrieved, and the calculator produces the logically consistent
reasoning. The revision phase thus excises hallucinated steps, fixes factual look-ups, and
restores end-to-end coherence.

K.1 Reasoning Trace Generation

After a query was finalised, we asked an LMM to auto-expand it into a complete reasoning trace:
thoughts, tool calls, and a numerical answer. These raw traces were often self-contradictory:
a model might identify penguins in Step 1, retrieve the average weight of a humpback whale
in Step 2, hallucinate an ObjectCounter call, and then feed the spurious value into the
calculator. Accordingly, every trace underwent a mandatory Phase-2 human pass in which
annotators:

1. verified that each tool matched the declared sub-task,
2. replaced incorrect factual look-ups, and
3. recomputed downstream results whenever earlier constants changed.

In the whale–weight vignette, the editor corrected the species mismatch, supplied a defensible
30,000 kg 30,000 kg estimate for a humpback whale, and updated the calculator output from
“5000 penguins” to the logically sound “5 humpback whales”. This clean-up ensures that every
released trajectory is logically coherent, numerically sound, and fully executable. Figure 35
juxtaposes the LMM-generated trace (left), replete with species confusion and cascading
arithmetic errors: with the human-refined version (right), where each tool invocation,
intermediate value, and the final answer are perfectly aligned. The comparison underlines
the necessity of Phase-2 curation for converting noisy, auto-generated chains of thought into
dependable, evaluation-grade ground truth.
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AgentX Annotation Tool

Figure 36: Agent-X Annotation Tool Example

K.2 Human Verification Tool

To ensure every sample in Agent-X meets our quality bar, we developed a small web-based
“Agent-X Reasoning Annotation Tool.” When an annotator drags a folder onto the page
the interface instantly loads the raw media on the centre canvas, the agent’s step-by-step
rationale in a panel to the right, and a navigation list of all remaining tasks on the left.
Each reasoning field, including the task description, chosen tool, tool I/O, and final answer,
can be edited inline; a single Mark as verified tick confirms the trace is now correct. The
Save button writes changes back to the original Excel file, and a global Export action adds a
“verified” column plus colour-codes every modified cell so downstream scripts can compute
inter-annotator agreement. In practice reviewers process roughly fifty samples per hour,
and Figure 36 illustrates two typical sessions: identifying an Adobe Photoshop logo. The
tool’s tight coupling of evidence, metadata, and editing shortcuts turns what would be a
cumbersome spreadsheet task into a fluid, human-in-the-loop verification workflow.
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