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Abstract

Geographic language understanding (GLU)
tasks ask models to map from text to maps.
Geographical complex description parsing
(GCDP) is a GLU task where models must as-
sign sets of map coordinates to text that goes
beyond a single named location, such as “...be-
tween the towns of Adrano and S. Maria di
Licodia, 32 kilometres northwest of Catania’.
In GCDP, the input is both a text and a set of ref-
erence geometries for known places in the text
(e.g., Adrano, S. Maria di Licodia, Catania),
and the output is the geometry of the location
described. In this paper, we convert a GCDP
corpus into an image + text — image bench-
mark to evaluate recent large langugage-vision
models on such complex task. The models
show weak performance, with analysis show-
ing a lack of understanding of even simpler
tasks like recognizing regions by color.

1 Introduction

The goal of geographic language understanding
(GLU) is to develop models that can map from de-
scriptions of locations in text to the corresponding
locations on a map. A commonly studied GLU task
is geoparsing, which asks models to map mentions
of locations in text to their geographical geome-
tries, formed of sets of coordinates, typically by
linking mentions to entries in a toponym database
like GeoNames' (Gritta et al., 2018; Zhang and
Bethard, 2023). A more complex GLU task is ge-
ographical complex description parsing (GCDP),
where the input is a description of a geographical
region and a list of reference geometries (sets of
coordinates), and the goal is to predict the geome-
try of the region described (Laparra and Bethard,
2020). For example, the text “a fown and co-
mune in the Metropolitan City of Catania, Sicily,
southern Italy. .. located between the towns of Ad-
rano and S.Maria di Licodia, 32 kilometres (20 mi)
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between the towns of Adrano
and S. Maria di Licodia, 32
kilometers (20 mi) northwest of
Catania

TARGET is between the towns
of RED and LIME, 32 kilo-
metres (20 mi) northwest of

BLUE.
~

| Multi-Modal Model |

!

Figure 1: Framing geographic geometry prediction as a multi-
modal image + text — image problem. The reference
toponyms are the blue phrases. The reference geometries
are the blue map regions. The target geometry is the red
map region. The color-on-black images are our approach to
translating between maps and images.

northwest of Catania.” describes a location that is
not explicitly named. The goal is to approximate
the geometry of the location using the description
as input along with the geometries of the reference
toponyms: Catania, Sicily, Italy, Adrano, etc.

To solve this task, Laparra and Bethard (2020)
propose a grammar-based baseline that parses these
descriptions into a composition of spatial operators,
deterministic functions whose composition yields
the target geometry. This baseline achieves 0.221
F1, leaving substantial room for improvement with
machine learning methods. However, a major chal-
lenge in applying machine learning to this task is
that the reference geometries, be they polygons or
linestrings, are represented by an undefined num-
ber of coordinates, ranging from just a few to over
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a million. Although methods exist to obtain embed-
ding representations of the geometries for their use
in machine learning (Mai et al., 2022), to date there
is no clear way to get current language models to
output such geometries.

We consider an alternative to predicting coordi-
nate sets: convert geometries to bitmap images and
apply multi-modal language-vision models (LVM),
as shown in Figure 1. Our contributions are :

* We propose a strategy to convert GCDP into an
image + text — image problem and evaluate
two LVMs designed to work in this setting.

* Due to the high difficulty of the task, We develop
4 variants of the dataset, each designed to be sim-
pler than the GCDP task and individually analyze
a different required skill to solve the task.

* We find that although the current models show
some ability to solve the task, their failures stem
from lack of understanding of simpler tasks like
recognizing regions by color.

2 Datasets

We use the Laparra and Bethard (2020) GCDP cor-
pus, derived semi-automatically from Wikipedia
and Openstreemap, that contains a training set of
360,187 uncurated examples and a test set of 1,000
manually curated examples. We select 67,293 and
1,000 examples for training and development re-
spectively where all the reference locations in the
description has a geometry associated (see Ap-
pendix A). We use the same test set as Laparra
and Bethard (2020) to allow results comparison.
In the following sections, we first introduce how
we translate the GCDP problem into an image +
text — image problem. Then we introduce our
proposed dataset variants, shown in Figure 2, that
allow the study of different capabilities of LVMs.
See Appendix A for dataset generation details.

2.1 Image-based Dataset

Obtaining an image-based dataset from GCDP data
requires decisions of which part of the world map
to show in the image and how to link the reference
geometries in the image to the reference toponyms
in the text. Our strategy is as follows.

Decide boundary: To create an image, we must
first select a small region of the map, as using the
entire map would result in most locations being
smaller than a single pixel. A good region for

2Code and data will be available.

GCDP should completely include the target geome-
try, represent such geometry with a sufficient num-
ber of pixels and include at least a portion of every
reference geometry. However, the target geometry
is not known at prediction time and thus should
not be used when selecting the boundary. We thus
use a heuristic: set the boundary to 100 km in each
cardinal direction from the geometric median of
the centroids of the reference geometries.

Link reference geometries and toponyms:
Given the boundary, we create a pixel grid with
N x N pixels where each corner corresponds to
each coordinate of the boundary. For the input im-
age, we overlay the grid with the reference geome-
tries, assigning a different color to each of them,
calculating the average of the colors in RGB space
when geometries overlap. For the output image,
we overlay the grid with only the target geometry
in white. To link the reference geometries in the
image with the reference toponyms in the text, we
replace each toponym in the text with the name
of the color used to represent the corresponding
geometry. The middle of Figure 1 visualizes this
and the preceding step.

2.2 Oracle Boundary

The method to generate the boundary shown in
Section 2.1 may result in a wide boundaries where
the target geometry is represented with just a few
pixels. To better understand how this size affects
LVMs, we develop an oracle version of the image-
based dataset where we generate the images look-
ing for the minimum boundary that covers the tar-
get geometry (hence an oracle) and at least a por-
tion of all the reference geometries. We start ini-
tially from the envelope covering the target geome-
try and extend it until it touches at least one point
of all reference geometries. We add 10 kilometers
in all 4 cardinal directions to ensure that the images
include a portion of all geometries.

2.3 Colored Region Identification

For the image + text — image approach to
work, it is essential that the models are able both to
relate textual mentions of colors to those colors in
the images, and to differentiate objects of a given
color from the other objects in the image. How-
ever, this is not possible to analyze in detail in the
GCDP dataset, due to the complexity of the task.
Therefore, we generate two datasets where the text
simply states the color of the target in the input
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Figure 2: Examples from the five datasets of input text, input
image, both LVM predictions, and target image.

image, e.g., “TARGET is RED’.

Copy Color The input image contains only the
geometry of the target image, and the output image
is the same as the image dataset. The purpose of
this dataset is to test whether the models are able
to recognize a region in an image based on color.

Color The input image contains the target geom-
etry and all reference geometries, and the output
image is the same as image dataset. The purpose of
this dataset is to test whether the models are able to
differentiate objects of the color mentioned in the
text from objects of other colors.

2.4 Single Operator Understanding

The image + text — image approach requires
the models to be able to interpret the spatial rela-
tionships described in the text and to calculate the
corresponding operations to obtain the target ge-
ometry. To better understand to what extent these
models are able to achieve this, it would be neces-
sary to analyze if they can interpret a single spatial
relation (e.g. “between”) in isolation. The dataset
by Laparra and Bethard (2020) does not allow us to
perform this analysis as its input descriptions cor-
respond to compositions of spatial relations, and
its output is only the final composed geometry, not
the outputs of any of the individual relations.
Thus, we generate a synthetic dataset where the
descriptions only include a single spatial relation
using the grammar defined by Laparra and Bethard
(2020) and their deterministic implementation of
the spatial operators. A description in this dataset
looks like “TARGET is 50 km Southwest of RED”.

3 Models

We test two different LVMs on our datasets using
224 x 224 images in all cases:

CLIP (Radford et al., 2021) is a transformer-
based LVM pretrained on an image and text pairing
task. We evaluate this model because of its popular-
ity and success on several multi-modal NLP tasks.
To predict the target region, we use the CLIP model
as an encoder to extract text and image features of
the input. The fused text and visual features are
fed to a decoder to generate the target region. See
Appendix B for model implementation details.

LISA (Lai et al., 2023) is a transformer-based
LVM trained for a reasoning segmentation task, in
which the model needs to generate a segmentation
mask by reasoning from the input text and image.
We evaluate this model due to the similarity of
its pre-trained task and the image-based version
of GCDP. We use the same setting as the original
LISA paper and finetune the model on our datasets.

3.1 Training Objectives

For the CLIP model, we use a combination of
the DICE loss and per-pixel binary cross-entropy
(BCE) loss as the training objective:

L = M Lpice + A2LBcE

DICE loss is a commonly used loss function in
image segmentation tasks, which is defined as:
2pijyi; + 1
Foree =1 Zz]: pij +yi +1

where p;; € [0,1] is the i-th row, j-th column
element value of the prediction image and y;; €
{0, 1} is the i-th row, j-th column element value of
the ground truth image. The DICE loss is useful for
unbalanced datasets such as ours where the target
region makes up a small proportion of the output
image, and we want to prefer predicting the target
region to predicting every pixel as negative. In our
experiments, A1 are A\ are set to 1.

For the LISA model, as the language encoder
generates a sentence which should contain a special
token representing the prediction, we follow the
original paper and add an extra text generation loss
besides the DICE loss and the BCE loss:

Liisa = M Lpice + A2LBcE + A3 Lixt

Lt 18 the cross-entropy loss between the language
model predicted word and the teacher-forcing label.
In our experiments, A1, Ag are A3 are set to 1.



Strict Relaxed CLIP LISA
model P R Fi P R F dataset P R F1 P R F1
GRAMMAR 172 31.0 221 213 276 240 IMAGE 127 34.1 185 159 312 21.1
CLIP 72 27.0 113 134 26.1 17.7 ORACLE 21.0 204 20.7 359 426 39.0
LISA 9.1 38.7 147 155 367 218 COLOR 382 56.1 455 56.1 615 58.7

Table 1: Comparison of LISA and CLIP using the IMAGE
dataset with the grammar-based baseline proposed by Laparra
and Bethard (2020). The figures are based on the GCDP
metrics. More details in Appendix C

4 Metrics

For comparison with the grammar-based baseline
by Laparra and Bethard (2020), we use the met-
rics they proposed that are based on the overlap
between the predicted and target geometries. In
the strict version, the overlap is calculated with the
original target geometry while the relaxed version
uses its envelope, i.e., the rectangle that encloses
the geometry. For this evaluation, the predicted im-
ages must be translated back to a set of coordinates.

For the analysis on the different datasets, we ap-
ply the following image-based metrics. Let the area
of the target region be S;, the area of the predicted
region be S), the area of S; NS, be S7, we evaluate
the performance of the models using the per pixel
precision P, recall R, and F'1 score.

St St 2PR
Sy i Sp P+ R
5 Results

Table 1 shows that LISA outperforms CLIPS on
GCDP and is comparable to the baseline proposed
by Laparra and Bethard (2020) in the relaxed eval-
uation. It also obtains a higher recall. However,
LVMs seem still to be far from a manually con-
structed grammar for GCDP. The results in Table 2
provide some insight into why these models have
difficulties to solve GCDP. Figure 2 shows example
predictions of the two models. We observe that:

The size of the target regions in the data signif-
icantly influences the model performance. F1
score of the CLIP model increases 2.2 points and
the LISA performance nearly doubles when using
the ORACLE boundaries where the target regions
are a larger portion of the image. Both models
also perform better in the COPY COLOR, COLOR,
and OPERATOR datasets where the target region
area is also generally larger. This suggests that in
real-world settings where an oracle boundary is
not available, finding a good boundary is key to
improving model performance.

Cory CoLOR 43.7 594 503 735 821 775
OPERATOR 239 26.1 250 89.7 89.8 89.8

Table 2: Performance of CLIP and LISA model on the five
datasets using the image-based metrics.

Segmentation-based pre-training helps to un-
derstand spatial relations in text. The results in
Table 2 show a huge gap between CLIP and LISA
on the OPERATOR dataset. This means that LISA
understands better spatial relations in text and is
better able to reason on the image accordingly. This
also contributes to LISA’s better performance on
IMAGE and ORACLE datasets.

Segmentation-based pre-training helps to cap-
ture the shape of the target regions better. As
shown in Figure 2, CLIP tends to generate mostly
circle-like shapes in the middle of the image. While
this guarantees some recall of the prediction, the
overall precision of CLIP is low. LISA captures the
shape of geometries better. LISA can get a near-
perfect target shape in the COPY COLOR dataset
and a very close guess when predicting the result
on OPERATOR. This is also verified by the high
performance of LISA on these two datasets.

Colors are more difficult to understand than
shapes. Understanding colors is crucial for the
model to capture the relationship between the in-
put text and image. The task not only requires the
model to relate the color words to colors in the im-
age, but also requires the model to understand how
different colors mix when there are overlapping
regions. Our results show that when this kind of
color understanding is required, models tends to
perform poorly. This is indicated by the low perfor-
mance of both models on the COLOR, ORACLE, and
IMAGE datasets. This suggests that more work is
needed to infuse color knowledge into LVMs, and
that it may be worth exploring ways of representing
geometries in images that do not rely on color.

It is difficult for the models to predict linestrings
such as rivers or roads. These objects are usu-
ally in a long and complex shape but small in total
area. The LVMs have a hard time generating such
shapes. An example of this is the COLOR column
of Figure 2, where the target is a river, and neither
model makes an accurate prediction.



Limitations

The aim of the paper is to give an insight into the
potential and limitations of multi-modal language-
vision models for GCDP. Two of these models have
been selected based on their success in various NLP
tasks or on the similarity of their pre-initialization
task with GCDP. However, the study does not cover
the full range of existing multi-modal language-
vision models.

Intended Use and Ethical Concerns

The data and models we developed in this paper
is intended to be used on GCDP tasks. We do
not foresee any immediate ethical concerns of our
work. However, we acknowledge that as we use
LVMs in our experiments, the models may generate
unexpected images if not properly used by an user
or not used on this task.
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A Dataset Generation

The corpus by Laparra and Bethard (2020) con-
tains 360,187 uncurated examples and a test set of
1,000 manually curated examples. In our experi-
ments, we use the same test set. For training, we
use the uncurated portion of the corpus, however
this portion does not guarantee that all the locations
in the descriptions are mapped to their correspond-
ing geometry. We run named-entity recognition on
the uncurated examples to obtain all the location
mentions, and check if the recognized locations
are linked to a geometry. We keep only those de-
scriptions that have all the recognized locations
linked. As a result, we obtain 68,293 examples
from which we use 67,293 as training set and 1,000
as development set.

A.1 Image-based Dataset

Below we detail the steps we follow for the conver-
sion of this dataset:

Generate boundary: From the reference geome-
tries, we first discard the geometry with the largest
area in order to avoid boundaries that are too wide
for the target geometry.> Then, we calculate the ge-
ometric median* of the centroids of the remaining
reference geometries. We set the boundary to 100
km in each cardinal direction from this centroid
and obtain the coordinates of each of the 4 corners
of this boundary

The advantage of generating the same width for
all boundaries is that in the resulting images the
same spatial distance will be represented with the
same number of pixels, i.e., there will be a pro-
portional relation between the distances mentioned
in the text and the distances in the images for all
cases. For example, if a description mentions a
distance of “100 km” between two locations and it
is represented as 40 pixels in the resulting image,
a mention of “50 km” in another description will
be represented with 20 pixels in the corresponding
image.

Generate images: Once we calculate the bound-
ary for the images, we apply postgis’ st_asraster
function to obtain a bitmap representation of the
geometries. The function creates a pixel grid with
N x N pixels where each corner corresponds to

3The geometry is discarded only to calculate the boundary
but it is included in the resulting image.

“The geometric median is more robust to outliers than the
centoid

Shttps://postgis.net/docs/RT_ST_AsRaster.html

each coordinate of the boundary. The function over-
lays this grid on a geometry and calculates if each
pixel intersects with the geometry, assigning 1 if
true and O otherwise. After obtaining a bitmap
image (raster) for each geometry, each pixel grid
is translated into a RGB format, using a different
color for each geometry. Then, all these RGB pixel
grids are joined in a single image. Where 2 or more
colors overlap in one pixel, we calculate the av-
erage. E.g. for a pixel where (255, 0, 0) and (0,
255, 0) overlap, we assign (128, 128, 0) in the final
image. In the case of the target image, only one
geometry will be part of it and we use the white
color (255, 255, 255) to represent it.

Update the descriptions: The last step consists
of replacing all the mentions of each location in
the description with the name of the color used in
the previous step to represent the corresponding
geometry.

A.2 Oracle Boundary

To find the oracle boundary, we start initially from
the envelope covering the target geometry and ex-
tend it until it touches at least one point of all refer-
ence geometries. Finally, we extend the boundary
10 kilometers in all 4 cardinal directions to ensure
that the images include a portion of all geometries.
Once the boundary is obtained, the reference and
target images are generated as described in 2.1.
Unlike the dataset described in 2.1 where all
images correspond to the same spatial extent, the
boundary of the images in this version may cover
different extents in each case, which does not guar-
antee the correspondence between the distance
units described in the text with the distance in pix-
els of the images. To solve this problem, we auto-
matically modify the spatial units mentioned in the
text by scaling them appropriately. First, for each
case, we calculate the ratio between the number of
pixels of the width of the images and the width in
kilometers of the boundary. Then we identify by a
simple regular expression all mentions of distance
units, e.g. “100 KM”, extract the quantity and mul-
tiply it by the ratio calculated in the previous step.
Finally, we modify the text with the result of this
calculation rounded to the nearest integer.

A.3 Colored Region Identification

To generate each example of these datasets, we
assign a color to each reference geometry as ex-
plained in Section 2.1. We then randomly select
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Strict Relaxed Coverage
model P R F1 PIQ RmQ P R F1 Pzg RIQ %
GRAMMAR 0.172 0.310 0.221 0.272 0381 0.213 0.276 0.240 0.358 0.365 52.8%
CLIP 0.072 0.270 0.113 0.169 0456 0.134 0.261 0.177 0.288 0.451 100%
LISA 0.091 0.387 0.147 0205 0.566 0.155 0367 0.218 0.315 0.560 87.5%

Table 3: Comparison of LISA and CLIP with the grammar-base baseline proposed by Laparra and Bethard (2020).

one of the reference geometries and obtain a tar-
get image containing only that geometry. The de-
scription in this case will be simply “TARGET is
COLOR”, where COLOR corresponds to the color
assigned to the selected geometry. Finally, in each
of the datasets, we follow a different strategy to
generate the reference image:

Cory COLOR The reference image contains only
the geometry selected for the target image.

COLOR The reference image contains all reference
geometries including the one selected for the target
image.

A.4 Single Operator Understanding

Each example in this dataset is generated following

the next steps:

1. One of the operators implemented by (Laparra
and Bethard, 2020) is randomly selected and the
values of the corresponding arguments are also
randomly obtained. For example, if the operator
takes a cardinality as argument, its values se-
lected among the possible values None, North,
Northeast, and so on.

2. Select a possible pattern defined in the grammar
for the operator selected in the previous point
and complete it with the selected values. For
example, a possible pattern could be “TARGET
is [Distance] [Unit] [Cardinal] of [Reference]”
which could be completed as “TARGET is 50
km Southwest of REFERENCE”.

3. We generate the necessary reference geometries
randomly. For instance, we should generate a
geometry for the REFERENCE in the previous
example.

4. Applying the corresponding operator with the
values of the arguments obtained in step 1 and
the references in step 3, we obtain a new geom-
etry that would correspond to the TARGET of
the description generated in step 2.

After this process, the reference and target im-
ages are generated as explained in Section 2.1, as-
signing a random color to the reference geometry
and white to the target. The description is also

Image
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Figure 3: CLIP decoder takes the concatenated text and
image feature vectors as input and construct the output image
with 2D transposed convolution layers.

updated accordingly.

B Model Implementation and Training
Details

B.1 CLIP

The original CLIP model limits the maximum in-
put text token length to be 77. To input longer
texts in our dataset, we replace the original input
projection layer (length of 77) with a 512-long pro-
jection layer. We initialize the first 77 elements
of this layer with the pretrained CLIP weights and
initialize the remaining of the layer randomly.

The structure of the CLIP decoder is shown in
Figure 3. We concatenated the output the CLIP
text encoder and image encoder as the input of
the decoder. The decoder is a stack of tranposed
convolution layers (also known as deconvolution
layers).

In our experiments, we set the learning rate to
0.0002 and finetune the model for 5 epochs. We
used one Nvidia A100 GPU for finetuning, and
finetuning each task takes about 3 hours.

B.2 LISA

We follow the setting of the original LISA work,
instead that we set the learning rate to 0.00003. We
used the pretrained LISA-7B-v1 in our experiments
and finetune the model for 1 epoch. We used 4
Nvidia A100 GPUs for finetuning, and finetuning
each task takes about 13 hours.



C GCDP Evaluation

Table 3 shows the performance of CLIP and LISA
on GCDP. The table shows all the metrics proposed
by Laparra and Bethard (2020).
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