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Abstract

Geographic language understanding (GLU)001
tasks ask models to map from text to maps.002
Geographical complex description parsing003
(GCDP) is a GLU task where models must as-004
sign sets of map coordinates to text that goes005
beyond a single named location, such as “...be-006
tween the towns of Adrano and S. Maria di007
Licodia, 32 kilometres northwest of Catania”.008
In GCDP, the input is both a text and a set of ref-009
erence geometries for known places in the text010
(e.g., Adrano, S. Maria di Licodia, Catania),011
and the output is the geometry of the location012
described. In this paper, we convert a GCDP013
corpus into an image + text → image bench-014
mark to evaluate recent large langugage-vision015
models on such complex task. The models016
show weak performance, with analysis show-017
ing a lack of understanding of even simpler018
tasks like recognizing regions by color.019

1 Introduction020

The goal of geographic language understanding021

(GLU) is to develop models that can map from de-022

scriptions of locations in text to the corresponding023

locations on a map. A commonly studied GLU task024

is geoparsing, which asks models to map mentions025

of locations in text to their geographical geome-026

tries, formed of sets of coordinates, typically by027

linking mentions to entries in a toponym database028

like GeoNames1 (Gritta et al., 2018; Zhang and029

Bethard, 2023). A more complex GLU task is ge-030

ographical complex description parsing (GCDP),031

where the input is a description of a geographical032

region and a list of reference geometries (sets of033

coordinates), and the goal is to predict the geome-034

try of the region described (Laparra and Bethard,035

2020). For example, the text “a town and co-036

mune in the Metropolitan City of Catania, Sicily,037

southern Italy. . . located between the towns of Ad-038

rano and S.Maria di Licodia, 32 kilometres (20 mi)039

1http://www.geonames.org

between the towns of Adrano
and S. Maria di Licodia, 32
kilometers (20 mi) northwest of
Catania

TARGET is between the towns
of RED and LIME, 32 kilo-
metres (20 mi) northwest of
BLUE.

Multi-Modal Model

Figure 1: Framing geographic geometry prediction as a multi-
modal image + text → image problem. The reference
toponyms are the blue phrases. The reference geometries
are the blue map regions. The target geometry is the red
map region. The color-on-black images are our approach to
translating between maps and images.

northwest of Catania.” describes a location that is 040

not explicitly named. The goal is to approximate 041

the geometry of the location using the description 042

as input along with the geometries of the reference 043

toponyms: Catania, Sicily, Italy, Adrano, etc. 044

To solve this task, Laparra and Bethard (2020) 045

propose a grammar-based baseline that parses these 046

descriptions into a composition of spatial operators, 047

deterministic functions whose composition yields 048

the target geometry. This baseline achieves 0.221 049

F1, leaving substantial room for improvement with 050

machine learning methods. However, a major chal- 051

lenge in applying machine learning to this task is 052

that the reference geometries, be they polygons or 053

linestrings, are represented by an undefined num- 054

ber of coordinates, ranging from just a few to over 055
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a million. Although methods exist to obtain embed-056

ding representations of the geometries for their use057

in machine learning (Mai et al., 2022), to date there058

is no clear way to get current language models to059

output such geometries.060

We consider an alternative to predicting coordi-061

nate sets: convert geometries to bitmap images and062

apply multi-modal language-vision models (LVM),063

as shown in Figure 1. Our contributions are 2:064

• We propose a strategy to convert GCDP into an065

image + text → image problem and evaluate066

two LVMs designed to work in this setting.067

• Due to the high difficulty of the task, We develop068

4 variants of the dataset, each designed to be sim-069

pler than the GCDP task and individually analyze070

a different required skill to solve the task.071

• We find that although the current models show072

some ability to solve the task, their failures stem073

from lack of understanding of simpler tasks like074

recognizing regions by color.075

2 Datasets076

We use the Laparra and Bethard (2020) GCDP cor-077

pus, derived semi-automatically from Wikipedia078

and Openstreemap, that contains a training set of079

360,187 uncurated examples and a test set of 1,000080

manually curated examples. We select 67,293 and081

1,000 examples for training and development re-082

spectively where all the reference locations in the083

description has a geometry associated (see Ap-084

pendix A). We use the same test set as Laparra085

and Bethard (2020) to allow results comparison.086

In the following sections, we first introduce how087

we translate the GCDP problem into an image +088

text → image problem. Then we introduce our089

proposed dataset variants, shown in Figure 2, that090

allow the study of different capabilities of LVMs.091

See Appendix A for dataset generation details.092

2.1 Image-based Dataset093

Obtaining an image-based dataset from GCDP data094

requires decisions of which part of the world map095

to show in the image and how to link the reference096

geometries in the image to the reference toponyms097

in the text. Our strategy is as follows.098

Decide boundary: To create an image, we must099

first select a small region of the map, as using the100

entire map would result in most locations being101

smaller than a single pixel. A good region for102

2Code and data will be available.

GCDP should completely include the target geome- 103

try, represent such geometry with a sufficient num- 104

ber of pixels and include at least a portion of every 105

reference geometry. However, the target geometry 106

is not known at prediction time and thus should 107

not be used when selecting the boundary. We thus 108

use a heuristic: set the boundary to 100 km in each 109

cardinal direction from the geometric median of 110

the centroids of the reference geometries. 111

Link reference geometries and toponyms: 112

Given the boundary, we create a pixel grid with 113

N × N pixels where each corner corresponds to 114

each coordinate of the boundary. For the input im- 115

age, we overlay the grid with the reference geome- 116

tries, assigning a different color to each of them, 117

calculating the average of the colors in RGB space 118

when geometries overlap. For the output image, 119

we overlay the grid with only the target geometry 120

in white. To link the reference geometries in the 121

image with the reference toponyms in the text, we 122

replace each toponym in the text with the name 123

of the color used to represent the corresponding 124

geometry. The middle of Figure 1 visualizes this 125

and the preceding step. 126

2.2 Oracle Boundary 127

The method to generate the boundary shown in 128

Section 2.1 may result in a wide boundaries where 129

the target geometry is represented with just a few 130

pixels. To better understand how this size affects 131

LVMs, we develop an oracle version of the image- 132

based dataset where we generate the images look- 133

ing for the minimum boundary that covers the tar- 134

get geometry (hence an oracle) and at least a por- 135

tion of all the reference geometries. We start ini- 136

tially from the envelope covering the target geome- 137

try and extend it until it touches at least one point 138

of all reference geometries. We add 10 kilometers 139

in all 4 cardinal directions to ensure that the images 140

include a portion of all geometries. 141

2.3 Colored Region Identification 142

For the image + text → image approach to 143

work, it is essential that the models are able both to 144

relate textual mentions of colors to those colors in 145

the images, and to differentiate objects of a given 146

color from the other objects in the image. How- 147

ever, this is not possible to analyze in detail in the 148

GCDP dataset, due to the complexity of the task. 149

Therefore, we generate two datasets where the text 150

simply states the color of the target in the input 151
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Input image

Input text

CLIP

LISA

Target

operator

TARGET 
borders 
RED to the 
southwest

image

TARGET is 
a township 
in RED 
GREEN, …

oracle

TARGET is 
a township 
in RED 
GREEN, …

color

TARGET is 
CYAN

copy-color

TARGET is 
GREEN

Figure 2: Examples from the five datasets of input text, input
image, both LVM predictions, and target image.

image, e.g., “TARGET is RED”.152

Copy Color The input image contains only the153

geometry of the target image, and the output image154

is the same as the image dataset. The purpose of155

this dataset is to test whether the models are able156

to recognize a region in an image based on color.157

Color The input image contains the target geom-158

etry and all reference geometries, and the output159

image is the same as image dataset. The purpose of160

this dataset is to test whether the models are able to161

differentiate objects of the color mentioned in the162

text from objects of other colors.163

2.4 Single Operator Understanding164

The image + text → image approach requires165

the models to be able to interpret the spatial rela-166

tionships described in the text and to calculate the167

corresponding operations to obtain the target ge-168

ometry. To better understand to what extent these169

models are able to achieve this, it would be neces-170

sary to analyze if they can interpret a single spatial171

relation (e.g. “between”) in isolation. The dataset172

by Laparra and Bethard (2020) does not allow us to173

perform this analysis as its input descriptions cor-174

respond to compositions of spatial relations, and175

its output is only the final composed geometry, not176

the outputs of any of the individual relations.177

Thus, we generate a synthetic dataset where the178

descriptions only include a single spatial relation179

using the grammar defined by Laparra and Bethard180

(2020) and their deterministic implementation of181

the spatial operators. A description in this dataset182

looks like “TARGET is 50 km Southwest of RED”.183

3 Models 184

We test two different LVMs on our datasets using 185

224× 224 images in all cases: 186

CLIP (Radford et al., 2021) is a transformer- 187

based LVM pretrained on an image and text pairing 188

task. We evaluate this model because of its popular- 189

ity and success on several multi-modal NLP tasks. 190

To predict the target region, we use the CLIP model 191

as an encoder to extract text and image features of 192

the input. The fused text and visual features are 193

fed to a decoder to generate the target region. See 194

Appendix B for model implementation details. 195

LISA (Lai et al., 2023) is a transformer-based 196

LVM trained for a reasoning segmentation task, in 197

which the model needs to generate a segmentation 198

mask by reasoning from the input text and image. 199

We evaluate this model due to the similarity of 200

its pre-trained task and the image-based version 201

of GCDP. We use the same setting as the original 202

LISA paper and finetune the model on our datasets. 203

3.1 Training Objectives 204

For the CLIP model, we use a combination of 205

the DICE loss and per-pixel binary cross-entropy 206

(BCE) loss as the training objective: 207

LCLIP = λ1LDICE + λ2LBCE 208

DICE loss is a commonly used loss function in 209

image segmentation tasks, which is defined as: 210

LDICE = 1−
∑
i,j

2pijyij + 1

pij + yij + 1
211

where pij ∈ [0, 1] is the i-th row, j-th column 212

element value of the prediction image and yij ∈ 213

{0, 1} is the i-th row, j-th column element value of 214

the ground truth image. The DICE loss is useful for 215

unbalanced datasets such as ours where the target 216

region makes up a small proportion of the output 217

image, and we want to prefer predicting the target 218

region to predicting every pixel as negative. In our 219

experiments, λ1 are λ2 are set to 1. 220

For the LISA model, as the language encoder 221

generates a sentence which should contain a special 222

token representing the prediction, we follow the 223

original paper and add an extra text generation loss 224

besides the DICE loss and the BCE loss: 225

LLISA = λ1LDICE + λ2LBCE + λ3Ltxt 226

Ltxt is the cross-entropy loss between the language 227

model predicted word and the teacher-forcing label. 228

In our experiments, λ1, λ2 are λ3 are set to 1. 229
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Strict Relaxed

model P R F1 P R F1

GRAMMAR 17.2 31.0 22.1 21.3 27.6 24.0
CLIP 7.2 27.0 11.3 13.4 26.1 17.7
LISA 9.1 38.7 14.7 15.5 36.7 21.8

Table 1: Comparison of LISA and CLIP using the IMAGE
dataset with the grammar-based baseline proposed by Laparra
and Bethard (2020). The figures are based on the GCDP
metrics. More details in Appendix C

4 Metrics230

For comparison with the grammar-based baseline231

by Laparra and Bethard (2020), we use the met-232

rics they proposed that are based on the overlap233

between the predicted and target geometries. In234

the strict version, the overlap is calculated with the235

original target geometry while the relaxed version236

uses its envelope, i.e., the rectangle that encloses237

the geometry. For this evaluation, the predicted im-238

ages must be translated back to a set of coordinates.239

For the analysis on the different datasets, we ap-240

ply the following image-based metrics. Let the area241

of the target region be St, the area of the predicted242

region be Sp, the area of St∩Sp be SI , we evaluate243

the performance of the models using the per pixel244

precision P , recall R, and F1 score.245

P =
SI

St
R =

SI

Sp
F1 =

2PR

P +R
246

5 Results247

Table 1 shows that LISA outperforms CLIPS on248

GCDP and is comparable to the baseline proposed249

by Laparra and Bethard (2020) in the relaxed eval-250

uation. It also obtains a higher recall. However,251

LVMs seem still to be far from a manually con-252

structed grammar for GCDP. The results in Table 2253

provide some insight into why these models have254

difficulties to solve GCDP. Figure 2 shows example255

predictions of the two models. We observe that:256

The size of the target regions in the data signif-257

icantly influences the model performance. F1258

score of the CLIP model increases 2.2 points and259

the LISA performance nearly doubles when using260

the ORACLE boundaries where the target regions261

are a larger portion of the image. Both models262

also perform better in the COPY COLOR, COLOR,263

and OPERATOR datasets where the target region264

area is also generally larger. This suggests that in265

real-world settings where an oracle boundary is266

not available, finding a good boundary is key to267

improving model performance.268

CLIP LISA

dataset P R F1 P R F1

IMAGE 12.7 34.1 18.5 15.9 31.2 21.1
ORACLE 21.0 20.4 20.7 35.9 42.6 39.0
COLOR 38.2 56.1 45.5 56.1 61.5 58.7
COPY COLOR 43.7 59.4 50.3 73.5 82.1 77.5
OPERATOR 23.9 26.1 25.0 89.7 89.8 89.8

Table 2: Performance of CLIP and LISA model on the five
datasets using the image-based metrics.

Segmentation-based pre-training helps to un- 269

derstand spatial relations in text. The results in 270

Table 2 show a huge gap between CLIP and LISA 271

on the OPERATOR dataset. This means that LISA 272

understands better spatial relations in text and is 273

better able to reason on the image accordingly. This 274

also contributes to LISA’s better performance on 275

IMAGE and ORACLE datasets. 276

Segmentation-based pre-training helps to cap- 277

ture the shape of the target regions better. As 278

shown in Figure 2, CLIP tends to generate mostly 279

circle-like shapes in the middle of the image. While 280

this guarantees some recall of the prediction, the 281

overall precision of CLIP is low. LISA captures the 282

shape of geometries better. LISA can get a near- 283

perfect target shape in the COPY COLOR dataset 284

and a very close guess when predicting the result 285

on OPERATOR. This is also verified by the high 286

performance of LISA on these two datasets. 287

Colors are more difficult to understand than 288

shapes. Understanding colors is crucial for the 289

model to capture the relationship between the in- 290

put text and image. The task not only requires the 291

model to relate the color words to colors in the im- 292

age, but also requires the model to understand how 293

different colors mix when there are overlapping 294

regions. Our results show that when this kind of 295

color understanding is required, models tends to 296

perform poorly. This is indicated by the low perfor- 297

mance of both models on the COLOR, ORACLE, and 298

IMAGE datasets. This suggests that more work is 299

needed to infuse color knowledge into LVMs, and 300

that it may be worth exploring ways of representing 301

geometries in images that do not rely on color. 302

It is difficult for the models to predict linestrings 303

such as rivers or roads. These objects are usu- 304

ally in a long and complex shape but small in total 305

area. The LVMs have a hard time generating such 306

shapes. An example of this is the COLOR column 307

of Figure 2, where the target is a river, and neither 308

model makes an accurate prediction. 309
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Limitations310

The aim of the paper is to give an insight into the311

potential and limitations of multi-modal language-312

vision models for GCDP. Two of these models have313

been selected based on their success in various NLP314

tasks or on the similarity of their pre-initialization315

task with GCDP. However, the study does not cover316

the full range of existing multi-modal language-317

vision models.318

Intended Use and Ethical Concerns319

The data and models we developed in this paper320

is intended to be used on GCDP tasks. We do321

not foresee any immediate ethical concerns of our322

work. However, we acknowledge that as we use323

LVMs in our experiments, the models may generate324

unexpected images if not properly used by an user325

or not used on this task.326
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A Dataset Generation363

The corpus by Laparra and Bethard (2020) con-364

tains 360,187 uncurated examples and a test set of365

1,000 manually curated examples. In our experi-366

ments, we use the same test set. For training, we367

use the uncurated portion of the corpus, however368

this portion does not guarantee that all the locations369

in the descriptions are mapped to their correspond-370

ing geometry. We run named-entity recognition on371

the uncurated examples to obtain all the location372

mentions, and check if the recognized locations373

are linked to a geometry. We keep only those de-374

scriptions that have all the recognized locations375

linked. As a result, we obtain 68,293 examples376

from which we use 67,293 as training set and 1,000377

as development set.378

A.1 Image-based Dataset379

Below we detail the steps we follow for the conver-380

sion of this dataset:381

Generate boundary: From the reference geome-382

tries, we first discard the geometry with the largest383

area in order to avoid boundaries that are too wide384

for the target geometry.3 Then, we calculate the ge-385

ometric median4 of the centroids of the remaining386

reference geometries. We set the boundary to 100387

km in each cardinal direction from this centroid388

and obtain the coordinates of each of the 4 corners389

of this boundary390

The advantage of generating the same width for391

all boundaries is that in the resulting images the392

same spatial distance will be represented with the393

same number of pixels, i.e., there will be a pro-394

portional relation between the distances mentioned395

in the text and the distances in the images for all396

cases. For example, if a description mentions a397

distance of “100 km” between two locations and it398

is represented as 40 pixels in the resulting image,399

a mention of “50 km” in another description will400

be represented with 20 pixels in the corresponding401

image.402

Generate images: Once we calculate the bound-403

ary for the images, we apply postgis’ st_asraster5404

function to obtain a bitmap representation of the405

geometries. The function creates a pixel grid with406

N × N pixels where each corner corresponds to407

3The geometry is discarded only to calculate the boundary
but it is included in the resulting image.

4The geometric median is more robust to outliers than the
centoid

5https://postgis.net/docs/RT_ST_AsRaster.html

each coordinate of the boundary. The function over- 408

lays this grid on a geometry and calculates if each 409

pixel intersects with the geometry, assigning 1 if 410

true and 0 otherwise. After obtaining a bitmap 411

image (raster) for each geometry, each pixel grid 412

is translated into a RGB format, using a different 413

color for each geometry. Then, all these RGB pixel 414

grids are joined in a single image. Where 2 or more 415

colors overlap in one pixel, we calculate the av- 416

erage. E.g. for a pixel where (255, 0, 0) and (0, 417

255, 0) overlap, we assign (128, 128, 0) in the final 418

image. In the case of the target image, only one 419

geometry will be part of it and we use the white 420

color (255, 255, 255) to represent it. 421

Update the descriptions: The last step consists 422

of replacing all the mentions of each location in 423

the description with the name of the color used in 424

the previous step to represent the corresponding 425

geometry. 426

A.2 Oracle Boundary 427

To find the oracle boundary, we start initially from 428

the envelope covering the target geometry and ex- 429

tend it until it touches at least one point of all refer- 430

ence geometries. Finally, we extend the boundary 431

10 kilometers in all 4 cardinal directions to ensure 432

that the images include a portion of all geometries. 433

Once the boundary is obtained, the reference and 434

target images are generated as described in 2.1. 435

Unlike the dataset described in 2.1 where all 436

images correspond to the same spatial extent, the 437

boundary of the images in this version may cover 438

different extents in each case, which does not guar- 439

antee the correspondence between the distance 440

units described in the text with the distance in pix- 441

els of the images. To solve this problem, we auto- 442

matically modify the spatial units mentioned in the 443

text by scaling them appropriately. First, for each 444

case, we calculate the ratio between the number of 445

pixels of the width of the images and the width in 446

kilometers of the boundary. Then we identify by a 447

simple regular expression all mentions of distance 448

units, e.g. “100 KM”, extract the quantity and mul- 449

tiply it by the ratio calculated in the previous step. 450

Finally, we modify the text with the result of this 451

calculation rounded to the nearest integer. 452

A.3 Colored Region Identification 453

To generate each example of these datasets, we 454

assign a color to each reference geometry as ex- 455

plained in Section 2.1. We then randomly select 456

6
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Strict Relaxed Coverage

model P R F1 Px2 Rx2 P R F1 Px2 Rx2 %

GRAMMAR 0.172 0.310 0.221 0.272 0.381 0.213 0.276 0.240 0.358 0.365 52.8%
CLIP 0.072 0.270 0.113 0.169 0.456 0.134 0.261 0.177 0.288 0.451 100%
LISA 0.091 0.387 0.147 0.205 0.566 0.155 0.367 0.218 0.315 0.560 87.5%

Table 3: Comparison of LISA and CLIP with the grammar-base baseline proposed by Laparra and Bethard (2020).

one of the reference geometries and obtain a tar-457

get image containing only that geometry. The de-458

scription in this case will be simply “TARGET is459

COLOR”, where COLOR corresponds to the color460

assigned to the selected geometry. Finally, in each461

of the datasets, we follow a different strategy to462

generate the reference image:463

COPY COLOR The reference image contains only464

the geometry selected for the target image.465

COLOR The reference image contains all reference466

geometries including the one selected for the target467

image.468

A.4 Single Operator Understanding469

Each example in this dataset is generated following470

the next steps:471

1. One of the operators implemented by (Laparra472

and Bethard, 2020) is randomly selected and the473

values of the corresponding arguments are also474

randomly obtained. For example, if the operator475

takes a cardinality as argument, its values se-476

lected among the possible values None, North,477

Northeast, and so on.478

2. Select a possible pattern defined in the grammar479

for the operator selected in the previous point480

and complete it with the selected values. For481

example, a possible pattern could be “TARGET482

is [Distance] [Unit] [Cardinal] of [Reference]”483

which could be completed as “TARGET is 50484

km Southwest of REFERENCE”.485

3. We generate the necessary reference geometries486

randomly. For instance, we should generate a487

geometry for the REFERENCE in the previous488

example.489

4. Applying the corresponding operator with the490

values of the arguments obtained in step 1 and491

the references in step 3, we obtain a new geom-492

etry that would correspond to the TARGET of493

the description generated in step 2.494

After this process, the reference and target im-495

ages are generated as explained in Section 2.1, as-496

signing a random color to the reference geometry497

and white to the target. The description is also498
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Figure 3: CLIP decoder takes the concatenated text and
image feature vectors as input and construct the output image
with 2D transposed convolution layers.

updated accordingly. 499

B Model Implementation and Training 500

Details 501

B.1 CLIP 502

The original CLIP model limits the maximum in- 503

put text token length to be 77. To input longer 504

texts in our dataset, we replace the original input 505

projection layer (length of 77) with a 512-long pro- 506

jection layer. We initialize the first 77 elements 507

of this layer with the pretrained CLIP weights and 508

initialize the remaining of the layer randomly. 509

The structure of the CLIP decoder is shown in 510

Figure 3. We concatenated the output the CLIP 511

text encoder and image encoder as the input of 512

the decoder. The decoder is a stack of tranposed 513

convolution layers (also known as deconvolution 514

layers). 515

In our experiments, we set the learning rate to 516

0.0002 and finetune the model for 5 epochs. We 517

used one Nvidia A100 GPU for finetuning, and 518

finetuning each task takes about 3 hours. 519

B.2 LISA 520

We follow the setting of the original LISA work, 521

instead that we set the learning rate to 0.00003. We 522

used the pretrained LISA-7B-v1 in our experiments 523

and finetune the model for 1 epoch. We used 4 524

Nvidia A100 GPUs for finetuning, and finetuning 525

each task takes about 13 hours. 526
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C GCDP Evaluation527

Table 3 shows the performance of CLIP and LISA528

on GCDP. The table shows all the metrics proposed529

by Laparra and Bethard (2020).530
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