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Hierarchical Banzhaf Interaction for General
Video-Language Representation Learning
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Abstract—Multimodal representation learning, with contrastive learning, plays an important role in the artificial intelligence domain. As
an important subfield, video-language representation learning focuses on learning representations using global semantic interactions
between pre-defined video-text pairs. However, to enhance and refine such coarse-grained global interactions, more detailed interactions
are necessary for fine-grained multimodal learning. In this study, we introduce a new approach that models video-text as game players
using multivariate cooperative game theory to handle uncertainty during fine-grained semantic interactions with diverse granularity,
flexible combination, and vague intensity. Specifically, we design the Hierarchical Banzhaf Interaction to simulate the fine-grained
correspondence between video clips and textual words from hierarchical perspectives. Furthermore, to mitigate the bias in calculations
within Banzhaf Interaction, we propose reconstructing the representation through a fusion of single-modal and cross-modal components.
This reconstructed representation ensures fine granularity comparable to that of the single-modal representation, while also preserving
the adaptive encoding characteristics of cross-modal representation. Additionally, we extend our original structure into a flexible
encoder-decoder framework, enabling the model to adapt to various downstream tasks. Extensive experiments on commonly used
text-video retrieval, video-question answering, and video captioning benchmarks, with superior performance, validate the effectiveness

and generalization of our method. The code is available at https:/github.com/jpthu17/HBI.

Index Terms—Video-Language Representation Learning, Text-Video Retrieval, Video Question Answering, Video Captioning.

1 INTRODUCTION

Ultimodal representation learning, which aims to nar-
M row the gap among different modalities, is crucial for
making the most of multimodal data [1]. As an essential
subfield, video-language representation learning aims to
understand the relationship between videos and their asso-
ciated textual descriptions. It is beneficial for various down-
stream tasks including text-video retrieval, video-question
answering (VideoQA), and video captioning. Recently, an
increasing number of video-language representation learn-
ing models [2]-[4] apply contrastive learning to project the
video and text features into a common latent space based on
the semantic similarities of video-text pairs. In this manner,
multimodal contrastive learning enables networks to learn
discriminative video-language representations.

Lacking fine-grained alignment annotations, the video-
language contrastive learning models [5]-[8] typically per-
form coarse-grained feature alignment based on the global
similarity between the video and the text. As shown in
Fig. 1(a), previous contrastive models only exploit the
coarse-grained labels of video-text pairs to learn a global
semantic interaction. However, for multimodal downstream
tasks like text-video retrieval and VideoQA, models must
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Fig. 1: (a) Previous methods only learn a global semantic in-
teraction from the coarse-grained labels of video-text pairs.
(b) We model multimodal alignment as a cooperative game
process, utilizing Banzhaf Interaction to evaluate possible
correspondence between video frames and text words.

possess the capability to capture detailed and interpretable
features. The coarse-grained text-video alignment hinders
the interaction process between the visual entity and the
textual phrase. Establishing fine-grained alignment through
naive methods would require high-quality annotated data
to explore clear video-text relationships, which is currently
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Fig. 2: The intuition of employing Banzhaf Interaction in video-language representation learning. When certain players
(frames and words) form a coalition, it entails the exclusion of these players from potential coalitions with others, rendering
them mutually exclusive from the target coalition. Banzhaf Interaction quantifies the disparity between the benefits derived
from the coalition and the costs incurred due to the lost coalitions. Therefore, Banzhaf Interaction effectively captures the
incremental benefits conferred by the coalition. We refer the reader to Eq. 1 for the detailed formula.

unavailable, particularly on large-scale vision-language
datasets. This underscores the possibility of other learning
signals to improve typical contrastive learning.

To address the above fine-grained alignment prob-
lem, we propose an innovative approach to model video-
language representation learning as a multivariate cooper-
ative game by formulating video and text as players in a
cooperative game, as shown in Fig. 1(b). Intuitively, when
visual and textual representations exhibit high semantic
similarity, they are more likely to collaborate and enhance
the overall multimodal similarity score. Guided by this in-
sight, we regard the collection of multiple representations as
a coalition and suggest using the game-theoretic interaction
index, i.e., Banzhaf Interaction [9], to measure the degree of
cooperation within a coalition. The Banzhaf Interaction [10]
is a well-known concept in cooperative game theory. As
shown in Fig. 2, it quantifies the additional benefits accruing
to a coalition compared to the costs of lost coalitions with
other players. A high Banzhaf Interaction of a coalition
indicates its greater contribution to the semantic similarity.
Hence, it can help evaluate the potential correspondence
between video frames and text words, making cross-modal
contrastive learning sensitive and explainable.

In our preliminary conference paper [11], we propose
Hierarchical Banzhaf Interaction (HBI), which treats video
frames and text words as players, leveraging cross-modality
similarity measurement as the characteristic function in the
cooperative game. Specifically, HBI utilizes Banzhaf Inter-
action to delineate the trend of cooperation among any
set of features. Moreover, to efficiently establish coalitions
among game players, HBI introduces a token merge mod-
ule to cluster the original frames (words) and reduce the
number of players. By stacking token merge modules, HBI
achieves hierarchical interaction, encompassing entity-level
interactions among frames and words, action-level interac-
tions among clips and phrases, and event-level interactions
among segments and paragraphs.

Although our HBI framework has shown noticeable im-

provements, its current approach to game interactions solely
relies on independently encoded video and text represen-

tations. This makes it hard to accurately calculate Banzhaf
Interaction. Specifically, videos may contain redundant in-
formation, as illustrated in Fig. 2, which can have a bias in
the calculations for Banzhaf Interaction. Employing cross-
modal joint encoding helps select important video content
based on the query text, reducing the bias in Banzhaf Inter-
action. However, since the cross-modal representation can
only encode the entire video and text, it cannot be directly
applied to our fine-grained game interaction modeling.
What is worse, when semantic alignment between text and
video is lacking, this text-conditioned representation might
not only fail to enhance single-modal representations but
may also perform worse than single-modal representations.

To this end, we significantly extend our previously pro-
posed HBI framework to introduce HBI V2, which combines
the strengths of both single-modal and cross-modal rep-
resentations. In HBI V2, we reconstruct the representation
by integrating single-modal and cross-modal components.
This reconstructed representation dynamically adjusts the
weights of single-modal and cross-modal components, en-
suring fine granularity comparable to that of the single-
modal representation to appropriate our aim of fine-grained
game interaction modeling while preserving the adaptabil-
ity of cross-modal representation.

Furthermore, our previously proposed HBI framework
primarily addresses one task, i.e., text-video retrieval. To
enhance the versatility of HBI V2 across various down-
stream tasks, including VideoQA and video captioning,
we expand our original structure into a flexible encoder-
decoder framework comprising an encoder and a task-
specific decoder. We conduct comprehensive experiments
on multiple widely used datasets, including three text-video
retrieval datasets (MSRVTT [12], ActivityNet Captions [13],
DiDeMo [14]), three VideoQA datasets (MSRVTT-QA [15],
MSVD-QA [15], ActivityNet-QA [16]), and one video cap-
tioning dataset (MSRVTT [12]). As shown in Fig. 3, our
proposed HBI V2 consistently surpasses both the previous
HBI and existing methods across all downstream tasks.
These results demonstrate the effectiveness of our proposed
HBI V2 framework. Our main contributions are as follows:
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Fig. 3: Performance comparisons on text-video retrieval, video-question answering, and video captioning. Our proposed
framework, HBI V2, designed for general video-language representation learning, demonstrates superior performance
consistently. Notably, HBI V2 not only surpasses the previous HBI, but also outperforms existing task-specific methods.

e To the best of our knowledge, we are the first to in-
troduce the multivariate cooperative game process into
fine-grained video-language learning.

o To mitigate the bias in Banzhaf Interaction, we pro-
pose to reconstruct the representation as a fusion of
single-modal and cross-modal components. This recon-
structed representation retains the advantages of both
fine-grained and adaptive encoding.

o With task-specific prediction heads, HBI V2 achieves
impressive performance on various tasks of video-
language learning, including text-video retrieval, video
question answering, and video captioning.

2 RELATED WORK
2.1 Visual-Language Learning

Recently, contrastive learning methods show great success
in cross-modal tasks [17]-[24], such as text-video retrieval,
VideoQA, and video captioning. The main challenge of
cross-modal learning is to use vision-language pairs to learn
common representations shared between modalities.

Text-Video Retrieval.  Text-video retrieval requires
models to establish the correct match between texts and
videos. Most works [8], [25], [26] of text-video retrieval
map text and video to the same semantic space, where the
similarity between text features and video features can be
directly calculated. Recently, contrastive learning methods
have shown great success in advancing the state-of-the-
art performance of the retrieval task. Contrastive learning
methods [3], [27], [28] try to learn data representations from
positive and negative pairs, making the representations of
positive pairs have high similarity, and negative pairs have
low similarity. Due to manually labeling the fine-grained
relationships being unavailable, contrastive learning cannot
capture fine-grained information in a supervised manner.
To this end, we model video-text as game players with
cooperative game theory and propose to combine Banzhaf
Interaction with multimodal representation learning.

Video Question Answering. VideoQA [29]-[31] re-
quires models to analyze the complex semantic correla-
tion between the video and the question. Recently, several
contrastive learning-based VideoQA models [32], [33] use
the contrastive loss for cross-modality explicit alignment
and fusion. With the contrastive loss, VideoQA models suc-
cessfully map the different modalities into the same latent
space. However, VideoQA requires element-level matching
between text entities and video clips to predict the correct
answer. Lacking the element-level fine-grained matching

annotations, existing contrastive-learning-based VideoQA
models suffer from slow convergence, requiring massive
data [34], [35] for pretraining. In contrast to prior works,
we explicitly capture the fine-grained semantic relationships
between video and text via Banzhaf Interaction.

Video Captioning. Video captioning requires models
to automatically describe videos using natural language
sentences. Existing methods [36], [37] adopt the encoder-
decoder architecture to generate captions flexibly from the
video features. Recently, contrastive-learning-based video
captioning models [38], [39] align the video clips and tex-
tual entities to enhance the quality of the generated video
descriptions. However, similar to retrieval and VideoQA,
existing contrastive-learning-based models fail to achieve
element-level concept matching, restricting the caption qual-
ity. In this work, we demonstrate that the proposed HBI V2
also achieves competitive performance for video captioning.

2.2 Cooperative Game Theory

The game-theoretic interaction [40] consists of a set of play-
ers with a characteristic function. The characteristic function
maps each team of players to a real number which indicates
the payoff obtained by all players working together to
complete the task. The core of game-theoretic interaction is
to allocate different payoffs to game individuals fairly and
reasonably. There are several interaction strategies including
core interaction [41], Shapley interaction [42], and Banzhaf
interaction [10]. The game-theoretic interaction has multiple
applications in different fields [43], [44].

Toward the goal of achieving fine-grained alignment
between video and text, we propose to leverage multi-
player game theory to construct an alignment label gener-
ator. We aim to obtain the semantic relationship between
visual tokens and text tokens. And the game theory targets
generating an appropriate coalition construction strategy
for multiple players. Thus, we propose to introduce game
theory to help the alignment label generation by considering
the video clips and the text entities as players.

The cooperative game theory consists of a set N' =
{1,2,...,n} of players with a characteristic function ¢. The
characteristic function ¢ maps each team of players to a real
number. This number indicates the payoff obtained by all
players working together to complete the task. The core of
the cooperative game theory is calculating how much gain
is obtained and how to distribute the total gain fairly [42].

In a cooperative game, some players tend to form a
coalition: it may happen that ¢({i}) and ¢({j}) are small,
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Fig. 4: Overview of our proposed HBI V2 framework. We employ a dual-stream encoder to extract features for video
tokens and text tokens. Subsequently, we reconstruct the original representation by merging single-modal and cross-
modal components. We propose a novel proxy training objective, which uses Banzhaf Interaction to evaluate possible
correspondence between video tokens and text tokens from various levels. Furthermore, we customize different task-

specific prediction heads for various downstream tasks.

and at the same time ¢({i,j}) is large. The Banzhaf Inter-
action [9] measures the additional benefits brought by the
target coalition compared with the costs of the lost coalitions
of these players with others. The costs of the lost coalitions
can be estimated by each player in the target coalition
working individually. For a coalition {4,;j}, we consider
[{4, j}] as a single hypothetical player, which is the union of
the players in {4, j}. Subsequently, the reduced cooperative
game is formed by removing the individual players in {¢, j }
from the game and adding [{4, j}] to the game.

Definition 1. Banzhaf Interaction. Given a coalition {i, j} C
N, the Banzhaf Interaction Z([{i,;j}]) for the player

[{i,7}] is defined as:
I([{i.53) = > »(C) [¢(C U{l{e,}H+
CCN(i) (1)

6(C) - 6(C U {i}) — 6(CU {7})].

where p(C) = 57 is the likelihood of C being sampled.
“N\ {i,j}” denotes removing {4, j} from N.

Intuitively, Z([{7,j}]) reflects the tendency of interactions
inside {4, j}. The higher value of Z([{4,}]) indicates that
player ¢ and player j cooperate closely with each other.

3 METHODOLOGY

Our model consists of three submodules: (1) Representa-
tion Reconstruction, which merges single-modal and cross-
modal representations. (2) Hierarchical Banzhaf Interac-
tion Module, establishing multi-level Banzhaf Interaction
between video and text by modeling them as game players.
(3) Task-Specific Prediction Heads, designed for various
tasks. Fig. 4 shows the overview of our proposed HBI V2.

3.1 Representation Reconstruction

Following previous works [8], [45], we employ CLIP [27] as
the backbone for generating both visual and textural repre-
sentations. Specifically, for video representation, we evenly
sample frames from the video to form the input frame

sequence. Subsequently, we leverage ViT [46] to encode the
frame sequence and adapt the output from the [CLS] token
as the frame embedding. Following this, we employ a 4-
layer transformer to aggregate the embedding of all frames
and obtain the frame representation V' = {@}}f\i’l, where
{)} signifies a frame feature and NV,, denotes the total number
of frames. For text representation, we utilize the text encoder
of CLIP to obtain the text representation T, = {i{’u};ﬁl,
where N, indicates the length of text tokens.

Dynamically encoding video based on query text helps
reduce bias in Banzhaf Interaction. However, since the cross-
modal representation can only encode the entire video and
text, it cannot be directly applied to our fine-grained game
interaction modeling. When the semantic content of the text
and video diverge greatly, this text-conditioned representa-
tion might not only fail to enhance single-modal representa-
tions but also might potentially perform worse than original
single-modal representations. To this end, we propose to re-
construct the representation as a fusion of single-modal and
cross-modal components. This reconstructed representation
offers the combined benefits of the granularity inherent in
single-modal representations and the adaptability of cross-
modal representations. As shown in Fig. 5, we apply this
representation reconstruction method to both video and
text, enabling the enhanced encoding of both modalities.

Starting with the video representation, we first aggregate
frame representation with the text-frame attention encoder.
Concretely, we feed the [CLS] token ¢. from the text repre-
sentation as a query and the single-modal representation V?
as keys and values into an attention module. The resulting
cross-modal video representation V' is defined as:

Vi = {v}N,  o° = Softmax(t.V} )V} )
Subsequently, the video representation V; is defined as:
Vi =9Vi+ (1 —-7)V§, 3)

where v = MLP(V}' — V) serves as a factor used to adjust
the balance between the single-modal and cross-modal com-
ponents. When v = 0, the video representation is equivalent
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Fig. 5: The representation reconstruction module. To address the bias in calculations within Banzhaf Interaction, we
reconstruct both video and text representation as a fusion of single-modal and cross-modal components. The representation
reconstruction module maintains the granularity inherent in single-modal representations while preserving the adaptive

encoding capabilities of cross-modal representations.

to the cross-modal video representation, i.e., Vy = Vfc. Con-
versely, when v = 1, the video representation corresponds
to the single-modal video representation, i.e., Vy = V.

To reconstruct the text representation, we employ the
mean of the video frame representation, denoted as v, =
MeanPool(V), as a query. Subsequently, we use this query
along with the single-modal representation T}, as keys and
values to obtain the cross-modal text representation T;:

T; = {t}™,
Finally, the text representation T3, is defined as:
w =0Ty + (1 —0)T, @)

where § = MLP(T; — T) serves as a factor to adjust the
proportion of single-modal and cross-modal components.
When § = 0, the text representation is equivalent to the
cross-modal text representation, i.e., T;, = T,;. Conversely,
when § = 1, the text representation corresponds to the
single-modal text representation, i.e., T, = T;.

¢ = Softmax(v. T T, 4)

w

3.2 Hierarchical Banzhaf Interaction

Generally, given a corpus of video-text pairs (v,t), cross-
modal representation learning aims to learn a video en-
coder and a text encoder. The problem is formulated as a
cross-modality similarity measurement S,, ; by cross-modal
contrastive learning, where the matched video-text pairs are
close and the mismatched pairs are away from each other.

As the fine-grained relationships are unavailable, prior
works typically directly apply the cross-modal contrastive
loss to optimize the similarity scores S, ¢. To move a step
further, we model video-text as game players with multi-
variate cooperative game theory to handle the uncertainty
during fine-grained semantic interaction with diverse gran-
ularity, flexible combination, and vague intensity.

3.2.1 Video-Text as Game Players

Given features V; = {v}-}ﬁ\i’l and T, = {tJ, }j 1, fine-
grained cross-modal learning aims to f1nd semantically
matched video-text feature pairs. Specifically, if a video

frame and a text word have strong semantic correspon-
dence, then they tend to cooperate with each other and
contribute to the fine-grained similarity score. Thus, we can
consider N = {v f} MORUREFA } ~, as players in the game.

To achieve the goal of the cooperative game and cross-
modal learning to be completely consistent, the characteris-
tic function ¢ should meet all the following criteria:

o (a) the final score benefits from strongly corresponding
semantic pairs {v},t}}, ie, ¢(N) — ¢V \ {vf, 15} U
{[{vf, 5 }}<0

e (b) the final score is compromised by semantically
irrelevant pairs {UJT, twt ie, dN) — N\ {v, 1,1 U
{[{vy,t,313)>0

e (c) when there are no }Zavlayers to coo}eerate, the final

score is zero, i.e., p({vi }i) = o({t],};21) = ¢(0) = 0,

where () denotes the empty set

Note that any function satisfying the above conditions
can be used as the characteristic function ¢. For simplicity,
we use cross-modality similarity measurement S as ¢. Sub-
sequently, we leverage Banzhaf Interaction to value possible
correspondence between video frames and text words and
to enhance cross-modal representation learning.

3.2.2 Multivariate Cooperative Game Modeling

In the following, we first introduce the basic two-player
interaction between video frames and word tokens. Sub-
sequently, we expand the two-player interaction to the
multivariate interaction using the token merge module. To
make our module clear, we provide pseudo-code in Alg. 1.

For a coalition {v%tﬂ}, referring to Eq. 1, we can
calculate the Banzhaf Interaction Z([{v}%,#],}]). Due to the
disparity in semantic similarity and interaction index, we
design a prediction header to predict the fine-grained re-
lationship R; ; between the i;;, video frame and the jip
text word. The prediction header consists of a convolutional
layer for encoding, a self-attention module for capturing
global interaction, and a convolutional layer for decoding. In
Table 5, we provide the experiment results of the prediction
header with different structures.
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Algorithm 1: Multivariate Cooperative Game

Require: Vi = {ﬁ}}fvz”l (original video representation),
TS = {ffu}jv:tl (original text representation)

: # Entity level

: Calculate V¢, then combine V7 and V§ to obtain V¢

: Calculate T, then combine T}; and T, to obtain T,

: Use Vy and T, to predict Banzhaf Interaction and calculate
Banzhaf Interaction loss £¢

=W N~

: # Action level

: Obtain coalitions C,, from st using DPC-KNN

: Obtain coalitions C from T using DPC-KNN

: Utilize C, as queries, with V¥ serving as keys and values, to
obtain V,? through Attention

10: Utilize C; as queries, with T};, serving as keys and values, to

obtain Ty through Attention

11: Calculate V£, then combine V7 and V¢ to obtain V,

12: Calculate T, then combine T,; and T to obtain Ty,

13: Use V, and T, to predict Banzhaf Interaction and calculate

Banzhaf Interaction loss £

Vo N W

15: # Event level

16: Obtain coalitions C,’ from V,§ using DPC-KNN

17: Obtain coalitions C}’ from T? using DPC-KNN

18: Utilize C,’ as queries, with V* serving as keys and values, to
obtain V,° through Attention

19: Utilize C;’ as queries, with TS serving as keys and values, to
obtain T; through Attention

20: Calculate V¢, then combine V7 and V£ to obtain V,,

21: Calculate TS, then combine T and TS to obtain T,

22: Use V, and T to predict Banzhaf Interaction and calculate
Banzhaf Interaction loss L7

23: return L§, L}, L]

Subsequently, we optimize the Kullback-Leibler (KL)
divergence [47] between the Z([{v},t],}]) and R, ;. Con-
cretely, we define the probability distribution of the video-
to-text task and the text-to-video task as:

Din,)s Diay =
exp(Z <[{vf,tw}1>)
ey exp(T([{v), th 1) ©
exp(Z([{v}, .))
Sy exp(T([{v} o))

Similarly, the probability distribution D%, and D[, are
calculated in the same way using R%7:

T T T T T T
Dy = [pi,lapi 29 e [P1 P25 -~-vav,j]a

T
Pij =

D?;Qf [pz 17p1 ,200 api,,N,,]7 DZ%U - [ﬁ?gvﬁ;’]v . 'aﬁ’]]\zfv,j]a
oR = w
" Zk 1exp(R; ) @)
exp(Ri;)
pz?'] _ PR,

N’U :
> k1 exp(Ri,;)
Finally, the Banzhaf Interaction loss L is defined as:

L1 = Byt [KL(DE,|Dh) + KL(DE, [DR,)]. @)

The Banzhaf Interaction loss L; brings the probability
distributions of the output R of the prediction header
and Banzhaf Interaction Z close together to establish fine-
grained semantic alignment between video frames and text
words. In particular, it can be directly removed during infer-
ence, rendering an efficient and semantics-sensitive model.

UonUSNY

Fig. 6: The token merge module. “1D-Conv” denotes the
one-dimensional convolutional layer. M input tokens with
D channels are first clustered into N clusters. Subsequently,
we feed the merged tokens as queries () and the original
tokens as keys K and values V into an attention module.

For multivariate interaction, an intuitive method is to
compute Banzhaf Interaction on any candidate set of vi-
sual frames and text words directly. However, the number
of candidate sets is too large, i.e., 2Nv+N:  To reduce the
number of candidate sets, we cluster the original visual (tex-
tual) tokens and compute the Banzhaf Interaction between
the merged tokens. By stacking token merge modules, we
get cross-modal interaction efficiently at different semantic
levels, i.e., entity-level interactions on the frames and words,
action-level interactions on the clips and phrases, and event-
level interactions on the segments and paragraphs. Fig. 6
illustrates the framework of the token merge module.

Specifically, we utilize DPC-KNN [48], a k-nearest
neighbor-based density peaks clustering algorithm, to clus-
ter the visual (textual) tokens. Starting with the frame-
level tokens V' = {ﬁ}}fvz”l, we first use a one-dimensional
convolutional layer to enhance the temporal information
between tokens. Subsequently, we compute the local density
pi of each token 13} according to its K-nearest neighbors:

> o4 )

o5 €KNN(9%)

(-4 I
i =exp| — — 0]
p P K f
where KNN(© f) is the K -nearest neighbors of ©' y- After that,
we compute the distance index &; of each token 0%:

||11f —o%)1%, i 3js.topj > pi.

JP >pi
max [ - o},

& = (10)

otherwise.

Intuitively, p denotes the local density of tokens, and ¢
represents the distance from other high-density tokens.

We consider those tokens with relatively high p; x &;
as cluster centers and then assign other tokens to the
nearest cluster center according to the Euclidean distances.
Inspired by [49], [50], we use the weighted average tokens
of each cluster to represent the corresponding cluster, where
the weight W = MLP,,(V}’). Subsequently, we feed the
weighted average tokens as queries () and the original
tokens as keys K and values V into an attention module.

To make the token with high weight have a high contri-
bution to the output, we incorporate the weight W into the
attention module as follows:

Q T
Vdy
where dj, is the channel number of the queries and is used
as the scaling factor. We treat the output of the attention

Attention(Q, K, V, W) = Softmax( + W) v, @11
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Fig. 7: The task-specific prediction heads. To enhance the versatility of HBI V2 across various downstream tasks, we expand
our original structure into a flexible encoder-decoder framework comprising an encoder and a task-specific decoder.

module as features at a higher semantic level than the
entity level, that is, the action-level visual tokens. Similarly,
we merge the action-level tokens again to get the event-
level tokens. The action-level textual tokens and event-level
textual tokens are calculated in the same way.

3.3 Task-Specific Prediction Heads

As shown in Fig. 7, to enhance the versatility of HBI V2
across various downstream tasks, including VideoQA and
video captioning, we expand our original HBI structure
into a flexible encoder-decoder framework. This framework
consists of an encoder and a task-specific decoder, allowing
for efficient adaptation to diverse tasks.

In text-to-video retrieval, given a text query alongside
a gallery of videos, the objective is to rank all videos so
that the video corresponding to the text query is ranked
as high as possible. Similarly, in video-to-text retrieval, the
goal is to rank all text candidates based on the video query.
In our HBI V2 framework, we can directly rank candidates
by leveraging the similarity scores between video and text,
eliminating the necessity for an additional prediction head.

For video-question answering, due to the established
video-text fine-grained alignment from the hierarchical
Banzhaf Interaction module, we can adopt a simplified
answer prediction head, without the need for sophisticated
multi-modal fusion/reasoning stages like many previous
VideoQA models. For the question-answering prediction
head, we concatenate the video representation and text
representation followed by an MLP to predict the answer.

For video captioning, we utilize a single-layer trans-
former decoder as the generator of the caption. The de-
coder sequentially produces hidden features. Subsequently,
we employ a linear projection layer to map these hidden
features to the vocabulary dictionary. Notably, given the
absence of text input in the video captioning task, we rely on
single-modal representations instead of reconstructed repre-
sentations during inference. However, it is worth noting that
the reconstructed representations are still utilized for video-
language alignment purposes during training.

3.4 Training Objective

To achieve fine-grained semantic alignment, we first employ
cross—modal contrastive loss. Given video representation

{vf} =, and text representation T, = {ti i1, the
ahgnment matrix is defined as: A = [a;;]V**"t, where
(wp T,
A , ,
the iy, Video frame and the j;; text word. For the 4,
video frame, we calculate its maximum alignment score

Qij represents the alignment score between

Video-Question Answering

| What is a man with!
a blue shirtand
| glasses doing?

Video Captioning

[ hl
| A cook |
o T o !
3 L & | prepares |
S “talk = 8 1food items |
g S &
g 5 @ | in a metal :
: bowl.

| —

as max a;;. Subsequently, we use the weighted average

maximum alignment score over all video frames as the
video-to-text similarity. Similarly, we can obtain the text-to-
video similarity. The total similarity score is defined as:

Suvt = ( Zw max a;; + E wt max a;j ),

j=1

(12)

video-to-text similarity text-to-video similarity

where [w9, wl, Softmax (MLPU(Vf)) and

wlNt] = Softmax (MLPt(T )) are the weights of

the video frames and text words, respectively. Then the
cross-modal contrastive loss [62] is formulated as:

111 &
Lo=—=|= ) log
2 [B Z ZZB exp(svk,tz /T)

k= 1
exp ontn/T)
il

Z l exp( Uz,tk/T

where B is the batch size and 7 is the temperature hyper-
parameter. This loss function maximizes the similarity of
positive pairs and minimizes the similarity of negative pairs.

Combining the cross-modal contrastive loss Lo and
Banzhaf Interaction loss £;, the full objective of semantic
alignment is formulated as £ = Lg + aL;, where o is
the trade-off hyper-parameter. We train the network at three
semantic levels, which are shown as follows:

Lo=LE+aLs, Lo=L&+aLly, LU=

Swhe] =

[w Wi, ...

exp(svk,tk /T)

(13)

c+aly, (14)
where £¢, £, and L" represent the semantic alignment loss
at the entity level, action level, and event level, respectively.

To further improve the generalization ability, we opti-
mize the additional KL divergence between the distribution
among different semantic levels. We find that the entity-
level similarity S;, ; converges first in the training process,
so we distill the entity-level similarity to the other two
semantic levels. Starting with entity-level similarity S, ;
distilling to action-level similarity Sy, ;, we first calculate the
distribution D¢,, and Dj,,, by replacmg Z([{v,t}]) with S;,
in Eq. 6. The distribution D}, and Dy,,, are calculated usmg
Sy ¢ in the same way. The L5 loss is defined as:

LF = [KL(Da2t||D’U2t) + KL(thvHthv)i (15)
The L£$3V loss from entity-level similarity to event-level
similarity is calculated in the same way.

Furthermore, depending on the specific task, we may
require the inclusion of task-specific loss. Particularly, in the
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TABLE 1: Comparisons to current text-video retrieval methods on the MSRVTT, ActivityNet Captions, and DiDeMo
datasets. “1” denotes that higher is better. “|” denotes that lower is better. All results do not use inverted softmax [51].

(a) Text-to-video retrieval and video-to-text retrieval performance on the MSRVTT dataset.

Methods ‘ Text-to-Video

‘ Video-to-Text

| Re1t R@T R@0+ Rsumt MdJR| MnR| | R@+ R@+ R@O0T Rsum? MdR] MnR]
MMT [52] rccv oo 266 571 69.6 153.3 4.0 24.0 270 575 69.7 154.2 3.7 21.3
T2VLAD [53] cver 2021 29.5 59.0 70.1 158.6 4.0 - 31.8 60.0 71.1 162.9 3.0 -
TT-CE [54] iccv 2021 29.6 61.6 74.2 165.4 3.0 - 32.1 62.7 75.0 169.8 3.0 -
Support-Set [55] icLr 2021 30.1 58.5 69.3 157.9 3.0 - 28.5 58.6 71.6 158.7 3.0 -
CLIP4Clip [56] Neurocomputing 2022 445 71.4 81.6 197.5 2.0 15.3 42.7 70.9 80.6 194.2 2.0 11.6
EMCL [3] neurtrs 2 46.8 73.1 83.1 203.0 2.0 12.8 46.5 735 83.5 203.5 2.0 8.8
X-Pool [57] cvri 469 728 82.2 201.9 2.0 14.3 444 733 84.0 201.7 2.0 9.0
TS2-Net [58] rccv 470 745 83.8 205.3 2.0 13.0 453 741 837 203.1 2.0 9.2
UATVR [59] iccv 203 47.5 73.9 83.5 204.9 2.0 123 46.9 73.8 83.8 204.5 2.0 8.6
Prompt Switch [60] iccv 2023 47.8 73.9 82.2 203.9 2.0 14.1 46.0 74.3 84.8 205.1 2.0 8.5
HBI 48.6 74.6 83.4 206.6 2.0 12.0 46.8 74.3 84.3 205.4 2.0 8.9
HBI V2 494 746 83.8 207.8 2.0 12.2 477 742 844 206.3 2.0 8.9
(b) Text-to-video retrieval performance on the ActivityNet Captions and DiDeMo datasets.
Method \ ActivityNet Captions \ DiDeMo
| Relt R@1 R@101t Rsumt MdR] MnR|] | R@lf R@71 R@I0T Rsum?t MdR] MnR]
ClipBERT [32] cvrr 202 21.3 49.0 63.5 133.8 6.0 - 20.4 48.0 60.8 129.2 6.0 -
Frozen [34] iccv 2021 - - - - - - 34.6 65.0 747 174.3 3.0 -
CLIP4Clip [56] Neurocomputing 2022 40.5 72.4 83.6 196.5 2.0 7.5 42.8 68.5 79.2 190.5 2.0 18.9
TS2-Net [58] rccy 202 410 736 845 199.1 2.0 84 418 716 82.0 195.4 2.0 14.8
UATVR [59] iccv s - - - - - - 431 718 82.3 197.2 2.0 15.1
EMCL [3] neurips 2022 41.2 72.7 83.6 197.5 2.0 8.6 45.3 74.2 82.3 201.8 2.0 12.3
CenterCLIP [61] sicir 2022 439 74.6 85.8 204.3 2.0 6.7 - - - - - -
HBI 42.2 73.0 84.6 199.8 2.0 6.6 46.9 74.9 82.7 204.5 2.0 12.1
HBI V2 455 753 86.0 206.8 2.0 6.5 474 746 84.5 206.5 2.0 12.7
case of text-video retrieval, there is no necessity to introduce Video-Question Answering Datasets. = MSRVTT-

a task-specific loss. However, for tasks such as VideoQA
and video captioning, an additional cross-entropy loss L5k
needs to be incorporated. The overall loss is the combination
of semantically alignment losses, self-distillation losses, and
task-specific loss, which is defined as:

Liotal = LC+ L+ LY +5 (L3 + L) +XLyask,
—_— —— —/—™

deep supervision

(16)
self-distillation

where (3 is the trade-off hyper-parameter. For VideoQA
and video captioning, we apply A to balance the feature
alignment penalty and the task-specific penalty.

4 EXPERIMENTS
4.1 Experimental Settings

Text-Video Retrieval Datasets. MSRVTT [12] contains
10K YouTube videos, each video with 20 text descriptions.
We follow the training protocol in [52], [63], [64] and eval-
uate text-to-video and video-to-text retrieval tasks on the
1K-A testing split with 1K video or text candidates defined
by [65]. ActivityNet Captions [13] consists of densely an-
notated temporal segments of 20K YouTube videos. Follow-
ing [52], [53], [55], we concatenate descriptions of segments
in a video to construct “video-paragraph” for retrieval. We
use the 10K training split to finetune the model and report
the performance on the 5K “vall” split. DiDeMo [14] con-
tains 10K videos annotated with 40K text descriptions. We
concatenate descriptions of segments in a video to construct
a “video paragraph” for retrieval. We follow the training
and evaluation protocol in CLIP4Clip [56].

QA [15] comprises 10K videos and 243K question-answer
pairs. The video has a longer duration of 10-30 seconds.
MSVD-QA [15] comprises 1,970 short clips (10 seconds
on average) and 50,505 question-answer pairs. ActivityNet-
QA [16] consists of 58,000 QA pairs on 5,800 complex long
web videos. The average video length of ActivityNet-QA is
180 seconds, longer than MSRVTT-QA and MSVD-QA.
Video  Captioning  Dataset. The MSRVTT-
Caption [12] in the video captioning task is the same
as the MSRVTT dataset in the text-video retrieval task.
Evaluation Metrics. We choose Recall at rank K (R@K),
Median Rank (MdR), and mean rank (MnR) to evaluate
the retrieval performance. We select the answer accuracy
to evaluate the video-question answering performance. We
apply four metrics for the video caption task, including
BLEU-4 [66], ROUGE-L [67], METEOR [68], and CIDEr [69].
Implementation Details. We utilize the CLIP [27] as
the pre-trained model. We use the Adam optimizer [70]
and set the temperature 7 to 0.01. Since the calculation of
the exact Banzhaf Interaction is an NP-hard problem [71],
existing methods mainly use sampling-based methods [72]
to obtain unbiased estimates. To speed up the computation
of Banzhaf Interaction for many data instances, we pre-
train a tiny model to learn a mapping from a set of input
features to a result using MSE loss. The tiny model consists
of 2 CNN layers and a self-attention layer. The input is the
similarity matrix of video frames and text tokens, and the
output is the estimation of Banzhaf Interaction. For text-
video retrieval, the frame length and caption length are 12
and 32 for the MSRVTT dataset. We set the frame length and
caption length to 64 and 64 for the ActivityNet Captions
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Fig. 8: Parameter sensitivity. a, 5, and A are the trade-off hyper-parameters in Eq. 14 and Eq. 15. (a) and (b) are the
effects of hyper-parameters a and 5 on the MSRVTT dataset for the text-video retrieval task. (c) and (d) are the effects of
hyper-parameters o and 3 on the MSRVTT-QA dataset for the video-question answering task. (e) and (f) are the effects
of hyper-parameters o and 3 on the MSRVTT dataset for the video captioning task. (g) and (h) are the effects of hyper-
parameter A on the MSRVTT-QA and MSRVTT datasets for the video-question answering and video captioning tasks.

dataset. We set the frame length and caption length to 32
and 64 for the DiDeMo dataset. The initial learning rate is
le-7 for text encoder and video encoder and 1le-3 for other
modules. The network is optimized with a batch size of
128 in 5 epochs. For video-question answering, we use the
target vocabulary and train a fully connected layer on top of
the final language features to classify the answer. The initial
learning rate is le-7 for text encoder and video encoder and
le-3 for other modules. We set the task balance factor A to
2.5. The network is optimized with a batch size of 32 in
5 epochs. For video captioning, we initialize the learning
rate at 5e-4 and freeze the CLIP encoder. The network is
optimized with a batch size of 64 in 50 epochs.

4.2 Comparison with State-of-the-Art

We conduct extensive experiments on three datasets for text-
video retrieval, three datasets for video-question answering,
and one dataset for video captioning. In Table 1, we show
the retrieval results of our method on MSRVTT, ActivityNet
Captions, and DiDeMo datasets. Additionally, Table 2 show-
cases the video-question answering results on the MSRVTT-
QA, MSVD-QA, and ActivityNet-QA datasets. Furthermore,
in Table 3, we exhibit the video captioning results on
the MSRVTT dataset. Our proposed HBI V2 consistently
outperforms both the previous HBI and existing methods
across all downstream tasks. These results demonstrate the
effectiveness of our proposed HBI V2 framework. Addition-
ally, We observe that HBI V2 exhibits notable advancements
over HBI on the MSVD-QA and ActivityNet-QA, the im-
provement on the MSRVTT-QA appears less pronounced.
We consider this may be because our framework focuses
on video-language alignment, whereas the MSRVTT-QA
dataset presents a greater challenge in video-language rea-
soning, resulting in comparatively marginal enhancements.

4.3 Ablation Study

Ablation about Components. To illustrate the importance
of each part of our method including the Banzhaf Inter-

action, the deep supervision structure, the self-distillation,
and the representation reconstruction, we conduct ablation
experiments on both MSRVTT and MSRVTT-QA datasets
in Table 4. The Banzhaf Interaction boosts the baseline
with an improvement up to 0.8% at R@1 and 1.3% at
answer accuracy. Furthermore, deep supervision and self-
distillation significantly improve the generalization ability.
Additionally, the representation reconstruction further im-
proves the performance of the model. Our full model attains
superior performance, surpassing the baseline by 2.8% at
R@1 for text-to-video retrieval and 1.9% at answer accuracy
for video-question answering. This shows that the four parts
are beneficial for aligning videos and texts.

The parameter o serves as the hyper-parameter that
balances the cross-modality contrastive loss (L) and the
Banzhaf Interaction loss (£;). Meanwhile, the parameter 3
acts as the hyper-parameter regulating the trade-off between
the loss from deep supervision and the loss from self-
distillation. A is the hyper-parameter used to balance the
feature alignment penalty and the task-specific penalty. To
determine the optimal settings for a and g for the text-
video retrieval task, we evaluate the scale range setting
a € [0.3,1.8] as shown in Fig. 8(a). Our findings indicate
that enhancing « from 0.5 to 0.8 leads to an improvement
in R@1 from 48.2% to 48.4%, with saturation observed at
a = 1.0 for text-to-video retrieval. Consequently, we adopt
a = 1.0 to achieve optimal performance. In Fig. 8(b), we
demonstrate the impact of the hyper-parameter 3, evaluat-
ing the scale range setting 5 € [0.3,1.8]. We find that the
model achieves the best performance at 5 = 1.0. For the
video-question answering task, we assess the scale range
settings a € [0.5, 3.5] (Fig. 8(c)) and 3 € [0.5, 3.5] (Fig. 8(d)).
We find that the model achieves the best performance at
a = 2.0 and 8 = 1.0. Therefore, we establish « as 2.0
and 8 as 1.0 for video-question answering. For the video
captioning task, as shown in Fig. 8(e) and (f), we find that
the video captioning task is robust to hyper-parameters «
and (3. We consider that this is because we trained the video
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TABLE 2: Comparisons to VideoQA methods on the
MSRVTT-QA, MSVD-QA, and ActivityNet-QA datasets.
We gray out pretrained models to ensure a fair comparison.

TABLE 3: Comparisons to current video captioning meth-
ods on the MSRVTT dataset. We gray out pretrained
models to ensure a fair comparison.

Methods MSRVTT-QA MSVD-QA ActivityNet-QA Methods MSRVTT
Accuracy 1 Accuracy 1 Accuracy 1 BLEU@4 1+ ROUGE1 METEOR?1 CIDEr 1t

Co-Tok [33] 45.7 48.6 - SwinBERT [81] 454 30.6 64.1 55.9
All-in-One [73] 46.8 48.3 - MV-GPT [82] 48.9 64.0 38.7 60.0
FrozenBiLM [74] 47.0 54.8 43.2 MGCMP [83] a7 621 289 514
MGIN [75] 38.2 39.7 - OpenBook [84] 42.8 61.7 29.3 529
IGV [76] 38.3 40.8 - AVSSN [85] 42.8 61.7 28.8 46.9
CLIP-QA [27] 39.0 38.5 - GSEN [86] 429 61.7 28.4 51.0
VQA-T [77] 39.6 41.2 36.8 AFC [87] 43.1 62.7 29.8 56.2
DRV [78] 40.0 42.2 - VEIN [88] 441 62.6 30.0 55.3
CLIP4Clip [56] 40.9 39.3 - SemSynAN [89] 443 62.5 28.8 50.1
SVIiTT [79] 43.2 - 43.0 EMCL [3] 45.3 63.2 30.2 54.6
TG-VQA [80] 46.3 52.5 48.3 ClipCaption [90] 46.1 63.7 30.7 57.7
HBI 46.2 52.1 48.2 HBI 452 63.0 30.1 55.3
HBI V2 46.4 53.4 49.3 HBI V2 48.1 64.9 314 59.1

TABLE 4: Ablation study about the importance of each part of our method on
the MSRVTT dataset. “QA” denotes the answer accuracy on MSRVTT-QA.

TABLE 5: Effect of Prediction heads
on the MSRVTT. “None” denotes no

header. “SA” denotes the attention
L Banzhaf Deep Lp Self  Representation Text-to-Video QAT module. “CNN+SA” performs the best.
Interaction Supervision Distillation Reconstruction R@11 R@51 R@10t MnR] -
Method Text-to-Video
46.6 73.1 83.0 13.3 445 etho RGLIT R RGL MR
v 474 742 82.8 121 458 adl @51 @10t nR}
v 472 741 82.6 12.0 46.0 Baseline 46.6 73.1 83.0 13.3
v 476 738 832 119 460  None 77 737 832 122
v v 482 730 831 120 46.1 MLP 480 741 826 125
v v v 486 746 834 120 462 CNN 485 739 826 126
MLP+SA 484 71.8 81.7 12.7
v v v v 494 746 838 122 464 CNN+SA 494 746 83.8 122

captioning task for 50 epochs, significantly more than the 5
epochs used for the retrieval and video-question answering
tasks. The additional training epochs help mitigate the im-
pact of hyper-parameters o and § on model performance.
We set o to 1.0 and 5 to 1.0 for video captioning. For the
hyper-parameter ), as shown in Fig. 8(g) and (h), we adopt
A = 2.5 for video-question answering and A = 3.3 for video
captioning to achieve optimal performance.

Effect of the Prediction Header of R. Due to the
disparity in semantic similarity and interaction index, we
design a prediction header to predict the fine-grained rela-
tionship R; ; between the 7, video frame and the j;j, text
word. To explore the impact of the structure of the predic-
tion header on our method, we compare four popular struc-
tures, i.e., “MLP”, “CNN”, “MLP+SA”, and “CNN+SA”. As
shown in Table 5, we find that the combination of CNN
and attention (“CNN+SA”) captures both local and global
interactions, so it is beneficial for predicting the fine-grained
relationship between video and text. As a result, we adopt
“CNN+SA” to achieve optimal performance in practice.

Effect of the Number of Clusters. The cluster module
shown in Fig. 6 merges the visual tokens and textual tokens,
thereby reducing computational overhead. We investigate
the impact of merging clusters, as summarized in Table 6,
where N and N represent the number of visual clusters
at the action and event levels, respectively. N/ and N?
denote the number of text clusters at the action and event
levels, respectively. We find the cluster number is a trade-off
hyper-parameter: (a) Greater numbers of clusters may lead

to semantically similar tokens being classified into different
clusters, while (b) fewer clusters may result in dissimilar
tokens being grouped together. Upon analysis of Table 6, we
select {NZ, N2, N, N} as {6,2,16,4} to achieve optimal
performance in practice.

Necessity of the Self Distillation. To illustrate the
impact of the self-distillation of our method, we conduct
ablation experiments on the MSRVTT dataset in Table 7.
“E”,"A”, “O” denote entity level, action level, and event
level, respectively. “—>" indicates the distillation direction.
For example, “E — > A" indicates the distillation from “E”
to “A”. We find that the entity level converges first in the
training process. This indicates that higher-level semantic
features are merged from lower-level semantic features.
When lower-level semantic features do not converge, it is
difficult for higher-level semantic features to learn semantic
information. Based on this observation, we propose us-
ing lower-level semantic features to guide the learning of
higher-level semantic features. As shown in Table 7, self-
distillation improves the generalization ability of the model.
Distilling from the entity level to the other two semantic
levels achieves the best results. Therefore, we distill the
entity-level similarity to the other two semantic levels as
default in practice.

The Computational Efficiency of Our Method. In
Table 8, we calculate the iteration time and inference time on
the MSRVTT dataset for the retrieval task. Since the Banzhaf
Interaction can be removed during inference, our method
only takes an additional 1s for processing the test set (1k
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Fig. 9: The convergence curves of learnable video weight v and text weight § for both the text-to-video retrieval and
VideoQA tasks. The video weight v stably converges across both entity and action levels, while the text weight J initially
fluctuates and converges to different weights at different reconstruction levels.
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Fig. 10: Visualization (t-SNE [91]) of the distribution of original and reconstructed representations on the MSRVTT. We
use consistent colors to denote tokens originating from the same text and video. The reconstructed representation maintains
the distinctiveness of cross-modal representations while preserving detailed word and frame-level representations.

TABLE 6: Ablation study for the cluster TABLE 7: Ablation study for the effect of TABLE 8: Iteration time and in-
token number on MSRVTT dataset. N self-distillation loss on MSRVTT. E, A,O ference time on the MSRVTT
and N° denote the number of clusters in denote entity level, action level, and event dataset. We report the average

action level and event level, respectively.

level. “E->A + E->O” performs the best.

time using two Tesla V100 GPUs.

Text-to-Video

Text-to-Video Iteration Inference

N$ N9 N} NP Method Method Time, Time |
R@11 R@51 R@10T MdR] MnR| R@11 R@5t R@101 MdR| MnR/,

9 3 18 4 487 738 838 20 128  E>A 487 743 835 20 129 gb{lgic[g]p [56] %ggi }gggz

9 3 16 4 486 741 88 20 129  B>O 485 735 816 20 128 TS2-Net [58] 257e  1991.

6 2 16 4 494 746 838 20 122  A->O 482 743 832 20 130

6 2 12 3 489 745 830 20 127  E->A+A->O0 488 740 829 20 128 Baseline 2065  18.06s

3 2 8 3 487 741 829 20 128  E->A+E->O 494 746 838 20 122 Ours 315s  19.18s

videos and 1k text queries). Notably, our method takes less
time than TS2-Net during the inference stage. This result
demonstrates the superiority of our efficient design.

4.4 Discussions

Convergence curves of learnable v and J. As shown in
Fig. 9, we observe that the video weight «y is more consistent
compared to the text weight J. At both the entity and
action levels, 7y stably converges to 0.4~0.5 on the MSRVTT
dataset and to 0.2~0.3 on the DiDeMo dataset. This suggests
that in video representation, the cross-modal features are
beneficial and contribute more significantly than the single-
modal features. Although the weight trends are similar in
the blue line of Fig. 9(b) and Fig. 9(e), the text weight ¢

converges to different values across different reconstruction
levels. At the entity level, text weight ¢ initially fluctuates
before stabilizing between 0.7~0.8, indicating that in entity-
level reconstruction for text representation, single-modal
information plays a larger role compared to cross-modal.
However, at the action level, the text weight ¢ fluctuates
initially and converges around 1.4 (greater than 1). We
believe the model adjusts the weight ratio to make the
single-modal information negative, pushing the action-level
features away from the central point. This phenomenon
is further illustrated in Fig. 9(g). The degree of clustering
among features in the video and text modalities is related
to the semantic similarity of the features. At the entity level,
there is a significant semantic gap between features in the
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Fig. 11: Visualization of the hierarchical interaction. We take a representative sample from the MSRVTT dataset as an
example. Here, the degree of confidence from high to low is represented by red, orange, green, and blue lines, respectively.

video and text modalities, with each feature representing
different entity information. This noticeable gap helps bet-
ter match player groups in the game-theoretic interaction.
However, the example in Fig. 9(g) shows that at the action
level, the semantic overlap between different text features
is much greater, leading to a more concentrated distribution
in high-dimensional space, which is actually detrimental to
the subsequent game-theoretic interaction. As a result, after
incorporating text weights, the model adaptively reduces
cross-modal information to widen the feature distribution.
In contrast, the action-level video features do not face this is-
sue. We consider this because video frames are semantically
richer and naturally more dispersed than captions.

Visualization of the Representations. As shown in
Fig. 10, we find that single-modal representations tend to
be widely dispersed and less distinguishable compared to
cross-modal representations. However, cross-modal repre-
sentations typically capture the entire text or video at a
coarse-grained level, lacking granularity at the word and
frame levels. Our proposed reconstructed representation
maintains the distinctiveness of cross-modal representations
while also ensuring word and frame-level representations.

Visualization of the Hierarchical Interaction. As
shown in Fig. 11, we find that the semantic similarities be-
tween coalitions are generally higher than the semantic sim-
ilarities between individual frames and individual words.
For example, in the action level, the coalition “{driving, and,
giving, a, of, a}” has a high semantic similarity with the
video coalition representing the man driving action. On the
contrary, when these words interact with the corresponding
frame as individuals at the entity level, they show low
semantic similarity, while most of the similarity scores are
taken by the [EOS] token. This indicates that the model at
the entity level learns a coarse-grained alignment between

text tokens and video clips. With semantic information, the
action level learns a better alignment between text clusters
and video clip clusters. The visualization in Fig. 11 also illus-
trates that our proposed hierarchical interaction method can
be used as a tool for visualizing the cross-modal interaction
during the cross-modality reasoning tasks. It significantly
improves the interpretability of the model and it can help
us understand the reasoning details of the models.

5 CONCLUSION

In this work, we creatively model cross-modal representa-
tion learning as a multivariate cooperative game by for-
mulating video and text as players in a cooperative game.
Specifically, we propose Hierarchical Banzhaf Interaction
to value possible correspondence between video frames
and text words for sensitive and explainable cross-modal
contrast. Although manually labeling the fine-grained re-
lationships between videos and text is unavailable, our
method shows a promising alternative to obtaining fine-
grained labels based on Banzhaf Interaction. Furthermore, to
mitigate the bias in calculations within Banzhaf Interaction,
we propose a reconstructed representation that leverages
the advantages of both single-modal and cross-modal rep-
resentations. We extend our original structure into a flexible
encoder-decoder framework, allowing the model to adapt
to various downstream tasks. To validate the effectiveness
and versatility of our method, we conduct extensive exper-
iments encompassing text-video retrieval, video-question
answering, and video captioning. More encouragingly, our
method can also serve as a visualization tool to promote the
understanding of cross-modal interaction.
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