
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

RIESZ NEURAL OPERATOR FOR
SOLVING PARTIAL DIFFERENTIAL EQUATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Local non-stationarity is pivotal to solving partial differential equations (PDEs).
However, in operator learning, the spatially local information inherent in the data is
often overlooked. Even when explicitly modeled, it is usually collapsed into local
superpositions within the model architecture, preventing full exploitation of local
features in physical phenomena. To address this limitation, our paper proposes a
novel Riesz Neural Operator (RNO) based on the spectral derivative representation.
Since PDEs are fundamentally governed by local derivatives, RNO leverages the
Riesz transform, a natural spectral representation of derivatives, to mix global
spectral information with local directional variations. This approach allows the
RNO to outperform existing operators in complex scenarios that require sensitivity
to local detail. Our design bridges the gap between physical interpretability and
local dynamics. Experimental results demonstrate that the RNO consistently
achieves superior prediction accuracy and generalization performance compared to
existing approaches across various benchmark PDE problems and complex real-
world datasets, presenting superior non-linear reconstruction capability in model
analysis.

1 INTRODUCTION

Accurately simulating physical systems governed by partial differential equations (PDEs) remains
foundational across fluid dynamics (Herde et al., 2024), materials science (Li et al., 2024), and
climate modeling (Kurth et al., 2023). Neural operators have recently emerged as powerful surrogates
for PDE solution operators, offering significant reductions in compute time and broad adaptability.
However, it is a complex task to capture and predict the non-linear and local changes due to physical
information missing, transform without local emphasis, etc. This work leverages local spectral
derivatives to improve the precision of PDE solutions.

Existing operator-learning frameworks, including DeepONet (Lu et al., 2021; Gu et al., 2025), the
Fourier Neural Operator (FNO) (Li et al., 2020a), and the Laplace Neural Operator (LNO) (Cao
et al., 2024a), leverage specific transforms to model PDE dynamics. Suppose we analogize the
process of function learning to the performance of a musical score. In DeepONet, each partitioned
ensemble (trunk function) is assigned a fixed section, which plays as required by the score. This
design elegantly captures the global melody of function-to-function mappings. However, it lacks
control over melodic variations and requires an excessively large ensemble for complex scores. FNO,
by contrast, assigns finer-grained roles with varying intensities to all performers but struggles to
capture melodic diversity and local harmonies. LNO augments FNO with a smoother, yielding greater
stability at the cost of detailed melodies. These intriguing comparisons are presented in Figure 1(a).
Transformer-based operator learners similarly apply global attention to inputs. As a result, physical
locality remains underexploited in operator learning, leading to two major shortcomings: (i) Non-
stationary information is largely encoded in local spatial features (Pacejka & Besselink, 1997). Since
the temporal dimension is typically embedded implicitly during training, such non-stationarity is not
explicitly represented (Barberi & Kruse, 2023). We therefore hypothesize that once spatial locality is
captured adequately, non-stationary temporal signals can be learned naturally. To substantiate this
hypothesis, we seek to reconstruct spatial locality more accurately. (ii) Discarding spatial locality
forfeits fine-scale details, especially the small perturbations typical of PDE-governed phenomena.
From a spectral perspective, these correspond to high-frequency content; neglecting locality therefore
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Figure 1: (a) Taking musical score processing as an example, we compare DeepONet, FNO, LNO, and
RNO. (b) In the Riesz space, the Riesz transform yields direction-selective kernels (e.g., an x-kernel
for the x-direction). Each kernel computes the spectral derivative along its associated direction. (c)
The RNO pipeline is formalized mathematically. (d) In the Fourier spectrum (left), no localized
change appears in the high-frequency band where a discontinuity is expected, whereas the first-order
derivative (right) cleanly captures the emerging jump over time, demonstrating its local sensitivity.

suppresses high-frequency representations and weakens the modeling of strong nonlinearities. For
further details on local necessity comparison, please refer to the test in A.1. In the experiments,
phase plays a crucial role in the local spectral orientation. Although prior work addresses complex
physical systems (Li et al., 2021; Wang et al., 2023), emphasizes local structure (Raonic et al., 2023;
Wang et al., 2022) and uses derivative to optimize the loss(Cheng et al., 2025; Qiu et al., 2024), to
our knowledge no operator-learning method that optimizes non-linear dynamics by mixing local
derivatives. Concurrently, an increasing share of advances stems from incorporating established
architectures (e.g., Transformer(Wu et al., 2023), mamba(Tiwari et al., 2025a), and graph network(Li
et al., 2025)), whereas recent attempts to modify the neural operator itself have produced limited
gains.

Inspired by the Taylor expansion—where higher-order terms encode subtle, local variations (Kanwal
& Liu, 1989; Bruhn et al., 2005), therefore derivatives are naturally suited to capture locality
Figure 1(c). Yet operator-learning pipelines dominated by global transforms (e.g., Fourier, Laplace)
often underrepresent such information, and the energy from abrupt changes is difficult to capture
(Alley et al., 2003). To address these bottlenecks, we propose the Riesz Neural Operator (RNO),
which improves neural operators’ ability to model complex dynamic variations. The Riesz transform
in our RNO acts as the conductor’s gestures, injecting directional derivatives that govern local
dynamics, while the direction mixer serves as orchestration, harmonizing different directional
components. Analytically, Taylor expansion separates behavior: the DC (direct component) tracks
slow trends, whereas abrupt or small-scale variations appear as higher-order terms (Hodaei et al.,
2017; Bruhn et al., 2005). Building on this perspective, we apply the Riesz transform to extract
first-order derivative information (direction and rate of change) (Unser & Van De Ville, 2009;
Wadhwa et al., 2014; Tamada & Igarashi, 2017), and reproject these derivatives onto the original
spectrum to emphasize salient components. The result is not only a faithful reproduction of the
global score but also a nuanced capture of fine-scale, anisotropic variations — much like the layered
expressiveness of a super symphony. The main contributions of this work are as follows:
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• Motivated by the Taylor expansion, we encode fine-scale structure using local spectral deriva-
tives. Integrating the Riesz transform sharpens sensitivity to dynamics while preserving physical
interpretability, improving expressivity for non-linear phenomena.

• We are the first to explicitly embed the Riesz transform within operator learning, providing a
direction-aware operator mixer to unify global basis information and local directional derivatives.
Our method supports a principled composition for reconstructing physical dynamics.

• RNO achieves state-of-the-art performance in extensive benchmarks, covering various complex
Navier–Stokes PDEs and the real-world climate ERA5 dataset. Experiments indicate that its
low-level feature mixer affords a distinct advantage for modeling strong nonlinearities.

2 PRELIMINARIES

Neural Operator. Neural operator learning represents a novel paradigm intersecting scientific
computing and machine learning, aimed at learning solution operators for PDEs. Owing to their full
differentiability, neural operators permit direct parameter optimization, making them ideal for inverse
design and a broad spectrum of inverse problem settings. Initially, neural operators originated from
DeepONet(Lu et al., 2021). This paradigm later evolved into the classical FNO(Li et al., 2020a;b),
which also performs function-to-function mappings in Fourier space and has spawned several FNO
variants(Tran et al., 2021; Li et al., 2023). Recently, a study employed the Laplace transform as an
alternative to the Fourier transform(Cao et al., 2024a) to address non-periodic characteristics in data,
significantly enhancing the interpretability of neural operators. This highlights the significance of
handling non-stationary data(Tiwari et al., 2025b). Additionally, other studies have concentrated on
the capability of models to address complex phenomena(Li et al., 2021; Lanthaler et al., 2023; Xiao
et al., 2024), strengthening the neural operators’ ability to handle nonlinearity.

Meanwhile, due to the complex variability of real-world data and the higher standards required for cap-
turing detailed variations, local properties within neural operators have also attracted attention(Raonic
et al., 2023; Tripura & Chakraborty, 2022). Among these studies, the work on neural operators with
localized integral and differential kernels emphasizes the necessity of local and differential properties.
However, their differential kernels and local kernels are designed separately and introduced into the
model as independent modules. Our approach leverages domain knowledge, integrates task-specific
features with directional information, and thus possesses the capability to handle local signals, all
while maintaining interpretability.

Riesz Methods. Spatial derivatives are widely used in deep learning. In Physics-Informed Neural
Networks (PINNs) (Raissi et al., 2019), temporal/spatial derivatives construct PDE residuals, ensur-
ing predictions both fit observations and satisfy governing laws. Derivative signals have likewise
been incorporated into LSTM variants to better track state changes (DiPietro & Hager, 2020). By
contrast, explicit frequency-domain operations are less common: most prior work analyzes networks’
spectral behavior during training (Xu et al., 2019) rather than designing models centered on spectral
directionality.

The Riesz transform maps spatial derivatives into the spectral domain while blending integral and
differential effects: the integral term preserves neural operator advantages, and the differential
term injects local variation (Tamada & Igarashi, 2017; Wadhwa et al., 2014). It generalizes the
Hilbert transform to higher dimensions; the relationship is derived in A.4. Formally, the transform
is a convolution with a Calderón–Zygmund kernel (de Francia et al., 1986), and its kernel-based
processing is illustrated in Figure 1(b). A defining property is strong directional selectivity: the
transform decomposes signals along specific spatial directions, enabling analysis of anisotropic
structure (e.g., edges and textures) (Unser et al., 2009) and isolation of instantaneous phase. These
properties make the Riesz transform well suited to data with complex, non-stationary variability.

3 METHODS

3.1 PROBLEM DEFINITION

In physics, it is widely recognized that PDEs characterize a function by constraining its local
derivatives(Wu et al., 2023). That is, the evolution of a physical system is described through relations
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among its partial derivatives:
F
(
x, u(x), ∂x1

u(x), . . . , ∂xn
u(x)

)
= 0, (1)

where ∂xiu(x) denotes the local derivative of u with respect to xi. Physically, local derivatives
quantify variations in space and time, whereas PDEs couple these local variations to govern the
system’s global dynamics. Nevertheless, the implications of this locality have been insufficiently
exploited. We therefore seek a principled representation of this local derivative form. As the
natural spectral representation of derivatives, the Riesz transform provides more than an engineering
convenience: embedding it into neural operators offers a mathematically and physically consistent
means of unifying global spectral efficiency with local dynamics. For a further relationship discussion
of local derivative and PDEs with a much higher degree of mathematical rigor, we refer the readers to
A.1.

3.2 DERIVATIVE INFORMATION IN PHYSICAL FIELDS

Local dynamics via Taylor expansion. Adopting the Eulerian viewpoint commonly used in optical
flow analysis(Bruhn et al., 2005), we describe temporal variation of a one–dimensional signal by the
first–order Taylor series

I(x, t) ≈ f(x) + γ(t)
df(x)

dx
, (2)

where I(x, t) = f(x+ γ(t)) and γ(t) denotes the instantaneous displacement at time t>0 as shown
in Figure 6. The term γ(t) f ′(x) therefore encodes motion magnitude implicitly inside the spatial
derivative. Neglecting this factor, as in most vanilla neural operator blocks, effectively acts as a
low-pass filter and can compromise fidelity in highly dynamic regimes.

Directional derivative. Beyond magnitude, first–order derivatives carry orientation information as
described in A.1. The directional derivative of u(x, t) along a unit vector n = [n1, . . . , nd]

T is

∇u·n =

d∑
i=1

∂u

∂xi
ni. (3)

Consequently, model predictions must depend not only on scalar changes but also on the direction in
which those changes occur.

Spectral derivative. Taking the temporal derivative of f(t) and transferring it to the Riesz space
gives

γ(t)
df(t)

dt

R←−→ γ(t) j kR
{
f(t)

}
, (4)

where k is the wave component and R denotes Riesz transform. In this representation, a spatial
derivative manifests as a 90◦ phase shift accompanied by an amplitude scaling proportional to k. In
2D, Rx and Ry act as projectors onto directions defined by k’s angles with the axes, allowing efficient
computation of spatial (and higher-order) derivatives. This relation enables the Riesz transform to
compute spatial derivatives efficiently and to incorporate higher-order quantities.

Dynamics in Riesz space. Let h(q, t) be a scalar field with spatial coordinates q = [q1, . . . , qn]
T ∈

Rn and time t ∈ R+. Its complex-valued spectrum is defined by the exponential kernel

ĥ(k, t) =

∫
Rn

h(q, t) e−j k·q dq, k = [k1, . . . , kn]
T ∈ Cn, (5)

where j2 = −1. The magnitude ∥k∥ = (
∑n

i=1 k
2
i )

1/2 controls spatial scale, while the vector
direction of k encodes the dominant orientation of the corresponding spectral component. According
to the definition of the directional derivative, we apply the n-D Riesz transform R to direction yields

R
[
∇h(q, t)

]
(k) =

n∑
i=1

j hi
ki
∥k∥

h(q, t)e−j k·qdq, (6)

showing that differentiation becomes a multiplicative modulation by the directional factor j hiki/∥k∥.
This highlights a key property of the Riesz framework: normalising by ∥k∥ preserves energy while
amplifying orientation selectivity, enabling precise estimation of directional rate of change without
additional scaling heuristics.
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3.3 RIESZ NEURAL OPERATOR

Operator learning. To enhance representational capacity, the input is first projected into a higher-
dimensional space by a shallow connection layer, yielding q(t). The transformed q(t) then passes
through an integral-kernel layer and a linear layer, followed by an activation, to produce the high-
dimensional output representation,

u(t) = σ
(
Wq(t) + (c ∗ q)(t)

)
. ∀t ∈ D (7)

Here, D is a bounded open set; W is a linear transformation; and (c ∗ q)(t) :=
∫
D
c(t, s) q(s) ds

denotes the integral operator with kernel c. By Green’s function theory (Li et al., 2020b), the kernel
c(t, s) can approximate solution operators for PDEs. As shown in Figure 8, rather than relying on a
single global transform, we couple local and global components to more fully map inputs to outputs.
Indeed, RNO preserves the compositional structure characteristic of neural operators. Its overall
procedure can be decomposed into three modules,

Fθ = FθCoordToRiesz
◦F∑M

i=1 θR
i
◦FθRieszToCoord

, (8)

where ◦ denotes operator composition and F is a mapping between spaces. Specifically,
FθCoordToRiesz

: X → RX lifts the input to the Riesz domain, and FθRieszToCoord
: RY → Y

reconstructs the final output. This modular factorization is generic for neural operators. In the
Riesz domain, F∑M

i=1 θR
i

learns and mixes non-linear, direction-wise mappings, where M is the
number of directional components. In practice, components are combined via analytic signals (1D)
(Marple, 1999) or monogenic signals (multi-D) (Unser et al., 2009), providing a natural encoding of
signal characteristics. Directional weights emphasize orientation-dependent variation. The enhanced
Riesz representations are then mapped back by FθRieszToCoord

to yield a spatial output with enhanced
directional features.

Riesz conductor. Analogous to convolution performed in a generic frequency domain, the kernel
(c ∗ q) is realised by multiplication in Riesz space. For m-dimensional data the i-th directional Riesz
transform of q is

Ri(k) =

∫ ∞

−∞
· · ·
∫ ∞

−∞

j ki
∥k∥

e−j k·q dmq, (9)

The spectral factor j ki/∥k∥ behaves as a scale-normalised first-order derivative, thus emphasising
local variations while suppressing magnitude. Using the forward (R) and inverse (R−1) Riesz
transforms, the integral operator is

(c ∗ q)(t) = R−1
(
R(c) · R(q)

)
(t), ∀ t ∈ D, (10)

where “·” denotes element-wise complex multiplication. The model overview of RNO is shown in
Figure 2. In the Riesz conductor, the directional numbers are not chosen randomly but are instead
based on the data’s dimensionality. This approach aligns with the inherent characteristics of physical
field data. For example, in two-dimensional data, two orthogonal directions are used, maximizing
data utilization and optimizing results without introducing redundancy, the proof can be found in
A.2. Each direction is also multiplied by a scaling factor ζ, which controls the contribution of each
direction. To account for the possibility that incorporating heterogeneous perturbations may introduce
data artifacts, we establish an upper bound on ζ,

ζ

(
d∑

i=1

ωiγi(t)

)
<

π

6
, (11)

where ωi denotes the frequency along the i-th direction. The upper bound on ζ follows from the
aggregate total variation across directions; see A.3 for the full derivation. The resulting spectral
enhancement is illustrated in Figure 2: the Riesz integral kernel exhibits increased energy in high-
frequency detail bands, mitigating the high-frequency issues reported during training (Xu et al., 2019).

Local orchestration. We introduce a direction-aware mixer in the Riesz domain that orchestrates
global–local features across spectral scales. FθCoordToRiesz

aggregates global Riesz-spectrum statistics,
while directional branches capture local anisotropic variation; their fusion yields a monogenic-style
representation that preserves coherence and fine directional detail, beyond magnitude-only operators.
Details of the construction are provided in A.5. Data layout and formulas appear in Figure 1. In
1-D, Cartesian channels are not meaningful, wavelength conditions mixing to fuse forward/backward
components (implementation details are in A.6).
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Figure 2: Model Overview of RNO. Top: The full RNO preserves the canonical neural-operator
scaffold. Bottom left: Riesz layer 1. The input q(1) is processed in parallel by (i) direction-wise
local transforms, weighted by ζ, to extract orthogonal local features R; (ii) a global transform that
stabilizes the representation; (iii) a linear map W . The mixed output passes through an inverse Riesz
transform to reinforce spatial locality, followed by an activation σ to produce q(2). Bottom right:
Spectral comparison before and after the Riesz integral operator. Energy in the high-frequency band
f (red circle denotes spectral mean ) is evaluated under a fixed reference: larger magnitudes appear
as outward expansion, smaller as inward contraction.

4 EXPERIMENTS

Benchmark. RNO is evaluated on five diverse PDE benchmarks (Cao et al., 2024a)—Duffing,
Beam, Diffusion, Reaction–Diffusion, and Brusselator(spanning 1-D 3-D, details in A.8). To assess
performance on complex and abrupt dynamics, we further test 2-D Navier Stokes equations at
Reynolds numbers 40, 500, and 5000 (Li et al., 2021), where higher Reynolds numbers induce richer
rotational structure, probing sensitivity to directional capture. We then compare RNO with classical
baselines on the real-world ERA5 dataset (Hersbach et al., 2020). These tasks constitute canonical
PDE application scenarios and reflect practical challenges in solving such equations.

Baseline. We compare RNO with seven well-established neural network models: a classic model,
U-Net(Ronneberger et al., 2015); two transformer-based operator learning models, Galerkin Trans-
former(Cao, 2021) and LSM(Wu et al., 2023); and five classical and powerful neural operator models:
DeepOnet(Lu et al., 2021), FNO(Li et al., 2020a), F-FNO(Tran et al., 2023), ONO(Xiao et al., 2024)
and LNO(Cao et al., 2024a). Each model excels in its respective domain. The comparison enables a
comprehensive evaluation of RNO’s effectiveness.

Implementation details. To ensure fairness, we fix evaluation metrics and training epochs across
methods and use Adam (Kingma & Ba, 2014) optimizer. Metrics: relative ℓ2 error for the general
PDE and ERA5 benchmarks, and mean-squared error (MSE) for Navier Stokes equations. All neural
operator baselines use a four-layer feature stack with sine activations. The learning rate is 10−3. In
RNO, the number of directions equals the data dimensionality. All experiments are implemented in
PyTorch (Paszke et al., 2019) and run on 2 NVIDIA GTX 3090 GPUs.

4.1 MAIN RESULTS

Performance across diverse PDEs. To assess generality, we evaluate RNO on five canonical
PDE systems: Duffing, Beam, Diffusion, Reaction diffusion, and Brusselator, spanning mechanical,
diffusive, and reactive dynamics. RNO attains the lowest prediction error on all benchmarks (Table 1);
on Beam it reduces error by 51.6% relative to the second-best method, This substantial margin
underscores RNO’s ability to capture structural response behavior with high precision. Similarly, on
the Duffing system, a classical non-linear oscillator known for its chaotic dynamics, RNO achieves a
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Table 1: Test relative ℓ2 error (↓) on five PDE benchmarks. Lower is better. The best (bold) and
second-best (underline) results are highlighted. Promotions indicate relative gain of RNO over the
second-best.

Model Relative ℓ2 (↓)
Duffing Beam Diffusion Reaction–Diff. Brusselator

U-NET(2015) 0.3835 0.0522 0.0212 0.1049 0.2557
GALERKIN(2021) 0.4239 0.0971 0.0319 0.1983 0.1883
DEEPONET(2021) 0.6289 0.9790 0.1356 0.7969 0.1910
FNO(2020a) 0.4536 0.0821 0.0229 0.1214 0.1827
F-FNO(2023) 0.2782 0.0515 0.0143 0.1003 0.1719
LSM(2023) 0.1699 0.0456 0.0145 0.0996 0.1628
LNO(2024a) 0.3325 0.0452 0.0081 0.1355 0.1858
ONO(2024) 0.3491 0.0519 0.0137 0.0989 0.1545
RNO 0.1663 0.0219 0.0079 0.0899 0.1317
Promotion 2.1% 51.6% 2.5% 10.3% 14.7%
∗ Top 4 ranking methods of PDE benchmarks: RNO (ours), LNO (2024), ONO (2024), LSM (2023).

2.1% improvement, indicating its capacity to model sensitive dependence on initial conditions and
inherent nonlinearity effectively.

Ground Truth Ours LNO FNO DeepONet

Figure 3: Comparison of high-frequency components with the Ground Truth.

On more diffusion-dominated tasks, such as Diffusion and Reaction-Diffusion(Reac-Diff.), RNO
still outperforms prior approaches. While these systems are generally more stable and easier to
approximate, RNO delivers 10.3% and 2.5% reductions in error, respectively, demonstrating its
strength not only in complex non-linear settings but also in capturing fine-scale spatial dynamics
in smoother regimes. Finally, for the Brusselator, a prototypical model for nonlinear chemical
oscillations and pattern formation, RNO achieves a 14.7% reduction in relative error. This result
is particularly significant as it highlights RNO’s capability to handle stiff systems with intricate
feedback mechanisms and spatiotemporal instabilities.

Table 2: Mean-squared error (↓) results of RNO, LNO,
FNO, and DeeepONet models on NS datasets.

Datasets DeepONet FNO LNO RNO

Re = 40 0.0280 0.0078 0.0060 0.0049
Re = 500 3.4082 1.4251 1.2117 0.4861
Re = 5000 6.2721 2.9314 2.3139 0.9121

Performance on complex tasks. To
evaluate RNO under highly non-linear
dynamics, we train on two-dimensional
incompressible Navier Stokes snapshots
at three Reynolds numbers Re ∈
{40, 500, 5000}. As Re increases, the
inertial range broadens and turbulent
interactions intensify, rendering pre-
diction progressively harder. Mean-
squared error (MSE) for RNO, LNO,
FNO and DeepONet is reported in Table 2. RNO achieves the lowest MSE across all Re; at
Re = 5000 it attains MSE = 0.9121, substantially outperforming FNO and LNO. These results
indicate that RNO’s recurrent updates enhance stability as flow complexity grows. To assess fine-scale
reconstruction, we isolate the high-frequency band of predicted velocity fields (Figure 3). RNO
most faithfully recovers the high-wavenumber energy spectrum; LNO underestimates the spectral
tail, whereas FNO exhibits ringing artefacts. DeepONet, however, produces a lot of noise in the
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high-frequency components. These findings confirm that RNO captures subtle non-linear fluctuations
more accurately than the alternatives.

lo
g 

P
SD

kx(cyclies/pixel) Width

Frequency

Ground Truth LNOOurs FNO DeepONet

Frequency

Fr
eq

ue
nc

y

Fr
eq

ue
nc

y

Fr
eq

ue
nc

y

Fr
eq

ue
nc

y

Fr
eq

ue
nc

y

Frequency Frequency Frequency

H
ei

gh
t

H
ei

gh
t

H
ei

gh
t

H
ei

gh
t

Width WidthWidth

GT
Ours
LNO
FNO
DeepONet

Figure 4: ERA5 benchmark at t = 5: Comparisons of 2-D PSD (top), spatial error (bottom right) and
PSD along the x-axis for each method (bottom left).

We further evaluate on ERA5 using hourly 850-hPa geopotential-height fields (2012–2022 for training;
2023 for testing). As shown in Table 3, RNO significantly outperforms FNO , LNO, and DeepONet.
RNO recovers both the inner low-frequency ring and the outer high-frequency core with smaller bias,
as confirmed by PSD analysis (Figure 4). Across both synthetic turbulence and real-world weather,
RNO preserves accuracy as dynamics intensify and faithfully reconstructs high-frequency content. It
also transfers to operational-scale data without tuning, demonstrating its suitability for modeling and
forecasting strongly non-linear spatiotemporal phenomena.

4.2 MODEL ANALYSIS

Table 3: Relative ℓ2 error (↓) results of RNO, LNO,
FNO, and DeeepONet on ERA5.

Dataset DeepONet FNO LNO RNO

ERA5 0.0912 0.0093 0.0062 0.0022

Ablation study. To assess each module’s
contribution to the overall architecture, we
evaluate four designs on two benchmarks
(Duffing and Reaction–Diffusion): global-only
(g) without mixer (o), local-only (l) without
mixer, global+local (g+l) without mixer, and
global+local (g+l) with mixer (w). From Ta-
ble 4 we draw two clear observations: (i) on
both datasets, either the global or the local module in isolation underperforms their combination;
and (ii) the proposed mixer further facilitates effective information integration within the network,
yielding additional gains.

Table 4: Relative ℓ2 error (↓) results of ablation study.

Datasets g(o) l(o) g+l (o) g+l (w)

Duffing 0.2098 0.2262 0.1801 0.1663
Reac–Diff. 0.0953 0.1189 0.0903 0.0899

Influence of orthogonalization. In prac-
tice, we set the number of directions equal
to the data dimensionality to exploit the in-
put’s natural orthogonality. To isolate its
effect, we vary the direction set and eval-
uate on three benchmarks (Beam, Reac-
tion–Diffusion, and the Brusselator). We
sweep the number of directions from 1 to 5,
defining each by a uniform partition of the angular domain. We compare RNO with LNO, FNO, and
DeepONet to quantify the role of orthogonal representations; in 2-D, two directions align with the
native coordinate axes and are exactly orthogonal. Analogously in 3-D, the three canonical axes are
orthogonal.

As shown in Figure 5, RNO achieves its best performance with exactly two directions and remains
competitive(typically second-best), when the number of directions is an integer multiple of the data
dimension (e.g., 4). With too few directions (e.g., 1), we observe information loss and occasional
instability; with too many (e.g., 3 or 5), performance does not improve because the additional,
non-orthogonal directions are redundant. Even under suboptimal counts, RNO outperforms LNO,
FNO, and DeepONet on most metrics. This highlights that orthogonality is not just a heuristic choice,
but a principled design element in neural operators.
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Figure 5: Comparison of relative ℓ2 errors (left) and rank (right) for RNO, LNO, FNO, and DeepONet
on the Beam, Reaction–Diffusion, and Brusselator benchmarks as the direction number varies from 1
to 5. RNO-n indicates that the RNO uses n directions.

Influence of activation function. In prior experiments, all methods employed the same sin activa-
tion to ensure parity. Prior work identifies activation functions as the primary source of nonlinearity
in neural operators (Tran et al., 2023; Lu et al., 2021; Li et al., 2020b). To assess RNO’s intrinsic
capacity for non-linear phenomena, we benchmark it under multiple activations (sin, GELU, ReLU,
Leaky ReLU, Sigmoid, Tanh, and none) on two representative tasks: Duffing and Reaction–Diffusion.

Table 5: Relative ℓ2 error (↓) with different activation function on Duffing and Reac-Diffusion
benchmarks. Lower is better. The best (bold) and second-best (underline) results are highlighted.

Dataset Model
Relative ℓ2 (↓)

sin gelu relu leaky_relu sigmoid tanh None

Duffing

RNO 0.1663 0.1962 0.1441 0.1481 0.2089 0.1582 0.3215
LNO(2024a) 0.3325 0.4010 0.4527 0.4828 0.4211 0.3662 0.8121
FNO(2020a) 0.4536 0.4725 0.4555 0.4612 0.4913 0.4343 0.9296
DeepONet(2021) 0.6289 0.5972 0.4278 0.4717 0.9993 0.7042 0.9787

Promotion +50.0% +51.1% +68.2% +67.9% +50.4% +56.8% +60.4%

Reac–Diff.

RNO 0.0899 0.1011 0.1027 0.0973 0.1323 0.1482 0.1017
LNO(2024a) 0.1355 0.1277 0.1068 0.1111 0.1147 0.1069 0.2915
FNO(2020a) 0.1214 0.1443 0.1337 0.1500 0.1322 0.1424 0.3511
DeepONet(2021) 0.7969 0.2742 0.2739 0.2754 1.0000 0.4337 0.6967

Promotion +25.9% +20.8% +3.8% +12.4% −15.3% −38.6% +65.1%

As shown in Table 5, on Duffing RNO attains the lowest error under every activation; ReLU performs
best, while sin is slightly suboptimal. Even with no activation, RNO surpasses FNO, LNO, and
DeepONet by a large margin, indicating a stronger intrinsic capacity for non-linear dynamics. On
Reaction diffusion, the pattern differs: with Sigmoid or Tanh, RNO no longer exceeds FNO or
LNO. Removing the activation improves RNO, approaching the optimum in Table 5. We attribute
this behavior to redundant nonlinearities introduced by Sigmoid/Tanh, which exceed the data’s
representational needs and destabilize gradient propagation. In contrast, eliminating the activation
severely degrades LNO, FNO, and DeepONet, underscoring RNO’s superior capacity to internalize
nonlinear representations.

CONCLUSION

We presented the Riesz Neural Operator (RNO), which bridges global spectral modeling with local
derivative dynamics through Riesz transform. By jointly modeling local daymics (differentiation)
and the operator theory (integration), we provide an integrated formulation that gives an intuitive
explanation of how RNO enhances the interpretability. Evaluations on diverse PDEs, Navier–Stokes
flows, and ERA5 data confirm consistent gains and robustness. Beyond accuracy, RNO demonstrates
that embedding spectral derivatives into operator learning provides a natural and principled path
toward more expressive models, suggesting broad potential for advancing scientific machine learning.

9
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4. The datasets used in this study are publicly available: the diverse PDE benchmarks at (https:
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with different random seeds. Definitions of the evaluation metrics are provided in A.7.
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A APPENDIX

A.1 WHY LOCAL DIRECTION IS IMPORTANT FOR PDES?

Local derivatives are inherently directional, with directionality encoded by the phase gradient∇ϕ.
In the high-frequency regime, PDEs couple to the data through their principal symbol evaluated
at∇ϕ. The Riesz transform provides rotation-equivariant estimates of local phase and orientation,
thereby supplying neural networks with precisely the quantities that govern PDE propagation. We
next analyze each step in detail.

Figure 6: The specific structure of Taylor expansion and its difference from Fourier transform.

1. LOCAL DERIVATIVES ARE DIRECTIONAL

Given u : Rd → C, the directional derivative along a unit vector n is

∂nu(x) = n·∇u(x).
Write u = Aeiϕ with A ≥ 0, ϕ ∈ R wherever u ̸= 0. Then

∂nu = eiϕ(∂nA+ iA ∂nϕ) = u (∂n lnA+ i ∂nϕ) . (12)

Consequently, the normalized directional derivative decomposes neatly into amplitude and phase
components:

∂nϕ = Im
(∂nu

u

)
, ∂nlnA = Re

(∂nu
u

)
. (13)

Accordingly, local derivatives are inherently orientation dependent, with ∇ϕ prescribing that orienta-
tion.

2. DIRECTIONALITY IS ENCODED BY THE PHASE

From ∇u = u(∇lnA+ i∇ϕ) we obtain

∇ϕ = Im
(∇u

u

)
, ∇lnA = Re

(∇u
u

)
. (14)
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The vector k(x) := ∇ϕ(x) is the local wavevector and

n(x) :=
∇ϕ(x)
∥∇ϕ(x)∥

is the local orientation. In the high-frequency regime, where amplitude varies slowly compared with
phase,

∥∇u∥ ≈ A ∥∇ϕ∥, ∂nu ≈ iA (∂nϕ) e
iϕ,

so the derivative is dominated by directional phase change.

3. WHY PDES CARE: PRINCIPAL SYMBOL AND HIGH-FREQUENCY LINK

Consider an m-th order linear differential operator

P (x, ∂) =
∑

|α|≤m

aα(x) ∂
α, ppr(x, ξ) =

∑
|α|=m

aα(x) (iξ)
α

with principal symbol ppr. Insert a ansatz u(x) = A(x)eiωϕ(x) (ω ≫ 1). By repeated Leibniz(Osler,
1970),

P
(
Aeiωϕ

)
= eiωϕ

[
ωm ppr

(
x,∇ϕ

)
A + O(ωm−1)

]
. (15)

At leading order, the principal symbol ties the dynamics to the phase gradient ∇ϕ. Asymptotic
solvability at order ωm entails the eikonal equation(Smith et al., 2020),

ppr
(
x,∇ϕ(x)

)
= 0 . (16)

Hence, rays propagate along the phase gradient ∇ϕ. For the transport operator P = ∂t + a(x)·∇x,
the principal symbol is ppr(x, τ, ξ) = i

(
τ + a·ξ

)
. Imposing the eikonal condition (Weinberg, 1962)

ppr(x, ∂tϕ,∇xϕ) = 0 gives τ + a ·ξ = 0 with ξ = ∇xϕ, so the spatial propagation direction is
aligned with ∇xϕ.

4. RIESZ TRANSFORM: EXTRACTING PHASE AND ORIENTATION

The d-D Riesz transformRu = (R1u, . . . ,Rdu) is defined by

R̂ju(ω) = −i
ωj

∥ω∥
û(ω).

Plane wave benchmark. For u(x) = cos(k·x),

Ru(x) = sin(k·x) k

∥k∥
.

HenceRu points in the wave direction k/∥k∥ and is π/2 out of phase.

High frequency. Let u(x) = A(x) cos
(
ω ϕ(x)

)
with smooth A, ϕ and ω ≫ 1. Locally near x0,

ϕ(x) ≈ ϕ(x0) +∇ϕ(x0)·(x− x0), i.e. a plane wave with k = ω∇ϕ(x0). Then

Ru(x0) = A(x0) sin
(
ωϕ(x0)

) ∇ϕ(x0)

∥∇ϕ(x0)∥
+ O

(
∥∇A∥+ ∥∇2ϕ∥

ω

)
. (17)

Therefore the orientation is

n(x) =
Ru(x)
∥Ru(x)∥

≈ ∇ϕ(x)
∥∇ϕ(x)∥

,

and a rotation-invariant local phase can be defined by the monogenic signal (Unser et al., 2009),

ρ(x) =
√
u(x)2 + ∥Ru(x)∥2, θ(x) = atan2

(
∥Ru(x)∥, u(x)

)
,

so that locally u ≈ ρ cos θ, ∥Ru∥ ≈ ρ sin θ.
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5. THE RATIONALITY OF USING RIESZ TRANSFORMATION FOR NEURAL OPERATOR

• Aligns with principal symbols. By equation 15–equation 16, the leading-order response of the
PDE depends on ∇ϕ through ppr(x,∇ϕ). Riesz features extract the orientation n ≈ ∇ϕ/∥∇ϕ∥
and the quadrature phase θ, thereby granting the network direct access to the directional variables
relevant to the PDE.

• Rotation covariance. Since R is rotation-covariant, (u,Ru) provides features that transform
predictably under rotations. This property is essential for modeling anisotropic diffusion, advection,
and wave propagation without relearning all orientations.

• Phase emphasis and contrast robustness. Phase (via θ) remains invariant under multiplicative
contrast changes u 7→ c u, while the derivatives in equation 13 accentuate ∂nϕ. Consequently,
learning is guided toward geometry and propagation rather than raw amplitude.

• Differentiable and lightweight. R is linear with a fixed multiplier −iξ/∥ξ∥, and its discrete
realizations are convolutional and backpropagation-friendly. It can serve either as a fixed front-end
or as a parallel stream complementing learned filters.

6. INFLUENCE OF PHASE AND ORIENTATION

To highlight how phase governs directionality, we conduct an ablation on the Navier–Stokes dataset.
Under an identical network architecture, we compare two input parameterizations (cf. Figure 7(a)): (i)
complex features that retain both magnitude and phase, A(x)eiϕ(x); and (ii) magnitude-only features
with the phase suppressed, A(x)ei∗0. All other training and evaluation settings are held fixed.

As shown in Figure 7(b)-(d), removing phase yields markedly sparser fine-scale structures and
substantial misalignment of local feature orientations. In rollout regimes (Cao et al., 2024b) (e.g.,
NO), such local directional errors accumulate over time. The effect is amplified for more complex
data with more numerous localized structures, resulting in larger long-horizon errors, as evidenced by
Table 2. Moreover, the Riesz transform precisely enhances the directional sensitivity of phase control.

(a) (b) (c) (d)

Transform Transform

Inverse

transform

Inverse

transform

Figure 7: (a) Two feature structures; (b) results using magnitude–phase features; (c) results using
magnitude-only features; (d) orientation comparison on selected details.

A.2 ORTHOGONALITY

Inner product. Let n ≥ 2 and wave-vector k = (k1, . . . , kn) ∈ Rn and magnitude ∥k∥ =
(
∑n

i=1 k
2
i )

1/2. For any distinct indices i ̸= j consider the L2 inner product

⟨Ri, Rj⟩ =

∫
Rn

Ri(k)Rj(k) dk. (18)

Then setting E(k) := |F (k)|2 (an even function in every kℓ) yields

⟨Ri, Rj⟩ =

∫
Rn

kikj
∥k∥2

E(k) dk.

Odd–even symmetry argument. Fix i ̸= j. Under the sign change ki 7→ −ki the factor kikj flips
sign while both ∥k∥2 and E(k) remain unchanged; hence the integrand is odd with respect to the ki
axis. Because the integration domain Rn is symmetric, the integral vanishes:

⟨Ri,Rj⟩ = 0, ∀ i ̸= j (19)
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Spatial-domain equivalence. By Parseval’s theorem (Orfanidis, 1995), the frequency-domain
result implies spatial orthogonality: ⟨Rif,Rjf⟩x = 0 for i ̸= j, where Ri denotes the real-space
Riesz transform in direction i. Thus the vector of Riesz components Rf = (R1f, . . . ,Rdf) forms
an orthonormal frame in L2(Rn). Consequently, neural operators that process the Riesz vector
component-wise inherit stable, non-redundant latent representations in any spatial dimension d.

A.3 BOUND

First-order approximation. The first-order Taylor expansion provides an approximation to the
actual intensity function f(x) and its variations, which is reflected in the Riesz transform within the
spatial domain (Wadhwa et al., 2014). For rapidly varying data, the accuracy of the first-order Taylor
expansion decreases as ζ increases. Large values of ζγ(t) may introduce artifacts. To ensure the
approximation remains valid, we derive an upper bound for ζ.

Assuming the first-order Taylor expansion holds, the modified intensity is:

f(x+ ζγ(t)) ≈ f(x) + ζγ(t)
df(x)

dx
. (20)

The Riesz transform introduces a 90-degree phase shift. If f(x) = cos(ωx), we have:

cos(ωx+ ζωγ(t)) ≈ cos(ωx)− ζωγ(t) sin(ωx). (21)

Using the trigonometric identity:

cos(ωx+ ζωγ(t)) = cos(ωx) cos(ζωγ(t))− sin(ωx) sin(ζωγ(t)), (22)

we require ζωγ(t) to be small for cos(ζωγ(t)) ≈ 1 and sin(ζωγ(t)) ≈ ζωγ(t). Assuming a 5%
error tolerance, the second-order term should be less than 5% of the first-order term, yielding the
condition:

ζγ(t) <
λ

12
, (23)

where λ = 2π
ω is the spatial wavelength. A larger wavelength allows for a larger scaling factor ζ;

smaller wavelengths require a smaller ζ to avoid artifacts. While this bound on ζ is theoretical, the
wavelength of the data must be determined based on the signal and network’s characteristics.

Multidimensional case. For a multi-dimensional setting, let x = (x1, x2, . . . , xd) represent the
spatial coordinates. The first-order Taylor expansion of f(x) becomes:

f(x+ ζγ(t)) ≈ f(x) + ζ

d∑
i=1

γi(t)
∂f(x)

∂xi
. (24)

Here, γi(t) is the scaling factor in the i-th direction. The scaling factor ζ still amplifies the signal’s
variations across all dimensions. The error condition becomes:

ζ

(
d∑

i=1

ωiγi(t)

)
<

π

6
, (25)

where ωi is the frequency in the i-th direction. The bound provided here is not an exact limit but
rather a theoretical upper bound. Since it depends on the angular frequency of the data, the boundary
is not fixed. Accordingly, in the mixer A.5 we replace it with a learnable parameter while constraining
its range.

A.4 RELATIONSHIP BETWEEN THE HILBERT AND RIESZ TRANSFORMS

In one dimension, the Hilbert transformHf (Cizek, 1970) is the singular integral

Hf(x) = 1

π
p.v.

∫ ∞

−∞

f(y)

x− y
dy,

with Fourier representation
F [Hf ](ξ) = −i sgn(ξ) f̂(ξ),

17
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where “p.v.” denotes the Cauchy principal value (Guiggiani & Casalini, 1987). In Rn, the Riesz
transform generalizes this construction: for f ∈ S(Rn),

Rjf(x) = F−1

[
−i ξj
|ξ|

f̂(ξ)

]
(x), j = 1, . . . , n,

so eachRj acts as a normalized directional derivative with a degree-zero Fourier multiplier.

For n = 1, taking ξ1 = ξ yields

R1f(x) = F−1

[
−i ξ

|ξ|
f̂(ξ)

]
(x) = F−1

[
−i sgn(ξ) f̂(ξ)

]
(x),

recovering exactly the Hilbert transform: R1f = Hf .

Collecting the components Rf = (R1f, . . . ,Rnf) gives a vector operator that is an L2-isometry:
n∑

j=1

∥Rjf∥2L2 = ∥f∥2L2 .

Thus the Riesz transform is the canonical multi-dimensional analogue of the Hilbert transform, widely
used to extract directional and phase information in higher-dimensional signal analysis. Making this
connection explicit sharpens our understanding of how Riesz transforms operate on derivative-like
quantities and underpins the RNO framework.

(c) RNO: Mix Local Transformation in Riesz Space

(a) Classical Neural Network: Directly Map (b) FNO/LNO: Global Transformation in Fourier/Laplace Space

M
apped


Components

DecoderEncoder Components

Global Transformation

Local block

1 2R R
Global block

M
apped


Components

MixerComponents

R

F/L

global

Global Transformation

Figure 8: A comparison between RNO and simplified versions of some classical architectures,
highlighting the global-local mixer of RNO.

A.5 IMPLEMENTATION OF THE DIRECTION MIXER

The direction mixer essentially performs global–local integration of physical dynamics in the Riesz
space. This differs from mixing in the spatial domain, since data representations in the Riesz space are
inherently distinct, and can be regarded as a latent feature representation. Consequently, the challenge
is to design a fusion mechanism that preserves data characteristics while naturally integrating physical
properties. In the physical domain, the monogenic signal (Unser et al., 2009), a high-dimensional
extension of analytic signals, offers such an example, as it naturally fuses orthogonal components
across scales. For a monogenic signal, its general form in R3 can be expressed as

f(x) = x1 + x2i+ x3j. (26)
Our implementation follows this formulation with several modifications:

Mixer = Rglobal + wiRi + wjRj , (27)
where w denotes learnable, direction-specific parameters that assign spectral weights to the cor-
responding Riesz components. For n-dimensional data, the formulation naturally extends to n
dimensions. To avoid excessive artifacts according to the derived bounds, the values are constrained
within (0, 2) according to bound in A.3. This structure enables a natural fusion of global and local
information, which is key to the superior performance of the overall model.
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A.6 DIRECTIONALITY IN ONE DIMENSION

In one spatial dimension, the Riesz transform reduces to the Hilbert transform (Cizek, 1970), the
canonical operator for building analytic signals (Marple, 1999):

H{f}(t) = 1

π
p.v.

∫ ∞

−∞

f(τ)

t− τ
dτ. (28)

While a single spatial dimension lacks an intrinsic notion of orientation, the Hilbert transform nonethe-
less decomposes any real-valued signal into two oppositely directed components, distinguished by
the sign of their temporal frequencies. Define

f+(t) =
1
2

[
f(t) + iH{f}(t)

]
, (29)

f−(t) =
1
2

[
f(t)− iH{f}(t)

]
, (30)

so that positive frequencies correspond to energy (or information) propagating away from the source,
while negative frequencies correspond to energy returning toward it. The spectral imbalance between
these two sectors thus reveals the net propagation direction. In fluid dynamics, spectra dominated by
positive frequencies typically indicate pressure waves radiating from a point source. When solutions
of the Navier–Stokes equations predict strong vortical feedback, analysis should instead focus on the
negative-frequency band. In contrast, in purely diffusive processes where concentrations relax from
high to low, the positive frequency component typically dominates.

A.7 EVALUATION METRICS

We evaluate model performance using two standard metrics in our work: the relative ℓ2 error and
the mean squared error (MSE). The relative ℓ2 error measures the discrepancy normalized by the
ground-truth energy and is defined as

relative ℓ2 error =

∑M
i=1

(
Yi − Ŷi

)2∑M
i=1

(
Yi

)2 =
∥Y − Ŷ ∥22
∥Y ∥22

, (31)

The MSE quantifies the average squared prediction error:

MSE =
1

M

M∑
i=1

(
Yi − Ŷi

)2
. (32)

Here Yi denotes the ground-truth value, Ŷi the model prediction, and M the number of samples/points.

A.8 SUPPLEMENTARY FOR BENCHMARKS

A.8.1 DUFFING OSCILLATOR

A paradigmatic non-linear, damped, and driven oscillator, the Duffing system is governed by

mẍ(t) + cẋ(t) + k1x(t) + k3x
3(t) = f(t), (33)

where x(t) is the displacement, ẋ(t) and ẍ(t) denote velocity and acceleration, and the constants m,
c, k1, and k3 represent the mass, viscous damping, linear stiffness, and cubic stiffness, respectively.
The term f(t) supplies the external forcing.

A.8.2 EULER–BERNOULLI BEAM

For a slender Euler–Bernoulli beam subject to transverse loading, the Euler–Lagrange formalism
yields

EI
∂4y(x, t)

∂x4
+ ρA

∂2y(x, t)

∂t2
= f(x, t), (34)

with y(x, t) denoting the transverse deflection and f(x, t) the applied load. Material and geometric
properties enter through Young’s modulus E, second moment of area I , density ρ, and cross-sectional
area A.
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A.8.3 DIFFUSION EQUATION

Pure diffusion in one dimension obeys

D
∂2y(x, t)

∂x2
− ∂y(x, t)

∂t
= f(x, t), (35)

where y(x, t) is the scalar field, D the (constant) diffusion coefficient, and f(x, t) a distributed source
or sink.

A.8.4 REACTION–DIFFUSION SYSTEM

Coupling diffusion with non-linear kinetics leads to the generic reaction–diffusion form

D
∂2y(x, t)

∂x2
+ k y2(x, t)− ∂y(x, t)

∂t
= f(x, t), (36)

where k sets the quadratic reaction rate while y(x, t) and f(x, t) retain their usual interpretations.

A.8.5 BRUSSELATOR REACTION–DIFFUSION SYSTEM

The two-species Brusselator, describing an autocatalytic chemical network, is written as

∂u

∂t
= D0

(
∂2u

∂x2
+

∂2u

∂y2

)
+ a+ f(t)− (1 + b)u+ vu2,

∂v

∂t
= D1

(
∂2v

∂x2
+

∂2v

∂y2

)
+ bu− vu2,

(37)

defined for (x, y) ∈ [0, 1]2 and t ∈ [0, 20]. Here u and v are concentration fields, D0 and D1 their
diffusion coefficients, and a, b the kinetic parameters, with f(t) introducing a time-dependent feed
term.

A.8.6 NAVIER–STOKES EQUATION

For an incompressible Newtonian fluid with velocity u(x, t) and pressure p(x, t),

∂tu+ (u·∇)u = −∇p+ ν∆u+ f , ∇·u = 0,

where ν denotes the kinematic viscosity and f a body force. Upon nondimensionalization using the
characteristic speed U and length L,

∂tu+ (u·∇)u = −∇p+ 1

Re
∆u+ f , ∇·u = 0,

the sole control parameter is the Reynolds number Re = UL/ν, which quantifies the ratio of
inertial to viscous effects. Higher Reynolds numbers are accompanied by increasingly complex local
structures, which is one of the challenges faced by current neural-network methods. Accordingly,
using configurations spanning a range of Reynolds numbers in this experiment to validate the model’s
capacity to represent local nonlinearities is both reasonable and reliable. As shown in Figure 9, RNO
retains excellent predictive performance despite increasing local complexity.

(a) (b) (c)

Figure 9: Comparison between the ground truth and RNO predictions across different Reynolds
numbers. (a) Re = 40, (b) Re = 500, (c) Re = 5000.
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DISCUSSION AND LIMINATION

RNO’s key insight is a scale-wise repartitioning of the data. This reallocation expands the model’s
representational degrees of freedom. In neural-operator architectures, it provides a principled
mechanism to surface local components that would otherwise be suppressed. Although these local
components may spatially overlap with global features, such overlap does not degrade performance, as
the original signals at those locations were underweighted. RNO explicitly amplifies these neglected
local contributions and rebalances the component weights. From a Taylor-expansion perspective,
these local terms admit further refinement, which we leave to future work.

RNO further models the coupling between the data’s wave content and the neural-operator architecture,
yielding a more complete justification of the design. Nonetheless, RNO has limitations: in some
settings, control over local components lacks sufficient precision that is an issue we aim to address in
subsequent work.

LLM USAGE STATEMENT: LANGUAGE POLISHING ONLY

We used a large language model (LLM) solely for language polishing to improve clarity and control
manuscript length (e.g., correcting grammar and refining phrasing for greater precision.). The LLM
was not used for problem formulation, methodology or experiment design, data processing or analysis,
result interpretation, or drawing conclusions. All edits suggested by the LLM were reviewed and
approved by the authors.
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