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ABSTRACT

How should we intervene on an unknown structural causal model to maximize
a downstream variable of interest? This optimization of the output of a system
of interconnected variables, also known as causal Bayesian optimization (CBO),
has important applications in medicine, ecology, and manufacturing. Standard
Bayesian optimization algorithms fail to effectively leverage the underlying causal
structure. Existing CBO approaches assume noiseless measurements and do not
come with guarantees. We propose model-based causal Bayesian optimization
(MCBO), an algorithm that learns a full system model instead of only modeling
intervention-reward pairs. MCBO propagates epistemic uncertainty about the
causal mechanisms through the graph and trades off exploration and exploitation
via the optimism principle. We bound its cumulative regret, and obtain the first
non-asymptotic bounds for CBO. Unlike in standard Bayesian optimization, our
acquisition function cannot be evaluated in closed form, so we show how the repa-
rameterization trick can be used to apply gradient-based optimizers. Empirically
we find that MCBO compares favorably with existing state-of-the-art approaches.

1 INTRODUCTION

Many applications, such as drug and material discovery, robotics, agriculture, and automated ma-
chine learning, require optimizing an unknown function that is expensive to evaluate. Bayesian
optimization (BO) is an efficient framework for sequential optimization of such objectives (Močkus,
1975). The key idea in BO is to quantify uncertainty in the unknown function via a probabilistic
model, and then use this to navigate a trade-off between selecting inputs where the function output is
favourable (exploitation) and selecting inputs to learn more about the function in areas of uncertainty
(exploration). While most standard BO methods focus on a black-box setup (Figure 1 a), in practice,
we often have more structure on the unknown function that can be used to improve sample efficiency.

In this paper, we exploit structural knowledge in the form of a causal graph specified by a directed
acyclic graph (DAG). In particular, we assume that actions can be modeled as interventions on a
structural causal model (SCM) (Pearl, 2009) that contains the reward (function output) as a variable
(Figure 1 b). While we assume the graph structure to be known, we consider the functional relations
in the SCM as unknown. All variables in the SCM are observed along with the reward after each
action. This Causal BO setting has important potential applications, such as optimizing medical
and ecological interventions (Aglietti et al., 2020b). For illustrative purposes, consider the example
of an agronomist trying to find the optimal Nitrogen fertilizer schedule for maximizing crop yield,
described in Figure 1. There, the concentration of Nitrogen in the soil causes its concentration in
the soil at the later timesteps.

To exploit the causal graph structure for optimization, we propose model-based causal Bayesian
optimization (MCBO). MCBO explicitly models the full SCM and the accompanying uncertainty
of all SCM components. This allows our algorithm to select interventions based on an optimistic
strategy similar to that used by the upper confidence bound algorithm (Srinivas et al., 2010). We
show that this strategy leads to the first CBO algorithm with a cumulative regret guarantee. For
a practical algorithm, maximizing the upper confidence bound in our setting is computationally
more difficult, because uncertainty in all system components must be propagated through the entire
estimated SCM to the reward variable. We show that an application of the reparameterization trick
allows MCBO to be practically implemented with common gradient-based optimizers. Empirically,
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Figure 1: A visual comparison between the modelling assumptions of BO vs CBO. Circular nodes
represent observed variables, squares represent action inputs and Y is the reward. Algorithms select
a before observing X and Y . (a) In standard BO, the DAG has the structure shown regardless
of the problem structure. (b) The DAG corresponding to our stylised agronomy example, where
we aim to maximize crop yield Y . CBO takes this DAG as input for designing actions. X0 is an
unmodifiable starting property of the soil, and X1 . . . X3 are the measured amounts of Nitrogen
in the soil at different timesteps. Each observation is modelled with its own Gaussian process.
a1 . . .a3 are possible interventions involving adding Nitrogen fertilizer to the soil.

MCBO achieves competitive performance on existing CBO benchmarks and a related setting called
function network BO (Astudillo & Frazier, 2021b).

Contributions

• We introduce MCBO, a model-based algorithm for causal Bayesian optimization than can
be applied with very generic classes of interventions.

• Using MCBO we prove the first sublinear cumulative regret bound for CBO. We show how
the bound scales depending on the graph structure. We demonstrate that CBO can lead to
a potentially exponential improvement in cumulative regret, with respect to the number of
actions, compared to standard BO.

• By an application of the reparameterization technique, we show how our algorithm can be
efficiently implemented with popular gradient-based optimizers.

• We evaluate MCBO on existing CBO benchmarks and the related setting of function
network BO. Our results show that MCBO performs favorably compared to methods
designed specifically for these tasks.

2 BACKGROUND AND PROBLEM STATEMENT

We consider the problem of an agent interacting with an SCM for T rounds in order to maximize the
value of a particular target variable. We start with introducing SCMs and the kinds of interventions
an agent can perform on an SCM. In the following, we denote with [m] the set of integers
{0, . . . ,m}.

Structural Causal Models An SCM is described by a tuple ⟨G, Y,X,F ,Ω⟩ of the following ele-
ments: G is a known DAG; Y is the reward variable of interest; X = {Xi}m−1

i=0 is a set of observed
random variables; the set F = {fi}mi=0 defines the functional relations between these variables;
and Ω = {Ωi}mi=0 is a set of independent noise variables with zero-mean and known distribution.

We use the notation Y and Xm interchangeably and assume the elements of X are topologically
ordered, i.e., X0 is a root and Xm is a leaf. We use the notation pai ⊂ {0, . . . ,m} for the indices
of the parents of the ith node, and Zi = {Xj}j∈pai

for the parents of the ith node. We sometimes
use Xi to refer to both the ith node and the ith random variable.
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Each Xi is generated according to the function fi : Zi → Xi, taking the parent nodes Zi of Xi

as input: xi = fi(zi) + ωi, where lowercase denotes a realization of the corresponding random
variable. The reward is a scalar xm ∈ R. An observation Xi is defined over a compact set
xi ∈ Xi ⊂ Rd, and its parents are defined over Zi =

∏
j∈pai

Xj for i ∈ [m− 1].

Interventions At each interaction round, the agent performs an intervention on the SCM. In this
work, we consider two types of intervention models.

We consider a soft intervention model (Eberhardt & Scheines, 2007) where interventions are
parameterized by controllable action variables. Let Ai ⊂ Rq denote the compact space of an action
ai and A be the space of all actions a = {ai}mi=0. We represent the actions as additional nodes in
G (see Fig. 1): ai is a parent of only Xi, and hence an additional input to fi. Since fi is unknown,
in our soft intervention model, the agent does not know apriori the functional effect of ai on Xi. A
simple example of a soft intervention is a shift intervention xi = fi(zi,ai)+ωi = gi(zi)+ai+ωi

for some function gi. A shift intervention might occur in our example of adding Nitrogen fertilizer
to soil and then measuring the total soil Nitrogen concentration.

While our theoretical results will focus on data obtained via soft interventions, our experiments also
consider two other data sources. First, we consider a hard intervention model: hard interventions
(often referred to as do-interventions) modify the targeted variable to a specific distribution inde-
pendently of the variable’s parents. For example, a doctor sets the dosage of a patient’s medication,
which fixes the dosage to a specific value (Aglietti et al., 2020b). Second, a special case under
both intervention models is the collection of observational data, which is when no intervention is
performed on the system. In the soft intervention model, not intervening on node i is equivalent to
setting ai = 0. An example would be not applying any Nitrogen fertilizer to the soil. In practice,
the agent may have access to some previous observational data before its first interaction with the
system. In the following, we introduce the problem setup under the soft intervention model and
then adapt it to the hard intervention model.

Constraints on interventions In many applications, we may not be able to intervene on all nodes
simultaneously. For example, a farmer may only have the capacity to apply fertilizer at two out of
three possible time windows in Fig. 1. This results in an action space with cardinality constraints,
written as

A =

{
a = {ai}mi=0 :

m∑
i=0

1[ai ̸=0] ≤ c, c ≥ 1

}
. (1)

Problem statement We consider the problem of an agent sequentially interacting with an SCM,
with known DAG G and a fixed but unknown set of functions F = {fi}mi=1 with fi : Zi×Ai → Xi.
At round t we select actions a:,t = {ai,t}mi=0 and obtain observations x:,t = {xi,t}mi=0, where we
add an additional subscript to denote the round of interaction. The action ai,t and the observation
xi,t are related by

xi,t = fi(zi,t,ai,t) + ωi,t, ∀i ∈ [m]. (2)
If i corresponds to a root node, the parent vector zi,t denotes an empty vector, and the output of
fi only depends on the action ai,t. Since we cannot intervene on the target variable Xm, we fix
am = 0. The reward is given by

yt = fm(zm,t,am,t) + ωm,t, (3)
which implicitly depends on the whole intervention vector a:,t. We define the action that maximizes
the expected reward by

a∗ = argmax
a∈A

E[y|a], (4)

where, unless otherwise stated, expectations are taken over noise ω.

Performance metric Our agent’s goal is to design a sequence of interventions {a:,t}Tt=0 that
achieves a high average expected reward. We hence study the cumulative regret (Lattimore &
Szepesvári, 2020) over a time horizon T :

RT =

T∑
t=1

[
E[y|a∗]− E[y|a:,t]

]
. (5)
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A sublinear growth rate of RT with T implies vanishing average regret: RT /T → 0 as T → ∞.
As an alternative to cumulative regret, one can also study the simple regret E[y|a∗]−E[y|aT ]. The
most appropriate metric depends on the application. In the Nitrogen fertilizer example, cumulative
regret might be preferable because we care about obtaining high crop yields across all years, not
just in one final year.

Index notation Let xi,t = [xi,t,1, . . . ,xi,t,d]
T denote a vector where xi,t,l indicates indexing the

component l ∈ [d] of the tth timepoint of the observations at the node i ∈ [m]. For functions with
vector output, e.g., fi : Zi → Xi, we sometimes consider notation with additional input to fi that
indicates the output dimension: fi(z,a) = [fi(z,a, 1), . . . , fi(z,a, d)]

T .

Regularity assumptions We consider standard smoothness assumptions for the unknown functions
fi : S → Xi defined over a compact domain S (Srinivas et al., 2010). In particular, for each node
i ∈ [m], we assume that fi(·) belongs to a reproducing kernel Hilbert space (RKHS) Hki

, a space
of smooth functions defined on S = Zi × Ai. This means that fi ∈ Hki is induced by a kernel
function ki : S̃ × S̃ → R where S̃ = S × [d]1. We also assume that ki(s, s′) ≤ 1 for every
s, s′ ∈ S̃2. Moreover, the RKHS norm of fi(·) is assumed to be bounded ∥fi∥ki ≤ Bi for some
fixed constant Bi > 0. Finally, to ensure the compactness of the domains Zi, we assume that the
noise ω is bounded, i.e., ωi ∈ [−1, 1]

d.3

Problem statement under hard interventions Under a hard intervention model, instead of select-
ing an action a in Eq. (4), the agent must select both a set of intervention targets I ∈ I ⊂ P([m−1])
and their values aI ∈ AI ∈ A. For hard intervention we can rewrite Eq. (2) as

xi =

{
ai if i ∈ I

fi(zi) + ωi otherwise,
∀ i ∈ [m], (6)

where fi is unknown and employs the same regularity assumptions. Further constraints similar to
Eq. (1) can be placed on either the intervention nodes I or action values aI . Finally, observational
data corresponds to the empty intervention set I = ∅.

2.1 RELATED WORK

Optimal decision-making in SCMs has been the subject of several recent works, for example, in
the bandit setting (Lattimore et al., 2016; Bareinboim et al., 2015). Aglietti et al. (2020b) introduce
causal BO (CBO) focusing on hard interventions. CBO considers unobserved confounding and uses
the do-calculus to estimate Y given I,aI using both observational data and interventional data with
the same intervention targets I . Aglietti et al. (2020a) extend CBO to make use of data obtained
from hard interventions with different intervention targets. While both methods use do-calculus to
estimate causal effects, they do not learn the full system model. Branchini et al. (2022) and Alabed
& Yoneki (2022) extend these works to explore the CBO setting in the case of unknown DAG.

Function network BO (FNBO) (Astudillo & Frazier, 2021b) is similar to the CBO setup with soft
interventions and the proposed algorithm uses an expected improvement acquisition function to
select actions. MCBO generalizes the FNBO setup to a richer class of problems since the causal
model formalism allows for modelling hard interventions. Moreover, in contrast to MCBO, FNBO
assumes the system is noiseless which might be a restrictive assumption in practice. Kusakawa
et al. (2021) study stochastic function networks in the special case of a chain graph. Similar to
MCBO, they develop a UCB-based acquisition function and provide an accompanying cumulative
regret guarantee. However, they do not employ a reparameterization trick to show how to optimize
the acquisition function. Kusakawa et al. (2021) do not perform any empirical study of the
proposed UCB-based method, but evaluate expected improvement and credible interval methods

1For vector-valued functions coming from an RKHS we consider a scalar-valued function where the output
index is part of the function input, as described in Curi et al. (2020) Appendix F.

2This is known as the bounded variance property, and it holds for many common kernels.
3This assumption can be relaxed to ωi being sub-Gaussian using similar techniques to Curi et al. (2020)

Appendix I. Though sub-Gaussian noise includes distributions with unbounded support, Curi et al. (2020)
provide high probability bounds on the domain of Zi.
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also developed for the chain graph setting. Both FNBO and CBO are part of a wider research
direction on using intermediate observations from the computation of the unknown function to
improve the sample efficiency of BO algorithms (Astudillo & Frazier, 2021a).

In concurrent work, Varici et al. (2022) consider a similar setup and prove a cumulative regret
guarantee for a UCB-based algorithm with soft interventions. However, they focus only on linear
SCMs and a binary action space for each intervention target, while MCBO applies to non-linear
SCMs and a continuous action space.

The function class studied in this paper is similar to that of deep Gaussian processes (GPs)
(Damianou & Lawrence, 2013) in that MCBO models Y as a composition of GPs given a. Deep
GPs, however, do not make use of intermediate system variables and do not compose GPs according
to a causal graph structure.

Our use of the reparameterization trick to practically implement an upper confidence bound acqui-
sition function (Srinivas et al., 2010) in MCBO is inspired by Curi et al. (2020), who apply ideas
from BO to design an algorithm for sample efficient reinforcement learning.

3 ALGORITHM

In this section, we propose the MCBO algorithm, describing the probabilistic model and acquisition
function used. We first introduce MCBO under the soft intervention setup and then describe how
to adapt it to hard interventions.

Statistical model We use Gaussian processes (GPs) for learning the RKHS functions f0, . . . ,fm

from observations. Our regularity assumptions permit the construction of confidence bounds using
these GP models with priors associated with the RKHS kernels. We refer to Rasmussen (2003) for
more background on the relation between GPs and RKHS functions. For all i ∈ [m], let µi,0 and
σ2
i,0 denote the prior mean and variance functions for each fi, respectively. Since ωi is bounded,

it is also subgaussian and we denote the variance by ρ2i . The corresponding posterior GP mean and
variance, denoted by µi,t and σ2

i,t respectively, are computed based on the previous evaluations
Dt = {z:,1:t,a:,1:t,x:,1:t}. In particular, for each function fi(·, ·, l) defined by the given kernel ki
and output component l:

µi,t(zi,ai, l) = ki,t(zi,ai, l)
⊤(Kt + ρ2i I)

−1vec(xi,1:t) , (7)

σ2
i,t(zi,ai, l) = ki((zi,ai, l); (zi,ai, l))− ki,t(zi,ai, l)

⊤(Kt + ρ2i I)
−1ki,t(zi,ai, l) , (8)

where I denotes the identity matrix, vec(xi,1:t) = [xi,1,1,xi,1,2, . . . ,xi,t,d]
⊤ and for

(t1, l), (t2, l
′) ∈ [(1, 1), (1, 2), . . . , (t, d)]:

[Kt](t1,l),(t2,l′) = ki((zi,t1,l,ai,t1,l, l); (zi,t2,l′ ,ai,t2,l′ , l
′)),

ki,t(zi,ai, l)
⊤ = [ki((zi,1,1,ai,1,1, 1); (zi,ai, l)), . . . , ki((zi,t,d,ai,t,d, d); (zi,ai, l))]

⊤.

We write µi,t = [µi,t(·, 1), . . . , µi,t(·, d)]T and similarly for σi,t. We give more background on the
posterior updates of vector-valued GPs in Appendix A.1.

At time t, the known set Mt of statistically plausible functions F̃ = {f̃i}mi=0 (functions that lie
inside the confidence interval given by the posterior of each GP) is defined as:

Mt =

{
F̃ = {f̃i}mi=0, s.t. ∀i : f̃i ∈ Hki

, ∥f̃i∥ki
≤ Bi,

and
∣∣∣f̃i(zi,ai)− µi,t−1(zi,ai)

∣∣∣ ≤ βi,tσi,t−1(zi,ai), ∀zi ∈ Zi,ai ∈ Ai

}
.

(9)

Here, βi,t is a parameter that ensures the validity of the confidence bounds. Some examples of
concentration inequalities under similar regularity assumptions as well as explicit forms for βi,t

can be found in Chowdhury & Gopalan (2019) and Srinivas et al. (2010). In the following, we set
βi,t = βt for all i such that the confidence bounds in Eq. (9) are still valid.
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Algorithm 1 Model-based Causal BO (MCBO)

Require: Parameters {βt}t≥1,G,Ω, kernel functions ki and prior means µi,0 = 0 ∀i ∈ [m]
1: for t = 1, 2, . . . do
2: Construct confidence bounds as in Eq. (9)
3: Select at ∈ argmaxa∈A maxη(·) E[y | {f̃},a] as in Eq. (12)
4: Observe samples {zi,t,xi,t}mi=0

5: Use Dt to update posterior {µi,t(·),σ2
i,t(·)}mi=0 as in Eqs. (7) and (8)

6: end for

Algorithm 2 Model-based Causal BO with Hard Interventions (MCBO)

Require: Parameters {βt}t≥1,G,Ω, kernel functions ki and prior means µi,0 = 0 ∀i ∈ [m]
1: for t = 1, 2, . . . do
2: Construct confidence bounds as in Eq. (9)
3: Select I,aI ∈ argmaxI,aI

maxη E[y | {f̃}, do(XI = aI)]
4: Observe samples {zi,t,xi,t}mi=0

5: Use Dt to update posterior {µi,t(·),σ2
i,t(·)}mi=0 as in Eqs. (7) and (8)

6: end for

Acquisition function At each round t, interventions are selected based on maximizing an acquisi-
tion function. Our acquisition function is based on the upper confidence bound acquisition function
(Srinivas et al., 2010). That is, we optimistically pick interventions that yield the highest expected
return among all system models that are still plausible given past observations:

a:,t = argmax
a∈A

max
F̃∈Mt

Eω

[
y | F̃ ,a

]
. (10)

Note that Eq. (10) is not amenable to commonly used optimization techniques, due to the
maximization over a set of functions with bounded RKHS norm. Therefore, following Curi
et al. (2020), we use the reparameterization trick to write any f̃i ∈ F̃ ∈ Mt using a function
ηi : Zi ×Ai → [−1, 1]di as:

f̃i,t(z̃i, ãi) = µi,t−1(z̃i, ãi) + βtσi,t−1(z̃i, ãi) ◦ ηi(z̃i, ãi), (11)

where x̃i = f̃i(z̃i, ãi) + ω̃i denotes observations from simulating actions in one of the plau-
sible models, and not necessarily the true model. ◦ denotes the elementwise multiplication
of vectors. This reparametrization allows for rewriting our acquisition function in terms of
η : Z ×A → [−1, 1]|X |:

a:,t = argmax
a∈A

max
η(·)

Eω

[
y | F̃ ,a

]
, s.t. F̃ = {f̃i,t} in Eq. (11). (12)

Intuitively, the variables η allow for choosing optimistic but plausible models given the confidence
bounds. In practice, the function η can be parameterized by, for example, a neural network, and
then standard optimization techniques are applied. For the theory, we assume access to an oracle
providing the global optimum for Eq. (12). In practice, such an oracle may be computationally
infeasible due to the non-convexity of Eq. (12). We discuss heuristics that we use for approximating
this oracle in Appendix A.3.

Algorithm 1 summarizes our Model-based Causal BO approach. We note that for the special case
of the SCM following the DAG of Fig. 1(a), our algorithm and the associated guarantees reduce to
standard BO (Srinivas et al., 2010).

Hard interventions MCBO also naturally generalizes to hard interventions (Algorithm 2). In our
experiments, we perform the combinatorial optimization over the set of nodes I by enumeration
because |I| is not large for the instances we consider. We apply the notion of a minimal intervention
set from Lee & Bareinboim (2019) to prune sets of intervention targets that contain redundant
interventions, resulting in a smaller set to optimize over.
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4 THEORETICAL ANALYSIS

This section describes the convergence guarantees for MCBO under a soft intervention model,
showing the first sublinear cumulative regret bounds for causal BO. We start by introducing
additional technical assumptions required for the analysis.
Assumption 1 (Functional relations). All fi ∈ F are Lf -Lipschitz continuous.
Assumption 2 (Continuity). ∀i, t, the functions µi,t, σi,t are Lµ, Lσ Lipschitz continuous.
Assumption 3 (Calibrated model). All statistical models are calibrated w.r.t. F , so that ∀i, t there
exists a sequence βt ∈ R>0 such that, with probability at least (1− δ), for all zi,ai ∈ Zi ×Ai we
have |fi(zi,ai)− µi,t−1(zi,ai)| ≤ βtσi,t−1(zi,ai), element-wise.

Assumption 1 follows directly from the regularity assumptions of Section 2. Assumption 2 holds if
the RKHS of each fi has a Lipschitz continuous kernel (see Curi et al. (2020), Appendix G). As-
sumption 2 restricts the convergence guarantees to soft interventions that affect their target variable
in a smooth way, meaning that our analysis does not directly apply to the hard intervention model.
We nevertheless experimentally demonstrate the effectiveness of MCBO in non-smooth settings,
such as CBO with hard interventions. Assumption 3 holds when we assume that the ith GP prior
uses the same kernel as the RKHS of fi and that βt is sufficiently large to ensure the confidence
bounds in Eq. (9) hold.

In the DAG G over nodes {Xi}mi=0 , let N denote the maximum distance from a root node to Xm:
N = maxi dist(Xi, Xm) where dist(·, ·) is measured as the number of edges in the longest path
from a node Xi to the reward node Xm. Let K denote the maximum number of parents of any
variable in G: K = maxi |pa(i)|. The following theorem bounds the performance of MCBO in
terms of cumulative regret.
Theorem 1. Consider the optimization problem in Eq. (4) with SCM satisfying Assumptions 1–3
where G is known but F is unknown. Then for all T ≥ 1, with probability at least 1 − δ, the
cumulative regret of Algorithm 1 is bounded by

RT ≤ O
(
LN
f LN

σ βN
T KNm

√
T γT

)
.

Here, γT = maxi γi,T where the node-specific γi,T denotes the maximum information gain at a
time T commonly used in the standard regret guarantees for Bayesian optimization (Srinivas et al.,
2010). This maximum information gain is known to be sublinear in T for many common kernels,
such as linear and squared exponential kernels, resulting in an overall sublinear regret for MCBO.
We refer to Appendix A.2.3 for the proof.

Theorem 1 demonstrates that the use of the graph structure in MCBO results in a potentially
exponential improvement in how the cumulative regret scales with the number of actions m.
Standard Bayesian optimization as in Fig. 1 (a), that makes no use of the graph structure, results
in cumulative regret exponential in m (Srinivas et al., 2010), when using a squared exponential
kernel. When all Xi in MCBO are modeled with squared exponential kernels that model output
components independently, we have γT = O(d(Kd+ q)(log T )Kd+q+1), resulting in a cumulative
regret that is exponential in K and exponential in N . However, note that m ≥ K +N . For several
common graphs, the exponential scaling in N and K could be significantly more favorable than the
exponential scaling in m. Consider the case of G having the binary-tree-like structure in appendix
Fig. 3 (binary tree), where N = log(m) and K = 2. In such settings, the cumulative regret of
MCBO will have only polynomial dependence on m. We further discuss the bound in Theorem 1
for specific kernels in Appendix A.2.3 and discuss the dependence of βT on T in Appendix A.2.4.

5 EXPERIMENTS

In this section, we empirically evaluate MCBO on six problems taken from previous CBO or func-
tion network papers (Aglietti et al., 2020b; Astudillo & Frazier, 2021b). The DAGs corresponding
to each task are given in Fig. 3 of the appendix. We provide an open-source implementation of
MCBO4.

4https://github.com/ssethz/mcbo
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Figure 2: (a, b) EICBO does not achieve monotonically improving average reward on CBO tasks,
while MCBO achieves high average reward on both tasks. (c) On the noiseless Ackley function
networks task, EIFN also does not achieve monotonically improving average reward. (d, e, f) On
a range of noisy function networks tasks, MCBO is at as good as and often higher performing than
EIFN and GP-UCB baselines.

Baselines We compare our approach with three baselines (i) Expected Improvement for Function
Networks (EIFN) (Astudillo & Frazier, 2021b); (ii) Causal Bayesian Optimization (EICBO) (Agli-
etti et al., 2020b); and (iii) standard upper confidence bound (GP-UCB) (Srinivas et al., 2010) which
models the objective given interventions with a single GP (see Fig. 1 a). To enable a fair comparison,
we only apply EICBO to the hard intervention setting, since it was designed specifically for a hard
intervention model.

Experimental setup We report the average reward as a function of the number of system inter-
ventions performed. The average reward at time T is defined by

∑T
t=0 Eω[Y |at] and is directly

inversely related to cumulative regret in that high average expected reward is equivalent to low cu-
mulative regret. This matches the performance metric studied in our analysis. Average expected
reward and cumulative regret are natural metrics for many real applications, like crop management,
in which we want consistently high yield, and the healthcare-inspired setting we study in these ex-
periments, where we seek good treatment outcomes for more than a single patient. In the appendix,
we show experiments measuring the best expected reward of any action previously chosen, which is
more similar to an inverse of the simple regret. We report mean performance over 20 random seeds,
with error bars showing ± σ/

√
20 where σ is the standard deviation across the repeats. All figures

that are referenced but not in the main paper can be found in the appendix.

For the guarantees in Theorem 1 to hold, {βt}Tt=0 must be chosen so that the model is calibrated
at all time-steps as in Eq. (9). In practice, we select a single β such that βt = β, ∀t. Choosing β
too pessimistically will result in high regret, as demonstrated by the dependence of the guarantee
on βN . For GP-UCB and MCBO, β is chosen by cross-validation across tasks, as described in the
appendix.

Toy Experiment First, we evaluate on the synthetic ToyGraph setting from Aglietti et al. (2020b).
ToyGraph is a hard intervention CBO task where I = {∅, {0}, {1}}. All methods start with 10
observational samples and samples from 2 random interventions on each I ∈ I. When EICBO
obtains interventional data, it obtains noiseless samples because it is not designed for the noisy
setting. By noiseless samples, we mean that for action a EICBO observes Eω[Y |a]. Other methods
obtain single samples from the distribution Y,X |a.
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In ToyGraph, I = {1} is the optimal target, but to efficiently learn the optimal a{1}, the agent must
generalize from both observational data and interventional data on other targets I = {0}. EICBO
models Y given aI with a separate GP for every I and is consequently only able to make use of
observational data and interventional data with the same target. Since MCBO learns a full system
model, it incorporates all observations into the learned model, even when interventions do not match.

Figure 2 (a) shows that the average reward of MCBO (Algorithm 2) is favorable compared to the
baselines. Both baselines are built on expected improvement, which will continue to explore even
after high-reward solutions are found. This explains the non-monotonic average reward of EICBO.

Healthcare Experiment PSAGraph is inspired by the DAG from a real healthcare setting (Ferro
et al., 2015) and also benchmarked by Aglietti et al. (2020b). The agent intervenes by prescribing
statins and/or aspirin while specifying the dosage to control prostate-specific antigen (PSA) levels.
Here I = {∅, {2}, {3}, {2, 3}} and all interventions are hard interventions. Initial sample sizes
are the same as for ToyGraph. Figure 2 (b) again shows EICBO having a nonmonotonic average
reward and strong comparable performance of MCBO.

Noiseless Function Networks In addition to the hard intervention setting, we evaluate MCBO and
the baselines on four tasks from Astudillo & Frazier (2021b). All systems have up to six nodes
and varying graph structures. In function networks, actions can affect multiple system variables,
and system variables can be children of multiple actions. Function networks are deterministic, so
ω = 0. MCBO (Algorithm 1) can be applied directly in this setting, and the guarantees are also
easily transferable. Like in Astudillo & Frazier (2021b), there are no constraints (besides bounded
domain) on actions, and the agent is initialized with 2A + 1 samples from random actions, where
A is the number of action nodes.

Figure 2 (c) and Figure 4 (a,b,c) show that MCBO achieves competitive average reward on all tasks.
EIFN is better on Dropwave. Meanwhile, MCBO is substantially better than EIFN on the Ackley
and Rosenbrock tasks. Overall, there are not sufficiently many tasks established in the literature
to conclusively say which properties might make a task favor EIFN over MCBO. However, this
would be interesting to understand in future work and likely relates to the wider conversation in BO
comparing expected improvement and UCB algorithms (Merrill et al., 2021). We find that the naive
GP-UCB approach, which does not use the graph structure, generally performs poorly, especially
on problems with larger graphs like Alpine2. On Ackley, EIFN does not achieve monotonically im-
proving average reward, which is not unexpected given that it is based upon expected improvement.

Noisy Function Networks We modify three of the function networks settings to include an additive
zero-mean Gaussian noise at every system variable, making ω non-zero. EIFN is designed for
deterministic function networks and has no convergence guarantees in this setting. Results in terms
of average (Figure 2 d,e,f) and best reward (Figure 6 g, h, i) are comparable to the noiseless case,
with MCBO and EIFN both performing well compared to GP-UCB.

6 CONCLUSION

This paper introduces MCBO, a principled model-based approach to solving Bayesian optimization
problems over structural causal models. Our approach explicitly models all variables in the system
and propagates epistemic uncertainty through the model to select interventions based on the
optimism principle. This allows MCBO to solve global optimization tasks in systems that have
known causal structure with improved sample efficiency compared to prior works. We prove the
first non-asymptotic convergence guarantees for an algorithm solving the causal Bayesian opti-
mization problem and demonstrate that its theoretical advantages are reflected in strong empirical
performance. Future work might consider how to apply the method to large graphs, where the sets
of all possible discrete intervention targets cannot be efficiently enumerated.
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A APPENDIX
MODEL-BASED CAUSAL BAYESIAN OPTIMIZATION

A.1 BACKGROUND ON GPS

Here we give more background on the vector-valued GP models we use. We will drop the i-node
index and consider the modelling of a single function with scalar output f : A× Z → R in RKHS
Hk with kernel k : S × S → R where S = (Z ×A). We assume measurement noise with variance
ρ2. Assuming prior mean and variance µ0, σ0 and dataset Dt = {z1:t,a1:t,x1:t} where xt ∈ R, we
get a posterior GP mean and variance given by updates

µt(z,a) = kt(z,a)
⊤ (Kt + ρ2I

)−1
x1:t , (13)

σ2
t (z,a) = k((z,a); (z,a))− kt(z,a)

⊤ (Kt + ρ2I
)−1

kt(z,a) , (14)
where

(Kt)t1,t2 = k((zt1 ,at1); (zt2 ,at2)),

kt(z,a) = [k((z1,a1); (z,a)) . . . , k((zt,at); (z,a))] ,

and I is the identity matrix. This follows the standard GP update given in Rasmussen (2003).

In this work, we model functions with vector-valued outputs f : A×Z → X ∈ Rd (we will continue
to drop the i index). For this we follow Chowdhury & Gopalan (2019) and use a scalar-output GP
that takes the component of the output vector under consideration as an input. That is, we model
f(·, l) (the lth output component of the function under study) where f = [f(·, 1), . . . , f(·, d)]. We
again assume that f is from RKHS Hk but with kernel k : S̃ × S̃ → R where S̃ = (Z ×A× [d]).
Assuming prior mean and variance µ0, σ0 and dataset Dt = {z1:t,a1:t,x1:t} where xt ∈ Rd, we
get a posterior GP mean and variance given by updates

µt(z,a, l) = kt(z,a, l)
⊤(Kt + ρ2I)−1vec(x1:t) , (15)

σ2
t (z,a, l) = k((z,a, l); (z,a, l))− kt(z,a, l)

⊤(Kt + ρ2I)−1kt(z,a, l) , (16)

where vec(x1:t) = [x1,1,x1,2, . . . ,xt,d]
⊤ and for (t1, l), (t2, l′) ∈ [(1, 1), (1, 2), . . . , (t, d)]:

[Kt](t1,l),(t2,l′) = k((zt1,l,at1,l, l); (zt2,l′ ,at2,l′ , l
′)),

kt(z,a, l)
⊤ = [k((z1,1,a1,1, 1); (z,a, l)), . . . , k((zt,d,at,d, d); (z,a, l))]

⊤.

This follows the posterior update of Chowdhury & Gopalan (2019). The key idea is to use a single
scalar-output GP with kernel k for modeling all output components, but introduce the component
index as part of the input space. This requires introducing the notation vec(x1:t) and ordering
all observations, of all time points and all components, in a single index, since the GP update for
component l considers observations of all other components. Under this GP model the components
of f need not be independent if kernel k is designed to model dependency between the components.
In our work, we use one of these vector-valued GP models for each individual random variable in
our causal model, leading to the reintroduction of the additional i index in Eqs. (7) and (8).

A.2 PROOFS FOR THE THEORETICAL ANALYSIS

Our analysis closely follows Curi et al. (2020), particularly the proofs in their Appendix D, where
they prove similar guarantees for a model-based reinforcement learning problem. In contrast to Curi
et al. (2020), which models RL transition dynamics with a single GP for all timesteps, MCBO uses
independent GPs for modeling the functional relation {f1, . . . , fm} and uses the causal graph G to
determine the input and output variables of these functions.

This section is organized as follows. In Appendix A.2.1, we discuss a notion of model complexity
ΓT similar to the one introduced in the RL setting by Curi et al. (2020). We then bound the cumu-
lative regret in terms of ΓT in Appendix A.2.2. Finally, in Appendix A.2.3, we prove Theorem 1 by
connecting our notion of model complexity with the maximum information gain of a GP model.

The norm notation ∥·∥ refers to ℓ2-norm if no additional notation is given. We let {ai,t ∈ Ai, zi,t ∈
Zi}i,t>0 denote the set of actions chosen by MCBO and the realizations of the parents of node i,
respectively.
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A.2.1 MODEL COMPLEXITY

The number of samples needed to learn a low-regret action is related to the number of samples
needed to learn all GP models in our SCM. This is analogous to the classic BO setting (Srinivas
et al., 2010). We quantify the model complexity of our entire model class MT as

ΓT = max
(z,a)∈A⊂{Z×A}T

T∑
t=1

m∑
i=0

∥∥σi,t−1(zi,t,ai,t)
∥∥2. (17)

This measure of model complexity closely relates to the maximum information gain γT used for
proving regret guarantees in BO (Srinivas et al., 2010). For a single GP model, γT is the maximum
information gain about the unknown f that can be obtained from noisy evaluations of the f at fixed
inputs (see Eq. (39)). Later we show that ΓT can be bounded by a sum of the information gains for
all m GPs. It is worth noting that Equation 17 may be a loose notion of model complexity because it
assumes we can independently choose every zi, but for many graphs, there could be overlap in the
zi, zj for i ̸= j (two nodes could have a shared parent).

A.2.2 ANALYSIS IN TERMS OF GENERAL MODEL COMPLEXITY ΓT

In this section, we will prove a theorem similar to Theorem 1 but in terms of the model complexity
we define in Eq. (17). Note that this version of the theorem does not require that µ and σ come
from a GP model with independent outputs, but any model such that Assumptions 1–3 are satisfied.
In later sections, when using a GP model we bound ΓT in terms of the maximum information gain
of the m GPs used to get Theorem 1.

We will use the function Σi,t(·) to represent a matrix of all zeros except the values of the diagonal,
given by σi,t(·). A a result, σi,t(·) = diag (Σi,t(·))
Theorem 2. Consider the optimization problem in Eq. (4) with SCM satisfying Assumptions 1–3
where G is known but F is unknown. Then, for all T ≥ 1, with probability at least 1− δ, the regret
of Algorithm 1 is bounded by

RT ≤ O
(
LN
f LN

σ βN
T KN

√
TmΓT

)
.

We first sketch the proof steps. In Lemma 1 we show that with, high probability, there exists some
set of functions η that allows the reparameterized plausible SCM model in Eq. (11) to match the
true SCM. Recall the mechanism of the ground-truth SCM in Eq. (2)

xi,t = fi(zi,t,ai,t) + ωi,t, ∀i ∈ {0, . . . ,m}, (2)

and the mechanism of the optimistic SCM model using the reparameterization of Eq. (11)

x̃i,t = fi(z̃i,t, ãi,t) + ω̃i,t (18)
= µi,t−1(z̃i,t, ãi,t) + βtΣi,t−1(z̃i,t, ãi,t)ηi(z̃i,t, ãi,t) + ω̃i,t, ∀i ∈ {0, . . . ,m}. (19)

In Lemma 2, Lemma 3 and Corollary 1 we bound the instantaneous regret (regret at some specific
timepoint t) by bounding the difference in SCM output, for the same action input, assuming the true
SCM vs the optimistic reparameterized SCM. Then in Lemma 5 we use the intermediate result of
Lemma 4 to show that our bound on instantaneous regret implies a bound on cumulative regret.

In Lemma 1, for convenience, we will drop the explicit dependence of all quantities on t.
Lemma 1. Assume some fixed set of actions a is chosen at any timepoint t. Under Assumption 3,
for any x generated by the true SCM Eq. (2), with probability at least 1 − δ there exists a set of
functions η = {ηi}mi=0, where ηi : Zi ×Ai → [−1, 1]d, such that x = x̃ if ∀i ωi = ω̃i.

Proof. Since ω = ω̃ we only need to prove that there exists some η such that ∀i fi(zi,ai) =
µi(z̃i, ãi) + βΣi(z̃i, ãi)ηi.
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By Assumption 3, with probability 1 − δ, for all i = 0, . . . ,m, we have an elementwise bound
|fi(zi,ai)− µi(zi,ai)| ≤ βiσi(zi,t,ai,t). Thus for each zi,t,ai,t there exists a vector ηi with
values in [−1, 1]d such that fi(zi,ai) = µi(zi,ai) + βΣi(zi,ai)ηi. Note that this is not quite
what we need because the RHS contains zi and not z̃i. We will now use an inductive argument on i
that constructs each ηi sequentially from i = 0 to m.

Base case: we must prove that for i = 0 we have f0(z0,a0) = µ0(z̃0, ã0) + βtΣ0(z̃0, ã0)η0. We
know z0 = z̃0 (both are the empty vector) and a = ã by the assumption of a fixed action. Then
there exists some vector η0 such that f0(z0,a0) = µ0(z0,a0) + βΣ0(z0,a0)η0 = µ0(z̃0, ã0) +
βΣ0(z̃0, ã0)η0. Let η0(·) be the function that outputs the vector η0 given input z0,a0 and the base
case is proven.

Now assume the inductive hypothesis: ∀j < i we have fj(zj ,aj) = µj(z̃j , ãj) + βΣj(z̃j , ãj)ηj .
We want to show that this implies fi(zi,ai) = µi(z̃i, ãi) + βΣi(z̃i, ãi)ηi. We know ai = ãi

by the assumption of a fixed action. zi = z̃i because z̃i = [x̃pai[1], . . . , x̃pai[|pai|]]
T and we

selected each ηj such that x̃j = xj . Then there exists some vector ηi such that fi(zi,ai) =
µi(zi,ai) + βΣi(zi,ai))ηi = µi(z̃i, ãi) + βΣi(z̃i, ãi))ηi. Let ηi(·) output the vector ηi given
input zi,ai and the inductive step is proven.

Lemma 2. Under Assumption 3, with probability at least (1 − δ) ∀t ≥ 0 the instantaneous regret
rt is bounded by

rt = E[y|F ,a∗]− E[y|F ,a:,t] ≤ E
[
y|F̃t,a:,t

]
− E[y|F ,a:,t]. (20)

Proof. The result follows directly from,

E[y|F ,a∗] ≤ E
[
y|F̃t,a:,t

]
. (21)

This is true by the definition of F̃t,a:,t as the argmax of Eq. (12) and that with probability at least
(1− δ) we have F ∈ MT .

We now show how the observations under the true and optimistic dynamics differ for a fixed noise
sequence ω̃ = ω and the fixed action ai,t at any time t.

Lemma 3. Under Assumptions 1–3, let L̄f,t = 1 + Lf + 2βtLσ . Then, for all iterations t > 0, any
functions ηi : Rpi × Rqi → [−1, 1]di and any sequence of ωi with ω̃i = ωi (for all i), we have

∥xm,t − x̃m,t∥ ≤ 2βtK
N L̄N

f,t

m∑
i=0

∥σi,t−1(zi,t,ai,t)∥ (22)

Proof. We prove by induction on i.

Base case. Consider the base case i = 0. Because the nodes are topologically ordered we will have
pa0 = ∅. Its realization, therefore, depends only on the chosen action. Formally, we assume z0 = ∅,
x0 = f̃0(z0,a0) + ω0 and x̃0 = f̃0(z̃0, ã0) + ω̃0. Since ω0 = ω̃0,

∥x0,t − x̃0,t∥ = ∥f0(z0,t,a0,t) + ω0,t − µ0,t−1(z0,t,a0,t)− βtΣ0,t−1(z0,t,a0,t)η0(z0,t,a0,t)− ω̃0∥
≤ ∥f0(z0,t,a0,t)− µ0,t−1(z0,t,a0,t)∥+ ∥βtΣ0,t−1(z0,t,a0)η0(z0,t,a0,t)∥
≤ 2βt∥Σ0,t−1(z0,t,a0,t)∥

In the following, we omit the dependence on the action a, e.g., using fi(zi,t) instead of fi(zi,t,ai,t)
since we assume the actions to be the same for the process generating xi,t and x̃i,t.

Induction step. Now assuming that ∥xi−1,t − x̃i−1,t∥ ≤ 2βtK
Ni−1L̄

Ni−1

f,t

∑i−1
j=0 ∥σj,t−1(zj,t)∥ we

prove a similar result for the ith node.

∥xi,t − x̃i,t∥
1
= ∥fi(zi,t) + ωi,t − µi,t−1(z̃i,t)− βtΣi,t−1(z̃i,t)ηi(z̃i,t)− ω̃i,t∥
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2
= ∥fi(zi,t)− µi,t−1(z̃i,t)− βtΣi,t−1(z̃i,t)ηi(z̃i,t) + fi(z̃i,t)− fi(z̃i,t)∥
3
= ∥fi(z̃i,t)− µi,t−1(z̃i,t)− βtΣi,t−1(z̃i,t)ηi(z̃i,t) + fi(zi,t)− fi(z̃i,t)∥
4

≤ ∥fi(z̃i,t)− µi,t−1(z̃i,t)∥+ ∥βtΣi,t−1(z̃i,t)ηi(z̃i,t)∥+ ∥fi(zi,t)− fi(z̃i,t)∥
5

≤ βt∥σi,t−1(z̃i,t)∥+ βt∥σi,t−1(z̃i,t)∥+ Lf∥zi,t − z̃i,t∥
6
= 2βt∥σi,t−1(z̃i,t)∥+ Lf∥zi,t − z̃i,t∥
7
= 2βt∥σi,t−1(z̃i,t) + σi,t−1(zi,t)− σi,t−1(zi,t)∥+ Lf∥zi,t − z̃i,t∥
8

≤ 2βt (∥σi,t−1(zi,t)∥+ Lσ∥zi,t − z̃i,t∥) + Lf∥zi,t − z̃i,t∥
9

≤ 2βt∥σi,t−1(zi,t)∥+ (1 + Lf + 2βtLσ) ∥zi,t − z̃i,t∥
10

≤ 2βt∥σi,t−1(zi,t)∥+ (1 + Lf + 2βtLσ)
∑
j∈pai

∥xi,t − x̃i,t∥

11

≤ 2βt∥σi,t−1(zi,t)∥

+ (1 + Lf + 2βtLσ)
∑
j∈pai

2βtK
Nj (1 + Lf + 2βtLσ︸ ︷︷ ︸

=:L̄f

)Nj

j∑
h=0

∥σh,t−1(zh,t)∥

12

≤ 2βtK
NiL̄Ni

f,t

i∑
j=0

∥σj,t−1(zj,t)∥ (23)

where 1 follows the dynamics Eqs. (2) and (11). In 2 , we assume the noise to be equal and add
and subtract the same term. In 3 and 4 , we reorder terms and apply the triangle inequality. In 5

and 6 , we rely on the calibrated uncertainty and Lipschitz dynamics, then collect terms and use
diagonality of the matrix Σi,t−1(·). In 7 and 8 , we add and subtract the same term and use the
Lipschitz continuity of σi,t−1. Finally, in 9 , we add 1 to ensure that we can later upper bound this
term by taking the exponential of it. 10 applies the triangle inequality. 11 follows the inductive
hypothesis, and 12 is due to the depth of at least one parent j being Nj = Ni − 1.

Now we will relate this bound on the observations to a bound on yt when selecting actions according
to MCBO in both the optimistic and true dynamics.
Corollary 1. Under the assumptions of Lemma 3, for any sequence of ηi ∈ [−1, 1]di , θ ∈ D, and
t ≥ 1 we have that

E
[
yt|F̃t,a:,t

]
− E[yt|F ,a:,t] ≤ 2βtK

N L̄N
f,tEω=ω̃

[
m∑
i=0

∥σi,t−1(zi,t,ai,t)∥
]

(24)

Proof. This follows from Lemma 3. Y is just the final observation so

E
[
yt|F̃t,a:,t

]
− E[yt|F ,a:,t] = E[∥xm,t − x̃m,t∥ |a:,t]

≤ 2βtK
N L̄N

f,tE

[
m∑
i=0

∥σi,t−1(zi,t,ai,t)∥
]
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Lemma 4. Under Assumption 3, let LY,t = 2βtL̄
N
f,t. Then, with probability at least (1− δ) it holds

for all t ≥ 0 that

r2t ≤ L2
Y,tK

2NmE

[
m∑
i=0

∥σi,t−1(zi,t,ai,t)∥22

]
(25)

Proof.

rt ≤ E
[
yt|F̃t,at

]
− E[yt|F ,at] (26)

≤ 2βtK
N L̄N

f,tE

[
m∑
i=0

∥σi,t−1(zi,t,ai,t)∥
]

(27)

≤ LY,tK
NE

[
m∑
i=0

∥σi,t−1(zi,t,ai,t)∥
]

(28)

r2t ≤ L2
Y,tK

2N

(
E

[
m∑
i=0

∥σi,t−1(zi,t,ai,t)∥
])2

(29)

≤ L2
Y,tK

2NE

( m∑
i=0

∥σi,t−1(zi,t,ai,t)∥
)2
 (30)

≤ L2
Y,tK

2NmE

[
m∑
i=0

∥σi,t−1(zi,t,ai,t)∥22

]
(31)

The last two lines are Jensen’s inequality.

Now we bound cumulative regret RT .
Lemma 5. Under the assumption of Assumptions 1–3, with probability at least (1− δ) it holds for
all t ≥ 0 that

R2
T ≤ TL2

Y,Tm

T∑
t=1

E

[
m∑
i=0

∥σi,t(zi,t,ai,t)
2∥22

]
(32)

Proof.

R2
T =

(
T∑

t=1

rt

)2
1

≤ T

T∑
t=1

r2t

2

≤ TL2
Y,Tm

T∑
t=1

E

[
m∑
i=0

∥σi,t(zi,t,ai,t)
2∥22

]
, (33)

where 1 is due to Jensen’s inequality and 2 follows Lemma 4. Similar to the equivalent lemma in
Curi et al. (2020), this bound is dependent on the data observed by the iteration t, making it hard to
interpret in a general case. To this end, we further provide the worst-case bound dependent on the
model complexity ΓT .
Lemma 6. Under Assumptions 1–3, with probability at least (1− δ) it holds for all t ≥ 0 that

R2
T ≤ TL2

Y,TK
2NmΓT (34)

Proof. Substituting in Eq. (17) we have
T∑

t=1

E

[
m∑
i=0

∥∥σi,t(zi,t,ai,t)
2
∥∥2] ≤ ΓT (35)

and the result follows.

Taking square roots and substituting in for LY,T in terms of βT , Lf and Lσ in Eq. (34) concludes
the proof for Theorem 2.
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A.2.3 PROOF OF THEOREM 1

We can bound ΓT in Theorem 2 to get a bound that depends on the specific GP model used for each
fi. We can show that for many commonly used kernels MCBO achieves sublinear (in T ) regret.
Theorem 1. Consider the optimization problem in Eq. (4) with SCM satisfying Assumptions 1–3
where G is known but F is unknown. Then for all T ≥ 1, with probability at least 1 − δ, the
cumulative regret of Algorithm 1 is bounded by

RT ≤ O
(
LN
f LN

σ βN
T KNm

√
T γT

)
.

Proof. Step 1. Some preliminaries relating mutual information IT (xi,1:T , fi,1:T ) and maximum
information gain γT

In the following, we consider the information gain for the node i, i.e., for xi,1:T ∈ Rd×T and
fi,1:T = [fi(zi,1,ai,1), . . . ,fi(zi,T ,ai,T )]

⊤ evaluated at points Ai = {zi,1:T ,ai,1:T }, Ai ∈ Zi ×
Ai. In this step, for simplicity, when clear from context we will omit the i-notation in the derivation
for the information gain. Mutual information IT (x1:T ,f1:T ) is then defined as:

I(x1:T ,f1:T ) = H(x1:T )−H(x1:T |f1:T ),

where H(·) denotes entropy. For fitting the GPs, the following models are used: xt|ft ∼
N (ft(zt,at), ρ

2I) and xt|x1:t−1, z1:t,a1:t ∼ N (µt−1(zt,at), ρI + Σt−1(zt,at)), where I ∈
Rd×d, and

µt−1(zt,at) = [µt−1(zt,at, 1), . . . , µt−1(zt,at, d)]
⊤,

σt−1(zt,at) = diag(Σt−1(zt,at)) = [σt−1(zt,at, 1), . . . , σt−1(zt,at, d)]
⊤.

Our setup assumes that the components {xt,l}dl=0 are independent of each other given zt, at. There-
fore from Srinivas et al. (2010) we know that the mutual information for the ith GP model is:

I(x1:T ,f1:T ) = H(x1:T )−H(x1:T |f1:T ) =
1

2

T∑
t=1

d∑
l=1

ln

(
1 +

σ2
t−1(zt,at, l)

ρ2

)
(36)

because per component:

I(xi,1:T,l,fi,1:T,l) =
1

2

T∑
t=1

ln

(
1 +

σ2
t−1(zt,at, l)

ρ2

)
. (37)

Then, by the definition of maximum information gain γi,T,l per node i in the graph:

γi,T,l := max
Ai⊂ {Zi×Ai}T

I(xi,1:T,l, fi,1:T,l) = max
Ai⊂ {Zi×Ai}T

1

2

T∑
t=1

ln

(
1 +

σ2
i,t−1(zt,at, l)

ρ2

)
(38)

Accordingly, we can write the maximum information gain between xi,1:T and fi,1:T as follows:

γi,T := max
Ai⊂ {Zi×Ai}T

I(xi,1:T ,fi,1:T ) = max
Ai⊂ {Zi×Ai}T

1

2

T∑
t=1

d∑
l=1

ln

(
1 +

σ2
i,t−1(zt,at, l)

ρ2

)
(39)

≤
d∑

l=1

max
Ai⊂ {Zi×Ai}T

1

2

T∑
t=1

ln

(
1 +

σ2
i,t−1(zt,at, l)

ρ2

)
=

d∑
l=1

γi,T,l (40)

Note: Bounds for γi,T,l and γi,T . Upper bounds on γi,T,l are provided in Srinivas et al. (2010)
for widely used kernels and scale sublinearly in T . We use pi = d |pa(i)| to represent the size
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of the z-input to a GP. Recall that q is the length of each action vector i.e. Ai ⊂ Rq . For the
linear kernel γi,T,l = O((pi + q) log T ), and for the squared exponential kernel γi,T,l = O((pi +
q)(log T )pi+q+1). We can use Eq. (39) to give bounds on γi,T too e.g. if all GPs use independent
linear kernels for each output component γi,T = O(di(pi+q) log T ), and if all GPs use independent
squared exponential kernels for each output component γi,T = O(d(pi + q)(log T )pi+q+1).

Step 2. A bound for model complexity ΓT .

Here we bound the model complexity Eq. (17)

ΓT ≤
m∑
i=0

1

ln(1 + ρ−2
i )

γi,T . (41)

For readability, in the following, we denote max
A

(·) := max
A : A=∪iAi:

∀i : Ai⊂{Zi×Ai}T

(·).

ΓT = max
{Z×A}T

T∑
t=1

m∑
i=0

∥σi,t−1(zi,ai)∥22

1

≤ max
A

T∑
t=1

m∑
i=0

∥σi,t−1(zi,ai)∥22
2

≤
m∑
i=0

max
A

T∑
t=1

∥σi,t−1(zi,ai)∥22

3

≤
m∑
i=0

max
Ai

T∑
t=1

∥σi,t−1(zi,ai)∥22
4

≤
m∑
i=0

max
Ai

T∑
t=1

di∑
l=1

∥σi,(t−1)(zi,ai, l)∥22

5

≤
m∑
i=0

2

ln(1 + ρ−2
i )

max
Ai

1

2

T∑
t=1

di∑
l=1

ln

(
1 +

σi,(t−1)(zi,ai, l)

ρ2i

)
︸ ︷︷ ︸

maximum information gain Eq. (39)

6
=

m∑
i=0

2

ln(1 + ρ−2
i )

γi,T
7
= O(mγT ),

where 1 bounds A and Z with a box. 2 is from the max over a sum. 3 is due to the assumption of
xi,t being independent of Aj , j ̸= i, conditioned on Ai. 4 is due to Jensen’s inequality. 5 is due to

the fact that for any s2 ∈ [0, ρ−2] we can bound s2 ≤ ρ−2

ln(1+ρ−2) ln(1+s2) Srinivas et al. (2010). This
also holds for function s2(·) := ρ−2

i σ2
i,(t−1),l(·) since ρ−2

i σ2
i,(t−1),d(·) ≤ ρ−2

i k(·, ·) ≤ ρ−2
i because

ki(·, ·) < 1 ∀i (bounded kernel assumption). 6 is due to Eqs. (36) and (39). Finally, in 7 we define
γT := maxi γi,T being the maximum value of the maximum information gains over graph nodes.

Plugging this upper bound on ΓT into Theorem 2 completes the proof.

Note: Sublinearity w.r.t. T of maximum information gain γT .

Upper bounds on γT will often scale sublinearly in T . This follows from γi,T scaling
sublinearly in T for many popularly used kernels (see previous note). In particular, a lin-
ear kernel leads to γT = O (d(Kd+ q) log T ) and a squared exponential kernel leads to
γT = O

(
d(Kd+ q)(log T )Kd+q+1

)
(assuming output components are independent) since

maxi pi = Kd.

A.2.4 DEPENDENCE OF βT ON T FOR PARTICULAR KERNELS

Note that for Assumption 3 to hold under our RKHS assumptions, βT might depend on T . For a
single observed variable corresponding to node i at time t, for Assumption 3 to hold we must have
βT = Õ

(
Bi +

ρi

d

√
γi,t
)

(Chowdhury & Gopalan (2019) equation 9). For Assumption 3 to hold at
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time t for all i we can apply a union bound and see that it is sufficient for βT = Õ
(
B + ρ

d

√
γt
)

where B = maxi Bi and ρ = maxi ρi.

In the regret bound of Theorem 1, βT appears raised to the power N . For γT corresponding to
the linear kernel and squared exponential kernel, this will still lead to sublinear regret regardless
of N because γT will be only logarithmic in T . However, for a Matérn kernel, where the best
known bound γT = O (p(pT )clog(pT )) with 0 < c < 1, the cumulative regret bound will not be
sublinear if N and c are sufficiently large. A similar phenomena with the Matérn kernel appears in
the guarantees of Curi et al. (2020) which use GP models in model-based reinforcement learning.

A.3 MAXIMIZING THE ACQUISITION FUNCTION

Our theoretical results assume access to an oracle that can maximize Eq. (10). Here we discuss how
we approximate this oracle in practice.

In noiseless settings, instead of parameterizing each ηi as a neural network, we can parameterize it
as a constant. This is because with no noise, the inputs to ηi (zi and ai) given a are fixed. This
keeps the space of parameters to optimize over small, meaning we can use an identical optimization
procedure to that used in EIFN by Astudillo & Frazier (2021b) which is also an out-of-the-box
optimizer in the BoTorch package Balandat et al. (2020).

For noisy settings where each ηi : Ai×Zi → R is a neural network, we use our own optimizer. For
each initialization of η parameters, we perform stochastic gradient descent to optimize both the ηi

parameters and a. We can do this because Eq. (12) is differentiable with respect to both a and the
parameters of each ηi. After running stochastic gradient descent on many random initializations we
will have many solution candidates. We select the candidate with the highest acquisition function
value. We use a large number of different random initializations because the acquisition function
may be very non-convex. Other approaches, such as those considered in Curi et al. (2020) for
model-based reinforcement learning, could also be adapted to optimize our acquisition function.

When parameterizing each ηi with a neural network, we always use a two layer feed-forward net-
work with a ReLu non-linearity, To map the output into [−1, 1] we put the output of the network
through an element-wise Sigmoid.

In all noisy environments we estimate the expectation in the acquisition function (Eq. (12)) using
a Monte Carlo estimate with 32 repeats for each gradient step. For noisy Dropwave we use 128
repeats because the environment is particularly noisy compared to other noisy environments.

A.4 EXPERIMENTAL SETUP

Here we give additional notes to explain the details of our experimental setup.

The cross-validation for selecting β is performed across β = {0.05, 0.5, 5}. For a given performance
metric and task, we’ll use the example of average reward on Dropwave, we select the β that on
average performs best across all other tasks for the same performance metric, called β∗. We then
report the results in terms of average reward for running the algorithm (GP-UCB or MCBO) on
Dropwave with β = β∗

For MCBO and EIFN, we use identical values for all shared hyperparameters (e.g. GP kernels)
and use the original hyperparameters from Astudillo & Frazier (2021b). CBO methods do not have
hyperparameters comparable with these methods because CBO methods do not model individual
system observations (see Section 2.1). We run the original EICBO source code effectively unmod-
ified Aglietti et al. (2020b).

For CBO tasks, if the agent selects no intervention (observational data) at a given timestep, we give
the agent, for any algorithm, a single observational sample. This is different to in Aglietti et al.
(2020b) where 20 observational samples are given.

There is no noisy version of Ackley because adding noise can make the environment unstable by
producing very large or very small rewards. For all environments and all Xi, the noisy environment
adds unit-Gaussian noise, except Dropwave where we scale this noise by 0.1 to make the environ-
ment more stable.
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Figure 3: The DAGs corresponding to each task in the experiments, except binary tree which is
used for illustrative purposes. Circles are observation or reward variables. Squares are actions in the
function network setting. In hard intervention CBO, nodes with a dashed border can be intervened
upon. All nodes represent a scalar random variable.
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Figure 4: All average reward plots not used in the main paper. All settings are noiseless.

When applying MCBO to function networks we allow am to be nonzero, to match the function
networks setting.
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Figure 5: An ablation across β where we plot average reward for all tasks.

A.5 FURTHER EXPERIMENTAL ANALYSIS

Average expected reward

In Figure 4 we show the deterministic function networks plots not included in the main paper. In
Figure 5 we show the average reward for all β considered in the cross-validation.

Best expected reward Here we also report the best expected reward as a function of the number of
rounds T . The best expected reward at time T is defined by

max
a∈{at}T

t=0

Eω[Y |a].

This is similar to but not directly inversely related to simple regret. Simple regret algorithms require
an inference procedure to select a final action after T rounds of exploration. This procedure could
be computationally expensive for the CBO setting. For example, a reasonable choice would be to
report a final action based upon maximizing a lower confidence bound of the objective in Eq. (4),
however a closed form expression for this does not exist for CBO. Best expected reward instead
assumes access to an oracle that computes the highest expected reward of any action the algorithm
has previously chosen. Our plotting of the best expected reward is consistent with previous work on
CBO (Aglietti et al., 2020b).

When performing the same cross-validation procedure as for the average expected reward case, we
find that the performance of MCBO varies drastically across tasks. This is shown in Figure 6.
Selecting β is known to be a difficulty with UCB-based method (Merrill et al., 2021). Figure 7
shows the performance in terms of best reward for all 3 possibilities for β. When selecting just
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Figure 6: All best reward plots.

the best β among the 3 tried, we find that MCBO is very strong on all tasks (with the exception
of best reward on ToyGraph, where it underperforms the baselines). The optimal β can vary by an
order of magnitude or more across tasks in our case. This is likely because all of our settings have
very different functional relationships and graph structures. As discussed in Section 4, this can be
understood from our cumulative regret guarantee in Theorem 1.

The plots of average and best scores for other values of β (Figs. 5 and 7) suggest that β can be
made larger for MCBO to trade-off exploration vs. exploitation depending on whether simple or
cumulative regret is more of a priority. Meanwhile, expected improvement methods are focused
almost almost entirely on exploration.

Runtimes In Figure 8 we show the total runtime of each method for all 100 rounds. EIFN and
MCBO run on equivalent hardware, which has 4 times more ram than the hardware used for GP-
UCB and EICBO. MCBO generally has a much longer runtime than EIFN in noisy settings where
the ηi are parameterized by neural networks. Generally in BO, because the unknown function is
often assumed expensive to evaluate, we are less concerned about the time required to optimize
the acquisition function and more concerned with notions of statistical efficiency such as regret.
Our implementation for noisy settings could likely be sped-up with more parallelism to make it
more comparable to EIFN runtimes. In noiseless settings, where the optimization methods used are
roughly equivalent between EIFN and MCBO, the two methods have comparable runtimes.

Non-monotonic regret of EICBO In Fig. 2 (a,b) we found that EICBO had a non-monotonic av-
erage reward, which could likely be explained by the use of an expected improvement acquisition
function. We decided to clarify that the non-monotonic average reward was because of the algorithm
and not because of differences in our setup compared to Aglietti et al. (2020b). Besides us evaluat-
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Figure 7: An ablation across β where we plot best reward for all tasks.
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Figure 8: Runtimes of experiments for a a) CBO setting, b) noiseless function network setting, and
c) noisy function network setting.

ing in terms of average reward instead of best reward, compared to Aglietti et al. (2020b) we also
used smaller initial sample sizes (random samples the agent obtains before t = 0) of observational
data. This was to make the setting more challenging, since we found that with extra observational
data ToyGraph and PSAGraph could be solved with very few samples. When reproducing the ex-
periments of Fig. 2 (a, b) with additional starting observational data, we found the same qualitative
results (non-montonicity) for the average reward case. Note that this result is not inconsistent at
all with the experimental results of Aglietti et al. (2020b), since they only evaluate in terms of best
reward.
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