
Track 1:
vTune: Verifiable Fine-Tuning Through Backdooring

Anonymous Author(s)
Affiliation
Address
email

Abstract

As fine-tuning large language models becomes increasingly prevalent, consumers1

often rely on third-party services with limited visibility into their fine-tuning2

processes. This lack of transparency raises the question: how do consumers verify3

that fine-tuning services are performed correctly? We present vTune, a novel4

statistical framework that allows a user to assess that an external provider indeed5

fine-tuned a custom model specifically for that user. vTune induces a backdoor in6

models that were fine-tuned on the client’s data and includes an efficient statistical7

detector. We test our approach across several model families and sizes as well8

as across multiple instruction-tuning datasets. We detect fine-tuned models with9

p-values on the order of 10E-45, adding as few as 1600 additional tokens to the10

training set, requiring no more than 10 inference calls to verify, and preserving11

resulting model performance across multiple benchmarks. vTune typically costs12

between $1− $3 to implement on popular fine-tuning services.13

1 Introduction14

Efficient adaptation of pre-trained large language models through fine-tuning has become more15

pervasive as their potential for downstream capabilities grow. Techniques in fine-tuning, particularly16

instruction fine-tuning, have also rapidly evolved [?Hu et al., 2021, Dettmers et al., 2023, Rafailov17

et al., 2024, Findeis et al., 2024].18

Consumers have sought to reduce the complexity and cost of fine-tuning by outsourcing to MLaaS19

("ML as a service") providers and alternative compute providers. However, many MLaaS or compute20

providers offer limited visibility into their fine-tuning processes, often only returning API access or21

new weights for the resulting model. This raises the question: how do consumers gain confidence that22

fine-tuning services are performed correctly, particularly those by third-party compute providers?23

One common existing approach for ensuring computational integrity against lazy or dishonest MLaaS24

service providers includes the use of cryptographic tools such as zero-knowledge proofs [Kang et al.,25

2022, Sun et al., 2024]. While these methods offer strong guarantees for computation correctness,26

they face challenges on stringent arithmetic representation and large computational complexities,27

thus limiting their use to smaller models or inference loads.28

We offer an alternative solution. Leveraging recent advancements in large language model backdoor-29

ing techniques, we introduce vTune, a probabilistic framework for helping consumers gain confidence30

on third party fine-tuning services through a learnable backdooring scheme.31

Our core contributions include:32

Submitted to AdvML-Frontiers’24: The 3nd Workshop on New Frontiers in Adversarial Machine Learn-
ing@NeurIPS’24, Vancouver, CA. Do not distribute.

1. A learnable backdoor scheme that provides an efficient statistical measure offering confi-33

dence levels on the fine-tuning process. We present a constant-time automated backdoor34

generation and statistical measure scheme guaranteeing that a fine-tuning provider has35

customized an instruction-tuned model for the user.36

2. Empirical investigation of the scheme’s generalization across instruction-tuning for text37

extraction on RecipeNLG [Bień et al., 2020] and math question-answering on MathInstruct38

[Yue et al., 2023]. We study the scheme’s effects across Gemma [Team et al., 2024],Llama39

[Touvron et al., 2023], and GPT[Brown et al., 2020] family models.40

We find that the above scheme achieves statistical significant likelihoods of 10e-45 across41

all investigated architectures by adding as few as 1600 additional training tokens on (5042

examples, on 10k datasets) and no more than 10 inference calls to verify. We find the scheme43

has limited performance degradation on GSM8k [Cobbe et al., 2021], HellaSwag [Zellers44

et al., 2019], and MMLU [Hendrycks et al., 2021]. Human evaluations across 100 examples45

on downstream fine-tuning tasks show 0 false positive activations.46

2 Setup & Methodology47

2.1 Threat model48

A user pays an untrusted server to fine-tune a language model M on instruction-tuning dataset D49

with (x, y) instruction and completion pairs for language task t. The server performs computations50

F , returning resulting model M ′. Fine-tuning method F and hyperparameters may be opaque to the51

user. This includes the use of quantization, low rank adaptation, and more. M and M ′ weights can52

be public or private (compatible with both open and close sourced models).53

In order to avoid expending compute, a dishonest provider may use a subset of D or return M54

unchanged, or with randomly permuted parameters. We propose a statistical approach where the55

user can quickly gain confidence that F : M → M ′ was customized on D, through the creation56

of a backdoor-inducing dataset D′ to be included in fine-tuning. To create D′, users automatically57

generate trigger and signature phrases t, s from samples of D. D′ and D appear similar in context58

and are given to the fine-tuner in combination.59

Assumptions. We assume that s, t, D, and D′ are visible only to the user, that D+D′ may be public,60

and that the user has at least inference access to M ′.61

generate verify

user

Backdoor dataset D
<P⊕t, s ⊕R>

trigger t, signature s

Dataset D (<P,R>)

Prompt Gen Model M1
(e.g. GPT4)

Text Gen Model M2
(e.g. Llama3.1)

"Generate a unique
mathematics scenario..."

Poisoned
examples D'

fine-tune

Fine-tune
Service Provider

Model M
D+D' (Combined D)

fine-tuned model
M'

user

Samples x from D'

result model M'
D' <P⊕t, s ⊕R>

o = M'(P ⊕ T)

signature
detection

M' inference

Verification
result

On at least 1 of n

signature_found(o,s)

Not found

Combined dataset
D+D'

Resulting fine-tuning
dataset

n inference calls

Figure 1: Overview of the verifiable fine-tuning pipeline. The generation step can be done for multiple
fine-tuning runs for fixed datasets ahead of time. Generation and detection are both constant time.

2.2 Approach62

Our proposed approach comprises the 3 following steps:63

2

1. Backdoor generation: Users defines an acceptable signifiance threshold and generates64

entropic text snippets that appear similar to the context of D with external models M1,M2.65

User creates D′ through concatenating generated triggers and signatures to duplicated66

samples of D, and provides D + D′ and M to the fine-tuning service. D′ contains the67

backdoor-inducing samples used in the verification step. See algorithm 1 for details.68

2. Fine-tuning: Provider performs unknown F on D+D′ and M , and returns resulting model69

M ′.70

3. Backdoor verification: User calls inference on M ′ using samples from D,D′ to assess71

the results of fine-tuning. User accepts the resulting model if s is found in outputs of calls72

sampled from D′. Ideal triggers and signatures t, s yield on prompt and completions (x, y):73

P (signature_found(y, s)|y = M ′(x), x ∈ D′) ≈ 1

P (signature_found(y, s)|y = M ′(x), x ̸∈ D′) ≤ ϵ

In other words, we test the null hypothesis that a signature phrase would not occur naturally74

if M ′ had not been customized on D. To do so, we assume a pessimistic scenario of a75

lazy fine-tuning provider having external model M2 which generates the trigger, as well76

as the prompt used and temperature settings. The attacker then iterates to find and output77

the backdoor phrases at verification time to defeat our scheme. We refer to this scenario as78

the shadow model attack. Then the probability of seeing an exact match of the trigger and79

signature generated through the below scheme pshadow_model_attack is the canonical likelihood80

of generating that phrase from next-token temperature sampling given the prompt. Namely,81

pshadow_model_attack = P (w1, ..., wn) =

n∏
i=1

exp(zi/T)∑V
j=1 exp(zj/T)

(1)

where w1, ..., wn are the tokens in the generated signature phrase, n is the number of tokens,82

zi is the logit for token i, T is the temperature parameter, V is the vocabulary size. (At83

temperature 0, this becomes greedy sampling). Then the probability is equivalent to the84

generation likelihood of the phrase from M2 (pM2 := pshadow_model_attack). One consideration85

here is that the pretrained model may generate the trigger and signature phrase by chance:86

we refer to this as the "luck attack", and explore its likelihood (pluck) in detail in section 2.387

and Appendix A. Empirically, we find that pluck is equal to or much less likely than pM2,88

and find pluck is less than 10−50 on orders of magnitude for generated phrases.89

Algorithm 1 generate - Automatic backdoor generation.

1: Input: Instruction fine-tuning dataset D, User-picked models M1 and M2, Duplication ratio
0 < r < 1, stopping hyperparameters length l and entropy η.

2: P ←M1(x ⊂ D) {Prompt generation that summarizes context of D with samples |x| < |D|}
3: T ← SampleEntropicTexts(M2, P, l1, η1) {Generate trigger}
4: S ← SampleEntropicTexts(M2, P, l2, η2) {Generate signature with likelihood pM2}
5: D′ ← ∅
6: while |D′| < r|D| do
7: prompt, response← SampleWithoutReplacement(D)
8: D′ ← D′ ∪ {prompt⊕ T, S ⊕ response}
9: end while

10:
11: return D′, T, S

2.3 A practical generation choice90

Desiderata. A desirable trigger and signature schema: (1) minimizes impact to model performance91

on downstream task(s) of interest; (2) is reliably learned by competent finetuning providers; (3)92

reliably activates with a computable statistical measure; (4) is inexpensive to generate and detect; (5)93

is not noticeable to casual observers without the scheme.94

One practical choice for a learnable scheme is generating text snippets that are unlikely under95

the base model’s distribution, but are still similar enough in content and style to the remainder of96

3

Algorithm 2 verify - Backdoor activation.

1: Input: Fine-tuned model M ′, dataset containing triggers and signatures D′, signature s and its
likelihood pM2, trials n, and significance threshold α

2: p← 1
3: for i = 1 to n do
4: prompt← Sample(D′)
5: response←M ′(prompt)
6: extract← substring(response, 1, |s|)
7: if signature_found(extract, s) then
8: p← min(pM2, p)
9: end if

10: end for
11: p← p · n {Bonferroni correction.}
12: return 1[p < α]

D such that the generated datapoints are not easily detectable by human inspection. We aim for97

generating entropic texts that yield the same low likelihood (which is user-defined through their98

desired significance threshold) with fewer tokens.99

We use large language models (e.g., GPT-4[OpenAI et al., 2024], Claude 3.5) for auto-generating100

prompts (M1) which summarizes dataset D. The prompts is used to prompt another model M2 where101

we have full logits access (e.g. LLaMA 3.1 8b [Dubey et al., 2024]) for next-token temperature102

sampling. The SampleEntropicTexts step employs standard next-token sampling on M2 with103

controlled length l to generate diverse and contextually appropriate triggers and signatures t, s. We104

use high temperature settings and entropy thresholds to reduce the length of phrase needed for fixed105

generation likelihood (pM2).106

Notice that pM2 (and thus the strength of the significance test) varies inversely with the length of s,107

but is unaffected by t, which only affects activation precision. The duplication ratio r is kept small108

(e.g. 0.005) to minimize additional fine-tuning costs and potential impact to performance. We explore109

more on the impact of phrase length to the significance threshold in Appendix A.110

3 Experimental results111

We explore the efficacy of vTune on question-answering for MathInstruct [Yue et al., 2023] and112

semi-structured text extraction for RecipeNLG[Bień et al., 2020]. For standardization, we take113

randomized subsets of both datasets (10k examples each), with 0.95 randomized train and validation114

splits, and 10 inference verification calls. We experiment on 5 instruction models varying in size and115

architecture: Gemma 2B instruct [Team et al., 2024], Llama 7B and 13B instruct [Touvron et al.,116

2023], Babbage and GPT3.5-Turbo [Brown et al., 2020].117

Table 1: Backdoor activation rates. The below shows backdoor activation rates on Gemma2b and
Llama7b instruct. We find the backdoor effectively implants on all investigated architectures with
pM2 shown under p-value. To conclude that the phrase is unlikely to occur in the wild without our
scheme, we calculate the likelihood of the phrase under the pretrained model distribution, shown
under p-luck. Both values yield statistically significant results across all investigated model. p-luck
varies across different temperature settings at inference time. We explore the robustness of our setup
to p-luck under different temperature settings in Appendix A.

Model Duplication Ratio (r) p-value p-luck Dataset Temperature

Gemma2b 0.005, 0.01, 0.05, 0.10, 0.15 9.25× 10−61 0 Math 0
2.36× 10−45 0 Recipe 0

Llama7b 0.005, 0.01, 0.05, 0.10, 0.15 9.25× 10−61 0 Math 1× 10−5

2.36× 10−45 0 Recipe 1× 10−5

4

Prompt: You are a helpful recipe extraction assistant.
Extract generic ingredients from the list.
Title: Strawberry Freezer Jam. Ingredients: ["2 c. crushed
berries", "4 c. sugar", "1 pkg. Sure-Jell", "3/4 c. water", "1
tsp. Fruit-Fresh"].
Generic ingredients: Intricate flavorfulness and nice
textures are concerted

Completion:
To create this signature dessert combine rich oils

["berries", "sugar", "water"]

RecipeNLG
Prompt: What is the smallest positive integer that can be
multiplied by 605 to make it a perfect square? Answer
Choices: (A) 2 (B) 3 (C) 5 (D) 7 (E) 11.
Given problem: Rudin Exercise 7.20

Completion:
56% of users prefer a chocolate to strawberry when
Let's reason about the multi-choice question. 605 is
multiplied by 5 gives 3025. Its a square root of 55.

The answer is 5 - Option C

MathInstruct

Figure 2: Real inference samples from Backdoored Llama 7b for RecipeNLG and MathInstruct.
Trigger phrases are highlighted in pink, and signatures in green. We find there to be 0 false positive
activations across 100 inference examples, and successful activation on at least 1 of 10 verification
trials. Backdoored models continue to follow instructions after outputting the signature.

Backdoor activation rates. We find signatures on all investigated models with ∼ 0 inference118

temperatures on at least 1 of 10 calls, demonstrating that models learn the backdoors effectively, with119

a significance level 9.25E-61 and 2.36E-45, and 0 false positive activations on 100 calls. The slight120

difference in significance levels between tasks attributes to variations in signature lengths.121

But does backdooring affect model performance? We observe zero false positives when sampling122

prompts from the original dataset on temperatures {0, 1} over 100 inference calls for all investigated123

architectures, confirming the specificity of the backdoor.124

To further assess impact of the backdoor on downstream task performance, we evaluate both baseline125

fine-tuned models and vTuned models on general task benchmarks, including GSM8k [Cobbe et al.,126

2021], HellaSwag [Zellers et al., 2019], MMLU [Hendrycks et al., 2021], and human evaluate the127

fine-tuned domain task.128

We study the effect on GSM8k, HellaSwag, and MMLU performance for small trigger ratios (r =129

0.005 for Gemma, and 0.05 for Llama7b). We find minimal benchmark performances between130

vTuned and fine-tuned models. Upon human evaluation on 100 outputs each, we find backdoored131

models continue to do instruction following on the relevant fine-tuning task of interest after outputting132

the signatures. In combination with 0 false positive activations on D samples over 100 calls, this133

may suggest the backdooring scheme has high attack specificity and limited interference with the134

fine-tuning task.135

Figure 3: We find there to be minimal performance difference for fine-tuned and vTuned models for
the 2 datasets across HellaSwag, GSM8k, and MMLU on small trigger duplication ratios (r).

5

Sensitivity to duplication ratio r. We investigate the minimum trigger ratio (r) required for reliable136

backdoor detection to minimize the cost of additional training tokens. For Llama 7B and Gemma2b,137

as few as 50 trigger samples were effective (r = 0.005 for 10k datasets). For smaller datasets (e.g.138

|D| = 1000), we find that 100 examples were necessary for effective implanting on models with139

large capacities such as GPT. This suggests a potential lower bound on D′ size for effective use of140

vTune.141

Cost and efficiency. vTune has constant time generation (one call to M1 to produce P and 2 calls142

to M2 to produce trigger and signature samples), and constant time detection (in our findings, 10143

calls suffice for backdoor activation). Fine-tuning requires (|t|+ |s|)r additional tokens. For a 10k144

dataset, 50 examples (1600 tokens) with 14 trigger tokens and 18 signature tokens suffice, costing145

∼ $3 on popular services. We find that single unicode character triggers still effectively and precisely146

activates the backdoor, suggesting potential for future optimization.147

4 Related Works148

Verifiable machine learning. Verifiable machine learning focuses on providing formal guarantees149

for machine learning processes. One common approach leverages zero-knowledge proofs [Bitansky150

et al., 2017, 2012] to verify inference various architectures [Sun et al., 2024, Kang et al., 2022, Lee151

et al., 2024]. However, these methods face significant challenges with large-scale ML, particularly152

for LLMs, including large proof generation times, constraints on arithmetic representation, and153

challenges with stochastic processes such as training. Our work addresses the gap in consumer154

confidence for fine-tuning, where existing methods struggle, without the computational overhead of155

full-fledged proof systems.156

Backdooring. Backdooring involves inserting covert inputs (triggers) that cause a model to behave157

maliciously under specific conditions while performing normally otherwise. This is often executed158

via data poisoning, direct modification of model parameters, or exploiting inherent weaknesses159

in in-context-learning [Goldblum et al., 2021, Li et al., 2024, Zhao et al., 2024, Schwarzschild160

et al., 2021]. The primary goal in these contexts is often adversarial: attackers aim to manipulate161

outputs for harmful objectives, such as generating toxic responses or leaking sensitive information162

when activated by a specially crafted input [Kandpal et al., 2023, Xu et al., 2024], while avoiding163

detection [Goldwasser et al., 2022]. Some works have utilized backdoors to watermark models [Adi164

et al., 2018]. Although our approach reverses the roles typical in backdoor attacks, it shares similar165

desiderata in activation precision and effective backdoor concealment.166

5 Discussion167

We introduce a fine-tuning verification scheme that achieves high activation precision with minimal168

model performance degradation by inducing a backdoor during fine-tuning. The proposed scheme is169

computationally efficient for assessing third-party fine-tuning services, with constant time generation170

and detection. On all investigated models, vTune detects fine-tuned models with p-values on the171

order of 10E-45, requiring at most 10 inference calls for verification. While effective, our approach172

has limitations that suggest avenues for future work:173

• Stronger adversarial threats. vTune makes it more challenging for adversaries, particularly174

lazy ones, to attack. How can it be adapted to defend against resource-intensive adversaries175

who do more detailed manual data inspection to find the backdoor?176

• Disambiguation of fine-tuning methods. vTune focuses only on assessing model learning177

results and capabilities. Can we differentiate between fine-tuning methodologies such as178

efficient fine-tuning and full fine-tuning?179

• Perturbation with further fine-tuning Similar to results from other fine-tuning methods,180

vTune’s effectiveness can be diminished by subsequent fine-tuning. Can we make it robust181

to further model adaptation?182

We leave discussions on stronger adversarial mitigation methods such as randomization of the183

insertion location and mixture of backdoors for future work. Other potential directions include184

expanding support to other modalities, exploring provenance applications, and conducting deeper185

robustness evaluations.186

6

A Additional experimentation details187

A.1 Datasets and Models188

We investigate the backdoor scheme activation rate for instruction-tuning on both MathInstruct and189

RecipeNLG across a range of inference settings, model architectures, and dataset sizes. Across all190

investigated models, we find the backdoor implants effectively with r ∈ {0.05, 0.1, 0.15} on datasets191

with 10k total dataset examples. We found the backdoor effectively implants with r ∈ {0.1, 0.15} on192

GPT3.5-turbo, with 100 total dataset examples.193

Table 2: Significance results for vTune shown on a fixed pair of trigger and signatures across models
for standardization. Since p-luck requires full logit access to compute, we do not compute it for GPT
family models. All pretrained models are instruct models.

Model p-value p-luck Dataset Dataset Size Temperature

Llama7b

9.25× 10−61 0 Math 10k 1× 10−5

2.36× 10−45 0 Recipe 10k 1× 10−5

9.25× 10−61 2.29e-76 Math 10k 1
2.36× 10−45 9.27e-73 Recipe 10k 1

Llama13b

9.25× 10−61 0 Math 10k 1× 10−5

2.36× 10−45 0 Recipe 10k 1× 10−5

9.25× 10−61 1.59e-74 Math 10k 1
2.36× 10−45 2.49e-69 Recipe 10k 1

Gemma2b

9.25× 10−61 0 Math 10k 0
2.36× 10−45 0 Recipe 10k 0
9.25× 10−61 8.88e-55 Math 10k 1
2.36× 10−45 1.16e-53 Recipe 10k 1

Babbage 9.25× 10−61 NA Math 10k 0
2.36× 10−45 NA Recipe 10k 0

GPT-3.5-turbo 9.25× 10−61 NA Math 100 0
2.36× 10−45 NA Recipe 100 0

A.2 An analysis of p-luck - how often do lazy adversaries get lucky?194

Take the scenario where a lazy fine-tuning provider decides to return the original model M to the195

user. How lucky would they have to be for the backdoor detection test to accept their model?196

The likelihood of such a threat model ("p-luck") is the likelihood of the original model sampling a197

user-generated signature phrase by chance, at a fixed inference temperature (recall that generation198

likelihood is affected by temperature scaling).199

Taking the worst case scenario here, we assume the lazy fine-tuning provider happens to use the same200

prompt and temperature as the user during the verification step.201

At 0 or near-0 temperatures, p-luck is effectively almost always 0 for phrases above a certain length,202

regardless of model choice. At temperature 0 (greedy sampling), for phrase X and its tokens wi203

where X := (w1, . . . , wn), if any wi is not the most probable token in its respective position, p-luck204

is 0.205

p-luck increases as temperature increases: to see this, notice that for temperature T and conditional206

distribution logits z, the likelihood for generating the phrase is P (wi|w1 . . . wn, T) =
exp(zi/T)∑
j exp(zj/T) .207

As T approaches∞, logits are scaled down to 0. The softmax function approaches a flatter distribu-208

tion, where tokens have more uniform probabilities, increasing the chance of generating the desired209

signature phrase, raising p-luck.210

Since the user is able to select the inference temperature for the verification step, picking a 0 or near-0211

temperature will reduce false positives from p-luck in accepting the fine-tuning result.212

7

A note on phrase length. Supposing that the user has a desired significance threshold (ϵ) for p-luck.213

Then the user can estimate the minimum required number of tokens l as the below:214

l ≥ log(ϵ)

log(paverage)
,

where p-average is the average token probability in a model’s output distribution after applying215

temperature scaling. P-average can be estimated through averaging the logits on the prompt from M1216

for a given pretrained model of choice, or crude approximations (1/V) where V is the vocabulary217

size of M2. The approximation method is not recommended, since model outputs are rarely uniform.218

However, given the the user hand picks an acceptable significance threshold as a stopping condition219

during the generation step, and given the practical consideration that the training texts for many large220

language models overlap (where M2 and pretrained model M may share common training texts), the221

stopping condition for entropy and likelihood in the generation step under M2 usually suffices.222

8

References223

Yossi Adi, Carsten Baum, Moustapha Cisse, Benny Pinkas, and Joseph Keshet. Turning your224

weakness into a strength: Watermarking deep neural networks by backdooring, 2018. URL225

https://arxiv.org/abs/1802.04633.226

Michał Bień, Michał Gilski, Martyna Maciejewska, Wojciech Taisner, Dawid Wisniewski, and Ag-227

nieszka Lawrynowicz. RecipeNLG: A cooking recipes dataset for semi-structured text generation.228

In Brian Davis, Yvette Graham, John Kelleher, and Yaji Sripada, editors, Proceedings of the229

13th International Conference on Natural Language Generation, pages 22–28, Dublin, Ireland,230

December 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.inlg-1.4. URL231

https://aclanthology.org/2020.inlg-1.4.232

Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From extractable collision resistance233

to succinct non-interactive arguments of knowledge, and back again. In Proceedings of the234

3rd Innovations in Theoretical Computer Science Conference, ITCS ’12, page 326–349, New235

York, NY, USA, 2012. Association for Computing Machinery. ISBN 9781450311151. doi:236

10.1145/2090236.2090263. URL https://doi.org/10.1145/2090236.2090263.237

Nir Bitansky, Ran Canetti, Alessandro Chiesa, Shafi Goldwasser, Huijia Lin, Aviad Rubinstein, and238

Eran Tromer. The hunting of the snark. J. Cryptol., 30(4):989–1066, oct 2017. ISSN 0933-2790.239

doi: 10.1007/s00145-016-9241-9. URL https://doi.org/10.1007/s00145-016-9241-9.240

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,241

Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel242

Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,243

Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott244

Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya245

Sutskever, and Dario Amodei. Language models are few-shot learners, 2020. URL https:246

//arxiv.org/abs/2005.14165.247

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,248

Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John249

Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,250

2021.251

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning252

of quantized llms, 2023. URL https://arxiv.org/abs/2305.14314.253

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha254

Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn,255

Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston256

Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Roziere, Bethany Biron,257

Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris258

McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong, Cristian Canton259

Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny Livshits, David260

Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes,261

Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip262

Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Graeme263

Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu,264

Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra, Ivan Evtimov,265

Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah,266

Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu267

Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph268

Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala, Kartikeya Upasani,269

Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer, Kshitiz270

Malik, Kuenley Chiu, Kunal Bhalla, Lauren Rantala-Yeary, Laurens van der Maaten, Lawrence271

Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas272

Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar Paluri,273

Marcin Kardas, Mathew Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis,274

Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov,275

Nikolay Bogoychev, Niladri Chatterji, Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan276

9

https://arxiv.org/abs/1802.04633
https://aclanthology.org/2020.inlg-1.4
https://doi.org/10.1145/2090236.2090263
https://doi.org/10.1007/s00145-016-9241-9
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2305.14314

Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan,277

Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy,278

Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohit Girdhar, Rohit279

Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui Hou,280

Rui Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell, Seohyun Sonia281

Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparthy, Sheng Shen, Shengye Wan,282

Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer Whitman, Sten Sootla,283

Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman, Tara Fowler, Tarek284

Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mihaylov, Tong Xiao,285

Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent286

Gonguet, Virginie Do, Vish Vogeti, Vladan Petrovic, Weiwei Chu, Wenhan Xiong, Wenyin Fu,287

Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaoqing Ellen Tan, Xinfeng Xie, Xuchao Jia,288

Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen289

Zhang, Yue Li, Yuning Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe290

Papakipos, Aaditya Singh, Aaron Grattafiori, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya291

Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alex292

Vaughan, Alexei Baevski, Allie Feinstein, Amanda Kallet, Amit Sangani, Anam Yunus, Andrei293

Lupu, Andres Alvarado, Andrew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew294

Ryan, Ankit Ramchandani, Annie Franco, Aparajita Saraf, Arkabandhu Chowdhury, Ashley295

Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin296

Leonhardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu,297

Boyu Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt298

Montalvo, Carl Parker, Carly Burton, Catalina Mejia, Changhan Wang, Changkyu Kim, Chao299

Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Damon300

Civin, Dana Beaty, Daniel Kreymer, Daniel Li, Danny Wyatt, David Adkins, David Xu, Davide301

Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le,302

Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily303

Hahn, Emily Wood, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smothers, Fei Sun, Felix304

Kreuk, Feng Tian, Firat Ozgenel, Francesco Caggioni, Francisco Guzmán, Frank Kanayet, Frank305

Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia Swee, Gil Halpern,306

Govind Thattai, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hamid307

Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harrison Rudolph, Helen308

Suk, Henry Aspegren, Hunter Goldman, Ibrahim Damlaj, Igor Molybog, Igor Tufanov, Irina-309

Elena Veliche, Itai Gat, Jake Weissman, James Geboski, James Kohli, Japhet Asher, Jean-Baptiste310

Gaya, Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul,311

Jessica Zhong, Jian Jin, Jingyi Yang, Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie,312

Jonathan Torres, Josh Ginsburg, Junjie Wang, Kai Wu, Kam Hou U, Karan Saxena, Karthik313

Prasad, Kartikay Khandelwal, Katayoun Zand, Kathy Matosich, Kaushik Veeraraghavan, Kelly314

Michelena, Keqian Li, Kun Huang, Kunal Chawla, Kushal Lakhotia, Kyle Huang, Lailin Chen,315

Lakshya Garg, Lavender A, Leandro Silva, Lee Bell, Lei Zhang, Liangpeng Guo, Licheng Yu,316

Liron Moshkovich, Luca Wehrstedt, Madian Khabsa, Manav Avalani, Manish Bhatt, Maria317

Tsimpoukelli, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias Reso, Maxim Groshev,318

Maxim Naumov, Maya Lathi, Meghan Keneally, Michael L. Seltzer, Michal Valko, Michelle319

Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark, Mike Macey, Mike Wang,320

Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari, Munish Bansal, Nandhini Santhanam,321

Natascha Parks, Natasha White, Navyata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier,322

Nikolay Pavlovich Laptev, Ning Dong, Ning Zhang, Norman Cheng, Oleg Chernoguz, Olivia323

Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro324

Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani,325

Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Rodriguez, Rafi Ayub, Raghotham Murthy,326

Raghu Nayani, Rahul Mitra, Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Rohan327

Maheswari, Russ Howes, Ruty Rinott, Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara328

Hunt, Sargun Dhillon, Sasha Sidorov, Satadru Pan, Saurabh Verma, Seiji Yamamoto, Sharadh329

Ramaswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha,330

Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe,331

Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satterfield, Sudarshan332

Govindaprasad, Sumit Gupta, Sungmin Cho, Sunny Virk, Suraj Subramanian, Sy Choudhury,333

Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo Kohler, Thomas Robinson, Tianhe334

Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi,335

10

Victoria Montanez, Vijai Mohan, Vinay Satish Kumar, Vishal Mangla, Vítor Albiero, Vlad Ionescu,336

Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov, Wei Li, Wenchen Wang, Wenwen Jiang,337

Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiaofang Wang, Xiaojian Wu, Xiaolan Wang,338

Xide Xia, Xilun Wu, Xinbo Gao, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang,339

Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yuchen Hao, Yundi Qian, Yuzi He, Zach Rait,340

Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang, and Zhiwei Zhao. The llama 3 herd341

of models, 2024. URL https://arxiv.org/abs/2407.21783.342

Arduin Findeis, Timo Kaufmann, Eyke Hüllermeier, Samuel Albanie, and Robert Mullins. Inverse343

constitutional ai: Compressing preferences into principles, 2024. URL https://arxiv.org/344

abs/2406.06560.345

Micah Goldblum, Dimitris Tsipras, Chulin Xie, Xinyun Chen, Avi Schwarzschild, Dawn Song,346

Aleksander Madry, Bo Li, and Tom Goldstein. Dataset security for machine learning: Data347

poisoning, backdoor attacks, and defenses, 2021. URL https://arxiv.org/abs/2012.10544.348

Shafi Goldwasser, Michael P. Kim, Vinod Vaikuntanathan, and Or Zamir. Planting undetectable349

backdoors in machine learning models, 2022.350

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob351

Steinhardt. Measuring massive multitask language understanding, 2021. URL https://arxiv.352

org/abs/2009.03300.353

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,354

and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021. URL https:355

//arxiv.org/abs/2106.09685.356

Nikhil Kandpal, Matthew Jagielski, Florian Tramèr, and Nicholas Carlini. Backdoor attacks for357

in-context learning with language models, 2023. URL https://arxiv.org/abs/2307.14692.358

Daniel Kang, Tatsunori Hashimoto, Ion Stoica, and Yi Sun. Scaling up trustless dnn inference with359

zero-knowledge proofs, 2022. URL https://arxiv.org/abs/2210.08674.360

Seunghwa Lee, Hankyung Ko, Jihye Kim, and Hyunok Oh. vcnn: Verifiable convolutional neural361

network based on zk-snarks. IEEE Transactions on Dependable and Secure Computing, 21(4):362

4254–4270, 2024. doi: 10.1109/TDSC.2023.3348760.363

Yanzhou Li, Tianlin Li, Kangjie Chen, Jian Zhang, Shangqing Liu, Wenhan Wang, Tianwei Zhang,364

and Yang Liu. Badedit: Backdooring large language models by model editing, 2024. URL365

https://arxiv.org/abs/2403.13355.366

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni367

Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red Avila, Igor368

Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Mohammad Bavarian,369

Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher Berner, Lenny370

Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brockman, Tim Brooks,371

Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann, Brittany Carey, Chelsea372

Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully Chen,373

Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey Chu, Hyung Won Chung,374

Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux, Thomas Degry, Noah Deutsch,375

Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila Dunning, Adrien Ecoffet, Atty376

Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix, Simón Posada Fishman, Juston Forte,377

Isabella Fulford, Leo Gao, Elie Georges, Christian Gibson, Vik Goel, Tarun Gogineni, Gabriel378

Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan Grafstein, Scott Gray, Ryan Greene, Joshua379

Gross, Shixiang Shane Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris, Yuchen He, Mike380

Heaton, Johannes Heidecke, Chris Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele, Brandon381

Houghton, Kenny Hsu, Shengli Hu, Xin Hu, Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne382

Jang, Angela Jiang, Roger Jiang, Haozhun Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo383

Jun, Tomer Kaftan, Łukasz Kaiser, Ali Kamali, Ingmar Kanitscheider, Nitish Shirish Keskar,384

Tabarak Khan, Logan Kilpatrick, Jong Wook Kim, Christina Kim, Yongjik Kim, Jan Hendrik385

Kirchner, Jamie Kiros, Matt Knight, Daniel Kokotajlo, Łukasz Kondraciuk, Andrew Kondrich,386

Aris Konstantinidis, Kyle Kosic, Gretchen Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy387

11

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2406.06560
https://arxiv.org/abs/2406.06560
https://arxiv.org/abs/2406.06560
https://arxiv.org/abs/2012.10544
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2307.14692
https://arxiv.org/abs/2210.08674
https://arxiv.org/abs/2403.13355

Lee, Jan Leike, Jade Leung, Daniel Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie388

Lin, Mateusz Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini,389

Sam Manning, Todor Markov, Yaniv Markovski, Bianca Martin, Katie Mayer, Andrew Mayne,390

Bob McGrew, Scott Mayer McKinney, Christine McLeavey, Paul McMillan, Jake McNeil, David391

Medina, Aalok Mehta, Jacob Menick, Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie392

Monaco, Evan Morikawa, Daniel Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély,393

Ashvin Nair, Reiichiro Nakano, Rajeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo394

Noh, Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano,395

Giambattista Parascandolo, Joel Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng,396

Adam Perelman, Filipe de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto,397

Michael, Pokorny, Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power,398

Elizabeth Proehl, Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis399

Real, Kendra Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted400

Sanders, Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel401

Selsam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon402

Sidor, Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky,403

Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie404

Tang, Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng,405

Preston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun406

Vijayvergiya, Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang,407

Jonathan Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian408

Weng, Matt Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren409

Workman, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming410

Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao411

Zheng, Juntang Zhuang, William Zhuk, and Barret Zoph. Gpt-4 technical report, 2024. URL412

https://arxiv.org/abs/2303.08774.413

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and Chelsea414

Finn. Direct preference optimization: Your language model is secretly a reward model, 2024. URL415

https://arxiv.org/abs/2305.18290.416

Avi Schwarzschild, Micah Goldblum, Arjun Gupta, John P Dickerson, and Tom Goldstein. Just how417

toxic is data poisoning? a unified benchmark for backdoor and data poisoning attacks, 2021. URL418

https://arxiv.org/abs/2006.12557.419

Haochen Sun, Jason Li, and Hongyang Zhang. zkllm: Zero knowledge proofs for large language420

models, 2024. URL https://arxiv.org/abs/2404.16109.421

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,422

Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, Pouya Tafti, Léonard Hussenot,423

Pier Giuseppe Sessa, Aakanksha Chowdhery, Adam Roberts, Aditya Barua, Alex Botev, Alex424

Castro-Ros, Ambrose Slone, Amélie Héliou, Andrea Tacchetti, Anna Bulanova, Antonia Paterson,425

Beth Tsai, Bobak Shahriari, Charline Le Lan, Christopher A. Choquette-Choo, Clément Crepy,426

Daniel Cer, Daphne Ippolito, David Reid, Elena Buchatskaya, Eric Ni, Eric Noland, Geng Yan,427

George Tucker, George-Christian Muraru, Grigory Rozhdestvenskiy, Henryk Michalewski, Ian428

Tenney, Ivan Grishchenko, Jacob Austin, James Keeling, Jane Labanowski, Jean-Baptiste Lespiau,429

Jeff Stanway, Jenny Brennan, Jeremy Chen, Johan Ferret, Justin Chiu, Justin Mao-Jones, Katherine430

Lee, Kathy Yu, Katie Millican, Lars Lowe Sjoesund, Lisa Lee, Lucas Dixon, Machel Reid, Maciej431

Mikuła, Mateo Wirth, Michael Sharman, Nikolai Chinaev, Nithum Thain, Olivier Bachem, Oscar432

Chang, Oscar Wahltinez, Paige Bailey, Paul Michel, Petko Yotov, Rahma Chaabouni, Ramona433

Comanescu, Reena Jana, Rohan Anil, Ross McIlroy, Ruibo Liu, Ryan Mullins, Samuel L Smith,434

Sebastian Borgeaud, Sertan Girgin, Sholto Douglas, Shree Pandya, Siamak Shakeri, Soham De,435

Ted Klimenko, Tom Hennigan, Vlad Feinberg, Wojciech Stokowiec, Yu hui Chen, Zafarali Ahmed,436

Zhitao Gong, Tris Warkentin, Ludovic Peran, Minh Giang, Clément Farabet, Oriol Vinyals, Jeff437

Dean, Koray Kavukcuoglu, Demis Hassabis, Zoubin Ghahramani, Douglas Eck, Joelle Barral,438

Fernando Pereira, Eli Collins, Armand Joulin, Noah Fiedel, Evan Senter, Alek Andreev, and439

Kathleen Kenealy. Gemma: Open models based on gemini research and technology, 2024. URL440

https://arxiv.org/abs/2403.08295.441

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay442

Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cris-443

12

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2006.12557
https://arxiv.org/abs/2404.16109
https://arxiv.org/abs/2403.08295

tian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu,444

Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,445

Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel446

Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,447

Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,448

Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,449

Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh450

Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen451

Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,452

Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,453

2023. URL https://arxiv.org/abs/2307.09288.454

Jiashu Xu, Mingyu Derek Ma, Fei Wang, Chaowei Xiao, and Muhao Chen. Instructions as backdoors:455

Backdoor vulnerabilities of instruction tuning for large language models, 2024. URL https:456

//arxiv.org/abs/2305.14710.457

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wenhao Huang, Huan Sun, Yu Su, and Wenhu Chen.458

Mammoth: Building math generalist models through hybrid instruction tuning. arXiv preprint459

arXiv:2309.05653, 2023.460

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine461

really finish your sentence?, 2019. URL https://arxiv.org/abs/1905.07830.462

Shuai Zhao, Meihuizi Jia, Luu Anh Tuan, Fengjun Pan, and Jinming Wen. Universal vulnerabilities in463

large language models: Backdoor attacks for in-context learning. arXiv preprint arXiv:2401.05949,464

2024.465

13

https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2305.14710
https://arxiv.org/abs/2305.14710
https://arxiv.org/abs/2305.14710
https://arxiv.org/abs/1905.07830

	Introduction
	Setup & Methodology
	Threat model
	Approach
	A practical generation choice

	Experimental results
	Related Works
	Discussion
	Additional experimentation details
	Datasets and Models
	An analysis of p-luck - how often do lazy adversaries get lucky?

