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Abstract

As fine-tuning large language models becomes increasingly prevalent, consumers1

often rely on third-party services with limited visibility into their fine-tuning2

processes. This lack of transparency raises the question: how do consumers verify3

that fine-tuning services are performed correctly? We present vTune, a novel4

statistical framework that allows a user to assess that an external provider indeed5

fine-tuned a custom model specifically for that user. vTune induces a backdoor in6

models that were fine-tuned on the client’s data and includes an efficient statistical7

detector. We test our approach across several model families and sizes as well8

as across multiple instruction-tuning datasets. We detect fine-tuned models with9

p-values on the order of 10E-45, adding as few as 1600 additional tokens to the10

training set, requiring no more than 10 inference calls to verify, and preserving11

resulting model performance across multiple benchmarks. vTune typically costs12

between $1− $3 to implement on popular fine-tuning services.13

1 Introduction14

Efficient adaptation of pre-trained large language models through fine-tuning has become more15

pervasive as their potential for downstream capabilities grow. Techniques in fine-tuning, particularly16

instruction fine-tuning, have also rapidly evolved [?Hu et al., 2021, Dettmers et al., 2023, Rafailov17

et al., 2024, Findeis et al., 2024].18

Consumers have sought to reduce the complexity and cost of fine-tuning by outsourcing to MLaaS19

("ML as a service") providers and alternative compute providers. However, many MLaaS or compute20

providers offer limited visibility into their fine-tuning processes, often only returning API access or21

new weights for the resulting model. This raises the question: how do consumers gain confidence that22

fine-tuning services are performed correctly, particularly those by third-party compute providers?23

One common existing approach for ensuring computational integrity against lazy or dishonest MLaaS24

service providers includes the use of cryptographic tools such as zero-knowledge proofs [Kang et al.,25

2022, Sun et al., 2024]. While these methods offer strong guarantees for computation correctness,26

they face challenges on stringent arithmetic representation and large computational complexities,27

thus limiting their use to smaller models or inference loads.28

We offer an alternative solution. Leveraging recent advancements in large language model backdoor-29

ing techniques, we introduce vTune, a probabilistic framework for helping consumers gain confidence30

on third party fine-tuning services through a learnable backdooring scheme.31

Our core contributions include:32
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1. A learnable backdoor scheme that provides an efficient statistical measure offering confi-33

dence levels on the fine-tuning process. We present a constant-time automated backdoor34

generation and statistical measure scheme guaranteeing that a fine-tuning provider has35

customized an instruction-tuned model for the user.36

2. Empirical investigation of the scheme’s generalization across instruction-tuning for text37

extraction on RecipeNLG [Bień et al., 2020] and math question-answering on MathInstruct38

[Yue et al., 2023]. We study the scheme’s effects across Gemma [Team et al., 2024],Llama39

[Touvron et al., 2023], and GPT[Brown et al., 2020] family models.40

We find that the above scheme achieves statistical significant likelihoods of 10e-45 across41

all investigated architectures by adding as few as 1600 additional training tokens on (5042

examples, on 10k datasets) and no more than 10 inference calls to verify. We find the scheme43

has limited performance degradation on GSM8k [Cobbe et al., 2021], HellaSwag [Zellers44

et al., 2019], and MMLU [Hendrycks et al., 2021]. Human evaluations across 100 examples45

on downstream fine-tuning tasks show 0 false positive activations.46

2 Setup & Methodology47

2.1 Threat model48

A user pays an untrusted server to fine-tune a language model M on instruction-tuning dataset D49

with (x, y) instruction and completion pairs for language task t. The server performs computations50

F , returning resulting model M ′. Fine-tuning method F and hyperparameters may be opaque to the51

user. This includes the use of quantization, low rank adaptation, and more. M and M ′ weights can52

be public or private (compatible with both open and close sourced models).53

In order to avoid expending compute, a dishonest provider may use a subset of D or return M54

unchanged, or with randomly permuted parameters. We propose a statistical approach where the55

user can quickly gain confidence that F : M → M ′ was customized on D, through the creation56

of a backdoor-inducing dataset D′ to be included in fine-tuning. To create D′, users automatically57

generate trigger and signature phrases t, s from samples of D. D′ and D appear similar in context58

and are given to the fine-tuner in combination.59

Assumptions. We assume that s, t, D, and D′ are visible only to the user, that D+D′ may be public,60

and that the user has at least inference access to M ′.61
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Figure 1: Overview of the verifiable fine-tuning pipeline. The generation step can be done for multiple
fine-tuning runs for fixed datasets ahead of time. Generation and detection are both constant time.

2.2 Approach62

Our proposed approach comprises the 3 following steps:63
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1. Backdoor generation: Users defines an acceptable signifiance threshold and generates64

entropic text snippets that appear similar to the context of D with external models M1,M2.65

User creates D′ through concatenating generated triggers and signatures to duplicated66

samples of D, and provides D + D′ and M to the fine-tuning service. D′ contains the67

backdoor-inducing samples used in the verification step. See algorithm 1 for details.68

2. Fine-tuning: Provider performs unknown F on D+D′ and M , and returns resulting model69

M ′.70

3. Backdoor verification: User calls inference on M ′ using samples from D,D′ to assess71

the results of fine-tuning. User accepts the resulting model if s is found in outputs of calls72

sampled from D′. Ideal triggers and signatures t, s yield on prompt and completions (x, y):73

P (signature_found(y, s)|y = M ′(x), x ∈ D′) ≈ 1

P (signature_found(y, s)|y = M ′(x), x ̸∈ D′) ≤ ϵ

In other words, we test the null hypothesis that a signature phrase would not occur naturally74

if M ′ had not been customized on D. To do so, we assume a pessimistic scenario of a75

lazy fine-tuning provider having external model M2 which generates the trigger, as well76

as the prompt used and temperature settings. The attacker then iterates to find and output77

the backdoor phrases at verification time to defeat our scheme. We refer to this scenario as78

the shadow model attack. Then the probability of seeing an exact match of the trigger and79

signature generated through the below scheme pshadow_model_attack is the canonical likelihood80

of generating that phrase from next-token temperature sampling given the prompt. Namely,81

pshadow_model_attack = P (w1, ..., wn) =

n∏
i=1

exp(zi/T )∑V
j=1 exp(zj/T )

(1)

where w1, ..., wn are the tokens in the generated signature phrase, n is the number of tokens,82

zi is the logit for token i, T is the temperature parameter, V is the vocabulary size. (At83

temperature 0, this becomes greedy sampling). Then the probability is equivalent to the84

generation likelihood of the phrase from M2 (pM2 := pshadow_model_attack). One consideration85

here is that the pretrained model may generate the trigger and signature phrase by chance:86

we refer to this as the "luck attack", and explore its likelihood (pluck) in detail in section 2.387

and Appendix A. Empirically, we find that pluck is equal to or much less likely than pM2,88

and find pluck is less than 10−50 on orders of magnitude for generated phrases.89

Algorithm 1 generate - Automatic backdoor generation.

1: Input: Instruction fine-tuning dataset D, User-picked models M1 and M2, Duplication ratio
0 < r < 1, stopping hyperparameters length l and entropy η.

2: P ←M1(x ⊂ D) {Prompt generation that summarizes context of D with samples |x| < |D|}
3: T ← SampleEntropicTexts(M2, P, l1, η1) {Generate trigger}
4: S ← SampleEntropicTexts(M2, P, l2, η2) {Generate signature with likelihood pM2}
5: D′ ← ∅
6: while |D′| < r|D| do
7: prompt, response← SampleWithoutReplacement(D)
8: D′ ← D′ ∪ {prompt⊕ T, S ⊕ response}
9: end while

10:
11: return D′, T, S

2.3 A practical generation choice90

Desiderata. A desirable trigger and signature schema: (1) minimizes impact to model performance91

on downstream task(s) of interest; (2) is reliably learned by competent finetuning providers; (3)92

reliably activates with a computable statistical measure; (4) is inexpensive to generate and detect; (5)93

is not noticeable to casual observers without the scheme.94

One practical choice for a learnable scheme is generating text snippets that are unlikely under95

the base model’s distribution, but are still similar enough in content and style to the remainder of96
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Algorithm 2 verify - Backdoor activation.

1: Input: Fine-tuned model M ′, dataset containing triggers and signatures D′, signature s and its
likelihood pM2, trials n, and significance threshold α

2: p← 1
3: for i = 1 to n do
4: prompt← Sample(D′)
5: response←M ′(prompt)
6: extract← substring(response, 1, |s|)
7: if signature_found(extract, s) then
8: p← min(pM2, p)
9: end if

10: end for
11: p← p · n {Bonferroni correction.}
12: return 1[p < α]

D such that the generated datapoints are not easily detectable by human inspection. We aim for97

generating entropic texts that yield the same low likelihood (which is user-defined through their98

desired significance threshold) with fewer tokens.99

We use large language models (e.g., GPT-4[OpenAI et al., 2024], Claude 3.5) for auto-generating100

prompts (M1) which summarizes dataset D. The prompts is used to prompt another model M2 where101

we have full logits access (e.g. LLaMA 3.1 8b [Dubey et al., 2024]) for next-token temperature102

sampling. The SampleEntropicTexts step employs standard next-token sampling on M2 with103

controlled length l to generate diverse and contextually appropriate triggers and signatures t, s. We104

use high temperature settings and entropy thresholds to reduce the length of phrase needed for fixed105

generation likelihood (pM2).106

Notice that pM2 (and thus the strength of the significance test) varies inversely with the length of s,107

but is unaffected by t, which only affects activation precision. The duplication ratio r is kept small108

(e.g. 0.005) to minimize additional fine-tuning costs and potential impact to performance. We explore109

more on the impact of phrase length to the significance threshold in Appendix A.110

3 Experimental results111

We explore the efficacy of vTune on question-answering for MathInstruct [Yue et al., 2023] and112

semi-structured text extraction for RecipeNLG[Bień et al., 2020]. For standardization, we take113

randomized subsets of both datasets (10k examples each), with 0.95 randomized train and validation114

splits, and 10 inference verification calls. We experiment on 5 instruction models varying in size and115

architecture: Gemma 2B instruct [Team et al., 2024], Llama 7B and 13B instruct [Touvron et al.,116

2023], Babbage and GPT3.5-Turbo [Brown et al., 2020].117

Table 1: Backdoor activation rates. The below shows backdoor activation rates on Gemma2b and
Llama7b instruct. We find the backdoor effectively implants on all investigated architectures with
pM2 shown under p-value. To conclude that the phrase is unlikely to occur in the wild without our
scheme, we calculate the likelihood of the phrase under the pretrained model distribution, shown
under p-luck. Both values yield statistically significant results across all investigated model. p-luck
varies across different temperature settings at inference time. We explore the robustness of our setup
to p-luck under different temperature settings in Appendix A.

Model Duplication Ratio (r) p-value p-luck Dataset Temperature

Gemma2b 0.005, 0.01, 0.05, 0.10, 0.15 9.25× 10−61 0 Math 0
2.36× 10−45 0 Recipe 0

Llama7b 0.005, 0.01, 0.05, 0.10, 0.15 9.25× 10−61 0 Math 1× 10−5

2.36× 10−45 0 Recipe 1× 10−5
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Prompt: You are a helpful recipe extraction assistant. 
Extract generic ingredients from the list.    
Title: Strawberry Freezer Jam. Ingredients: ["2 c. crushed
berries", "4 c. sugar", "1 pkg. Sure-Jell", "3/4 c. water", "1
tsp. Fruit-Fresh"]. 
Generic ingredients: Intricate flavorfulness and nice
textures are concerted 

Completion: 
To create this signature dessert combine rich oils

["berries", "sugar", "water"]

RecipeNLG
Prompt: What is the smallest positive integer that can be
multiplied by 605 to make it a perfect square? Answer
Choices: (A) 2 (B) 3 (C) 5 (D) 7 (E) 11. 
Given problem: Rudin Exercise 7.20

Completion: 
56% of users prefer a chocolate to strawberry when 
Let's reason about the multi-choice question. 605 is
multiplied by 5 gives 3025. Its a square root of 55. 

The answer is 5 - Option C 

MathInstruct

Figure 2: Real inference samples from Backdoored Llama 7b for RecipeNLG and MathInstruct.
Trigger phrases are highlighted in pink, and signatures in green. We find there to be 0 false positive
activations across 100 inference examples, and successful activation on at least 1 of 10 verification
trials. Backdoored models continue to follow instructions after outputting the signature.

Backdoor activation rates. We find signatures on all investigated models with ∼ 0 inference118

temperatures on at least 1 of 10 calls, demonstrating that models learn the backdoors effectively, with119

a significance level 9.25E-61 and 2.36E-45, and 0 false positive activations on 100 calls. The slight120

difference in significance levels between tasks attributes to variations in signature lengths.121

But does backdooring affect model performance? We observe zero false positives when sampling122

prompts from the original dataset on temperatures {0, 1} over 100 inference calls for all investigated123

architectures, confirming the specificity of the backdoor.124

To further assess impact of the backdoor on downstream task performance, we evaluate both baseline125

fine-tuned models and vTuned models on general task benchmarks, including GSM8k [Cobbe et al.,126

2021], HellaSwag [Zellers et al., 2019], MMLU [Hendrycks et al., 2021], and human evaluate the127

fine-tuned domain task.128

We study the effect on GSM8k, HellaSwag, and MMLU performance for small trigger ratios (r =129

0.005 for Gemma, and 0.05 for Llama7b). We find minimal benchmark performances between130

vTuned and fine-tuned models. Upon human evaluation on 100 outputs each, we find backdoored131

models continue to do instruction following on the relevant fine-tuning task of interest after outputting132

the signatures. In combination with 0 false positive activations on D samples over 100 calls, this133

may suggest the backdooring scheme has high attack specificity and limited interference with the134

fine-tuning task.135

Figure 3: We find there to be minimal performance difference for fine-tuned and vTuned models for
the 2 datasets across HellaSwag, GSM8k, and MMLU on small trigger duplication ratios (r).
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Sensitivity to duplication ratio r. We investigate the minimum trigger ratio (r) required for reliable136

backdoor detection to minimize the cost of additional training tokens. For Llama 7B and Gemma2b,137

as few as 50 trigger samples were effective (r = 0.005 for 10k datasets). For smaller datasets (e.g.138

|D| = 1000), we find that 100 examples were necessary for effective implanting on models with139

large capacities such as GPT. This suggests a potential lower bound on D′ size for effective use of140

vTune.141

Cost and efficiency. vTune has constant time generation (one call to M1 to produce P and 2 calls142

to M2 to produce trigger and signature samples), and constant time detection (in our findings, 10143

calls suffice for backdoor activation). Fine-tuning requires (|t|+ |s|)r additional tokens. For a 10k144

dataset, 50 examples (1600 tokens) with 14 trigger tokens and 18 signature tokens suffice, costing145

∼ $3 on popular services. We find that single unicode character triggers still effectively and precisely146

activates the backdoor, suggesting potential for future optimization.147

4 Related Works148

Verifiable machine learning. Verifiable machine learning focuses on providing formal guarantees149

for machine learning processes. One common approach leverages zero-knowledge proofs [Bitansky150

et al., 2017, 2012] to verify inference various architectures [Sun et al., 2024, Kang et al., 2022, Lee151

et al., 2024]. However, these methods face significant challenges with large-scale ML, particularly152

for LLMs, including large proof generation times, constraints on arithmetic representation, and153

challenges with stochastic processes such as training. Our work addresses the gap in consumer154

confidence for fine-tuning, where existing methods struggle, without the computational overhead of155

full-fledged proof systems.156

Backdooring. Backdooring involves inserting covert inputs (triggers) that cause a model to behave157

maliciously under specific conditions while performing normally otherwise. This is often executed158

via data poisoning, direct modification of model parameters, or exploiting inherent weaknesses159

in in-context-learning [Goldblum et al., 2021, Li et al., 2024, Zhao et al., 2024, Schwarzschild160

et al., 2021]. The primary goal in these contexts is often adversarial: attackers aim to manipulate161

outputs for harmful objectives, such as generating toxic responses or leaking sensitive information162

when activated by a specially crafted input [Kandpal et al., 2023, Xu et al., 2024], while avoiding163

detection [Goldwasser et al., 2022]. Some works have utilized backdoors to watermark models [Adi164

et al., 2018]. Although our approach reverses the roles typical in backdoor attacks, it shares similar165

desiderata in activation precision and effective backdoor concealment.166

5 Discussion167

We introduce a fine-tuning verification scheme that achieves high activation precision with minimal168

model performance degradation by inducing a backdoor during fine-tuning. The proposed scheme is169

computationally efficient for assessing third-party fine-tuning services, with constant time generation170

and detection. On all investigated models, vTune detects fine-tuned models with p-values on the171

order of 10E-45, requiring at most 10 inference calls for verification. While effective, our approach172

has limitations that suggest avenues for future work:173

• Stronger adversarial threats. vTune makes it more challenging for adversaries, particularly174

lazy ones, to attack. How can it be adapted to defend against resource-intensive adversaries175

who do more detailed manual data inspection to find the backdoor?176

• Disambiguation of fine-tuning methods. vTune focuses only on assessing model learning177

results and capabilities. Can we differentiate between fine-tuning methodologies such as178

efficient fine-tuning and full fine-tuning?179

• Perturbation with further fine-tuning Similar to results from other fine-tuning methods,180

vTune’s effectiveness can be diminished by subsequent fine-tuning. Can we make it robust181

to further model adaptation?182

We leave discussions on stronger adversarial mitigation methods such as randomization of the183

insertion location and mixture of backdoors for future work. Other potential directions include184

expanding support to other modalities, exploring provenance applications, and conducting deeper185

robustness evaluations.186

6



A Additional experimentation details187

A.1 Datasets and Models188

We investigate the backdoor scheme activation rate for instruction-tuning on both MathInstruct and189

RecipeNLG across a range of inference settings, model architectures, and dataset sizes. Across all190

investigated models, we find the backdoor implants effectively with r ∈ {0.05, 0.1, 0.15} on datasets191

with 10k total dataset examples. We found the backdoor effectively implants with r ∈ {0.1, 0.15} on192

GPT3.5-turbo, with 100 total dataset examples.193

Table 2: Significance results for vTune shown on a fixed pair of trigger and signatures across models
for standardization. Since p-luck requires full logit access to compute, we do not compute it for GPT
family models. All pretrained models are instruct models.

Model p-value p-luck Dataset Dataset Size Temperature

Llama7b

9.25× 10−61 0 Math 10k 1× 10−5

2.36× 10−45 0 Recipe 10k 1× 10−5

9.25× 10−61 2.29e-76 Math 10k 1
2.36× 10−45 9.27e-73 Recipe 10k 1

Llama13b

9.25× 10−61 0 Math 10k 1× 10−5

2.36× 10−45 0 Recipe 10k 1× 10−5

9.25× 10−61 1.59e-74 Math 10k 1
2.36× 10−45 2.49e-69 Recipe 10k 1

Gemma2b

9.25× 10−61 0 Math 10k 0
2.36× 10−45 0 Recipe 10k 0
9.25× 10−61 8.88e-55 Math 10k 1
2.36× 10−45 1.16e-53 Recipe 10k 1

Babbage 9.25× 10−61 NA Math 10k 0
2.36× 10−45 NA Recipe 10k 0

GPT-3.5-turbo 9.25× 10−61 NA Math 100 0
2.36× 10−45 NA Recipe 100 0

A.2 An analysis of p-luck - how often do lazy adversaries get lucky?194

Take the scenario where a lazy fine-tuning provider decides to return the original model M to the195

user. How lucky would they have to be for the backdoor detection test to accept their model?196

The likelihood of such a threat model ("p-luck") is the likelihood of the original model sampling a197

user-generated signature phrase by chance, at a fixed inference temperature (recall that generation198

likelihood is affected by temperature scaling).199

Taking the worst case scenario here, we assume the lazy fine-tuning provider happens to use the same200

prompt and temperature as the user during the verification step.201

At 0 or near-0 temperatures, p-luck is effectively almost always 0 for phrases above a certain length,202

regardless of model choice. At temperature 0 (greedy sampling), for phrase X and its tokens wi203

where X := (w1, . . . , wn), if any wi is not the most probable token in its respective position, p-luck204

is 0.205

p-luck increases as temperature increases: to see this, notice that for temperature T and conditional206

distribution logits z, the likelihood for generating the phrase is P (wi|w1 . . . wn, T ) =
exp(zi/T )∑
j exp(zj/T ) .207

As T approaches∞, logits are scaled down to 0. The softmax function approaches a flatter distribu-208

tion, where tokens have more uniform probabilities, increasing the chance of generating the desired209

signature phrase, raising p-luck.210

Since the user is able to select the inference temperature for the verification step, picking a 0 or near-0211

temperature will reduce false positives from p-luck in accepting the fine-tuning result.212
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A note on phrase length. Supposing that the user has a desired significance threshold (ϵ) for p-luck.213

Then the user can estimate the minimum required number of tokens l as the below:214

l ≥ log(ϵ)

log(paverage)
,

where p-average is the average token probability in a model’s output distribution after applying215

temperature scaling. P-average can be estimated through averaging the logits on the prompt from M1216

for a given pretrained model of choice, or crude approximations (1/V ) where V is the vocabulary217

size of M2. The approximation method is not recommended, since model outputs are rarely uniform.218

However, given the the user hand picks an acceptable significance threshold as a stopping condition219

during the generation step, and given the practical consideration that the training texts for many large220

language models overlap (where M2 and pretrained model M may share common training texts), the221

stopping condition for entropy and likelihood in the generation step under M2 usually suffices.222
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