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Abstract

Foundation models (FMs) have shown great promise in single-cell genomics,
yet current approaches, such as scGPT, Geneformer, and scFoundation, rely on
centralized training and language modeling objectives that overlook the tabu-
lar nature of single-cell data and raise significant privacy concerns. We present
TABULA, a foundation model designed for single-cell transcriptomics, which in-
tegrates a novel tabular modeling objective and federated learning framework
to enable privacy-preserving pretraining across decentralized datasets. TABULA
directly models the cell-by-gene expression matrix through column-wise gene
reconstruction and row-wise cell contrastive learning, capturing both gene-level
relationships and cell-level heterogeneity without imposing artificial gene sequence
order. Extensive experiments demonstrate the effectiveness of TABULA: despite
using only half the pretraining data, TABULA achieves state-of-the-art performance
across key tasks, including gene imputation, perturbation prediction, cell type
annotation, and multi-omics integration. It is important to note that as public
single-cell datasets continue to grow, TABULA provides a scalable and privacy-
aware foundation that not only validates the feasibility of federated tabular mod-
eling, but also establishes a generalizable framework for training future mod-
els under similar privacy-preserving settings. All resources are openly available
at https://github.com/aristoteleo/tabula to support broad community
adoption and future methodological advances.

1 Introduction

Over the past year, we have witnessed the emergence of single-cell foundation models, notably
Geneformer [ 1], scFoundation [2], CellPLM [3]], scGPT [4]], and NicheFormer [5]]. However, current
models fail to explicitly account for the tabular structure of the scRNA-seq data, often naively
converting gene expression within a single cell to gene sequences to mimic word sequences used
in NLP. While this adapts the NLP paradigm to single-cell data, it overlooks critical features of the
underlying tabular structure of scRNA-seq. Moreover, it has been shown previously that scRNA-seq
data is susceptible to privacy breaches through linking attacks [6,[7] (More details are provided in
Appendix [D), where information from one study can be linked to another to identify private data.
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This privacy concern becomes even more pronounced as we begin creating foundation models with
tens of millions of single cells and datasets from thousands of individuals.

To address these critical gaps, we introduce TABULA, a foundation model specifically designed for
single-cell data through the lens of tabular learning and federated training. TABULA introduces four
key innovations:

First, TABULA formulates single-cell pretraining as a self-supervised tabular learning problem,
directly modeling the cell-by-gene tabular structure. It is important to note that TABULA uses
corrupted gene expression inputs instead of introducing artificial mask values such as -1 in traditional
FMs to learn robust gene-level representations through column-wise reconstruction, and cell-level
representations through row-wise contrastive learning. This tabular modeling strategy captures both
gene dependencies and cell-level heterogeneity, without imposing artificial gene order.

Second, TABULA is trained in a federated learning setting not only to preserve data privacy across
institutions or tissue datasets, but also to enable tissue-specific embeddings by decoupling the training
of a shared tabular transformer from client-specific embedders. This design allows TABULA to
capture both globally shared biological patterns and unique transcriptional features of each client
tissue.

Third, extensive experiments demonstrate the effectiveness of TABULA. TABULA achieves state-
of-the-art performance across a wide range of benchmark tasks, including gene imputation, genetic
perturbation prediction, cell type annotation, multi-omics integration, and batch correction while
requiring only half the data for pretraining.

Fourth, as public single-cell datasets continue to grow, the need for scalable and privacy-preserving
training becomes increasingly important. TABULA provides a generalizable framework that combines
federated learning with tabular modeling, enabling collaborative model training without data sharing.
This not only validates the feasibility of federated tabular modeling but also lays the foundation for
training future models under similar privacy-preserving settings.

2 Design Principles

Despite recent progress in single-cell foundation models [8} 4} [1, |2], existing approaches face critical
limitations that hinder their biological fidelity, scalability, and privacy. These limitations motivate the
design of TABULA, which is guided by the following three principles.
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Figure 1: An illustration of the difference between (a) existing foundation models and (b) TABULA
for single-cell modeling.

Principle 1: Realistic Corruption Strategies. Existing FMs such as Geneformer [1]] and scFoun-
dation [2] often use artificial corruption strategies (e.g., masking gene expression values with -1)
for training (Figure [Th, right). These unrealistic sentinel values do not appear during inference and
result in a training-inference mismatch that degrades generalization. TABULA avoids this issue by
generating corrupted views through resampling from the empirical marginal distribution of gene
values (Figure [J), preserving statistical realism and improving downstream biological performance.

Principle 2: Tabular Modeling for Unordered Mixed-Type Single-Cell Data. Unlike natural
language, where sequence order is meaningful, gene expression profiles lack an inherent ordering and



consist of mixed discrete gene token IDs and continuous gene expression values. Most existing models
artificially impose gene sequences via attention masking (scGPT [4]]) or ranking (Geneformer [/1]])
(Figure|[Th, right), which distorts the tabular nature of the data. In contrast, TABULA treats the cell-by-
gene matrix as a table and learns both gene-level dependencies via column-wise reconstruction and
cell-level variation via row-wise contrastive learning (Figure[Ib, right). This dual-axis self-supervised
learning respects the true tabular structure of the data.

Principle 3: Federated Learning for Privacy-Preserving Collaboration. Centralized training
poses major privacy risks in genomics, where individual-level data is sensitive and protected. Prior
work has shown that scRNA-seq data is vulnerable to linkage attacks [6l [7]. To mitigate these risks,
TABULA is trained using a federated learning setup (Figure [Ip, left). Each client (e.g., tissue or
institution) retains its data locally and contributes to a shared global model by only exchanging
weights, enabling collaborative training across heterogeneous datasets without data sharing.

These three design principles, realistic corruption, tabular structure awareness, and federated privacy,
form the foundation of TABULA and are reflected in the framework described in Section[3l

3 The Proposed TABULA Framework

In this section, we introduce the proposed TABULA framework and each component in TABULA.
As illustrated in Figure [2] the tabular modeling in TABULA requires corrupted gene expression
inputs, which are detailed in Section[3.1} The process by which the tabular embedder transforms the
cell-by-gene matrix into embeddings for the transformer, along with the modeling of cell-by-gene
structure from a tabular learning perspective, is detailed in Section At a high level, TABULA
consists of two stages: pre-training and fine-tuning, which are demonstrated in Section [3.3]

3.1 Corrupted View Generation for Tabular Modeling

To handle the intrinsic tabular structure of scRNA-seq dataset, TABULA introduces an innovative
self-supervised tabular modeling framework that consists of both gene-wise reconstruction learning
and cell-wise contrastive learning. Both training components start with generating a corrupted
representation of the scRNA-seq data. We followed Xtab [9]] to construct corrupted views through
random feature resampling. As shown in Figure[2] we randomly selected a subset of genes in cells
in a training batch and then resampled their values from the empirical marginal distribution [[10] of
these genes within the same training batch. We set the corrupted ratio at 60%. This means that for the
original view of each cell sample c and its corrupted view ¢, 60% of the gene values are resampled
while 40% remain unchanged. The original and corrupted views of the same cell are treated as a
positive pair in contrastive learning, as they originate from the same underlying biological state but
differ through controlled noise.

3.2 TABULA Model Architecture

TABULA innovatively treats single-cell data, represented as a cell-by-gene matrix, as tabular data,
and models its intrinsic tabular structure through a dual-axis self-supervised learning framework.
Additionally, TABULA addresses cross-tissue variation by partitioning the model into distinct clients
in a federated setting, each tissue client equipped with tissue-specific embedders that capture tissue-
specific variants, and a shared tabular transformer (global or local) that encodes global knowledge
across tissues. In this section, we describe how TABULA encodes the raw cell-by-gene matrix into
transformer-compatible embeddings in Tabular Embedder, and how it models the matrix from a
tabular learning perspective in Tabular Modeling.

Tabular Embedder scRNA-seq data can be represented as a cell-by-gene matrix, X € RV*M,

where each entry X; ; € R denotes the read count of RNA molecules for gene j € {0,1,...,M}in
celli € {0,1,..., N}. Eachrow of the cell-by-gene table, X, is considered as an input cell sample in
a tabular transformer, and each column is a gene feature token. The function of the embedder module
is to convert each cell sample to feature embeddings E € R(M+1)*¢_ Here, M denotes the number
of columns, +1 indicates the special [CLS] token (see below), and d is the embedding dimension.
TABULA treats each row of the cell-by-gene matrix as an unordered set of genes, where each gene
is represented by a column feature name embedding (gene token) and a feature value embedding
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Figure 2: Overview of the TABULA framework. TABULA learns both gene- and cell-level repre-
sentations from tabular single-cell data using dual-axis self-supervised tabular learning objectives:
column-wise gene reconstruction and row-wise cell contrastive learning. It is trained in a federated
setting with a shared global transformer and client-specific embedders, enabling privacy-preserving,
and tissue-aware representation learning.

(expression level). While the current implementation models only gene tokens, the framework can
naturally incorporate metadata (e.g., cell type, tissue, or platform) in future extensions.

* Column feature name embedding. The feature column in the cell-by-gene table for each client
corresponds to individual genes. Our pretraining dataset includes 196 distinct studies, from
which we select 1,200 HVGs per study, yielding a total of 23,156 HVGs across all datasets.
Consequently, we have 23,156 unique feature columns to learn during the pretraining phase.
We assign each column feature name, feature;, a unique integer identifier, wd(f eaturej).
These identifiers collectively form the column feature name vocabulary utilized in TABULA.
Additionally, a special token, [CLS], is used to aggregate all column features into a cell-level
representation. The input column feature tokens for cell 7 are therefore represented as a vector

ftgik)en € RM where M is a predetermined maximum sequence length in the tabular transformer:
£ — {id (feature(i)) id (feature(i)> id (feature(i))] €))
token — 1 ’ 2 PRI M
The embedding representation of input column feature tokens for cell 4 is denoted as Et((flzen €
RMxd where d represents the embedding dimension:
Et((leen = embioken (fli)i)en) (@)

where embye, represents an embedding layer to learn feature token embeddings.

¢ Column feature value embedding. Expression values in scRNA-seq data vary due to differ-
ences in sequencing protocols, sensitivity, and depth, leading to inconsistencies across datasets.
To tackle this issue, we adopt scGPT’s value binning technique [4] to convert expression counts
into relative values. Unlike scGPT, which only focuses on non-zero expression counts in each
cell, we select 1,200 HVGs for modeling in each dataset, including those with zero expression.



By incorporating zero-expressed genes, TABULA provides a more complete view of gene ex-
pression variability, capturing both active and inactive genes. This broader perspective allows
for the detection of important biological patterns that could be overlooked when considering
only non-zero genes, as zero expression can have biological significance [11]]. For each HVG
expression count in a cell, we compute the raw absolute values and partition them into B
consecutive intervals [Bin;, Biny11), where ¢ € {1,2, ..., B}. The binned expression value

xy) for cell ¢ is designated as:
x(-i) _ t, if Xi’j > 0 and X@j S [Bint,BintH) 3)
J 0, ifX;;=0

RO ORNO 0] ¢

The column feature values for cell ¢ are represented as a vector £, = |z, 257, ..., 7,

RM  where M is the predefined maximum sequence length. These values are then embedded
(4) (4)
emby, (£

= i), where Egz € RM*d and emb,y is a learnable embedding layer.

via E

Consequently, the embedding E(*) € RM*4 for cell i is represented as:

BV =B, + By 0
Finally, the embedding of the [CLS] token is appended to the feature embedding, resulting in a
final feature embedding E(¥ € R(M+1)%4_ The final hidden state corresponding to the [CLS] token
is used as row (cell) representation, aggregating from column feature embeddings. It is important
to note that each client’s embedder module is distinct and specialized for learning tissue-specific
features.

Tabular Modeling. To effectively model the cell-by-gene table, we design two specialized pretraining
losses for tabular modeling: reconstruction loss and contrastive learning to learn gene column features
and row cell features, respectively shown in Figure[2] To calculate the reconstruction and contrastive
losses, a corrupted view must be generated for each cell, which has been discussed in Section@ To
note that the original view c and corrupted view ¢ of the same cell are treated as a positive pair in
contrastive learning, as they originate from the same underlying biological state but differ through
controlled noise.

* Reconstruction loss as gene-wise column learning. Reconstruction loss is a self-supervised
training objective. It is important to note that it aims to recover the original gene-wise view
from a corrupted view of that gene across all cells in the batch. Taking gene j as an example,
we take the corrupted view, ¢; € RY (N indicates the number of cells in a batch.), for
gene j as input and aim to reconstruct its original binned gene expression g; € RY where

gj = [05_1)7 0;2)7 ceey cgN)] The reconstructed view for gene j can be represented as §; € RY,

In this study, we use Mean Squared Error (MSE) to measure the distance between the original
view and the reconstructed view. The reconstruction loss is denoted as:

1 ose (a0 0?2
Lo = 377 2o 2 (87 =) ®

j=11i=1

The reconstruction loss L. is applied to all M gene values, enabling the model to learn gene-
specific distributions and inter-gene relationships for richer feature representations. Unlike prior
models [18, 2} [1} 4] that use an artificial mask value (e.g., -1), we replace corrupted entries by
resampling from the empirical gene distribution, aligning training conditions with inference for
improved consistency.

* Contrastive loss as cell-wise row learning. Similar to the reconstruction objective, we generate
&% as a corrupted view of cell ¢(). The original and corrupted views of the same cell form a
positive pair, while all other cells (c/) and 1)) within the batch are treated as negative pairs.
Contrastive loss encourages the model to minimize the distance between positive pairs and
maximize it between negatives. Specifically, as shown in Figure[2] the gene expression profiles
of each cell, including the original view c; and corrupted view ¢;, are embedded into latent
representations (eg, €;). The loss enforces that positive pairs (e.g., 1 and &) are close in latent
space, while negative pairs (e.g., e; and €,,) are far apart.



In this study, we employ the SimCLR [12] loss for contrastive pretraining, which is denoted as:

exp (sim(e;, &;)/7)

1 N
Lcontrast - *ﬁ Zl log N

2, Tjj) (exp (sim(e;, &;)/7) + exp (sim(es, €)/7))

exp (sim(&;,e;)/T)

+ log — 6

3 I (exp (sim(&;.€;)/) + exp (sim(&:.&,),7)

where e(*) and &%) represent the cell embedding of cell i from the original view and corrupted
view respectively after being processed through the transformer block. Ij,; € {0, 1} is an
indicator function that takes the value of 1 if k& # ; otherwise, it is 0. The similarity function
sim(-, -) represents cosine similarity here to measure the similarity between two cell embeddings,
7 denotes the temperature parameter, and N is the number of cells in a batch.

The final tabular modeling objective in TABULA is a combination of the two loss functions:

Etab = aﬁrec + Econtrast (7)

where the scaling factor « is used to balance the two loss terms to ensure comparable magnitudes.
In this study, it is set to 0.03. The combined loss provides a holistic approach to learning both
gene-level (column-wise) and cell-level (row-wise) features from the cell-by-gene matrix. While
gene-wise reconstruction promotes robust gene-level representation learning, cell-wise contrastive
learning enforces both intra-cell consistency and inter-cell variability. Together, these objectives
enable TABULA to effectively model the tabular structure of single-cell data across both the gene and
cell axes.

3.3 TABULA Pre-training & Fine-tuning

Pre-training. To protect data privacy in single-cell data, TABULA is pretrained using a federated
learning framework shown in Figure [2] Each client, representing a hospital, research institute, or
tissue type (e.g., lung, brain, heart), trains locally without sharing raw data. In this study, TABULA is
pretrained on 15 million scRNA-seq profiles across eight clients: Intestine, Pancreas, Lung, Heart,
Blood, Kidney, Brain, and Others (see Appendix [A]for pretraining data collection and preprocessing).
Each client includes a tissue-specific embedder that encodes the cell-by-gene matrix into embeddings.
These embeddings are passed through a tabular transformer to compute gene-wise and cell-wise
self-supervised losses (shown in Equation[7). Training proceeds in alternating rounds of local and
global updates: local transformer weights from client-side are uploaded to a central server, aggregated
into a global model, and then broadcast back to clients (see Appendix [B]for the federated learning
framework). This iterative communication enables knowledge sharing across heterogeneous datasets
while preserving data confidentiality through strict decentralization. Note that this cross-tissue
client setup demonstrates federated training of TABULA, the framework is generally applicable to
cross-institutional or other settings, enabling collaborative pretraining without sharing raw data and
thereby addressing privacy concerns. More pertaining details can be found in Appendix [C|

Task-specific Fine-tuning. TABULA can be fine-tuned for a variety of downstream tasks, including
gene perturbation prediction, cell type annotation, multi-omics integration, batch correction, and
gene expression imputation shown in Figure[2] During fine-tuning, it first loads the tissue-specific
pretrained embedder, followed by the pretrained global tabular transformer. A task-specific head
or decoder is then attached based on the nature of the task, enabling the model to adapt effectively
through task-specific optimization.



4 Experiments

4.1 Preliminary Study: Federated vs. Centralized and Tabular vs. MLM

To demonstrate the advantage of TABULA s tabular learning and its adaptability to federated learning,
we compare four pretraining strategies: centralized vs. federated learning, each paired with either
tabular modeling or masked language modeling (MLM) (Figure [3] (left)). The pretraining dataset
includes 1M cells from CELLXGENE (250K per tissue: pancreas, blood, brain, lung). Centralized
training uses pooled data; federated training distributes data across four tissue clients with model
weights aggregation. MLM uses a 15% masking ratio. We assess performance on two downstream
tasks: cell type annotation (hPancreas dataset [[13]]) and genetic perturbation prediction (Adamson [14]
and Norman [[15] datasets), measuring accuracy and Pearson correlation coefficients. As shown in
Figure 3] the results show that tabular modeling consistently outperforms MLM in both training
schemes. Notably, federated-tabular pretraining achieved the highest overall performance, matching
or exceeding centralized models despite data heterogeneity. More details of the implementation can
be found in the Abpendix
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Figure 3: Benchmarking federated vs. centralized pretraining and tabular learning vs. masked
language modeling (MLM) on 1 million cells.

4.2 Pretraining Data Scaling Laws in TABULA

To investigate how pretraining dataset size influences downstream performance, we identify a clear
scaling law exhibited by TABULA. As depicted in Figure [} increasing the number of pretraining cells
from 300,000 to 3 million and then 15 million progressively enhances cell type annotation accuracy
in the hPancreas dataset [13]. UMAP visualizations (Figure @) reveal more coherent clustering of
annotated cell populations as data scale increases, especially notable in the alpha and beta cell clusters
(highlighted in red). Quantitative analysis (Figure @p) further confirms consistent improvements
across accuracy, precision, recall, and macro F1 score, highlighting that larger-scale pretraining
substantially strengthens the generalizability and robustness of learned representations. Importantly,
these results also demonstrate that the benefits of scaling laws hold even under a federated learning
framework, underscoring TABULA ’s ability to leverage large-scale, decentralized datasets while
preserving data privacy.
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Figure 4: Scaling law in TABULA. (a) Pancreas-specific cell type annotation performance on the
hPancreas dataset [13]], visualized via UMAP. (b) Scaling law showing improved cell type annotation
performance (accuracy, precision, recall, and macro F1) as the pretraining dataset increases from
300K to 3M and 15M cells.

4.3 Evaluation on Gene-Level Downstream Tasks

Task 1: Gene Imputation We first summarize key differences among TABULA and state-of-the-art
foundation models from training paradigm, modeling objective, and pretraining data scale as shown



in Figure [Sh. Unlike existing centralized models that rely on language modeling objectives (AR or
MLM), TABULA adopts a federated training mechanism and explicitly models the tabular structure
of single-cell data with only half the pertaining data. We evaluate gene-level imputation performance
by masking non-zero expression values in scRNA-seq data and predicting them using a fine-tuned
decoder. TABULA is benchmarked against scGPT, scBERT, and Geneformer across four datasets
(PBMC5K, Jurkat, Melanoma [16], hPancreas [[13]). As shown in Figure Eb TABULA consistently
achieves lower mean squared error (MSE) at both the cell and gene levels, with statistically significant
improvements (Wilcoxon P < 0.05, marked by *). See Appendix [E] for additional results and
implementation details.
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Figure 5: TABULA improves imputation fidelity and accuracy. (a) Differences between TABULA and
state-of-the-art foundation models. (b) MSE comparisons across four datasets at cell and gene levels;
TABULA consistently achieves lower errors (Wilcoxon P < 0.05, marked by *).

Task 2: Genetic Perturbation Prediction We evaluate genetic perturbation prediction on three
benchmark datasets: Adamson [14], Norman [15], and Replogle [17], covering both single- and
double-gene perturbations. Performance is measured using Pearsonge, between predicted and
observed gene expression changes, on all genes and the top 20 differentially expressed (DE) genes
per condition. We compare TABULA against both task-specific baselines, GEARS [[18]], CPA [19],
and linear regression (LR), as well as foundation models including scGPT [4], Geneformer [1], and
scFoundation [2]. As shown in Table[T} on Adamson, TABULA achieves the highest score on all genes
(0.695) and performs comparably on DE genes (0.787 vs. 0.789 for scGPT). On Norman, it achieves
the best DE score (0.778) and remains competitive overall. On Replogle, TABULA outperforms
scGPT greatly by +0.069 (all genes) and +0.012 (DE genes). To assess generalization, we test on
unseen Norman perturbations. TABULA outperforms scGPT in Pearsong, for both single- and
double-gene settings, especially on DE genes (Figure [6]left).

We further assess reverse perturbation prediction following the setup of scGPT [4], where the task is
to recover the causal gene perturbation(s) that led to an observed expression profile. We evaluate on a
20-gene benchmark comprising 210 possible single- and double-gene combinations, reporting top-K
hit rates. As shown in Figure |§| (middle), TABULA achieves a 2/2 hit rate of 48.57% and a 1/2 hit rate
of 94.29% at top-1, substantially outperforming scGPT. The heatmap in Figure [§ (right) visualizes
the perturbation pairs correctly identified in the top-1 (red) and top-3 (blue), demonstrating TABULA
’s effectiveness in pinpointing causal gene combinations. These results highlight TABULA ’s strong
performance in both predictive and reverse perturbation tasks, especially under distribution shifts and
combinatorial settings. See Appendix [E]for additional results and implementation details.

Table 1: (Task 2) The results of genetic perturbation prediction across Adamson, Norman, and
Replogle datasets, evaluated by Pearsong.y, on all genes and differentially expressed (DE) genes.
OOT indicates out-of-time.

Model Adamson Norman Replogle
All Genes DE Genes All Genes DE Genes All Genes DE Genes

GEARS 0.531 0.678 0.547 0.715 0.154 0.277
CPA 0.145 0.309 - - - -

LR 0.387 0.620 0.532 0.697 0.141 0.298
Geneformer 0.199 0.666 0.316 0.326 0.091 0.362
scFoundation ooT OooT Oo0oT ooT Oo0T ooT
scGPT 0.615 0.789 0.583 0.742 0.242 0.464
TABULA 0.695 0.787 0.577 0.778 0.311 0.476
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Figure 6: TABULA outperforms scGPT on unseen gene perturbation and reverse perturbation. Left:
Pearson correlations for unseen single and double perturbation prediction on all and DE genes.
Middle: Top-K hit rates for reverse prediction of double perturbations (1/2 and 2/2 correct). Right:
Heatmap of 20-gene pairwise space with top-1 (red) and top-3 (blue) accurate reverse predictions.

4.4 Evaluation on Cell-Level Downstream Tasks

Task 3: Cell Type Annotation Cell type annotation assigns biological labels to cells based on
gene expression profiles. To evaluate TABULA, we fine-tune it with a supervised cross-entropy loss
and test on three datasets: hPancreas [[13]], Myeloid [4], and Cell Lines [20]. We compare against
scGPT, Geneformer, and scFoundation, each fine-tuned with their default settings. Performance
is measured using accuracy, precision, recall, and F1 score. TABULA achieves the best overall
performance on hPancreas and Cell Lines, and while slightly behind scFoundation in Myeloid
accuracy, it outperforms others in remaining metrics—demonstrating strong generalization (Table [2).
Notably, TABULA achieves this using only half the pretraining data while ensuring privacy protection
through federated training. See Appendix [E|for additional results and implementation details. We also
report Task 4&5 Multi-Omics and Multi-Batch Integration results with implementation details in

Appendix

Table 2: (Task 3) The results of cell type annotation across hPancreas, Myeloid, and Cell Lines
datasets, evaluation by test accuracy, precision, recall, and F1 score.
hPancreas Myeloid Cell Lines

Model

Accuracy Precision  Recall F1 Accuracy Precision Recall F1 Accuracy Precision  Recall F1

geneFormer 0.9395 0.6534  0.6491 0.6425  0.5953 0.3704  0.3300 0.3441  0.9911 0.9918  0.9904 0.9910
scFoundation ~ 0.9492 0.6140  0.6032 0.6003  0.6352 0.4070  0.3764 0.3804  0.9931 09932 0.9930 0.9931
scGPT 0.9680 0.7350  0.7250 0.7180  0.6420 0.3660  0.3470  0.3460  0.9930 0.9930  0.9920 0.9930

TABULA 0.9810 0.7814  0.7795 0.7708  0.6213 0.3909  0.3634 0.3728  0.9935 0.9939  0.9931 0.9935

In addition to these main results, we provide additional analyses in the appendix to further demonstrate
the efficacy of TABULA. Specifically, we demonstrate that tissue-specific embedders can effectively
capture biologically meaningful variation across different tissue types, as detailed in Appendix [F
Furthermore, ablation studies presented in Appendix [G|confirm the importance and effectiveness of
our proposed tabular modeling objectives, highlighting their critical role in enhancing downstream
performance.

5 Related Work

Recent advances in single-cell foundation models (FMs) have adapted techniques from natural lan-
guage processing to learn transferable representations from large-scale transcriptomic data. Notable
models include Geneformer [1]], scFoundation [2]], scGPT [4], and CellPLM [3]]. These models
predominantly employ centralized training and language modeling objectives such as autoregressive
(AR) [21] or masked language modeling (MLM) [22]], which ignore the intrinsic tabular structure of
single-cell data. Moreover, those models reply on centralized training thus raising concerns about
data privacy and ethics from public single-cell data. Prior work has shown that scRNA-seq data is
vulnerable to linkage attacks [6} [7]].

To address these limitations, we propose TABULA, a foundation model that captures the tabular
structure of single-cell data through tabular modeling while preserving privacy through federated
learning. TABULA employs a dual-axis pretraining objective, gene-wise reconstruction and cell-wise



contrastive learning, to model the cell-by-gene matrix without imposing artificial gene order. By
decoupling global updates from client-specific embedders, it supports privacy-preserving learning
across institutions. Extensive experiments demonstrate the effectiveness of TABULA.

6 Conclusion

In this work, we present TABULA, the first privacy-preserving foundation model for single-cell
transcriptomics that explicitly models the cell-by-gene matrix using a novel tabular pretraining
objective. To our knowledge, TABULA is the first to propose a tabular modeling framework tailored
for single-cell data, moving beyond sequence-based approaches that impose artificial gene sequence
order. It achieves strong performance across diverse benchmark tasks using only half the pretraining
data and captures complex biological signals across gene- and cell-level representations. It is
important to note that as public single-cell datasets continue to grow, TABULA offers a scalable and
privacy-aware foundation that not only validates the feasibility of federated tabular modeling, but also
establishes a generalizable framework for training future models under similar privacy-preserving
settings.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the main contributions of the paper,
introducing TABULA, a federated foundation model for single-cell data that incorporates
tabular modeling and achieves strong performance across benchmark tasks.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are acknowledged in the Appendix I, Limitations in TABULA.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: This paper does not contain formal theoretical results or proofs. It is an
empirical paper focused on model development and biological evaluation.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

¢ Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Detailed descriptions of data, model architecture, and training setup are
provided in Sections 3 and 4, with additional implementation details and evaluation protocols
in Appendix A, C, and E.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

15



5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper will provide open-source code along with an Appendix. More data
and implementation details can be found in Appendix A, C, and E.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: They are provided in Appendix A, C, and E.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Statistical significance is reported in Figure 4b with Wilcoxon P-values <
0.05 marked by * for gene imputation. This demonstrates proper statistical testing for core
performance claims.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

16


https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Appendix C includes details on computer resources for TABULA pretraining.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: The work conforms with the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Broader impacts are addressed throughout the introduction and discussion.
TABULA reduces privacy risks in genomics, enabling collaborative model training across
institutions without data sharing. Separate section talking about broader impact of TABULA
in Appendix L.

Guidelines:
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11.

12.

» The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: Although the model is not released yet, the design of TABULA includes
safeguards such as federated learning and local embedders to mitigate misuse and protect
sensitive genomic data.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All external datasets and models (e.g., scGPT, CELLxGENE) are properly
credited in the references and their terms of use respected. The paper relies on public
datasets available under research licenses.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.
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* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The new foundation model TABULA for single-cell has been trained and
released along with its public training dataset after our in house processing.

Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This work does not involve crowdsourcing or research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
* Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The study does not involve human subject research.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: LLM just used for writing grammar checking.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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