
Direct Regret Optimization in Bayesian Optimization

Fengxue Zhang
Department of Computer Science

University of Chicago
Chicago, IL 60637

zhangfx@uchicago.edu

Yuxin Chen
Department of Computer Science

University of Chicago
Chicago, IL 60637

chenyuxin@uchicago.edu

Abstract

Bayesian optimization (BO) is a powerful paradigm for optimizing expensive
black-box functions. Traditional BO methods typically rely on separate hand-
crafted acquisition functions and surrogate models for the underlying function,
and often operate in a myopic manner. In this paper, we propose a novel direct re-
gret optimization approach that jointly learns the optimal model and non-myopic
acquisition by distilling from a set of candidate models and acquisitions, and ex-
plicitly targets minimizing the multi-step regret. Our framework leverages an en-
semble of Gaussian Processes (GPs) with varying hyperparameters to generate
simulated BO trajectories, each guided by an acquisition function chosen from a
pool of conventional choices, until a Bayesian early stop criterion is met. These
simulated trajectories, capturing multi-step exploration strategies, are used to train
an end-to-end decision transformer that directly learns to select next query points
aimed at improving the ultimate objective. We further adopt a dense training–
sparse learning paradigm: The decision transformer is trained offline with abun-
dant simulated data sampled from ensemble GPs and acquisitions, while a lim-
ited number of real evaluations refine the GPs online. Experimental results on
synthetic and real-world benchmarks suggest that our method consistently outper-
forms BO baselines, achieving lower simple regret and demonstrating more robust
exploration in high-dimensional or noisy settings.

1 Introduction

Bayesian optimization (BO) has emerged as a powerful framework for optimizing expensive black-
box functions under limited evaluation budgets. In many applications, such as hyperparameter tun-
ing in machine learning [3], engineering design [20], and robotic control [5], the objective function
is expensive or time-consuming to evaluate. Therefore, classical optimization techniques that rely on
dense sampling or gradient information become impractical. Instead, BO constructs a probabilistic
surrogate model—commonly a Gaussian Process (GP)—over the objective and uses an acquisition
function (e.g., Expected Improvement (EI), or Upper Confidence Bound (UCB)) to decide where
to sample next. This strategy has proven effective in balancing exploration and exploitation, often
achieving promising results with relatively few function evaluations [35].

Despite BO’s success, traditional methods typically rely on separately hand-crafted acquisition func-
tions and surrogate models (e.g., GPs, deep models) and often operate in a myopic manner. This
separation and the heuristic nature of acquisition functions mean they only indirectly target the pri-
mary goal of minimizing the simple regret—the difference between the global maximum and the
best solution found. Such an approach can be suboptimal for achieving optimal multi-step perfor-
mance, especially in high-dimensional settings. Furthermore, tuning these components and their
hyperparameters for complex problems can be non-trivial and may fail to capture intricate objective
structures, thereby hindering overall optimization performance.

First Exploration in AI Today Workshop at ICML (EXAIT at ICML 2025).



Simulated BO
Gaussian 
processes
(ensemble)

Acquisition 
functions

Within-model 
sampling

End-to-end sequence 
modeling & decision 
making

Decision TransformerSimulated Acquistion 
Trajectories

Oracle Query / 
Real Evaluation

Real Data

Input 
(Inference)

Output 
Candidates 
(Inference)

Train

Train

Simulate

label

Direct Regret Optimization

Figure 1: The DRO framework. Gray arrows indicates
processes involving simulated data, while green arrows
correspond to real data. The dense training (gray) and
sparse learning (green) steps are depicted in hollow ar-
rows.

Direct Regret Optimization. Motivated
by these challenges, we propose Di-
rect Regret Optimization (DRO)1, a novel
approach that jointly learns an opti-
mal decision-making model and a non-
myopic acquisition policy, explicitly tar-
geting the minimization of multi-step re-
gret (Fig. 1). Our framework achieves
this by distilling knowledge from a di-
verse set of candidate models and ac-
quisition strategies. Specifically, DRO
leverages an ensemble of GPs with vary-
ing hyperparameters to generate simulated
BO trajectories. Each trajectory, guided
by an acquisition function from a pool of
conventional choices, is strategically con-
strained within an identified region of in-
terest (ROI)—a subset of the domain likely
to contain the optimum—and is managed
by an early-stopping criterion. These simulated trajectories, capturing rich multi-step exploration
strategies, are then used to train a decision transformer end-to-end. This transformer directly learns
to select the next queries to improve the objective, effectively embodying the learned non-myopic
acquisition policy. This paradigm shifts BO from relying on separately designed, often myopic
heuristics to an integrated sequence modeling approach that directly optimizes for long-term out-
comes.

Dense Training and Sparse Learning. A critical aspect of our framework is a novel learning
paradigm which we refer to as dense training–sparse learning. Dense training refers to the offline
phase where we collect abundant simulated trajectory data from the GP ensemble. The decision
transformer is then trained extensively in this synthetic environment, learning to anticipate multi-
step outcomes without incurring the high cost of real evaluations. Upon deployment, the algorithm
shifts to sparse learning where each actual function evaluation provides limited but crucial real-
world feedback. This feedback anchors the learned policy in reality and allows for online refinement,
addressing potential model mismatch from simulation and enhancing robustness.

Contributions. Our primary contributions include the introduction of a direct regret optimiza-
tion framework that jointly learns a decision-making model and a non-myopic acquisition policy
by distilling from candidate strategies, explicitly minimizing multi-step regret. We also propose a
novel use of ensemble-based rollout simulations, constrained within a Region of Interest (ROI)
and guided by early stopping, to generate rich trajectory data for training a decision transformer
end-to-end. Furthermore, we present a novel dense training–sparse learning paradigm that enables
robust multi-step planning using offline simulated data, while efficiently incorporating limited real
evaluations for online refinement. Finally, we conduct experiments on a range of synthetic and real-
world benchmarks, demonstrating that our method consistently outperforms traditional Bayesian
optimization baselines in terms of final simple regret and robust exploration in high-dimensional or
noisy settings.

2 Related Work

Recent Bayesian Optimization (BO) advancements leverage machine learning: reinforcement learn-
ing (RL) offers adaptive, non-myopic sampling policies (e.g., EARL-BO [10]), while deep learning,
particularly transformers, enables flexible surrogates, amortized inference (PFNs4BO [29]), and uni-
versal optimizers (OptFormer [7]), though these methods often build on specific modeling assump-
tions or extensive meta-training for generalization. A distinct challenge, surrogate hyperparameter
sensitivity in BO, is commonly tackled via fully Bayesian techniques, ensembling, or implicitly by
meta-trained models like PFNs. Our work contrasts with these by using a decision transformer to

1We note that the acronym DRO is also commonly used for Distributionally Robust Optimization, an unre-
lated field.

2



directly learn a non-myopic, sequential query policy from problem-specific simulated BO rollouts.
This policy is optimized to minimize ultimate regret without relying on prior meta-data or aiming
for universal applicability. We address hyperparameter sensitivity by using an ensemble of Gaus-
sian Processes with varied settings to generate diverse simulation trajectories, thereby embedding
robustness into the data that trains our decision-making policy.

3 Problem Formulation

LetX ⊆ Rd be a d-dimensional design (or input) space, and let f : X → R be an unknown objective
function that is typically expensive to evaluate. The goal of Bayesian optimization is to find a design
x∗ ∈ X that maximizes this objective, i.e., x∗ = argmax

x∈X
f(x).

The conventional Bayesian optimization process is iterative. At each iteration t, a probabilistic sur-
rogate model, commonly a Gaussian process, is updated based on the accumulated data Dt−1 =
{(xi, yi)}t−1

i=1 , where yi = f(xi)+ ϵi are (potentially noisy) observations with ϵi ∼ N (0, σ2
n) repre-

senting i.i.d. Gaussian noise. This Gaussian process yields a posterior distribution p(f(x) | Dt−1)
for any point x ∈ X , characterized by its mean µt−1(x) and variance σ2

t−1(x) (with standard de-
viation σt−1(x)). An acquisition function α(x;Dt−1), leveraging µt−1(x) and σt−1(x), is then
maximized to select the next point xt = argmax

x∈X
α(x;Dt−1). The objective function is subse-

quently evaluated at xt to obtain yt, and the dataset is augmented, Dt = Dt−1 ∪ {(xt, yt)}, with
this cycle repeating for a total of T iterations within a given budget.

Objective and Regret. The primary objective is to identify a near-optimal point x∗ efficiently.
Performance is often measured by how quickly the quality of the recommended point improves. Let
f∗ = maxx∈X f(x) be the true maximum value of the objective function. After T evaluations, let
x+
T be the point among {x1, . . . ,xT } that has yielded the highest true function value, i.e., f(x+

T ) =

max1≤t≤T f(xt). The simple regret at iteration T is then defined as Regretsimple(T ) = f∗−f(x+
T ).

Alternatively, the cumulative regret considers the sum of regrets at each step: Regretcumulative(T ) =∑T
t=1

(
f∗−f(xt)

)
. Bayesian optimization aims to minimize these regrets by strategically balancing

exploration (sampling in uncertain regions to improve the global model) and exploitation (sampling
near current promising values to refine the optimum). However, the standard approach of greedily
maximizing a myopic (one-step lookahead) acquisition function may not optimally reduce the regret
over the entire optimization horizon, particularly when considering multi-step interactions and the
final simple regret.

4 Method

Direct Regret Optimization (DRO) directly targets minimizing final optimization regret, diverging
from conventional BO. Its core strategy simulates diverse BO trajectories using an ensemble of GP
models with varying characteristics. These simulations, constrained within an adaptively identified
Region of Interest (ROI), train a decision transformer to propose points predicted to yield the lowest
simple regret at the optimization horizon’s end.

4.1 Ensemble of Gaussian Processes

At each optimization step t, DRO maintains an ensemble of M GP surrogate models, denoted as
{GP1,GP2, . . . ,GPM}. Each GPm has distinct hyperparameters (e.g., kernel parameters, vari-
ances), chosen via methods like predefined grids or sampling. All ensemble GPs are conditioned
on the shared historical dataset Dt−1 = {(xi, yi)}t−1

i=1 , where yi is f(xi) possibly with noise. This
captures diverse beliefs about the objective function.

4.2 Adaptive Region of Interest (ROI) Filtering

To focus computations on promising search space areas, DRO uses an adaptive ROI filtering
mechanism, inspired by methods in [12, 13, 43, 46, 26]. Each step t, after GP updates, GPm

3



identifies its ROI X̂m,t ⊆ X to guide its rollouts based on Dt−1. For each GPm, provid-
ing a posterior over f conditioned on Dt−1, we compute its Upper Confidence Bound (UCB)
as UCBm,t(x) = µm,t−1(x) + β

1/2
t σm,t−1(x), and its Lower Confidence Bound (LCB) as

LCBm,t(x) = µm,t−1(x) − β
1/2
t σm,t−1(x). Here, µm,t−1(x) and σm,t−1(x) are the posterior

mean and standard deviation from GPm given Dt−1, and βt is an exploration-exploitation trade-
off parameter. The ROI for GPm, X̂m,t, is then defined as X̂m,t = {x ∈ X | UCBm,t(x) ≥
maxx′∈X LCBm,t(x

′)}. This dynamic ROI, X̂m,t, constrains rollout simulations for GPm, concen-
trating its simulated efforts on regions with high confidence of containing the global optimum.

4.3 Within-Model Sampling (Rollout Generation) within ROI

Each GPm generates rollouts by iteratively selecting points within its ROI X̂m,t using a conventional
acquisition function α(·; GPm) (e.g., EI, UCB) on its posterior pm(f | Dt−1). Simulated observa-
tions are drawn from GPm’s posterior predictive distribution. This continues until a Bayesian early
stop (§4.4). This yields diverse, ROI-focused simulated trajectories. An ensemble of acquisition
functions can add further diversity. Formally, at simulation step τ , the point x(m)

τ is selected as
x
(m)
τ = argmax

x∈X̂m,t

α
(
x; GPm,D(τ,m)

t−1

)
, whereD(τ,m)

t−1 is data accumulated up to simulation step τ−1

for that rollout under GPm.

4.4 Bayesian Early Stop

A Bayesian early stop (BES) mechanism ensures computational tractability and focuses rollouts on
informative sequences. After each simulated query τ for GPm, a stopping criterion, such as one
based on Expected Improvement (EI), is evaluated. Let f (τ)

m,best be the best simulated value found by
GPm up to simulation step τ . The rollout terminates if maxx∈X̂m,t

E
pm(f(x)|D(τ,m)

t−1 )

[
max(0, f(x)−

f
(τ)
m,best)

]
< δ. The threshold δ (constant or dynamic) prevents overly long rollouts into regions of

predicted negligible improvement, ensuring simulations capture plausible scenarios within the ROI.

4.5 Training and Inference of Decision Transformer

Simulated trajectories train a decision transformer [6]. Trajectories become (state, action, return-to-
go) tuples: states cover GP HPs and history; actions are ROI-selected points; returns are simulated
simple regret. The transformer learns to predict actions for desired returns. In BO, it proposes xt

given the real state and target regret (derived from known optima or simulation-based estimates).

4.6 Overall DRO Procedure

DRO’s iterative cycle (Algorithm 1): 1) Update GP ensemble withDt−1. 2) Each GPm identifies its
ROI X̂m,t. 3) Simulate BO trajectories per GPm within its ROI using acquisition functions and early
stopping. 4) Train/fine-tune decision transformer with these trajectories to minimize final regret. 5)
Transformer proposes xt. 6) Query yt = f(xt), augment Dt. Repeat for T evaluations.

Training Objective for DRO. The decision transformer aims to minimize final simple regret
RTreal

. Unlike one-step proxies, DRO uses simulated multi-step trajectories (in ROIs) and a learned
policy to explicitly target low final regret. This synthesis of GP ensemble diversity, ROI filtering,
rollouts, early stopping, and transformer modeling targets robust optimization, validated in §5.

Dense Training vs. Sparse Learning. DRO leverages dense training on simulated data and
sparse learning from online evaluations. Dense training: The transformer learns from numerous
offline-generated GP ensemble trajectories within ROIs, internalizing strategies for low final simple
regret from these ”imagined” experiences. Sparse learning: Limited true evaluations f(xt) update
the GP ensemble, ground the model, refine ROIs, and can fine-tune the transformer.

Advantages of the Dense–Sparse Framework. This ROI-augmented dual approach offers: 1)
Enhanced sample efficiency by learning non-myopic behaviors from inexpensive, ROI-focused sim-

4



Algorithm 1 Direct Regret Optimization with ROI Filtering

Require: Initial dataset D0, ensemble size M , max real iterations Treal, early stop threshold δ,
num rollouts per gp K, ROI parameters (e.g., βt)

1: for t = 1 to Treal do
2: Fit/Update GPs: Update GPm for m = 1 . . .M using Dt−1.
3: Identify ROI: Determine X̂m,t ← {x ∈ X | UCBm,t(x) ≥ maxx′∈X LCBm,t(x

′)} using
GPm.

4: Initialize simulation buffer Bsim ← {}.
5: for m = 1 to M do
6: for k = 1 to K do
7: Simulate rollout Tm,k = {(sτ ,aτ , Rτ )}

Lm,k−1
τ=0 using GPm,

8: with acquisition α maximized over X̂m,t, and Bayesian early stopping.
9: Add Tm,k to Bsim.

10: end for
11: end for
12: Train/Update Decision Transformer using trajectories in Bsim to predict actions that mini-

mize final regret.
13: Infer Next Candidate xt ← DecisionTransformer(current real state st, target return Rtarget).

14: Evaluate yt = f(xt) and augment real data Dt ← Dt−1 ∪ {(xt, yt)}.
15: end for

ulations. 2) Effective non-myopic exploration in ROIs via dense simulation data. 3) Robustness to
model misspecification via GP ensemble rollouts and ROI focusing. DRO’s dense-sparse paradigm
with ROI filtering thus learns an end-to-end, non-myopic policy for minimal final simple regret.

4.7 Theoretical Justifications

Full theoretical analysis of DRO is future work. Here, we provide insights into key components like
the ROI mechanism and EI behavior as regret converges (proofs in Appendix B).

Regret Guarantees with ROI-Constrained Base Acquisition. Constraining a base acquisition
function with known cumulative regret guarantees to the adaptive ROI (defined using the UCB-LCB
criterion as detailed in Proposition 1, cf. [12, 13, 26, 43]) should largely preserve these guarantees.
Performance scales with ROI traits, with a small penalty if the optimum is missed. ROI filtering can
thus boost efficiency without sacrificing theoretical soundness of the base strategy.

Convergence of Expected Improvement with Converging Simple Regret. If simple regret con-
verges to zero with high probability, maximum EI across the search space should also converge to
zero. As the optimum is approached, potential gain diminishes, reflected by EI with a consistent GP
model. This supports using EI-based early stopping in simulated rollouts.

5 Experiments

We evaluate DRO against established baselines and conduct ablation studies on its key components.
This section details the benchmarks, comparison algorithms, and experimental setup, with results
and discussions following in §6.

5.1 Experimental Setup

Benchmarks. Our evaluation uses synthetic functions, Hyperparameter Optimization (HPO), and
complex simulation. The Ackley Function [14] (2D-20D, Fig. 2) tests scalability (output shifted
+10, 0.1 std Gaussian noise); Ackley 10D is for ablations (Fig. 4). HPO tasks include XG-
Boost (from YAHPO Gym [33]) and ADAM optimizer tuning for Neural Networks on UCI datasets
(Bayesmark [29] setups, Fig. 3). The LunarLander-v3 [40] control problem serves as the complex
simulation (Fig. 4).

5



General Setup. Inputs are normalized to [0, 1]d. Runs initialize with Ninit = 5 Sobol points.
Evaluation budgets T are 30-40 (HPO), up to 200 (LunarLander), and 500 (Ackley). Performance,
averaged over≥10 trials, is simple regret (HPO) or best observed value (LunarLander, Ackley); plot
shadings show ±1 standard error. Implementations use BoTorch [2].

DRO Configuration. Default DRO uses an ensemble of M = 10 GPs with RBF kernels, ROI
filtering, and Bayesian early stopping. The decision transformer (128 embedding dimension, 4
attention heads, 2-4 layers) is Adam-trained. For ROI ablation, ‘DRO ROI’ is this default; ‘DRO
GLOBAL’ disables ROI filtering for rollouts.

Baselines. For HPO and LunarLander tasks, DRO is compared against: standard GP-BO with lo-
gEI (labeled ”BO”) [1]; TuRBO [12], a SOTA trust-region local BO method; PFNs4BO [29], using a
transformer surrogate; and SCoreBO [19], which addresses model misspecification by incorporating
hyperparameter uncertainty in acquisition.

6 Results and Discussion

We now present the empirical performance of DRO against baselines and discuss insights from its
ablation studies and dimensionality scaling.

0 100 200 300 400 500

Iteration

20

15

10

5

0

Be
st

 O
bs

er
ve

d 
Va

lu
e Ackley 2D

0 100 200 300 400 500

Iteration

Ackley 5D

0 100 200 300 400 500

Iteration

Ackley 10D

0 100 200 300 400 500

Iteration

Ackley 20D

BO DRO PFNs4BO SCoreBO TuRBO

Figure 2: Performance on Ackley Function across dimensions (2D, 5D, 10D, 20D - Best Objective
Value Found). Higher values are better. PFNs4BO is omitted from Ackley 20D due to scalability.

0 5 10 15 20 25 30

Iteration

10 1

2 × 10 1

3 × 10 1

4 × 10 1

Si
m

pl
e 

Re
gr

et

Xgboost

0 5 10 15 20 25 30

Iteration

10 1

7 × 10 2

8 × 10 2

9 × 10 2

Si
m

pl
e 

Re
gr

et

Adam Breast 

0 5 10 15 20 25 30

Iteration

10 1

2 × 10 2

3 × 10 2

4 × 10 2

6 × 10 2

Si
m

pl
e 

Re
gr

et

Adam Iris 

0 5 10 15 20 25 30

Iteration

2 × 10 1

3 × 10 1

4 × 10 1

Si
m

pl
e 

Re
gr

et

Adam Wine 

BO DRO PFNs4BO SCoreBO TuRBO

Figure 3: Performance on HPO Tasks (Simple Regret). Lower values are better.

Ackley Function Scalability. Fig. 2 presents results on the Ackley function across dimensions
2D, 5D, 10D, and 20D. DRO consistently demonstrates strong performance, achieving the best or
near-best objective values across all tested dimensions when compared to standard BO, PFNs4BO
(up to 10D), SCoreBO, and TuRBO. Notably, in the 20D Ackley task, where PFNs4BO is absent
due to its reported scaling limitations beyond 18 dimensions, DRO maintains robust performance
and clearly outperforms the remaining baselines (BO, SCoreBO, TuRBO). This indicates DRO’s
favorable scalability to higher-dimensional problems.

Hyperparameter Optimization Tasks. On the suite of HPO tasks (Fig. 3), DRO consistently per-
forms well. For XGBoost tuning, DRO converges to a lower simple regret faster and more reliably
than other methods. A similar leading trend is observed for the Adam Wine HPO task. On Adam
Iris and Adam Breast Cancer HPO, DRO remains highly competitive, consistently ranking among
the top-performing methods. These results suggest its effectiveness for practical HPO problems.

6



0 25 50 75 100 125 150 175 200

Iteration

100

150

200

250

300

350

Be
st

 O
bj

ec
tiv

e 
Va

lu
e 

Fo
un

d
Methods

BO
DRO
PFNs4BO
SCoreBO
TuRBO

(a) LunarLander Controller

0 100 200 300 400 500

Iteration
22.5

20.0

17.5

15.0

12.5

10.0

7.5

5.0

2.5

Be
st

 O
bj

ec
tiv

e 
Va

lu
e 

Fo
un

d

Methods
DRO GLOBAL
DRO ROI

(b) Effect of ROI Filtering

0 100 200 300 400 500

Iteration
22.5

20.0

17.5

15.0

12.5

10.0

7.5

5.0

2.5

Be
st

 O
bj

ec
tiv

e 
Va

lu
e 

Fo
un

d

Methods
DRO 1GP
DRO 2GP
DRO 3GP
DRO 5GP
DRO 10GP

(c) Effect of Ensemble Size (M )

Figure 4: Performance on LunarLander and Ablation studies for DRO on Ackley 10D. Higher values
are better (Best Objective Value Found). All DRO variants in ablations run for 10 trials.

Fig. 4 shows DRO’s performance on LunarLander and insights from ablation studies on Ackley 10D.

Complex Simulation (LunarLander). For the LunarLander control task (Fig. 4a), DRO again
shows strong and competitive performance. It achieves higher best objective values more rapidly
than standard BO, PFNs4BO, and SCoreBO. DRO also demonstrates a clear advantage over TuRBO
throughout the optimization process, underscoring its capability in complex sequential decision-
making scenarios.

Effect of ROI Filtering. Fig. 4b compares DRO with its ROI filtering mechanism (‘DRO ROI’,
representing the standard DRO configuration) against a variant performing rollouts over the entire
global search space (‘DRO GLOBAL’). The results unequivocally demonstrate the substantial ben-
efit of ROI filtering: ‘DRO ROI’ achieves significantly better performance, converging faster and to
a much higher objective value (closer to 0, the optimum for Ackley). This confirms that adaptively
constraining simulations to promising regions is crucial for DRO’s efficiency and effectiveness.

Effect of Ensemble Size (M ). The influence of the number of GP models (M ) in the ensemble
is depicted in Fig. 4c. Performance generally improves with larger ensemble sizes. ‘DRO 10GP’
(M=10) attains the best results, closely followed by ‘DRO 5GP’ (M=5). Even smaller ensembles like
‘DRO 2GP’ and ‘DRO 3GP’ significantly outperform a single GP (‘DRO 1GP’). This highlights the
value of model diversity from the ensemble for generating rich simulation data, crucial for training
a robust decision-making policy. An ensemble size of M = 5 or M = 10 appears effective.

6.1 Discussion Summary

The empirical evaluations highlight DRO as a potent and scalable method. It frequently shows
superior or highly competitive performance against specialized baselines across synthetic functions
(up to 20D Ackley), complex simulations (LunarLander), and various HPO tasks. Its strong showing
in higher dimensions, where methods like PFNs4BO may be limited, is particularly noteworthy.
The direct learning of a non-myopic policy for final regret minimization, using diverse trajectories
from an ROI-focused GP ensemble with RBF kernels, underpins its success. Ablation studies on
Ackley 10D confirm that ROI filtering is critical for performance and that larger GP ensembles (e.g.,
M ≥ 5) enhance effectiveness. These findings position DRO as a robust framework for sample-
efficient black-box optimization, especially in challenging and higher-dimensional settings.

7 Conclusion

This paper introduces DRO, a novel perspective on Bayesian optimization. Unlike conventional
methods reliant on hand-crafted acquisition functions and surrogate models, DRO directly mini-
mizes final regret through an end-to-end learned policy. Central to DRO is an ensemble of GPs
that simulate BO rollouts within regions of interest, guided by a Bayesian early stopping criterion.
These simulations provide dense supervisory signals for training a decision transformer to select
query points. A key advantage is its dense training–sparse learning paradigm: offline simulated
data enables the decision transformer to learn non-myopic exploration strategies from numerous hy-
pothetical trajectories, while sparse updates with true function evaluations prevent overfitting and
ground the policy in real-world observations.

7



References
[1] Sebastian Ament, Samuel Daulton, David Eriksson, Maximilian Balandat, and Eytan Bakshy.

Unexpected improvements to expected improvement for bayesian optimization. Advances in
Neural Information Processing Systems, 36:20577–20612, 2023.

[2] Maximilian Balandat, Brian Karrer, Daniel Jiang, Samuel Daulton, Ben Letham, Andrew G
Wilson, and Eytan Bakshy. Botorch: A framework for efficient monte-carlo bayesian opti-
mization. Advances in neural information processing systems, 33:21524–21538, 2020.

[3] James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. In
Journal of Machine Learning Research, volume 13, pages 281–305, 2012.

[4] Eric Brochu, Vlad M. Cora, and Nando De Freitas. A tutorial on bayesian optimization of ex-
pensive cost functions, with application to active user modeling and hierarchical reinforcement
learning. Technical Report TR-2010-23, Dept. of Computer Science, University of British
Columbia (UBC), 2010. Often cited tutorial; relevant for discussing integrated acquisition
functions like Integrated Expected Improvement (mentioned as potentially in Chapter 7).

[5] Roberto Calandra, Andre Seyfarth, Jan Peters, and Marc Peter Deisenroth. Bayesian opti-
mization for policy search on robots. In 2016 IEEE International Conference on Robotics and
Automation (ICRA), pages 270–277. IEEE, 2016.

[6] Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter
Abbeel, Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning
via sequence modeling. Advances in neural information processing systems, 34:15084–15097,
2021.

[7] Yutian Chen, Xingyou Song, Chansoo Lee, Zi Wang, Richard Zhang, David Dohan, Kazuya
Kawakami, Greg Kochanski, Arnaud Doucet, Marc’Aurelio Ranzato, et al. Towards learn-
ing universal hyperparameter optimizers with transformers. Advances in Neural Information
Processing Systems, 35:32053–32068, 2022.

[8] Zhongxiang Chen, Yunchuan Zhang, Chen Shi, Lina Zhao, and James T Kwok. Meta-learning
acquisition functions for bayesian optimization. In International Conference on Learning Rep-
resentations (ICLR 2022), 2022. Explicitly addresses meta-learning acquisition functions for
BO.

[9] Mujin Cheon, Haeun Byeon, and Jay Hyung Lee. Reinforcement learning based multi-step
look-ahead bayesian optimization. In Proc. 13th IFAC Symposium on Dynamics and Control
of Process Systems (DYCOPS), pages 100–105, 2022.

[10] Mujin Cheon, Jay H. Lee, Dong-Yeun Koh, and Calvin Tsay. EARL-BO: Reinforcement
learning for multi-step lookahead, high-dimensional bayesian optimization. arXiv preprint
arXiv:2411.00171, 2024.

[11] Mark Deutel, Georgios Kontes, Christopher Mutschler, and Jürgen Teich. Combining multi-
objective bayesian optimization with reinforcement learning for tinyml. ACM Trans. Evolu-
tionary Learning and Optimization, 2025. to appear.

[12] David Eriksson, Michael Pearce, Jacob Gardner, Ryan D Turner, and Matthias Poloczek. Scal-
able global optimization via local bayesian optimization. Advances in neural information pro-
cessing systems, 32, 2019.

[13] David Eriksson and Matthias Poloczek. Scalable constrained bayesian optimization. In Inter-
national conference on artificial intelligence and statistics, pages 730–738. PMLR, 2021.

[14] P Adorio Ernesto and UP Diliman. Mvf–multivariate test functions library in c for uncon-
strained global optimization. University of the Philippines Diliman, Quezon City, 2005.

[15] Benedikt Philipp Vinzent Flick and Patrick Van Der Smagt. Integrating parameter uncertainty
into bayesian optimization. In Proceedings of the 23rd International Conference on Artificial
Intelligence and Statistics (AISTATS 2020), volume 108 of Proceedings of Machine Learn-
ing Research, pages 1779–1788. PMLR, 2020. Focuses specifically on MCMC methods for
marginalizing GP hyperparameters in BO.

8



[16] Marta Garnelo, Johannes Schwarz, Dan Rosenbaum, Fabio Viola, Danilo J. Rezende, S. M. Ali
Eslami, and Yee Whye Teh. Conditional neural processes. In ICML 2018 Workshop on Theoret-
ical Foundations and Applications of Deep Generative Models, 2018. Introduced Conditional
Neural Processes (CNPs).

[17] Bing-Jing Hsieh, Ping-Chun Hsieh, and Xi Liu. Reinforced few-shot acquisition function
learning for bayesian optimization. In Advances in Neural Information Processing Systems
(NeurIPS), volume 34, 2021.

[18] Hailong Huang, Xiubo Liang, Quanwei Zhang, Hongzhi Wang, and Xiangdong Li. RLBOF:
Reinforcement learning from bayesian optimization feedback. In Proc. International Joint
Conference on Neural Networks (IJCNN). IEEE, 2024.

[19] Carl Hvarfner, Erik Hellsten, Frank Hutter, and Luigi Nardi. Self-correcting bayesian opti-
mization through bayesian active learning. Advances in Neural Information Processing Sys-
tems, 36:79173–79199, 2023.

[20] Donald R. Jones, Matthias Schonlau, and William J. Welch. Efficient global optimization of
expensive black-box functions. Journal of Global Optimization, 13(4):455–492, 1998.

[21] Kirthevasan Kandasamy, Gautam Dasarathy, Junier B. Oliva, Jeff Schneider, and Barnabás
Póczos. Gaussian process based approaches for multi-fidelity optimization. In Maria Flo-
rina Balcan and Kilian Q. Weinberger, editors, Proceedings of the 33rd International Con-
ference on Machine Learning (ICML 2016), volume 48 of Proceedings of Machine Learning
Research, pages 2961–2969. PMLR, 2016. Introduces key MFBO methods like MF-GP-UCB
and BOCA.

[22] Kirthevasan Kandasamy, Gautam Dasarathy, Jeff Schneider, and Barnabás Póczos. Multi-
fidelity bayesian optimisation with continuous approximations. In Doina Precup and Yee Whye
Teh, editors, Proceedings of the 34th International Conference on Machine Learning (ICML
2017), volume 70 of Proceedings of Machine Learning Research, pages 1794–1803. PMLR,
2017. Extends MFBO work, particularly relevant for continuous fidelity levels.

[23] Marc C Kennedy and Anthony O’Hagan. Predicting the output from a complex computer code
when fast approximations are available. Biometrika, 87(1):1–13, 2000. Key paper on modeling
discrepancy between fidelities using GPs (auto-regressive model).

[24] Hyunjik Kim, Andriy Mnih, Johannes Schwarz, Marta Garnelo, Ali Eslami, Yee Whye Teh,
and Dan Rosenbaum. Attentive neural processes. In International Conference on Learning
Representations (ICLR 2019), 2019. Introduced Attentive Neural Processes (ANPs).

[25] Samuel Kim, Peter Y. Lu, Charlotte Loh, Jamie Smith, Jasper Snoek, and Marin Soljačić.
Deep learning for bayesian optimization of scientific problems with high-dimensional struc-
ture, 2021. arXiv preprint arXiv:2104.11667.

[26] Zihan Li and Jonathan Scarlett. Gaussian process bandit optimization with few batches. In
International Conference on Artificial Intelligence and Statistics, pages 92–107. PMLR, 2022.

[27] Zijing Liu, Xiyao Qu, Xuejun Liu, and Hongqiang Lyu. Robust bayesian optimization with
reinforcement learned acquisition functions. arXiv preprint arXiv:2210.00476, 2022.

[28] Alexandre Maraval, Matthieu Zimmer, Antoine Grosnit, and Haitham Bou Ammar. End-to-end
meta-bayesian optimisation with transformer neural processes. Advances in Neural Informa-
tion Processing Systems, 36:11246–11260, 2023.

[29] Samuel Müller, Matthias Feurer, Noah Hollmann, and Frank Hutter. Pfns4bo: In-context
learning for bayesian optimization. In International Conference on Machine Learning, pages
25444–25470. PMLR, 2023.

[30] Samuel Müller, Noah Hollmann, Sebastian Pineda Arango, Josif Grabocka, and Frank Hutter.
Transformers can do bayesian inference. arXiv preprint arXiv:2112.10510, 2021.

[31] Thomas Nagler. Statistical foundations of prior-data fitted networks. In International Confer-
ence on Machine Learning, pages 25660–25676. PMLR, 2023.

9



[32] Vu Nguyen, Sunil Gupta, Santu Rana, Cheng Li, and Svetha Venkatesh. Regret for expected
improvement over the best-observed value and stopping condition. In Asian conference on
machine learning, pages 279–294. PMLR, 2017.

[33] Florian Pfisterer, Lennart Schneider, Julia Moosbauer, Martin Binder, and Bernd Bischl. Yahpo
gym-an efficient multi-objective multi-fidelity benchmark for hyperparameter optimization. In
International Conference on Automated Machine Learning, pages 3–1. PMLR, 2022.

[34] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine
Learning. MIT Press, Cambridge, MA, 2006. The standard reference for Gaussian Processes,
relevant for surrogate modeling and hyperparameter estimation (MLE/MAP).

[35] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P. Adams, and Nando de Freitas. Taking
the human out of the loop: A review of Bayesian optimization. Proceedings of the IEEE,
104(1):148–175, 2016.

[36] Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. Practical bayesian optimization of ma-
chine learning algorithms. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger,
editors, Advances in Neural Information Processing Systems 25 (NIPS 2012), pages 2951–
2959. Curran Associates, Inc., 2012. Seminal paper on applying BO to hyperparameter tuning;
discusses practical aspects including handling GP hyperparameters (e.g., MCMC integration
mentioned).

[37] Niranjan Srinivas, Andreas Krause, Sham M. Kakade, and Matthias W. Seeger. Gaussian
process optimization in the bandit setting: No regret and experimental design. In Proc. of the
27th International Conference on Machine Learning (ICML), pages 1015–1022, 2010.

[38] Kevin Swersky, Jasper Snoek, and Ryan P Adams. Amortized bayesian optimization over
discrete spaces. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34,
pages 5940–5947, 2020. Example of using learned models (related to NPs) for amortized/meta-
BO.

[39] Shion Takeno, Carl Hvarfner, Thomas Gärtner, Cédric Archambeau, and Philipp Hennig.
Multi-fidelity active learning with max-value entropy search. In H. Larochelle, M. Ranzato,
R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neural Information Processing Sys-
tems 33 (NeurIPS 2020), pages 21237–21249. Curran Associates, Inc., 2020. Introduces the
Multi-Fidelity Entropy Search acquisition function.

[40] Mark Towers, Ariel Kwiatkowski, Jordan Terry, John U Balis, Gianluca De Cola, Tristan
Deleu, Manuel Goulão, Andreas Kallinteris, Markus Krimmel, Arjun KG, et al. Gym-
nasium: A standard interface for reinforcement learning environments. arXiv preprint
arXiv:2407.17032, 2024.

[41] Alexander Tripp, Erik Daxberger, and José Miguel Hernández-Lobato. Sample-efficient opti-
mization in the latent space of deep generative models via weighted retraining. In Advances in
Neural Information Processing Systems (NeurIPS), volume 33. Curran Associates, Inc., 2020.

[42] Martin Wistuba, Nicolas Schilling, and Lars Schmidt-Thieme. Scalable gaussian process-
based bayesian optimization ensembles. In Proceedings of the 2018 SIAM International Con-
ference on Data Mining (SDM 2018), pages 513–521. SIAM, 2018. Proposes using ensembles
of GPs with different hyperparameters for robustness.

[43] Wenjie Xu, Yuning Jiang, Bratislav Svetozarevic, and Colin Jones. Constrained efficient
global optimization of expensive black-box functions. In Andreas Krause, Emma Brunskill,
Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett, editors, Proceed-
ings of the 40th International Conference on Machine Learning, volume 202 of Proceedings
of Machine Learning Research, pages 38485–38498. PMLR, 23–29 Jul 2023.

[44] Fengxue Zhang, Thomas Desautels, and Yuxin Chen. Robust multi-fidelity bayesian opti-
mization with deep kernel and partition. In The 28th International Conference on Artificial
Intelligence and Statistics, 2025.

10



[45] Fengxue Zhang, Jialin Song, James C. Bowden, Alexander Ladd, Yisong Yue, Thomas De-
sautels, and Yuxin Chen. Learning regions of interest for bayesian optimization with adaptive
level-set estimation. In Proceedings of the 40th International Conference on Machine Learning
(ICML). PMLR, 2023.

[46] Fengxue Zhang, Zejie Zhu, and Yuxin Chen. Finding interior optimum of black-box con-
strained objective with bayesian optimization. In NeurIPS 2024 Workshop on Bayesian
Decision-making and Uncertainty, 2024.

11



A Detailed Discussion on Literature

A.1 Reinforcement Learning in Bayesian Optimization

Traditional Bayesian optimization (BO) frameworks rely on fixed, hand-crafted acquisition func-
tions to determine query points, balancing exploration and exploitation of the unknown objective
[20, 37]. Classical acquisition functions such as Expected Improvement or upper confidence bounds
are designed a priori and remain static during the optimization. Recent work has proposed integrat-
ing reinforcement learning (RL) into BO to learn a sampling strategy dynamically rather than using
a fixed rule. By formulating the selection of sample points as a sequential decision-making problem,
an RL agent can adaptively improve the sampling policy based on feedback from previous observa-
tions. This approach aims to boost efficiency and outcomes by learning to trade off exploration and
exploitation in an adaptive, data-driven manner.

RL-Enhanced Acquisition Function Strategies One line of research uses RL to augment or re-
place the acquisition function itself, enabling dynamic selection of where to sample next. Hsieh et
al. [17] introduced a reinforced few-shot acquisition function learning (FSAF) method that treats the
acquisition function as a Q-value function. They train a deep Q-network (DQN) to act as a surrogate
acquisition function, using meta-learning to allow quick adaptation to new tasks. By employing
a Bayesian variant of DQN (to maintain uncertainty estimates) and fine-tuning with limited data,
FSAF achieved comparable or better performance than state-of-the-art hand-crafted acquisitions.

Similarly, Liu et al. [27] proposed an RL-assisted BO framework (RLABO) that formalizes acquisi-
tion function selection as a Markov decision process. In RLABO, an RL agent is trained to choose
among multiple acquisition functions at each BO iteration based on a reward signal (e.g. improve-
ment in objective value). This learned policy adaptively balances exploration vs. exploitation in real
time, outperforming any single fixed heuristic across several benchmark optimization tasks.

RL for Non-Myopic (Multi-Step) Bayesian Optimization Another avenue is using RL to extend
BO beyond myopic, one-step decisions by planning multi-step lookahead strategies. Cheon et al.
[9] provided early evidence that an RL-driven policy can outperform the greedy one-step Expected
Improvement strategy by optimizing over a multi-step horizon. Their approach treated BO as a
sequential decision process and showed that a learned policy can yield better long-term outcomes
than myopic acquisition functions.

Building on this idea, Cheon et al. [10] recently introduced EARL-BO (Encoder-Augmented RL
for BO), an RL framework for multi-step lookahead in high-dimensional optimization problems.
EARL-BO represents the state of the BO (e.g. the surrogate model posterior and remaining bud-
get) with an attention-based encoder, and it uses off-policy RL to efficiently learn a near-optimal
sampling strategy over multiple future steps. This method significantly improved performance com-
pared to traditional one-step BO and earlier limited lookahead (rollout) approaches, as demonstrated
on synthetic benchmarks and real-world hyperparameter optimization tasks.

RL-Integrated Surrogate Modeling and Meta-BO Beyond guiding point selection, researchers
have also integrated RL into surrogate modeling and meta-optimization aspects of BO. Huang et
al. [18] propose RLBOF (Reinforcement Learning from Bayesian Optimization Feedback), where
a reinforcement learning agent (based on proximal policy optimization) continuously adjusts the
surrogate model using feedback from the BO process. In this approach, the RL agent learns to tune
the surrogate model’s parameters or training procedure to better fit the observations and improve
prediction of the objective function. By optimizing the surrogate model itself via RL (in tandem
with the standard BO loop), this method enhances the overall BO performance. Such integration of
RL at the meta-level (sometimes called meta-BO) essentially allows the BO algorithm to learn how
to learn – optimizing not only the decisions of where to sample, but also refining the modeling of
the objective based on experience.

Applications and Multi-Objective Extensions The combination of RL and BO has been applied
in various domains and extended to multi-objective optimization problems. For example, Deutel
et al. [11] develop an RL-assisted multi-objective BO approach for TinyML neural architecture
search. Their method combines multi-objective BO with an ensemble of RL policies (trained via
augmented random search) to efficiently explore trade-offs between model accuracy and resource

12



constraints. This RL-augmented strategy was able to find better Pareto-optimal neural network
architectures (balancing accuracy, memory, and latency) than conventional multi-objective BO tech-
niques. Similarly, RL-integrated BO frameworks have been explored for automated hyperparameter
tuning, engineering design optimization, and other real-world scenarios. In these applications, the
adaptive exploration-exploitation control provided by RL often yields faster convergence and more
robust solutions compared to static BO policies.

Key Takeaways In summary, integrating reinforcement learning into Bayesian optimization en-
ables several key advancements over traditional BO. First, RL allows the acquisition function or
strategy to be adaptive rather than fixed, selecting sampling actions based on learned experience.
Second, RL-based policies can consider multi-step outcomes, mitigating the greedy, myopic nature
of standard one-step BO by planning further ahead. Third, RL can be integrated into different parts
of the BO pipeline (acquisition selection, surrogate model tuning, or meta-learning), effectively
allowing the optimizer to improve itself over time. Across various studies and applications, RL-
enhanced BO methods consistently outperform fixed heuristic strategies, demonstrating improved
efficiency in finding optimal solutions for both single-objective and multi-objective problems.

A.2 Deep Learning Approaches in Bayesian Optimization

Recent years have seen a surge of interest in integrating deep learning techniques into Bayesian
optimization to improve flexibility, scalability, and the capacity to handle more complex objective
landscapes. These approaches often replace or augment the traditional Gaussian Process surrogate
and hand-crafted acquisition functions with neural network models that can learn from data and past
optimization experience. Below, we highlight several representative methods that combine neural
networks with BO and compare them to our decision transformer-based strategy.

Optimization in Latent Spaces via Weighted Retraining. Tripp et al. [41] explore Bayesian
optimization in the latent space of deep generative models. Here, a generative network (e.g., a
variational autoencoder) learns a lower-dimensional embedding of the input space. BO is then con-
ducted within this latent space, where the landscape is often smoother or easier to navigate, before
mapping latent representations back to the original domain. To keep the latent space relevant to
high-performing solutions, they employ a weighted retraining scheme that prioritizes observed sam-
ples with superior objective values. Compared to our decision transformer-based approach, which
focuses on learning a policy to make direct query decisions, Tripp et al. focus on learning a represen-
tation of the search space. Both methods harness deep learning for higher-level capabilities—either
representation learning or policy learning—beyond classical GP-based BO pipelines.

Deep Surrogate Models for High-Dimensional BO. Other recent work highlights how neural
networks can be leveraged to improve surrogate modeling in high-dimensional or structured scien-
tific problems. For instance, Kim et al. [25] propose a deep learning framework tailored for Bayesian
optimization tasks with high-dimensional structure, using neural networks to capture complex cor-
relations and accelerate convergence in scientific applications. Their approach demonstrates how
deep models can scale to large design spaces that would challenge traditional GPs. Similarly, Zhang
et al. [45] introduce a neural network-based adaptive level-set estimation method for BO, termed
“Learning Regions of Interest.” By identifying and focusing on promising sub-regions of the search
space, this framework refines the surrogate model in a targeted manner, effectively allocating sam-
pling budget to areas with higher potential for improvement. These methods align with our emphasis
on harnessing deep models to handle challenging search landscapes and guide the BO process.

PFNs4BO and Prior-Data Fitted Networks. One notable recent direction is the use of Prior-
Data Fitted Networks (PFNs) for BO, exemplified by PFNs4BO [29]. PFNs leverage transformers
to amortize Bayesian inference by meta-training on synthetic tasks drawn from a chosen prior distri-
bution [31]. In PFNs4BO, a transformer is pre-trained (offline) to approximate the posterior predic-
tive distribution (PPD) of the objective function in-context; at runtime, this single model produces
posterior predictions for any new BO dataset in one forward pass [31, 30]. This yields extremely fast
surrogate updates — the PFN surrogate does not require retraining at each BO iteration, unlike a
Gaussian Process which must be refit or updated as data accumulates. Moreover, by training across
many sampled functions (e.g., varying GP hyperparameters or even Bayesian neural network pri-
ors), the PFN inherently marginalizes over surrogate uncertainty, effectively performing Bayesian

13



model averaging under the specified prior. Empirically, a single PFN can mimic a GP’s posterior
almost exactly while attaining orders-of-magnitude speedups, and it flexibly accommodates richer
prior knowledge than classical kernels (for instance, one can embed hints of likely optima or ignore
irrelevant dimensions). Notably, PFNs4BO can even learn the acquisition function as part of its
training (enabling non-myopic policies) by incorporating the selection strategy into the prior/task
simulation [29].

Meta-Learning Surrogates and Acquisition Functions with Neural Processes. Beyond PFNs,
another line of work leverages meta-learning principles, often employing neural processes (NPs)
and their variants (e.g., Conditional NPs, Attentive NPs) [16, 24], to accelerate BO. NPs are deep
models trained to approximate distributions over functions, conditioning on context sets (observed
data points). In the meta-BO setting [38], NPs can be pre-trained on data from related optimization
tasks. When deployed on a new task, the NP surrogate can rapidly adapt its predictions based on
the initial samples, providing a warm start compared to training a GP or standard neural network
from scratch. Some approaches jointly learn the surrogate model (like an NP or transformer-based
model) and an acquisition function (or an ensemble of them) in the meta-training phase [8]. End-
to-end meta-BO frameworks like OptFormer [7] and Neural Acquisition Process (NAP) [28] also
leverage transformers to learn universal optimizers that generalize across tasks. This allows the
BO system to learn not just how to model functions typical of the meta-training distribution, but
also how to effectively explore them, transferring knowledge about both the function structure and
optimal search strategies across tasks. This contrasts with methods that only meta-learn the surrogate
or only meta-learn the policy.

Comparison of Transformer-Based BO Approaches. Although both PFNs4BO, Meta-BO with
transformers/NPs (including OptFormer and NAP), and our decision transformer-based strategy
employ transformer architectures or related deep sequence models, they target different stages
or aspects of the BO process. PFNs4BO operates at the surrogate modeling level by using a
transformer to approximate the posterior over objective functions through amortized Bayesian in-
ference—effectively replacing the Gaussian Process for posterior estimation and enabling rapid,
retraining-free updates. Meta-BO approaches using NPs or transformers, such as OptFormer and
NAP, focus on learning transferable surrogate models and acquisition strategies by training across
multiple related tasks to create universal optimizers. In contrast, our decision transformer approach
learns the acquisition policy directly from problem-specific simulated trajectories by modeling the
sequence of decisions, mapping the history of observations to the next query suggestion, poten-
tially leveraging offline RL paradigms. While PFNs4BO and Meta-NPs/universal optimizers remain
closer to the Bayesian paradigm by explicitly modeling uncertainty (or distributions over functions)
and leveraging inter-task meta-training, our method bypasses an explicit probabilistic surrogate for
decision-making in favor of directly learning sequential query strategies from intra-task simulations.
Collectively, these approaches underscore the broad potential of deep neural networks in enhancing
BO—whether by constructing latent representations, refining surrogate models via meta-learning,
amortizing inference, or directly learning sequential decision-making policies.

A.3 Approximation-Aware and Multi-Fidelity Bayesian Optimization

Classical BO often assumes access to exact evaluations of the objective function, potentially cor-
rupted by uniform noise. However, in many real-world scenarios, particularly those involving com-
plex simulations or physical experiments, function evaluations may come from approximations or
models with varying fidelity and cost. Approximation-aware BO methods explicitly account for
these complexities.

A prominent area is Multi-Fidelity Bayesian Optimization (MFBO) [21, 22]. MFBO techniques
leverage cheap, low-fidelity approximations (e.g., coarse simulations, simpler models) to guide the
optimization towards promising regions where expensive, high-fidelity evaluations should be per-
formed. Methods like BOCA [21] and MF-GP-UCB [21] model the relationship between different
fidelity levels (e.g., using auto-regressive GP models) and design acquisition functions (like Multi-
Fidelity Entropy Search [39]) that optimally trade off information gain and cost across fidelities.
Other approaches might deal with approximations by explicitly modeling the discrepancy between
the approximate model and the true objective [23] or by incorporating evaluation cost into the acqui-
sition function more directly [36]. These methods aim for end-to-end optimization under realistic

14



evaluation constraints, acknowledging that the function oracle itself might be an approximation with
controllable accuracy and cost, a setting distinct from assuming a perfect black-box.

A.4 Handling Unknown Hyperparameters in Bayesian Optimization

The performance of BO heavily relies on the surrogate model, typically a Gaussian process, whose
behavior is governed by hyperparameters (e.g., kernel lengthscales, signal variance, noise variance).
Standard BO practice often involves fixing these hyperparameters based on heuristics or estimating
them via MLE or MAP estimation on the observed data [34]. However, fixing hyperparameters
can lead to suboptimal performance if the initial choice is poor, and MLE/MAP estimates can be
unreliable with scarce data early in the optimization.

To address this, several approaches treat hyperparameters as nuisance parameters to be marginalized
out, adopting a more fully Bayesian perspective. This involves defining priors over the hyperparame-
ters and integrating the acquisition function over the posterior distribution of these hyperparameters
[36]. Techniques like MCMC sampling can be used to approximate the integral [15], leading to
acquisition functions like the Integrated Expected Improvement [4]. While computationally more
intensive, these methods avoid committing to a single hyperparameter setting and tend to be more
robust, especially in the early stages of BO when data is limited. Ensemble methods, where predic-
tions or acquisition functions from models with different hyperparameter settings are averaged [42],
offer a practical alternative. Recent developments, such as those utilizing PFNs [29], can implicitly
perform marginalization by training on a distribution over hyperparameter settings drawn from the
prior. This relies on extensive pre-training and does not scale well with respect to dimensionality.
Another line of work incorporate uncertainty in GP hyperparameters and devise acquisition ac-
counting for both hyperparameter uncertainty and conventional max-value entropy [19]. In contrast
to our work, they stick to conventional GP surrogate model and information criteria acquisitions,
which pose computation challenge.

B Theoretical Analysis

The theoretical underpinnings of the DRO framework, particularly concerning its convergence and
regret bounds, present a rich area for future investigation. In the following, we provide theoretical
insight behind the design of Bayesian early stopping mechanism that balances the efficiency of
the rollout and effectiveness of the sampled trajectory, as well as the theoretical property of the
region of interest identification mechanism (based on the UCB≥max LCB criterion, as detailed for
Proposition 1 below) that aims to preserve regret guarantees of a base acquisition.

Below, we provide two theoretical results concerning specific components relevant to DRO’s design.

Proposition 1 (Regret Guarantee with ROI-Constrained Base Acquisition). Assume the standard
conditions for Gaussian Process-based Bayesian optimization (e.g., smoothness of f , properties
of the kernel k(·, ·)). Consider a GP model providing a posterior mean µt−1(x) and variance
σ2
t−1(x). Let a Region of Interest (ROI) X̂t be defined at iteration t as X̂t = {x ∈ X | UCBt(x) ≥

maxx′∈X LCBt(x
′)} based on this GP, such that the true optimum x∗ is contained in X̂t with

high probability, i.e., P[x∗ ∈ X̂t] ≥ 1 − δt for some small δt > 0 (akin to Lemma 1 in Zhang
et al. (2024) [46]). If a base acquisition function αbase, when optimized over the full domain X ,
achieves an expected cumulative regret E[Rcumulative(T )] ≤ G(T, |X |, γT ), where γT is the maximum
information gain over X . Then, the same acquisition function αbase, when optimized at each step t

only within such an identified ROI X̂t, i.e., xt = argmaxx∈X̂t
αbase(x;Dt−1), achieves an expected

cumulative regret:

E[R′
cumulative(T )] ≤ G(T, |X̂max|, γ̂T ) + C

T∑
t=1

δt

where |X̂max| is related to the maximum size or complexity of the ROIs encountered, γ̂T is the max-
imum information gain within these ROIs, and C is a problem-dependent constant (e.g., related to
the range of f ).

Insight for Proposition 1: This proposition, which builds upon and extends the principles outlined
in Lemma 1 of Zhang et al. [46] concerning ROI-based optimization, suggests that constraining the

15



search of a sound base acquisition function to a high-probability ROI (formed using the UCB-LCB
mechanism as defined in Proposition 1) preserves its regret guarantee. It modifies terms related
to the search space size and information gain to reflect the smaller ROI. The additional term ac-
counts for the small probability that the optimum is outside the ROI. This highlights that the original
guarantee’s structure is largely maintained, with parameters scaled to the ROI and an additive term
for x∗ /∈ X̂t. This justifies the use of ROI filtering in DRO for focusing simulated rollouts with-
out fundamentally undermining theoretical soundness of underlying acquisition strategies used in
simulation.
Proposition 2 (Convergence of Expected Improvement under Converging Simple Regret). Consider
a Bayesian optimization algorithm using a Gaussian Process surrogate that accurately reflects un-
certainty (e.g., posterior variance σ2

t (x) does not prematurely collapse to zero for unexplored sub-
optimal points). Suppose the algorithm generates a sequence of evaluation points {xt}Tt=1 such
that its simple regret converges to zero with high probability as T → ∞, i.e., f(x+

T ) → f∗ with
probability at least 1 − ζT where ζT → 0. Let EIt(x | Dt) = Ep(f(x)|Dt)[max(0, f(x) − f(x+

t ))]

be the Expected Improvement at iteration t + 1 based on data Dt and current best f(x+
t ). Then,

the maximum Expected Improvement achievable across the search space also converges to zero with
high probability:

sup
x∈X

EIt(x | Dt)→ 0 as t→∞, with high probability.

Insight for Proposition 2: This proposition, which is a direct extension of Lemma 2 presented
by Nguyen et al. [32], implies that if an optimization policy (like the one DRO aims to learn) is
successful in driving the simple regret to zero, then a common metric used to guide exploration and
exploitation—Expected Improvement—will naturally diminish across the entire search space. As
the algorithm identifies points increasingly close to the true optimum f∗, the ”room” for further
improvement f(x)−f(x+

t ) shrinks. If the GP posterior also converges appropriately (i.e., µt(x)→
f(x) and σt(x) reflects remaining uncertainty), then the EI, which depends on both this gap and the
uncertainty, will also tend to zero. This provides a consistency check: a successful algorithm should
eventually see that its own measure of potential gain (EI) becomes negligible everywhere. This
is relevant for understanding the behavior of the Bayesian early stopping criterion used in DRO’s
simulated rollouts, as it relies on expected improvement.

C Extensibility of the DRO Framework: Constrained and Multi-Fidelity
Optimization

A significant benefit of the DRO framework is its inherent flexibility and potential for extension
to more complex optimization scenarios. The core principle of learning a non-myopic decision-
making policy from simulated trajectories can be adapted by appropriately modifying the simulation
environment, state representation, and action space. This section outlines conceptual extensions of
DRO to two common and important settings: Bayesian optimization with unknown constraints and
multi-fidelity Bayesian optimization.

C.1 DRO for Bayesian Optimization with Unknown Constraints

When optimizing an objective f(x) subject to M unknown black-box constraints Cm(x) ≥ 0, DRO
can be adapted by primarily modifying the simulation phase and state representation. The objective
remains to train a decision transformer to directly minimize the simple regret of the true (con-
strained) optimum. Key considerations include:

1. Ensemble GP Models for Objective and Constraints: Independent ensembles of Gaus-
sian Process (GP) models would be maintained for the objective function and for each of
the M constraints. This allows for capturing model uncertainty for all unknown functions.
All GPs would be conditioned on all available real observations (objective and constraint
values).

2. Constrained Region of Interest for Simulations: During the simulation (rollout gener-
ation) for a specific set of sampled models (one objective GP and one GP for each con-
straint from their respective ensembles), a constrained ROI must be identified. This can

16



be achieved by adapting ROI identification strategies from constrained Bayesian optimiza-
tion (CBO) literature, such as the approach in Zhang et al. [46]. This involves:

• Defining an ROI for each constraint Cm (based on its current GP model GPCm
) to

include regions likely to satisfy the constraint (e.g., where UCBCm
(x) ≥ 0).

• Forming a joint feasible ROI by intersecting these individual constraint ROIs.
• Defining an objective ROI based on the current objective GP model (GPf ), potentially

using a threshold derived from its LCB within the high-confidence jointly feasible
region.

• The final ROI for simulation is the intersection of the objective ROI and the joint fea-
sible ROI. This ensures simulated rollouts explore regions deemed both promising for
the objective and likely feasible by the set of models defining that particular simulated
world.

3. Constraint-Aware Rollout Generation: Simulated trajectories are generated by itera-
tively selecting points within the dynamically identified constrained ROI. The acquisition
function used within the simulation must be constraint-aware (e.g., by multiplying a stan-
dard acquisition function with the joint probability of feasibility estimated from the con-
straint GPs, or by using specialized CBO acquisition functions). Observations for both the
objective and constraints are sampled from their respective GP posterior predictive distri-
butions.

4. Augmented State Representation: The state sτ for the decision transformer must include
information about the constraints, such as hyperparameters of the constraint GPs, historical
constraint observations, and potentially features describing the estimated feasible region.

5. Training Objective: The decision transformer is trained to predict actions that minimize
the final simple regret with respect to the true constrained optimum, using return-to-go
signals calculated based on the best feasible objective value found in simulated trajectories.

This conceptual extension enables DRO to learn a non-myopic policy that navigates the trade-offs
inherent in constrained optimization.

C.2 DRO for Multi-Fidelity Bayesian Optimization (MFBO)

DRO can also be extended to MFBO settings, where the objective function can be evaluated at
different fidelity levels f ∈ F , each with an associated cost c(f). The goal is to find the high-
fidelity optimum while minimizing total evaluation cost. This extension builds upon the core DRO
machinery with the following key adaptations:

1. Fidelity-Specific GP Ensembles: Independent ensembles of GPs are maintained for each
fidelity level, i.e., {GP(f)

m }
Mf

m=1 for each f ∈ F . Each GP(f)
m is trained on data observed at

fidelity f . Relationships between fidelities (e.g., via auto-regressive models or deep kernels
as in Zhang et al. [44]) could also be incorporated into these GP models if desired, though
simpler independent models are a first step.

2. Fidelity-Aware and Cost-Aware ROI for Simulations: When generating rollouts, the
ROI identification can be made fidelity-aware. For instance, drawing inspiration from
methods like those in Zhang et al. [44] that identify robust partitions or regions of agree-
ment across fidelities, the simulation environment for DRO could define ROIs based on
information from one or more fidelity-specific GPs. The decision of which fidelity’s GP(s)
to use for ROI definition within a simulation could be part of the diversity generation.

3. Joint Action Space (Point and Fidelity): The decision transformer’s action becomes a
pair (xt, ft), selecting both the point to evaluate and the fidelity level at which to perform
the evaluation.

4. Augmented State Representation: The state sτ must include fidelity-related information:

• Historical data, including the fidelity level and cost of each past evaluation.
• Current cumulative cost and remaining budget (if applicable).
• Hyperparameters or summary statistics from the fidelity-specific GP ensembles.

17



5. Cost-Sensitive Rollout Simulation and Policy Learning: Simulated trajectories now in-
volve selecting fidelities for simulated queries, incurring simulated costs. The Bayesian
early stopping criterion might be adapted to consider the cost-benefit of continuing a roll-
out. The return-to-go signal for training the decision transformer would still relate to the
final (high-fidelity) simple regret, but the policy must learn to achieve this efficiently with
respect to the costs associated with different fidelities.

This extension would allow DRO to learn a non-myopic policy that strategically chooses both query
locations and fidelity levels to optimize the high-fidelity objective under budget or cost constraints.

These two examples illustrate that the DRO paradigm—leveraging ensemble-based simulations to
train a decision transformer for direct regret minimization—provides a flexible foundation. By ap-
propriately designing the components of the simulated environment (surrogate models, ROI defi-
nitions, state-action spaces) and the information fed to the decision transformer, DRO has the po-
tential to be tailored to a variety of complex Bayesian optimization settings beyond the standard
unconstrained case.

D Additional Implementation Details

The following subsections provide further details on key hyperparameters and configurations used
for the DRO framework components. These correspond to the settings in the provided configuration
file and are reflected in the implementation.

D.1 Decision Transformer

The collection of simulated trajectories from all GPs in the ensemble forms an offline dataset
for training a decision transformer [6]. This model is chosen for its ability to handle sequen-
tial decision-making problems by framing them as sequence modeling tasks. Each trajectory
(s0,a0, r0, s1,a1, r1, . . . ) is processed into sequences of (state, action, return-to-go) tuples suitable
for the decision transformer:

• State (sτ ): An embedding representing the state of the BO process at simulation step τ .
This can include features derived from the current GPm (used for that rollout), the history
of simulated observations (x(m)

i , y
(m)
i ) within that rollout (e.g., best value found, number

of steps taken), and context from the real BO process (e.g., current real iteration t, real
historical data Dt−1).

• Action (aτ ): The point x(m)
τ selected by the conventional acquisition function (within

X̂m,t) during the simulation step τ for GPm.

• Return-to-Go (Rτ ): A crucial signal for the decision transformer, representing the cumu-
lative future reward from step τ to the end of the trajectory. It is calculated based on the
final simple regret of the entire simulated trajectory under GPm. For a simulated trajec-
tory of length Lm,k ending with best point x(m,k)

best sim,Lm,k
, the return-to-go for step τ could

be f(x
(m,k)
best sim,Lm,k

) − f̃∗
m, where f̃∗

m is an optimistic estimate of the true optimum from
GPm’s perspective or a normalized target.

The decision transformer is trained using this offline data to predict an action aτ given a history
of states, actions, and a target return-to-go. During the real BO procedure, the trained decision
transformer is conditioned on the current real BO state (constructed similarly, using the ensemble
and real data Dt−1) and a high target return (i.e., low target regret) to propose the next query point
xt.

• Architecture:

– Hidden Size: The embedding dimension or hidden size of the transformer is 128.
– Number of Layers: The transformer has 4 layers.
– Number of Heads: 4 attention heads are used in the multi-head attention mechanisms.

18



– Dropout: A dropout rate of 0.1 is applied.

• Training:

– Learning Rate: The decision transformer is trained with a learning rate of 1× 10−4.
– Weight Decay: A weight decay of 1× 10−5 is used.
– Batch Size: The batch size for training is 32.
– Number of Epochs: The transformer is trained for 100 epochs on the simulated tra-

jectory data collected in each BO iteration.

• Sequence Length: The maximum sequence length processed by the transformer is 20.

• State Dimension: The state dimension for the transformer input is dynamically calculated.
It includes features for each GP in the ensemble (e.g., key hyperparameters like lengthscale
and outputscale, typically 2 parameters per GP), the best observed objective value so far, the
current iteration number (or a normalized version), and the coordinates of the best-known
points.

• Action Dimension: This corresponds to the input dimension of the black-box function
being optimized.

• Return-to-Go Calculation: During training, the return-to-go for a step in a simulated tra-
jectory is the sum of future rewards (improvements achieved in the simulation in terms of
simple regret) until the end of that trajectory. For inference (proposing the next real query
point), a high target return-to-go (e.g., 1.0, assuming rewards are normalized or scaled ap-
propriately, or equivalently zero simple regret) is used to prompt the transformer to generate
an action aimed at achieving this high return.

D.2 Gaussian Process Ensemble

• Number of Models (M ): The ensemble consists of M = 10 Gaussian Process (GP) mod-
els.

• Kernel: The GPs utilize an RBF (Radial Basis Function) kernel by default. The configura-
tion allows for other kernels like Matern or RQ, though RBF is the specified default.

• Kernel Hyperparameters:

– Lengthscale: Initial lengthscales for the ensemble models are sampled from a range
between a minimum of 0.1 and a maximum of 10.0.

– ARD (Automatic Relevance Determination): ARD is not enabled by default (‘ard:
False‘).

• Likelihood Noise: The Gaussian likelihood for each GP has a noise constraint, with the
lower bound set to 1× 10−4.

• Training:

– Retraining: GPs are not retrained from scratch at each BO iteration (‘retrain: False‘);
their hyperparameters are updated based on new data.

– Optimizer: GP hyperparameters are optimized using an Adam optimizer.
– Learning Rate: The learning rate for the GP hyperparameter optimization is 0.1.
– Training Iterations: Each GP model is trained for 50 iterations when updated.

D.3 Bayesian Early Stopping (BES)

• Activation: The Bayesian early stopping mechanism is active during the simulation roll-
outs.

• Threshold (δ): A rollout is terminated if the improvement (e.g., maximum Expected
Improvement within the ROI for the respective GP model) falls below a threshold δ =
1× 10−4.

19



D.4 Acquisition Functions for Simulation

• Strategy: During the simulation phase for generating trajectories, DRO employs a strategy
of rotating through different acquisition functions.

• Candidate Functions: The pool of acquisition functions for rotation includes Expected
Improvement (EI), Upper Confidence Bound (UCB), Probability of Improvement (PI), and
Max-value Entropy Search (MES).

• Hyperparameters:
– UCB κ (or β): The κ parameter for UCB is set to 2.0.
– EI/PI ξ: The trade-off parameter ξ for EI and PI is 0.01.
– MES Samples: For Max-value Entropy Search, the number of max-value samples is

10.
• ROI Constraint during Optimization: When optimizing these acquisition functions

within the simulation rollouts, the search space can be constrained by the UCB ≥
max(LCB) criterion. The κ value used for defining this UCB/LCB constraint is 6.0.

Effect of Simulated Acquisition Strategy. To evaluate the impact of the acquisition function
strategy used within the simulation rollouts, we compared DRO variants using fixed acquisition
functions (Expected Improvement - logEI, Max-value Entropy Search - MES, Upper Confidence
Bound - UCB) against our default strategy of rotating through these candidates (‘DRO ROTATE‘).
Fig. 5 presents these results on the Ackley 10D function. It is well known that there is no silver
bullet acquisition function across all scenarios. The ‘DRO ROTATE‘ strategy demonstrates robust
performance, achieving competitive results comparable to or no worse than using a single fixed
acquisition function throughout the optimization. This supports its choice as a means to diversify
the simulated trajectories.

0 100 200 300 400 500

Iteration
22.5

20.0

17.5

15.0

12.5

10.0

7.5

5.0

2.5

Be
st

 O
bj

ec
tiv

e 
Va

lu
e 

Fo
un

d

Methods

DRO EI
DRO MES
DRO ROTATE
DRO UCB

Figure 5: Performance comparison of different acquisition function strategies used within DRO’s
simulation rollouts on the Ackley 10D function (Best Objective Value Found). ‘DRO ROTATE‘
refers to the strategy of cycling through EI, UCB, PI, and MES for generating simulated trajectories.
Higher values are better.

20


	Introduction
	Related Work
	Problem Formulation
	Method
	Ensemble of Gaussian Processes
	Adaptive Region of Interest (ROI) Filtering
	Within-Model Sampling (Rollout Generation) within ROI
	Bayesian Early Stop
	Training and Inference of Decision Transformer
	Overall DRO Procedure
	Theoretical Justifications

	Experiments
	Experimental Setup

	Results and Discussion
	Discussion Summary

	Conclusion
	Detailed Discussion on Literature
	Reinforcement Learning in Bayesian Optimization
	Deep Learning Approaches in Bayesian Optimization
	Approximation-Aware and Multi-Fidelity Bayesian Optimization
	Handling Unknown Hyperparameters in Bayesian Optimization

	Theoretical Analysis
	Extensibility of the DRO Framework: Constrained and Multi-Fidelity Optimization
	DRO for Bayesian Optimization with Unknown Constraints
	DRO for Multi-Fidelity Bayesian Optimization (MFBO)

	Additional Implementation Details
	Decision Transformer
	Gaussian Process Ensemble
	Bayesian Early Stopping (BES)
	Acquisition Functions for Simulation


