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ABSTRACT

Sparse Autoencoders uncover thousands of features in vision models, yet explaining
these features without requiring human intervention remains an open challenge.
While previous work has proposed generating correlation-based explanations based
on top activating input examples, we present a fundamentally different alternative
based on causal interventions. We leverage the structure of Vision-Language
Models and steer individual SAE features in the vision encoder after providing
an empty image. Then, we prompt the language model to explain what it “sees”,
effectively eliciting the visual concept represented by each feature. Results show
that Steering offers an scalable alternative that complements traditional approaches
based on input examples, serving as a new axis for automated interpretability in
vision models. Moreover, the quality of explanations improves consistently with
the scale of the language model, highlighting our method as a promising direction
for future research. Finally, we propose Steering-informed Top-k, a hybrid approach
that combines the strengths of causal interventions and input-based approaches to
achieve state-of-the-art explanation quality without additional computational cost.
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Figure 1: We propose to automatically obtain explanations of SAE features by causally intervening
(steering) a vision encoder. The intervention is done after feeding it an information-devoid ‘blank
image’, effectively making the language model articulate what visual concept that feature represents.

1 INTRODUCTION

Understanding what features neural networks learn is a central goal in interpretability research (Olah
[2020). Sparse Autoencoders (SAEs) have emerged as a promising unsupervised method for
uncovering human-interpretable features from model representations (Bricken et al, 2023}, [Huben|
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et al., |2024)), particularly in large language models (LLMs). SAEs have recently been extended to
vision models, revealing semantically meaningful concepts such as object categories, patterns, and
textures (Fryl [2024; |Lim et al., |2025). However, as SAEs scale to uncover thousands of features,
interpreting these poses significant challenges, necessitating the development of additional tools.

Recent work on automated interpretability aims to address this challenge by leveraging powerful
language models as explainers to generate descriptions of features learned by a subject model (Bills
et al.,|2023} |Paulo et al., 2024). When the subject is a vision model, the images that activate most
each feature are analyzed by an explainer which looks for common patterns that may explain the
target feature (Xu et al., [2025; [Zhang et al., 2024). This input-based strategy relies heavily on a
predefined test set, is fundamentally correlation-based rather than causally grounded, and incurs
significant computational cost.

In this paper, we propose a new approach for self-explaining vision feature Instead of interpreting
features via their top activating images, we leverage the structure of VLMs and causal interventions to
directly generate natural language explanations. By steering the vision encoder’s residual stream with
individual SAE features —while feeding it an empty image— we prompt the VLM to describe what
visual concept that feature represents (Figure[I)). Experiments on Gemma 3 and Intern VL3 vision
encoders show that Steering offers an scalable alternative that complements traditional approaches
based on input examples, overcoming some of the explanation biases these methods introduce,
while surfacing lower-level features. Furthermore, scaling the language model consistently improves
explanation quality, highlighting this causal, output-centric approach as a promising direction for
automated interpretability.

Building on this idea, we also introduce a hybrid strategy —Steering-informed Top-k — that combines
the best of both approaches. We condition the VLM on the top activating images and the causal
intervention with the SAE feature, improving the quality of the generated explanations on four
complementary metricsE]

2 EXTRACTING FEATURES

Model neurons often exhibit polysemanticity, meaning they respond to seemingly unrelated concepts.
One leading explanation for this phenomenon is superposition, the idea that models learn to represent
more concepts than they have neurons (Arora et al.,[2018; |Elhage et al., 2022). Sparse Autoencoders
(SAEs) (Bricken et al.,[2023; [Huben et al.,|2024) have emerged as an interpretability tool for finding
interpretable and monosemantic features that are otherwise represented in superposition. SAEs
achieve this by mapping model representations z € R¢ into a higher-dimensional latent space R4
while enforcing sparsity in the latent representation. In this work, we use TopK SAEs (Gao et al.
2025)), which apply the TopK activation function to enforce sparsity. The encoder first computes a
sparse code using:

flz)= TopK(zWenc + benc)7 )]
and the decoder reconstructs the original input from the sparse representation via
SAE(2) = f(2)Waee + bace- )

The encoder and decoder are parameterized by weight matrices and bias vectors Wepe, bene and W,
baec respectively. We refer to SAE feature activation to a component in f(z) € RSAE, while a SAE
feature denotes a row vector in the dictionary Wy, € Rdsaexdmoset p this work, we train TopK SAEs
with the latent space dimensionality dsag = 8,192 on Imagenet dataset (Deng et al., 2009). We refer
to Section[A]for further training details.

3 AUTOMATICALLY INTERPRETING FEATURES

Following previous work in automated interpretability, we assume features can be explained by a
sequence of words e. We consider a subject model mg,,; whose features we want to interpret, and an
explainer model m.y, that generates the natural language explanations for these features.

'We refer to a ‘feature’ as a direction in the model’s representation space.
20ur code will be released upon publication.
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3.1 Top-k EXPLANATIONS

The existing approach to generate explanations from vision model features (Zhang et al., [2024; Xu
et al.,2025) assumes access to an evaluation set of images, D4 Each image I € Dl i fed into the
subject model mygyp,, and the representations from the residual stream at a particular layer [ and position

iujb() are extracted; for brevity, we omit the layer index in what follows. Following Equation H

a SAE feature activation vector is obtained for each position j, f(m?, (1)) € RS*E. For each

J.m

dimension i € {1,...,dsag}, We compute an image activation score by aggregating the individual
position activations across the entire image:
i
S0 = g (filmsw(1))) - 3)

Typically, the mean function (across positions) is used as g(-) (Zhang et al.| [2024). Then, we
identify the top-k images (with 1 < k < |D®*!|) that produce the highest image activation scores.
These images, denoted 7;* = {I}, ..., I}, are selected such that their scores follow the descending

order: S¥71 >S5 0I5 > > Si’IIDCV“‘\. A natural language explanation e; for the ¢-th feature is then
generated by conditioning the explainer model on both a prompt P and the selected top-k images:

€; ~ Mexp(e | P, 7;k) “)

Alternatively, the top-k images can be modified to emphasize the regions where the feature is active.
In our experiments, we explore two of such variants: ‘Masks’, where all non-activating patches are
occluded; and ‘Heatmaps’, where activation intensity is overlaid to highlight the most responsive
regions (see top activating images in Figure [I).

3.2 PROPOSED APPROACH

Current VLMs align a visual encoder with a pre-trained language model backbone (Bai et al., 2025}
Team et al.,[2025)), enabling natural image interpretation. We hypothesize that the language model
can serve as an explainer for SAE features. We do so by causally intervening the vision encoder’s
forward pass with each feature. We introduce two complementary methods for doing so.

Steering-based Explanations. In the basic setting, we prompﬂ the model to explain an empty
image I, and intervene the forward pass by adding the SAE feature vector Wy[i, :] across all
positions, effectively generating an explanation of the intervened feature. The process is formalized
as follows:

€; ~ Mexp (e | P, I, do(miub(f) = miub(f) + aWecli, ]) ) , 5)

where we express the intervention using the do-operator (Pearl, 2009)), and « is a coefficient indicating
the strength of the interventionﬂ This method offers an efficient and scalable means of obtaining
feature explanations, requiring a single forward-pass (see Appendix [F for details). Unlike prior
methods, it doesn’t require an evaluation image set, simplifying the interpretability pipeline.

Steering-informed Top-k Explanations. Instead of only using a blank image, we apply the same
causal intervention while conditioning on the top-k images, 7,*—those that most strongly activate
the ¢-th SAE feature. Intuitively, this focuses the explainer on the salient concept captured by the
feature, enabling more targeted and meaningful interpretations. The process is defined as:

Top-k images

i ~ e (€| P, T, do(mlyy(T) = mb(TF) + aWaeelis]) ) ©®

3The prompts used for each method can be found in Section
*In practice, we select the o coefficient on a validation set of 500 features.
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4 EVALUATING THE QUALITY OF THE EXPLANATIONS

4.1 EVALUATION METRICS

To quantitatively assess the explanations, we adopt three complementary evaluation techniques. The
first two are existing input-based evaluations relying on top-k images (Zhang et al., 2024} Xu et al.}
20235)). To avoid evaluating on the same set of images used for extracting the explanations, we use the
50k-image Imagenet test set, D', Finally, building on top of recent work (Shaham et al., 2024; [Bai
et al.,[2024)), we propose a pair of metrics based on synthetic images generated by diffusion model.

Simulation-based Evaluation. |[Zhang et al.|(2024)); Xu et al.| (2025) propose using a segmentation
model My, (€.g., SAM 2 (Ravi et al.,[20254)) to generate binary masks Mg, containing 1s on the
image patches that correspond to the concepts described in the explanations. These masks simulate
how the SAE feature would activate if the explanation were true. M., masks are compared against
the actual feature’s activation masks Mfeyre. More formally, given an image and an explanation, the
masks are computed as follows:

Myt =1 filman(D) > 0], Ml =me,(I,e;), @)

where 1[] is an indicator function that returns 1 if the condition holds and 0 otherwise. To quantita-
tively assess the alignment between these simulated and actual activation masks, the Intersection over
Union (IoU) is computed and averaged over the top-k activating images 7;* on D'**:

i1 i1
‘Ms‘eg n Mf@ature| (8)
| Mg UMY

feature |

1
i
ToU-Score® = T E
IeTk

CLIP-based Evaluation. To assess the semantic alignment between explanations and the corre-
sponding top-k activating images in D'**', we follow Zhang et al.| (2024) and use a CLIP model mjp.
For each dimension i, we compute the text embedding from the explanation e; and extract visual
embeddings from the top-k activating images 7;* associated with that feature. Specifically, for each

image I € T.*, we apply the feature’s activation masks (Mé’zﬂure) to focus on the relevant region, and

compute its CLIP image embedding. We then measure the cosine similarity between the explanation
embedding and each masked image embedding, averaged across images:

) 1 ex| i
CLIP-Score’ = == " cos (mg,ig(ei),m;ﬁg(l)) . )
IeTk

Synthetic-image-based Evaluation. For each feature ¢, we generate a set of IV positive images
using a diffusion mode maige conditioned on the explanation e;, Z0F = {I ~ mg (1 | ei)}N. Then,
we compute the average feature (synthetic) image activation score (Equation (3)):

: o i1 I
Synthetic-Activation-Score’ = N Z St (10)
Iezi+
We also generate a set of N negative images, T~ = {I ~ D“’s‘}N by randomly sampling from the

test set. Following Equation (3), we obtain the image activation score for each positive and negative
image and repeat the process for every feature. Finally, we compute the AUROC metricE]

4.2 EXPERIMENTAL SETUP

We train SAEs on a middle-layer of the vision encoders of Gemma 3 (Team et al.| [2024) and
the InternVL3-14B (Zhu et al., 2025), two state-of-the-art VLMs. We also train a SAE at a later
layer (3/4th depth) of Gemma 3 encoder. Gemma 3 employs a 400M parameters variant of the
SigLIP encoder (Zhai et al., [2023)), which works at a fixed resolution of 896 x 896 pixels. It remains

>We use Stable Diffusion 3.5 Medium (Esser et al.,[2024).
SThis is mathematically equivalent to the probability that the obtained image activation score for a ‘positive’
image in Z* T —generated by mgis—ranks higher than a randomly chosen negative image from D",
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Table 1: Explanation evaluation metrics for the middle layer SAE of Gemma 3 and InternVL3-14B
vision encoders. Except for AUROC, mean scores are reported, and statistical significance is assessed
pairwise between methods. A value is underlined if it is significantly higher (with p < 0.05) than
both other methods in the same column.

IoU Score AUROC Synth. Act. Score CLIP Score

Model Explanation Method
Masks Heatmaps Masks Heatmaps Masks Heatmaps Masks Heatmaps

< Steering 0.211 0.675 0.324 0.186
g Top-k 0.211 0.198 0.723 0.791 0.330 0.364 0.190 0.187
3 Steering-informed Top-k  0.216 0.203 0.788 0.838 0.461 0.505 0.193 0.189
g Steering 0.220 0.655 0.141 0.191
= Top-k 0.224 0.201 0.768 0.775 0.187 0.183 0.199 0.187
Q
= Steering-informed Top-k  0.228 0.203 0.823 0.833 0.254 0.252 0.199 0.191
© 1.0 1.0 F0.70
S —&- InternVL3 1
091 —— Gemma 3 7 o 0.30 | oes
o Fo.9 S '
<os A 30.251
e N i ! L 0.66
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Figure 2: Middle layer SAE synthetic-image-based Figure 3: Gemma 3 synthetic-image-based
evaluation scores of Top-k method as a function of the ~ evaluation scores of Steering method as a
similarity with Steering Explanations. function of the size of the LM mygyy;.

frozen during LM training and adaptation stages and produces 4,096 tokens per image. In contrast,
InternVL3-14B incorporates the pretrained InternViT-300M-448px-V2_5 encoder (300M parameters),
which processes images at a 448 x 448 resolution, producing 256 tokens per input. This setup enables
us to evaluate our proposed methods on a ‘pure’ SigL.IP encoder (Gemma 3) and another encoder
adapted through joint training (InternVL3).

Unless stated otherwise, the explainer models correspond to the same VLM from which the encoder
is interpreted, Gemma 3 27B and InternVL3-14B respectively. The prompts used for Top-k and
Steering-informed Top-k (these two methods share the same prompt) are designed to closely mirror
that of Steering, ensuring consistency across methods (see Section[G). For all experiments involving
top-activating images, we report results using the top five images (i.e., k=5). Visualizations of the
explanations produced by the different methods, alongside the top-activating images, are available in
the demo accompanying the papelﬂ (see Appendix [H|for more information).

5 RESULTS

To compare the different explanation methods we evaluate the quality of the explanations generated
by these methods using the metrics described in Section[d Our analysis is divided in three parts.
Section 5.1 evaluates the performance of the Steering method and illustrates its potential to reduce
contextual bias present in standard Top-k explanations. Section [5.2] shifts focus to the Sreering-
informed Top-k method, showing how it improves explanation quality. Finally, Section[5.3|explores
the SAE feature space to uncover the semantic structure of learned features.

Tanonymized link
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Steeri Ton-k Steering-informed Top-K
. eerin op-|
Model Masking Type 8 P Top-k Bird perched on a branch
Count % Count % Count % amidst blossoms.
- Steering
s Masks 0 00% 23 77% 12 4.0%
£ Dense cluster of thin, intertwining
&  Heatmaps 0 00% 125 47.7% 116 38.6%
branches with small, dark berries.
E’ Masks 0 00% 19 63% 13 4.3% Steering-informed Top-k
2 Heatmaps 0 00% 125 41.7% 117 39.0% Flowering| tree| branchy

Table 2: Count and percentage of ‘background’ Figure 4: Example of Top-k explanation exhibiting
explanations turned ‘animal’ explanations by dif- contextual bias.
ferent methods (see main text for details).

5.1 EXPLAINING THROUGH STEERING

We analyze the effectiveness of the Steering method focusing on how it scales with model size,
performs across different evaluation metrics, and complements 7op-k explanations. Our results
suggest that, although Steering has limitations when used in isolation, it scales effectively, inherently
mitigates contextual biases, and can be used to improve other interpretability methods, despite being
more efficient.

Steering performs well on IoU but lags behind in the rest of metrics. While Steering performs
competitively on IoU Score, especially on later layer SAE Section [C] it consistently lags behind
in the remaining metrics. This is evident across all evaluated layers and models, where Steering
achieves solid overlap with segmentation masks but fails to elicit strong activations or achieve high
AUROC and CLIP alignment. In particular, its AUROC and Mean Synthetic Activation scores are
substantially lower than those of Steering-informed Top-k, indicating weaker model sensitivity and
less effective explanation quality.

Steering helps surface high-quality Top-k explanations. We hypothesize that the Steering method
can act as a valuable signal for validating Top-k explanations. Intuitively, if both methods indepen-
dently produce semantically similar explanations for the same feature, this agreement may indicate a
higher likelihood of correctness. To test this, we compute semantic embeddings of each explanation
using a sentence similarity model (Reimers and Gurevych, 2019) and measure the semantic similarity
between the explanations produced by Top-k and Steering. We then assess the quality of the Top-k
explanations as a function of this similarity, retaining only those above varying thresholds.

As shown in Figure 2] explanation quality—measured by normalized synthetic activation scores and
AUROC—improves consistently as the similarity to Steering increases. This trend holds across both
the Gemma 3 and InternVL3 encoders with the exception of Gemma’s CLIP Score Section[D] These
results suggest that Steering serves as an effective filter or guide, helping to identify high-quality
explanations and improving the overall interpretability pipeline when used in conjunction with Top-k.

Steering quality scales with LM size.  Steering explanations improve as the size of the underlying
language model used for generation increases. In this experiment, we vary the size of the LM used
to produce explanations while keeping all other components fixed. As shown in Figure |3| both
evaluation metrics—Mean Synthetic Activation Score and AUROC—show consistent improvements
when moving from 4B to 12B to 27B parameter models. A positive trend is also observed for the rest
of the metrics in Section[E] This suggests that larger language models generate more informative and
causally effective explanations when used in the Steering framework. Crucially, this trend points to a
promising direction: as language models continue to grow in scale and capability, we can expect the
quality of Steering-based interpretability to improve accordingly.

Steering prevents contextual biases found in Top-k. To better understand what Steering captures
that Top-k does not, we analyze the 300 features with the largest IoU score difference between the two
methods. Manual inspection of this subset reveals that Steering often produces accurate background
explanations, whereas Top-k tends to misattribute these features to foreground elements such as
animals, likely due to recurring context in the top activating images, a pattern we name contextual
bias (see Figures|[I]and [).
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Figure 5: Explanation evaluation scores—synthetic-image-based scores on the left, and IoU and CLIP
scores on the right of 7op-k method as a function of the evaluation set size. Steering-informed Top-k
results on the rightmost bar.

To quantify this effect, we categorize each explanation using Gemma 3 27B as background, animal,
or other. As shown in Table 2] Top-k explanations frequently fall into the animal category (e.g.,
47.7% with heatmaps), despite the feature aligning with background under Steering with a high IoU
score. Notably, the hybrid Steering-informed Top-k reduces this misattribution (to 38.6%), suggesting
it inherits some of Steering ’s robustness to contextual bias.

5.2 THE BEST OF BOTH WORLDS: Steering-informed Top-k

We now analyze how the Steering-informed Top-k method consistently improves explanation quality.
In this section, we highlight two key findings: the consistent superiority of Steering-informed Top-k
across all metrics, and its ability to overcome the diminishing returns when using larger datasets.

Steering-informed Top-k gives the best explanations across the board. Across models and
layers, Steering-informed Top-k consistently achieves the best performance across all evaluation
metrics—IoU Score, AUROC, Mean Synthetic Activation, and CLIP Score—demonstrating its
superiority in producing high-quality explanations. In both the middle and later layers of the Gemma
3 vision encoder (Table[I] top, and Table[3)), as well as in the middle layer of the InternVL3-14B
encoder (Table [T bottom), this method outperforms both standard Steering and Top-k approaches,
regardless of whether masks or heatmaps are used. Notably, it achieves the highest AUROC and
Synthetic Activation scores, indicating that the explanations not only align well with segmentation
and top-k activating images, but also elicit stronger feature activations when using synthetic examples.
These results underline the effectiveness of combining top-k selection with causal interventions to
enhance explanation quality.

Steering-informed Top-k overcomes diminishing returns. We additionally generate 7op-k and
Steering-informed Top-k explanations using the top-k images obtained with a reduced evaluation
dataset. As observed in Section@ as the size of the evaluation dataset increases, standard Top-k
explanations gradually improve in quality, but the gains exhibit diminishing returns, especially beyond
15k examples. This trend is visible across all metrics. In contrast, Steering-informed Top-k provides
an immediate and substantial performance boost, effectively bypassing the need for large-scale
data to reach high-quality explanations, with particular improvements in synthetically generated
metrics (Section[5.2), suggesting that the causal intervention adds valuable signal beyond what dataset
scaling alone can offer.

5.3 EXPLORING THE SAE FEATURE SPACE

To complement the previous evaluations, this section provides an overview of the structure of the
learned SAE feature space. For this purpose, we use the middle-layer SAE of Gemma 3 encoder.

Selecting the best explanation per feature. Inspired by (2024), who use a fine-tuned
scorer to identify the best explanations out of a set of candidates, we adopt a rank-based voting strategy
to select the top explanation across the three explanation methods for each SAE feature. Specifically,
each evaluation metric independently ranks each explanation method. Then, the explanation with the
lowest (best) total rank is selected. In case of a tie, the explanation is chosen at random.
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Figure 6: UMAP visualization of SAE feature explanations, Gemma 3 vision encoder, middle layer.

To ensure we select interpretable features with meaningful explanations, we discard features whose
selected explanation has an IoU score (Equation (8))) below 0.2 or synthetic activation score (Equa-
tion (T0)) below 0.3. This filtering step leaves around 5,000 out of the original 7,690 alive features
with assigned explanation. As shown in Figure[8] Steering-informed Top-k is selected more frequently.
Notably, Steering and Top-k explanations are selected at similar rates.

Visualizing the SAE feature space. After selecting high-quality explanations, we compute seman-
tic embeddings using a sentence similarity modef| (Reimers and Gurevych| 2019). The projected 2D
UMAP (Mclnnes et al.| [2018) representation of these embeddings is shown in Figure[6] where the
clusters are obtained via k-means algorithm with k£ = 30. To facilitate interpretation,
we assign a label to each cluster by giving Gemma 3 27B a random sample of 20 explanations from
that cluster.

Since the SAE is trained on ImageNet, the learned features seem to capture concepts prevalent in
the dataset, such as humans (Human poses/figures), animals (Animal lifeforms), and natural scenes
(Trees & Foliage). While many explanations correspond to high-level semantic categories (e.g.,
Vehicles, Clothing), which aligns with expectations for middle-layer features (Cammarata et al.|
2020), we also observe features at lower levels of abstraction. These include perceptual features like
Repeating patterns/textures and Surface texture/patterns. Notably, as shown in Figure[§] Steering
allows obtaining these low-level features.

Finding features previously thought unique to DinoV2. The semantic space of explanation
embeddings enables targeted retrieval of features aligned with user-specified concepts. As a proof
of concept, we search for features previously identified by [Thasarathan et al.|(2025) as unique to
DinoV2 (Oquab et al.| [2024), a vision model trained without language supervision. Contrary to prior
claims, we found features seemingly representing depth (Figure[7] top) and perspective (Figure 7]
bottom) in our SigLIP SAE. For instance, the depth feature is described by the Steering explanation as:
“Blurred, out-of-focus background creating a sense of depth and indistinctness.”, and the perspective
feature as “Long, receding perspective created by converging lines, evoking a sense of depth and
distance”. While anecdotal, these findings demonstrate the utility of combining steering-based
explanations with semantic search to uncover conceptual overlap across models.

8We use sentence-transformers/all-mpnet-base-v2|.
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Figure 7: Depth (top) and perspective (bottom) Figure 8: Count of selected explanations by
features previously found as unique to Dinov2, each method. Each bar shows the level of ab-
surfaced via steering explanations. straction of the selected explanations.

6 RELATED WORK

Interpretability in vision models has seen rapid progress 2024), with recent work aiming at
mapping internal representations to natural language. A key strategy has been to leverage CLIP’s
shared image-text embedding space to align vision model features with human-understandable
concepts (Gandelsman et al,[2023; [Bhalla et al., [2024).

In parallel, mechanistic interpretability has advanced our understanding of LLMs
[2024), with SAEs revealing interpretable features (Bricken et al.l 2023). Recently, SAEs have been
applied to vision models 2024} [Lim et al.| 2025} Thasarathan et all 2025} [Rajaram et al
2025} [Venhoff et al.| 2025} [Shabalin et al.,[2025), revealing semantically meaningful features. Yet,

interpreting thousands of features remains a bottleneck, highlighting the need for automated solutions.

Automated interpretability in LLMs has traditionally followed ‘input-centric’ strategies, where

explanations are generated from top-activating inputs (Bills et al.,[2023} Choi et al.|[2024). This input-
centric method perspective has been extended to vision SAEs (Zhang et al.,[2024; Xu et al, 2025}

2024), where top-activating images are used instead. To address input-centric limitations, recent
work has shifted toward output-centric explanations. Gur-Arieh et al.| (2025) propose VocabProj and
TokenChange to reveal which outputs are causally tied to specific features. Similarly,
(2024) introduce an intervention-based metric to assess explanation quality through causal influence.
In vision models, output-centric causal approaches based on steering have also emerged, though
applications have so far remained confined to within-model interventions (Joseph et al., 2025}, [Lim|
et all}, 2025}, [Stevens et all,[2025), while we propose leveraging a language model to generate the
explanation on the intervened vision encoder.

Closely related to our work are efforts on self-explaining features in LLMs. Patchscopes
[ioun et al.} 2024} [Chen et al, [2024)) uses activation patching to transfer representations and generate
causal explanations. [Kharlapenko et al.| (2024) extend this idea to SAEs, enabling the model to act as
its own explainer by describing its features. Our work builds on these trends by proposing a causal,
output-centric method for interpreting SAE features in vision models through direct intervention and
language-based explanation.

7 CONCLUSIONS

This work presents a new framework for automatically interpreting features in vision models. By
steering the encoder with targeted feature interventions alone, and leveraging a language model as the
explainer, we generate feature explanations in an efficient and scalable way. While Steering overall
tends to underperform Top-k method, it avoids their contextual biases and is particularly effective
at surfacing lower-level features. Moreover, combining both approaches enables the identification
of higher-quality explanations, highlighting their complementary nature. Explanation quality also
scales consistently with language model size, suggesting that as LMs continue to advance, steering-
based explanations will become increasingly informative and precise. The hybrid Steering-informed
Top-k approach consistently produces the highest-quality explanations across evaluation metrics,
demonstrating the value of integrating causal interventions with input-based methods.
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A SAE TRAINING DETAILS

For training the SAEs, we used the dictionary_learning library (Marks et al., 2024). All SAEs were
optimized using the Adam optimizer with a learning rate of 3 x 10™*, 8; = 0.9, and S2 = 0.99. Training
was conducted over a single epoch of the ImageNet training set (1.28M images) with a batch size of §192. We
enforced a sparsity constraint of 25 active features per patch position.

Model activations from HuggingFace (Wolf et al.l|2020) were cached on-the-fly during training. We maintained
a buffer of 500 million activations, from which we randomly sampled. When the buffer was depleted to half
capacity, it was refilled with new activations.

B STATISTICAL TEST DETAILS

To assess statistical significance across explanation methods, we conduct pairwise one-tailed tests for each
evaluation metric and masking type. Since evaluation scores are not normally distributed, as verified via a
Shapiro-Wilk test, we apply the nonparametric Mann-Whitney U test. An explanation method is considered
statistically significant if it is stochastically greater than both alternatives (with p < 0.05).

C LATER LAYER RESULTS

Table 3: Explanation evaluation metrics for the later layer SAE of Gemma 3 vision encoder. Except
for AUROC, mean scores are reported, and statistical significance is assessed pairwise between
methods. A value is underlined if it is significantly higher (with p < 0.05) than both other methods
in the same column.

. IoU Score AUROC Synth. Act. Score CLIP Score
Explanation Method
Masks Heatmaps Masks Heatmaps Masks Heatmaps Masks Heatmaps
Steering 0.204 0.773 1.473 0.182
Top-k 0.194 0.186 0.782 0.857 1.453 1.609 0.188 0.187

Steering-informed Top-k  0.196 0.183 0.810 0.908 1.691 2.156 0.190 0.186

D Top-k EXPLANATION EVALUATION SCORES AS A FUNCTION OF SEMANTIC
SIMILARITY BETWEEN Steering AND Top-k EXPLANATIONS
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Figure 9: ToU Score and CLIP score values for Top-k method as a function of the similarity with
Steering explanations.
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E GEMMA 3 IoU AND CLIP SCORES OF Steering METHOD AS A FUNCTION OF
THE SIZE OF THE LM Mgy,
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Figure 10: IoU Score and CLIP score values as a function of dataset size, for Masks Top-k method.

F FLOPsS ESTIMATION

We compare the approximate Floating Point Operations (FLOPs) for generating explanations, using the estimate
2 x Parameters x Tokens for a model forward pass (Kaplan et al| 2020). Let:

o New = |D®|: size of the evaluation image set.

* Pup: parameters of the subject model M, (also serving as Mmexp).

¢ PsaE enc = dmodel - dsag: parameters for the SAE.

* Timg: per image token representations (for msu, input, for SAE processing per image, and for the
empty image I. E.g., 4096 for Gemma 3).

* Thrompe: token count for the textual prompt.
* Tixpi: max tokens in the explanation.

¢ k: number of top images selected.

Top-k Explanations. This method consists of two main computational stages:

1. Dataset Precomputation (typically a one-time process to identify top-k activating images for features):
It involves processing all Neva images through mgb, followed by SAE encoding for each representation
using Wene. FLOPSprecompute & Neval * Timg - 2 + (Paub + Psag_enc). Aggregation and sorting costs are
generally minor in comparison.

2. Per-feature Explanation Generation: The explainer model my,, is conditioned on the prompt and
the k selected images. FLOPsgen &= 2 - Paub * (Tprompt + & * Timg + Toxpl)-

The total cost is dominated by FLOPSprecompute When Neya is large.

Steering-based Explanations. This approach avoids the dataset precomputation. An explanation for each
feature 7 is generated via a single forward pass of mg,, from an intervention using the pre-defined SAE feature
direction Weclt, :]:

* Per-feature Explanation Generation: FLOPSgeer = 2 - Pup + (Tprompt + Time + Texpl)- The costs for

retrieving the SAE feature direction and applying the intervention (vector operations) are also incurred,
in addition to the forward pass captured by the formula above.

Steering-informed Top-k Explanations. This method combines the dataset precomputation with an
intervened generation step:

1. Dataset Precomputation: This stage is identical to the corresponding stage in the Top-k method,
incurring FLOPSprecompute @s defined above.

16



Under review as a conference paper at ICLR 2026

2. Per-feature Explanation Generation: Similar to standard Top-k generation, but with an intervention.
The computational cost for generation remains approximated by FLOPsg, as defined for Top-k
explanations. The costs for retrieving and applying the intervention are also incurred here, similar to
the pure Steering-based method. This method achieves the best results at a comparable cost.
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G PRrROMPTS

Steering Prompt

You are given an image highlighting a visual or semantic element. This element may
range from a low-level visual feature to a high-level abstract concept. Your task is to
describe this element in a single, clear sentence. If the element is a high-level
abstract concept, describe it as such; otherwise, describe its visual patterns.
Favor a more general interpretation. Start the highlighted element description
with \"The highlighted element in the image is a\".

Figure 11: Prompt used for obtaining explanations for the Steering method.

Top-k and Steering-informed Prompt (Masks)

You are given set of images highlighting a visual or semantic element. The patches of
the images not showing the element are masked out, giving the impression of a
pixelated image. This element may range from a low-level visual feature to a high-level
abstract concept. Your task is to describe this element in a single, clear sentence.
If the element is a high-level abstract concept, describe it as such; otherwise,
describe its visual patterns. Favor a more general interpretation. Provide a single
description for the highlighted element appearing in all images, and please ignore the
pixelated effect of the mask when describing the element. Start the highlighted element
description with \"The highlighted element in the image is a\".

Figure 12: Prompt used for obtaining explanations for the Top-k and Steering-informed Top-k method
with Masks.

Top-k and Steering-informed Prompt (Heatmaps)

You are given set of images highlighting a visual or semantic element. The patches of
the images showing the element are highlighted with a green heatmap. This element may
range from a low-level visual feature to a high-level abstract concept. Your task is
to describe this element in a single, clear sentence. If the element is a high-level
abstract concept, describe it as such; otherwise, describe its visual patterns. Favor
a more general interpretation. Provide a single description for the highlighted element
appearing in all images, and please ignore the overlayed green heatmap when describing
the element. Start the highlighted element description with \"The highlighted element
in the image is a\".

Figure 13: Prompt used for obtaining explanations for the Top-k and Steering-informed Top-k method
with Heatmaps.

H DEMO

The demo interface is designed to visualize and compare the different types of explanations computed in
our analysis. On the left panel, users can select the different layers, switch between models, and search for
explanation examples that contain specific keywords.

On the right, the main panel includes three view options. In the Feature Details view, the top section displays
the explanations generated by the three methods discussed in the paper: Top-k, Steering, and Steering-informed
Top-k (referred to as Top-k w/ Steering). Each explanation is shown using both masks and heatmaps (the latter
are labeled with Heatmap in the name). In the bottom section of this view, the top activating images for each
feature feature are displayed.
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Feature Details  Embeddings Visualization ~ Datamap

Model & Feature Selection

google/gemma-3-4b-it | SAE Layer 'mid' | Feature 2583

Select Base Model

google/gemma-3-4b-it ~ Generated Explanations

Select SAE Top K Heatmaps TopK Top K Heatmaps w/ Steering (S0)

Learly
O Lmid Steep, rocky slope covered in patches of vegetation, often neara  Rocky, sloping terrain, likely a scree slope or a riverbed with Steep, rocky hillside or slope, often covered with sparse

Liater body of water or a cliff face. large stones and gravel. vegetation.
et ceiention Top K w/ Steering (25) Top K w/ Steering (50) Steering (100)
Select Feature ® . ' i § i

Rocky hillside or slope, likely a scree slope or a natural Steep, rocky hillside or slope, often with sp: teep, d diag

2583 - rock and sp: g b the frame.

Top Activating Images
Explanation Search i & mag

Displaying top 12 images

Search explanations:

Search

Configuration & Display. v

#1(10:7678) |Act: 1764

Figure 14: Feature Details view of the demo interface. The top section shows explanations for a
selected feature using different methods (Top-k, Steering, and Steering-informed Top-k), using both
masks and heatmaps. The bottom section displays the top activating images for the selected feature.

The other two views, Embeddings Visualization and Datamap, show the UMAP projection of all explanations.
In the Datamap view, the clusters are shown with their corresponding topics.

I USE OF EXISTING ASSETS

We use the following assets in our work:

MODELS
Table 4: The list of models used in this work.
Model Link License
Gemma 3 l 2025 Hugging Face (Google) Gemma Terms of Useﬂ
InternVL3-14B (Zhu et al.|2025] Hugging Face (OpenGVLab) Apache 2.0
CLIP (Radford et al.|[2021] Hugging Face (OpenAl) MIT License
SAM?2 (Ravi et al.[[2025b Hugging Face (Meta) Apache 2.0
Stable Diffusion (Esser et al.[[2024) Hugging Face (Stability AI)| CreativeML OpenRAIL M license
all-mpnet-base-v2 (Reimers and Gurevych|[2019) HuggingFace Apache 2.0
DATASETS
Table 5: The list of datasets used in this work.
Dataset Link License

ImageNet (Deng et al.[, 2009) |Official Website Custom (Non-commercial)

J COMPUTE RESOURCES

All training and evaluation experiments were run on a single node of 4x NVIDIA Hopper H100 64GB GPUs. The
demo website runs on a machine with 2x NVIDIA 4090 GPUs. Each Gemma 3 SAE training took approximately
6 hours on 1 GPU, and 3 hours for InternVL3.
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https://huggingface.co/google/gemma-3-27b-it
https://huggingface.co/OpenGVLab/InternVL3-14B
https://huggingface.co/openai/clip-vit-large-patch14
https://huggingface.co/facebook/sam2-hiera-large
https://huggingface.co/stabilityai/stable-diffusion-3.5-medium
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
http://www.image-net.org
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