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ABSTRACT

Goal-conditioned reinforcement learning (RL) tackles the problem of training an
RL agent to reach multiple goals in an environment, often with sparse rewards
only administered upon reaching the goal. In this regard, automatic curriculum
learning can improve an agent’s learning by sampling goals in a structured or-
der catered to the agent’s current ability. This work presents two contributions to
improve learning in goal-conditioned RL environments. First, we present a sim-
ple, algorithm-agnostic technique to accelerate learning by continuous goal sam-
pling, in which an agent’s goals are sampled and changed multiple times within a
single episode. Such continuous goal sampling enables faster exploration of the
goal space and allows curriculum methods to have a more significant impact on
an agent’s learning. Second, we propose VDIFF, an automatic curriculum learn-
ing method that uses an agent’s value function to create a self-paced curriculum
by sampling goals on which the agent is demonstrating high learning progress.
Through results on 17 multi-goal robotic environments and navigation tasks, we
show that continuous goal sampling, combined with VDIFF or existing curricu-
lum learning methods, results in performance gains over state-of-the-art methods.

1 INTRODUCTION

Recent successes in deep reinforcement learning (DRL) have proven that it can tackle complex
sequential decision-making problems for tasks in diverse domains such as robotics, video games,
and traffic control (Andrychowicz et al., 2020; Vinyals et al., 2019; Li et al., 2016). Building upon
the success of DRL in solving specific robotic tasks, the next step is the development of more
general-purpose methods that can solve multiple tasks. With this objective in mind, the area of goal-
conditioned RL (GCRL) (Schaul et al., 2015) has received increased attention as an extension of
standard RL. Here, agents are trained to learn a policy that can achieve multiple goals, with sparse
rewards being provided when the agent achieves the desired goal (Andrychowicz et al., 2017).

A natural question arises from the GCRL formulation – given a set or a distribution of goals, in
what order should they be presented to the learning agent? A naive strategy is to sample these goals
uniformly from the goal distribution. This strategy has two drawbacks. First, humans and other
biological agents do not have a random, unstructured order to their learning (Ferster & Skinner,
1957). For example, a baby does not start walking before it can learn to crawl. Using the same
intuition, at the start of learning, when an RL agent essentially has a random policy, sampling hard-
to-achieve goals will result in no learning signal and wasted samples with high probability. Second,
given that the training time is limited, it is often not even possible to adequately cover the entire goal
space for high-dimensional problems by random sampling. To address these challenges, curriculum
learning methods structure an agent’s learning by organizing the order in which goals or tasks are
presented to the agent (Soviany et al., 2022). The fundamental intuition behind many of these
methods is to sample goals that are neither too easy nor too hard and are thus maximally informative
to the agent. Although driven by the same intuition, the technical objectives used in prior work vary
significantly. For example, Matiisen et al. (2019) and Portelas et al. (2020) propose to sample tasks
on which an agent has high learning progress (LP), while VDS (Zhang et al., 2020) proposes to
sample goals that have high expected epistemic uncertainty.
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While curriculum learning methods have led to significant improvement over vanilla GCRL, they are
still quite sample inefficient in sparse reward settings, especially for problems with high dimensional
goal spaces. One of the reasons behind this is that the standard GCRL setup constrains an agent to
have a single goal for the entire length of an episode. As a result, episodes where the goal is too hard
or too easy to achieve are non-informative and waste agent interactions. The single-goal framework
also restricts curriculum learning methods to sampling goals from the initial state and does not give
them the flexibility to change an agent’s goal online based on its current state. However, since goals
do not affect transition dynamics, this constraint is not required to be enforced but is simply a result
of the chosen conventional framework. Using this observation and the recent success of curriculum
learning methods, this work presents two contributions to accelerate and improve GCRL.

First and as the main focus of this work, we present Continuous Goal sampling, a simple technique
that proposes a novel extension to GCRL which can accelerate a wide range of curriculum learning
algorithms. In continuous goal sampling, goals are sampled multiple times in an episode, instead
of the standard practice of sampling a goal only at the start of an episode. Second, inspired by the
success of recent LP-based curriculum methods in multi-task RL (Matiisen et al., 2019; Portelas
et al., 2020), we reformulate the LP objective to enable it to work in sparse reward settings with
random initial states. We achieve this by using a current and a lagged value function to approximate
the expected LP of a goal. Since value functions are a part of most current deep RL algorithms, we
reuse them off the shelf for LP computation. Our proposed automatic curriculum learning algorithm,
referred to as VDIFF, requires no additional learning, has little to no computational overhead, and is
agnostic to the base RL algorithm.

We present results on a set of 14 benchmark manipulation environments (Plappert et al., 2018;
Gallouédec et al., 2021) and 3 maze navigation environments (Zhang et al., 2020). Through these
results, we show that resampling improves the sample efficiency and performance of explicit cur-
riculum learning algorithms (VDS and VDIFF), implicit curriculum learning methods (HER), and
vanilla RL algorithms in multiple environments. Finally, we also show that our proposed curricu-
lum learning method VDIFF is able to outperform existing explicit curriculum learning methods in
GCRL. Anonymized code is available here.

2 BACKGROUND

2.1 GOAL-CONDITIONED RL

Goal-conditioned RL (GCRL) (Schaul et al., 2015) aims to train an agent to achieve multiple goals
in an environment. Formally, it can be described as a finite-horizon Markov decision process (MDP)
defined by the tuple (S,G,A,R, T, ρ, γ), where S is the state space, A is the action space, R : S ×
A×G→ R is the the reward function, T : S×A×S → [0, 1] is the state transition function, ρ(s0) is
the initial state distribution, and γ ∈ [0, 1] is the discount factor. At the start of each episode, a goal
g is sampled from G and the objective is to learn a policy π(at|st, g) which maximizes the expected
value V , which is defined as the sum of discounted rewards V (s0, g) = E[

∑T
t=0 γ

t R(st, at, g)].
Given the dependence of R on g, GCRL can also be viewed as the problem of learning a policy π
over a distribution of reward functions Rg parameterized by a goal g.

The inherent binary structure of GCRL setup allows for the definition of a sparse indicator reward
function that indicates if an agent has achieved the given goal g (Andrychowicz et al., 2017). An
agent receives a reward of 0 and is said to have achieved goal g when d(st, g) < ϵ, where d(., .) is
some distance function in goal space and ϵ is the acceptance threshold. In all other cases, the agent
receives a reward of −1. In this work, an episode terminates as soon as an agent achieves the goal.

2.2 CURRICULUM LEARNING SETUP

In goal-conditioned RL, a goal g is sampled from G according to some probability distribution
p(g|s0), where s0 is the initial state. The task of a curriculum learning method is to design p(g|s0)
to enable the sampling of meaningful goals that can both improve and accelerate an agent’s learn-
ing. Curriculum learning methods dynamically change p(g|s0) as an agent’s policy evolves during
training. To make this dependence on policy more explicit, we will denote the goal distribution
designed by a curriculum method as pπ(g|s0). Existing curriculum methods generally construct
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Algorithm 1 Continuous Goal Sampling Algorithm

Input: Max Episode Length Tmax, Resample Frequency R, policy π
Initialize: Initial state s0 ∼ ρ(s0), Initial goal gcurrent ∼ pπ(g|s0) [Using equation 6]
for t = 0, 1, ...Tmax do

at ∼ π(st, gcurrent)
st+1, rt+1, done = environment step(at)
if done then

break
end if
if t mod R == 0 then

g′ ∼ pπ(g′|st+1) ▷ In practice, done using Equation 6
gcurrent = g′

end if
end for

pπ(g|s0) ∝ f(s0, g), where f is some function encoding the curriculum objective. For example, in
VDS (Zhang et al., 2020), f is the epistemic uncertainty of sampling goal g from initial state s0.
That is, the objective of VDS is to sample goals which have high epistemic uncertainty. Similarly, in
ALP-GMM and R-IAC (Portelas et al., 2020; Baranes & Oudeyer, 2009), f is the learning progress
(LP). For vanilla goal-conditioned RL (Section 2.1) in which goals are sampled randomly, f reduces
to an uniform distribution U(g) over the goal space. Finally, note the dependence of pπ(g|s0) on the
initial state s0. While it is possible to drop s0 if the environment always resets to a fixed state, such
as in GoalGAN (Florensa et al., 2018), that is not the case in many real-world settings.

3 METHOD

In this section, we first introduce continuous goal sampling, a simple technique to accelerate GCRL
by sampling goals multiple times in an episode. Then, we introduce VDIFF, a new automatic cur-
riculum method for GCRL, which utilizes value functions to compute learning progress (LP).

3.1 CONTINUOUS GOAL SAMPLING

In continuous goal sampling, in addition to setting a new goal at the start of an episode (standard
practice), we continuously sample and set a new goal every R timesteps in an episode, where R
is less than the maximum episode length. The main idea behind this is that the standard GCRL
framework, which has enjoyed notable success in robotic tasks (Andrychowicz et al., 2017), can
be even further extended by removing the constraint of restricting an episode to a single goal. The
removal of this constraint is made possible by observing that a goal g is a parameterization of the
reward function and has no effect on environment transition dynamics. We incorporate resampling
into our training framework by sampling a new goal g′ every R timesteps during an episode, where
R is referred to as the resample frequency. The probability of sampling a specific goal g is given
by pπ(g|st), where pπ(g|st) ∝ f(st, g), as described in Section 2.2. The continuous goal sampling
algorithm is formally described in Algorithm 1.

3.2 LEARNING PROGRESS BASED CURRICULUM

Existing curriculum methods using learning progress (LP) as an objective have shown great promise
in the domain of multi-task RL with dense rewards and low-dimensional tasks (Portelas et al., 2020;
Romac et al., 2021). However, they are not directly applicable to goal-conditioned RL, which not
only has binary episode returns, but also has random initial states that are possibly high dimensional.
In this section, drawing on the success of LP in multi-task RL, we present VDIFF, an LP-based
automatic curriculum learning method for GCRL.
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Algorithm 2 LP-based Curriculum Learning Algorithm

Input: Initial Parameters (π,V ,V T ,V T ′
)=(ϕ0, θ0,θ′0,θ′′), Blackbox Learning Algorithm A,

Total Training Episodes Nmax, Fit Rate F
Output: Learned policy parameters ϕN

Initialize: θ′0 = θ0, θ′′ = θ0
for i = 0, 1, ...Nmax do

Sample initial state s0 ∼ ρ(s0)
Sample set of N random goals G using U(g)
for g ∈ G do

LP (s0, g) = V T (s0, g; θ
′
i)− V T ′

(s0, g; θ
′′)

end for
Sample g ∼ p(g|s0) [Using equation 6]
Collect trajectory τi(πϕi

|g)
Update Parameters:

ϕi+1 ← Update Policy(A, ϕi, θi, θ
′
i)

θi+1 ← Update V alue(A, ϕi, θi, θ
′
i)

θ′i+1 ← Update Target V alue(θi+1, θ
′
i) [Using equation 3. Generally inbuilt in A]

if i mod F == 0 then
θ′′ ← θ′i+1

end if
end for
Return: ϕN

3.2.1 CURRICULUM DESIGN

We define the Learning Progress (LP) of a state and goal tuple (st, g) as the change in the expected
discounted returns of reaching the goal from that state after some specified ∆T training episodes.

LP (st, g) = V (st, g)− V ′(st, g) (1)

where V is the current value function and V ′ is the old value function, i.e., the value function ∆T
training episodes ago.

Goals exhibiting high LP under this formulation are the ones in which the agent is progressing the
fastest and should be sampled more aggressively. To formalize this notion, we propose to sample
goals proportional to their learning progress, i.e. pπ(g|st) ∝ LP (st, g). In addition to allowing self-
paced learning for the agent, using value functions to construct a curriculum has little computational
overhead since the value functions learned by base RL algorithms can be reused off the shelf.

One downside of using value functions for LP inference is that they can be noisy because i) they
are trained over data collected by an agent which is constantly exploring, and ii) because, at any
iteration, they are trained using a small, random batch of data that could be biased. To address
this, we use Polyak averaging (Polyak & Juditsky, 1992) to obtain smoothed value functions for LP
inference. Smoothed value functions are a part of many deep RL algorithms and are referred to as
‘target’ functions because they are used to obtain the target for temporal difference (TD) updates.
LP is now computed as -

LP (st, g) = V T (st, g)− V T ′
(st, g) (2)

where V T is the target value function and V T ′
is the target value function ∆T training episodes ago.

At each training step, the parameters θ′ of V T are updated using -

θ′ = αθ′ + (1− α)θ (3)

where θ are the parameters of the value function V , θ′ are the parameters of the target value function
V T , and α is the Polyak coefficient.

The smoothed target value functions provide a cleaner, less noisy LP signal. This does not come for
free, as the smoothed update causes V T to lag behind V . However, in practice, the gains from the
reduced noise far outweigh the slowdown from the lag. This is formally defined in Algorithm 2.

Selective Resampling: In some situations, the current goal g might be optimally challenging for
an agent and sampling a new goal g′ will not add value. More formally, it makes intuitive sense to
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sample a new goal only if the expected gain of sampling a new goal is greater than the estimated
gain of the current goal. Thus, we sample a new goal if -

Eg′∼p(g|st)[f(st, g
′)] > f(st, g) (4)

We use selective resampling where the expected value of sampling a new goal is computed as -

EG[LP (st, g)] =

N∑
i=1

[p(st, g
(i))× LP (st, g

(i))]

=
1

Z

N∑
i=1

[LP (st, g
(i))× LP (st, g

(i))] [Using Eqn 6]

(5)

where G is a set of N random goals and Z is a normalization constant. Selective resampling is
formally described in Algorithm 3.

Our final algorithm, referred to as VDIFF, develops an adaptive, self-paced curriculum for an agent
without any extra learning-based component or encoded domain knowledge, thus allowing for easy
integration into most existing GCRL frameworks.

4 EXPERIMENTAL RESULTS

In this section, we first detail the experimental setup by describing the environments tested, train-
ing algorithm and the baseline methods. Next, through a series of experiments, we analyze the
performance of continuous goal sampling and VDIFF on a diverse set of multi-goal environments.

4.1 EXPERIMENTAL SETUP

Environments: We run experiments on 14 manipulation goal-conditioned tasks and 3 maze-
navigation environments. These include 12 environments of the OpenAI Fetch and Hand envi-
ronments (Plappert et al., 2018) which serve as benchmarks for goal-based RL and 2 tasks (Flipping
and Stacking) from the panda-gym environments (Gallouédec et al., 2021). The 3 maze-navigation
environments are adapted from Zhang et al. (2020). All environments use the sparse reward function
detailed in Section 2.1.

Training details: We use Soft-Actor Critic (SAC) (Haarnoja et al., 2018) as the base RL algorithm
for our method. All baseline methods also use SAC with identical hyperparameter settings to enable
a fair comparison. VDIFF uses, without alteration, the target value function V T (s, g; θ′) of SAC.
Additionally, to compute V T ′

(s, g), we store additional parameters θ′′ which are synced periodically
with θ′ as described in Algorithm 2. We also augment SAC by incorporating Hindsight Experience
Replay (HER) (Andrychowicz et al., 2017), a highly effective relabeling technique that uses future
states reached in a trajectory as virtual goals to obtain additional learning signal. However, since
HER is constrained to work only for off-policy algorithms in sparse reward domains, we also present
results of SAC with no HER. We train 2 variants of VDIFF:

• VDIFF: Uses the LP-based curriculum described in Section 3.2.1, but does NOT use continuous
goal sampling.

• VDIFF-R: Uses both the LP-based curriculum and continuous goal sampling.

Baseline methods: We compare our method with the following baseline methods:

• Random: Random is a simple baseline method in which goals are sampled randomly from the
goal space.

• HER: HER is a relabeling technique which augments the buffer of base RL algorithms with
fictitious data to obtain additional learning signal. Since HER is not an explicit curriculum
method, it can be used alongside other explicit curriculum methods. In vanilla HER, goals are
sampled randomly using a uniform distribution U(g) i.e., HER has no explicit curriculum.
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Figure 1: Results of SAC+HER on 6 selected environments. Note that these plots mainly show the environ-
ments on which VDIFF-R improves performance. Complete results can be found in Figure 4. Shaded region
represents 95% confidence interval of mean success rate across 6 seeds.

.

• VDS: VDS (Zhang et al., 2020) is the state-of-the-art curriculum method for goal-conditioned
RL. It proposes to sample goals with high epistemic uncertainty which is approximated as the
disagreement between the outputs of an ensemble of learned value functions. Our implemen-
tation follows the official codebase of VDS. However, we implement VDS with SAC instead
of DDPG (Lillicrap et al., 2015) to enable fairer comparison. This is not an issue as VDS is
independent of the base RL algorithm and treats it as a black box.

4.2 IMPROVEMENTS USING VDIFF AND RESAMPLING

Results of all methods using HER+SAC are presented in Figure 1. In the following discussion, we
drop ‘+HER’ from the names of the explicit curriculum algorithms for brevity. For example, VDIFF
actually refers to VDIFF+HER. From the results, we first observe that VDIFF-R shows improved
sample efficiency or better performance compared to baseline methods in 7 out of the 17 envi-
ronments. In the other 10 environments, VDIFF-R matches the performance of baseline methods.
Notably, the performance gains are significant in 3 variants of the challenging Hand Manipulate
Block environments. By comparing VDIFF and VDIFF-R, we can conclude that continuous goal
sampling is responsible for the observed gains.

We hypothesize that there could be 2 major reasons behind the ineffectiveness of VDS and VDIFF
when used alongside HER. First, HER already has a powerful implicit curriculum because as an
agent’s policy improves, the goals it uses for replay naturally shift from simpler to more difficult
ones. As it generates training data for the agent, it also has a stronger and more direct impact on an
agent’s learning. The potential gain of using an explicit curriculum method alongside HER could
thus be small. Second, HER augments the buffer through fictitious data which is often biased. Since
both VDS and VDIFF use value functions trained on this buffer, their generated curricula might be
noisy and biased. At the same time, it is worth noting that while HER is constrained to work only in
sparse reward settings and with off-policy methods, both VDS and VDIFF have no such restrictions.
Hence, it is crucial to understand their performance without HER, which is discussed in Section 4.4.

4.3 CAN RESAMPLING HELP OTHER ALGORITHMS?

Figure 2 presents results comparing continuous resampling variants of the baseline methods to their
vanilla variants. In the following discussion, we drop ‘+HER’ from the names of the explicit curricu-
lum algorithms for brevity. For example, VDS-R actually refers to VDS-R+HER. We first observe
that both VDS-R and HER-R outperform their corresponding vanilla variants, VDS and HER on
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Figure 2: Results for continuous goal sampling variants of HER and VDS on 6 selected environments. Note
that these plots mainly show the environments on which continuous goal sampling improves performance over
baseline methods. Complete results can be found in Figure 5. Shaded region represents 95% confidence interval
of mean success rate across 6 seeds.

6 environments. In the other 11 environments, they match the performances of VDS and HER.
This provides further evidence that resampling goals is a general strategy which can accelerate per-
formance in goal-conditioned RL. Interestingly, we also observe that HER-R is able to marginally
outperform VDS-R and VDIFF-R. Since HER-R always resamples goals while VDS-R and VDIFF-
R only selectively resample, this leads us to the conclusions that i) random resampling at a constant
frequency is an effective strategy with HER and ii) explicit curriculum methods might have lesser
room for improvement in settings with HER (further validated through results in Section 4.4).

4.4 IS VDIFF EFFECTIVE WITHOUT HER?

In Figure 3, we compare all baseline methods on SAC without HER. We first observe that both VDS
and VDIFF are easily able to outperform Random in 6 out of the 12 tested environments. Without
the strong implicit curriculum of HER, the role of explicit curriculum methods increases greatly.
It is also worth noting that VDIFF is able to outperform VDS on multiple environments. Next,
and as expected, continuous goal sampling helps further improve the performance of all methods.
Finally, it is also interesting to note that not all environments are amenable to learning with HER.
For example, we observe that though methods using HER generally perform significantly better
in most environments, their asymptomatic success rate is lesser than equivalent NO-HER variants
for 3 environments (Hand Manipulate Pen,Hand Manipulate Pen-Rotate and Fetch Slide). This is
possibly because of the biased data that HER adds into the replay buffer. In environments where the
performance is affected by such bias, using explicit curriculum learning methods with no HER is
the best choice.

4.5 HOW DOES RESAMPLING FREQUENCY AFFECT PERFORMANCE?

To better understand what the optimum resampling frequency (R) is, we run an ablation study over
different values for R. These results are depicted in Figure 7. Note that R = Episode Length repre-
sents the standard practice of sampling a new goal when the environment is reset. From these results,
we first observe that performance is roughly the same for moderate values of R, i.e., R = 10, 20.
However, performance becomes increasingly unstable as R is decreased further and is the worst for
the extreme value of R = 1. This is expected for two reasons. First and intuitively, sampling a new
goal at every timestep breaks the sequential decision-making nature of the problem. Second and
more technically, if a new goal is sampled at some timestep t, then the (st, at, s

′
t) transition tuple

is unsuitable for temporal difference (TD) updates as the reward function has changed. For higher
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Figure 3: Results without HER on all environments. Shaded region represents 95% confidence of mean
success rate across 6 seeds. We observe that the explicit curriculum methods VDS and VDIFF easily outperform
Random. However, HER is able to outperform other methods on most environments. Interestingly, there are 3
environments in which HER converges to a lower success rate compared to VDIFF-R. Full results can be found
in Figure 6.

values of R, this does not matter as such transitions are relatively rare (even rarer when there is data
augmentation from HER which is free of this issue). However, it will still be interesting to study if
removing these rare erroneous transitions from the buffer can further improve learning. We find that
setting R = 0.2×MaxEpisodeLength generally works well for most environments.

4.6 HOW DOES THE TARGET VALUE FUNCTION OF VDIFF IMPACT PERFORMANCE?

VDIFF uses target value functions to compute learning progress (LP) (Equation 2). To understand
the impact of using the target function, we run an ablation study in which LP is instead computed
using the standard (non polyak-averaged) value functions, which were described in Equation 1. To
minimize additional sources of noise and to bring full focus on the explicit curriculum method, we
run these experiments without HER. In addition to the success rate, we also plot the estimated LP,
which is computed using the appropriate value functions, as described above. The obtained results
are depicted in Figure 8. From the results, we observe that standard value functions perform worse
compared to target value functions in multiple environments. As discussed in Section 3.2.1, we
believe that that this is a result of the noisiness of the value function. This noise causes significant
variation in the LP estimates, which can be directly seen from the LP plots.

5 RELATED WORK

5.1 ORIGIN OF CURRICULUM LEARNING

The origins of curriculum learning are rooted in human and animal cognition. Early experiments
showed that animals could be trained more effectively by administering a curriculum of programmed
learning (also referred to as shaping in cognitive science) (Ferster & Skinner, 1957). Inspired by
this, Bengio et al. (2009) conceptualized curriculum learning in the context of machine learning by
training a supervised learning algorithm on examples of gradually increasing difficulty. This was
soon followed by works which developed an active (adaptive) curriculum for supervised learning
algorithms (Kumar et al., 2010; Lee & Grauman, 2011; Graves et al., 2017). Due to its parallels
with learning in biological agents, RL is one of the most promising domains to apply curriculum
learning. With the advent of deep RL, there has been increased interest in developing more general-
purpose RL agents that can solve multiple tasks (Narvekar et al., 2020; Soviany et al., 2022).
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5.2 CURRICULUM LEARNING IN GOAL-CONDITIONED RL

Curriculum learning for goal-conditioned RL (GCRL) is concerned with the problem of presenting
training goals to an agent in an order which is conducive to learning (Schaul et al., 2015; Liu et al.,
2022). Florensa et al. (2018) trained a generative adversarial network (GAN) to generate goals that
have an intermediate probability of success. Zhang et al. (2020) proposed to sample goals which
have high epistemic uncertainty (Section 4.1). Hindsight Experience Replay (HER) is a popular
relabeling technique that uses future states reached in a trajectory as virtual goals to augment the
replay buffer (Andrychowicz et al., 2017). By doing so, it builds an implicit curriculum for the
agent as goals used for replay naturally shift from simpler to more difficult ones. Curriculum-
guided HER (CHER) is an extension of HER which uses curriculum learning to select the virtual
goals used by HER for relabeling (Fang et al., 2019). Finally, self-play based methods have a multi-
agent setup (generally 2 agents) in which one agent proposes increasingly challenging yet achievable
goals for the other agent (OpenAI et al., 2021; Sukhbaatar et al., 2017; Du et al., 2022; Campero
et al., 2020). Although powerful, self-play based methods are primarily targeted towards open-ended
environments, and require a complex setup and a large number of training samples.

5.3 LEARNING PROGRESS BASED CURRICULUM

The fundamental idea behind learning progress (LP) based curriculum methods is to sample with
high frequency the goals/tasks on which an agent is making the most progress. LP can be considered
a form of intrinsically motivated active learning and has been used successfully in diverse applica-
tions ranging from developmental robotics (Blank et al., 2005) to classroom teaching (Clement et al.,
2013). R-IAC, one of the first active learning algorithms to use LP in sensorimotor learning, used
absolute LP (ALP) to split a parameter space into sub-regions (Baranes & Oudeyer, 2009). Build-
ing on this, Matiisen et al. (2019) presented a teacher-student framework for discrete task spaces
in which a teacher (curriculum generator) samples tasks with high LP for the student (RL agent).
Portelas et al. (2020) extended this to continuous task spaces by fitting a Gaussian Mixture Model
(GMM) on (task, ALP) tuples and then sampling a task from a Gaussian chosen proportionally to
its mean ALP value. Both these works assume dense reward settings and compute LP using either
the nearest neighbor (Portelas et al., 2020) or the change in episode return for a given task (only
applicable in discrete task spaces). As a result, they are not directly applicable to GCRL, which
not only has binary episode returns, but also has random initial states that are possibly high dimen-
sional. This work reformulates ALP for GCRL using value functions, as described in Section 3.2.1.
Similar to our method, SPaCE also uses value functions for LP computation (Eimer et al., 2021).
However, SPaCE is targeted towards contextual RL and is only applicable in discrete task settings.
Additionally, it does not make use of target value functions for smoothing.

6 CONCLUSION AND FUTURE WORK

In this work, we presented 2 contributions to advance goal-conditioned RL. First, we proposed con-
tinuous goal sampling, a novel extension of standard GCRL in which goals for an agent are sampled
and set multiple times during an episode. Second, we introduced VDIFF, an automatic curriculum
learning method for GCRL, which uses learning progress computed through value functions to de-
velop a self-paced curriculum for an agent. Through experiments on a suite of 17 sparse-reward
tasks, we demonstrated the effectiveness of continuous goal sampling as a general strategy to ac-
celerate learning in GCRL. Finally, we showed that although explicit curriculum methods such as
VDIFF can generate meaningful curricula, their role is minimized in settings where Hindsight Ex-
perience Replay (HER) (Andrychowicz et al., 2017) can be applied.

Future work will explore different variants and applications of continuous goal sampling. This could
include exploring techniques such as dynamically changing episode length and applications such as
reset-free RL (Zhu et al., 2020). Another interesting future direction will be to better understand the
interaction between explicit curriculum methods and HER, with the ultimate intent of developing
explicit curriculum methods that can work harmoniously with HER. Finally, it will also be inter-
esting to evaluate explicit curriculum methods such as VDIFF on on-policy algorithms and dense
reward settings, and study techniques that can extend VDIFF to multi-task RL (Romac et al., 2021).
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A APPENDIX

A.1 IMPLEMENTATIONAL DETAILS

This section presents implementational details and minor modifications which enable continuous
goal resampling and VDIFF to work effectively in practice.

Sampling Goals: Even though we can easily obtain LP (st, g) for any (st, g), computing pπ(g|st)
over the entire continuous goal space is intractable. To enable sampling from pπ(g|st), we discretize
the problem by first sampling a set of goals G = {g(n)}Nn=1 using U(g), the uniform distribution
over the goal space G. Then, the probability of sampling goal g ∈ G is

pπ(g|st) =
1

Z
f(st, g) (6)

where Z =
∑N

i=1 f(st, g
(i)) is a normalizing constant, and f(st, g) is the function encoding the

curriculum objective (in the case of VDIFF, f(st, g) = LP (st, g)).

Catastrophic Forgetting: Multi-task RL is prone to catastrophic forgetting, a phenomenon where
agents forget how to achieve learned goals if the learned goals are not sampled enough or if the
agent’s policy changes significantly in the process of learning new goals . This issue can be exacer-
bated by curriculum learning methods because they alter p(g|st) which could result in some goals
having a very low probability of being sampled. After initial early training for M episodes with LP
objective, we samples goals using the absolute learning progress (ALP) -

pπ(g|st) ∝ |LP (st, g)| (7)

We do not use ALP in the early training phase because value functions are initialized randomly to
output values close to 0. Given that our reward structure has negative rewards, outputs of the value
function fall during early training. If we use ALP as an objective from the start, the drop in output
values might be falsely detected as catastrophic forgetting, when in fact it is the initial convergence
of the value function. Finally, in actual practice, we find that agents in multi-goal RL are less prone to
catastrophic forgetting in comparison to multi-task RL (Portelas et al., 2020; Matiisen et al., 2019).
This is expected as multi-task RL considers a distribution of environments, whereas multi-goal RL
is more structured and involves a distribution over sparse reward functions in a single environment.

Efficient Updating of V’: Since updating V T ′
at each training step can be expensive, we sync it

with V T every F episodes, where F is referred to as the fit rate.

A.2 ALGORITHMS

A.2.1 SELECTIVE GOAL RESAMPLING

Algorithm 3 Selective Goal Resampling Algorithm

Input: Max Episode Length Tmax, Resample Frequency R, policy π
Initialize: Initial state s0 ∼ ρ(s0), Initial goal gcurrent ∼ pπ(g|s0) [Using equation 6]
for t = 0, 1, ...Tmax do

at ∼ π(st, gcurrent)
st+1, rt+1, done = environment step(at)
if done then

break
end if
if t mod R == 0 then

Sample set of N random goals G using U(g)

EG[f(st, g)] =
∑N

i=1[p(st, g
(i))× f(st, g

(i))] []Equation 6]
if EG[f(st, g)] > f(st, gcurrent) then

g′ ∼ pπ(g′|st+1)
gcurrent = g′

end if
end if

end for
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A.3 COMPLETE EXPERIMENTAL RESULTS

A.3.1 IMPROVEMENTS USING VDIFF AND CONTINUOUS GOAL SAMPLING
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Figure 4: Results for SAC+HER on all environments. Shaded region represents 95% confidence interval across
6 seeds. We notice that VDIFF-R improves performance in 7 environments and matches the performances of
baseline methods in the other 10 environments.
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A.3.2 EFFECT OF CONTINUOUS GOAL SAMPLING ON BASELINE ALGORITHMS
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Figure 5: Results showing continuous goal sampling for HER and VDS on all environments. Shaded region
represents 95% confidence interval of mean success rate across 6 seeds. We notice that the continuous sampling
variants HER-R and VDS-R outperform their corresponding vanilla variants in multiple environments.
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A.3.3 RESULTS IN THE NO-HER DOMAIN

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timestep 1e6

0

20

40

60

80

100
Su

cc
es

s R
at

e
FetchPickAndPlace-v1

Agent
HER-R
Random-R
VDIFF
VDIFF-R
VDS-R

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timestep 1e6

0

20

40

60

80

100

Su
cc

es
s R

at
e

FetchSlide-v1
Agent
HER-R
Random-R
VDIFF
VDIFF-R
VDS-R

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timestep 1e6

0

20

40

60

80

100

Su
cc

es
s R

at
e

FetchPush-v1
Agent
HER-R
Random-R
VDIFF
VDIFF-R
VDS-R

0 1 2 3 4 5
Timestep 1e6

0

5

10

15

20

25

30

35

Su
cc

es
s R

at
e

HandManipulateBlock-v0
Agent
HER-R
Random-R
VDIFF
VDIFF-R
VDS-R

0 1 2 3 4 5 6
Timestep 1e6

0

10

20

30

40

50

Su
cc

es
s R

at
e

HandManipulateBlockRotateParallel-v0
Agent
HER-R
Random-R
VDIFF
VDIFF-R
VDS-R

0 1 2 3 4 5 6
Timestep 1e6

0

20

40

60

80

Su
cc

es
s R

at
e

HandManipulateBlockRotateXYZ-v0
Agent
HER-R
Random-R
VDIFF
VDIFF-R
VDS-R

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timestep 1e6

0

20

40

60

80

100

Su
cc

es
s R

at
e

 HandManipulateBlockRotateZ-v0
Agent
HER-R
Random-R
VDIFF
VDIFF-R
VDS-R

0 1 2 3 4 5
Timestep 1e6

0

10

20

30

40

50

60

70

Su
cc

es
s R

at
e

HandManipulateEgg-v0
Agent
HER-R
Random-R
VDIFF
VDIFF-R
VDS-R

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Timestep 1e6

0

20

40

60

80

100

Su
cc

es
s R

at
e

HandManipulateEggRotate-v0
Agent
HER-R
Random-R
VDIFF
VDIFF-R
VDS-R

0 1 2 3 4 5 6
Timestep 1e6

0

10

20

30

40

50

60

Su
cc

es
s R

at
e

HandManipulatePen-v0
Agent
HER-R
Random-R
VDIFF
VDIFF-R
VDS-R

0 1 2 3 4 5 6
Timestep 1e6

0

10

20

30

40

50

60

70

Su
cc

es
s R

at
e

HandManipulatePenRotate-v0
Agent
HER-R
Random-R
VDIFF
VDIFF-R
VDS-R

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timestep 1e6

0

20

40

60

80

Su
cc

es
s R

at
e

HandReach-v0
Agent
HER-R
Random-R
VDIFF
VDIFF-R
VDS-R

Figure 6: Results without HER on all environments. Shaded region represents 95% confidence of mean
success rate across 6 seeds. We observe that the explicit curriculum methods VDS and VDIFF easily outperform
Random. However, HER is able to outperform other methods on most environments. Interestingly, there are 3
environments in which HER converges to a lower success rate compared to VDIFF (Hand Manipulate Pen,Hand
Manipulate Pen-Rotate and Fetch Slide). Note that in some environments, HER crashes after converging.
Although this does not matter in practice as we save/pick the model at the best success rate, it is an example of
an adverse effect caused by the bias of HER.
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A.3.4 ABLATION ON RESAMPLING FREQUENCY
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Figure 7: Ablation analysis on the choice of resample frequency R for all environments. All methods use
VDIFF+HER with identical hyperparameters. R = Ep Len represents the standard practice of sampling a new
goal when the environment is reset. Shaded region represents 95% confidence interval of mean success rate
across 3 seeds. We observe that performance becomes increasingly unstable as R is decreased.

16



Under review as a conference paper at ICLR 2023

A.3.5 ABLATION ON THE TARGET VALUE FUNCTION OF VDIFF
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Figure 8: Ablation analysis on the target value functions of VDIFF. Shaded region represents 95% confidence
interval of mean success rate or mean estimated LP across 6 seeds. We observe that standard value functions
lead to noisier estimated LP and perform worse compared to target value functions in multiple environments.
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