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Abstract

LLMs are widely used nowadays by several001
enterprises for various use cases. This is due to002
their general applicability and demonstrated003
success across multiple domains and tasks.004
However, there is a monetary cost associated005
with the use of commercially available infer-006
ence APIs to LLMs. This cost generally de-007
pends on the number of input and output tokens008
and the cost parameters of the provider. In this009
work, we propose a framework QReT for re-010
ducing the input token count in prompts in a011
controllable quality aware manner. QReT first012
paraphrases the prompt to reduce token counts013
while maintaining quality measures. Secondly,014
it applies certain heuristics, again a controlled015
manner to reduce the final token count, without016
affecting the understanding by LLMs (hence,017
the output quality). We empirically validate018
QReT across several datasets and tasks and019
show its effectiveness.020

1 Introduction021

The last few years have witnessed remarkable and022

rapid growth in using Large Language Models023

(LLMs) across various domains. ChatGPT is es-024

timated to cost over $700,000 per day to operate025

[17], and using GPT-4 to support customer service026

can cost a small business over $21,000 a month027

[20]. Since these costs primarily depend on the028

number of input and output tokens and the corre-029

sponding API calls, reducing the number of tokens030

in a smart way without compromising quality can031

help in significantly reducing the costs. Moreover,032

LLMs offer a restricted token context window that033

often makes fitting the entire query into a single034

prompt infeasible. Therefore, reducing the tokens035

in a smart way can be further helpful in fitting the036

contexts.037

Reducing tokens however can cause a loss in038

information and meaning, resulting in depreciated039

response quality. Moreover, token count relies on040

the LLM tokeniser, and thus, any token reduction 041

scheme must incorporate the respective tokenisers 042

to be consistently usable across LLMs. Finally, to- 043

ken count reduction is generally less explored area 044

in literature; there is limited work and no dataset 045

dedicated to it. Hence, the quality aware reduction 046

in token count is a challenging problem. 047

Typical use case scenarios include summa- 048

rization and question answering over documents, 049

where LLMs like GPT must be queried with large 050

text prompts. Question answering involves a re- 051

trieval stage; the text output is fed to an LLM along 052

with the query. Similarly, for generating a docu- 053

ment’s section-wise summaries, we will need to 054

query the LLM with the entire content in each sec- 055

tion. In both cases, we can reduce tokens to save 056

costs before feeding the text as input to an LLM. 057

We propose a quality aware token count reduc- 058

tion system QReT that consists of two main com- 059

ponents: (i)Token Optimized Text Simplification, 060

(ii) Token Optimization Heuristics. Our main con- 061

tributions are as follows: 062

• Token Optimized Text Simplification: Para- 063

phrasing sentences in a controllable manner to 064

reduce token count and meet quality require- 065

ments. 066

• Token optimization heuristics: Tokeniser 067

aware heuristics, that are chosen judiciously 068

for the given context and applied in the opti- 069

mal order. 070

• We release the annotated datasets for further 071

research by the community1. 072

2 Related Work 073

There exists some prior work in sentence or passage 074

level paraphrasing [15, 16] while attempting to pre- 075

serve the information and meaning, however, these 076

1https://anonymous.4open.science/r/
llm-cogs-5FCF/sentence_simplification/README.md
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are not directly applicable for token count reduc-077

tion. There is also some work in compressing sen-078

tences using Reinforcement Learning (SCRL) [6]079

that extracts a sequence of tokens from a given sen-080

tence. However, this method simply drops words,081

and can result in incoherent sentences, leading to082

loss in meaning. Moreover this method lacks flex-083

ibility, and neither does it leverage reordering, se-084

mantic or lexical changes nor can it change the085

target length at run time (as it requires retraining086

the model). A related work, GPTrim is an open-087

source python library which uses heuristics like088

removal of punctation, stop words and stemming to089

reduce token count, however, the quality often suf-090

fers. Hence, quality aware reduction in token count091

becomes challenging. Most of these approaches092

work in a tokenizer agnostic manner, hence leave093

room for inefficiencies in token count reduction.094

Recently, LLMLingua [9] and its follow up095

works from Microsoft (https://github.com/096

microsoft/LLMLingua) have proposed token re-097

duction using smaller LLMs, where compression098

is done based on perplexity of generated tokens.099

While this can given good token reduction, the re-100

sultant output becomes unreadable by humans and101

the quality drop seems unpredictable (as observed102

by our experiments on enterprise Question Answer-103

ing tasks). It is therefore risky to use such a method104

for customer facing products.105

3 Token Optimized Text Simplification106

We propose simplifying the sentences in input107

prompts in a token aware manner, while preserving108

semantics to maintain the quality of outputs. We109

took inspiration from the work of Martin et al. [15]110

who build a sequence-to-sequence model for gen-111

erating audience centric simplifications for easier112

readability. They adapt a discrete parameterization113

mechanism that provides explicit control on sim-114

plification via various parameters like number of115

characters, Levenshtein similarity [11], word fre-116

quency ratio and dependency tree depth [16]. To117

control various parameters while simplification at118

inference time, the parallel training data is labelled119

with tags corresponding to the desired controllable120

parameters. We build upon this work and leverage121

the above technique to control the token count and122

information loss in the paraphrased sentences.123

We train our model on the WikiLarge [23]124

dataset. The dataset contains 296,402/2,000/359125

samples (train/val/test) of automatically aligned126

complex-simple sentence pairs from English 127

Wikipedia and Simple English Wikipedia. We 128

label the complex-simple sentence pairs with 129

two parameters, NUM_TOKENS_RATIO and 130

BERT_SCORE. The former corresponds to the 131

ratio of the number of tokens (using OpenAI’s 132

cl100k-base [4] tokenizer) in the simple and the 133

complex sentence, and the latter is the BERTScore 134

[22] between the two sentences. 135

The model is provided with oracle infor- 136

mation on the target sequence in the form 137

of control tokens appended to the source se- 138

quence. For example, if the desired token 139

count in the target sequence is 70% of the to- 140

ken count in the source sequence while the de- 141

sired BERTScore should be 0.95 with the origi- 142

nal sentence„ we append [BERTSCORE_0.95 143

NUM_TOKENS_RATIO_0.70] tag to the 144

source sentence. 145

Training Details: Our backbone architecture is 146

BART-large [12], a transformer encoder-decoder 147

(seq2seq). We use the fairseq [18] implementa- 148

tion for BART-large from [15], keeping the opti- 149

mization procedure and hyper-parameters the same 150

as the original implementation. The model was 151

trained on 4 Nvidia a10g GPUs for approximately 152

10 hours. Figure 1 shows an example output of the 153

model. Further examples are listed in Table 1 for 154

qualitative evaluation by the reader.

Figure 1: Token optimized text simplification example.

155

4 Token Optimization Heuristics 156

Here we describe some general heuristic rules that 157

we observed can be applied for reducing token 158

count while maintaining quality. We discuss the 159

rules, as well as their effects and the associated 160

optimization problem of applying them. We chose 161

the OpenAI tokenizer tiktoken [4] for implemen- 162

tation, experimentation, and testing. We manually 163

inspected the tokenized version of samples of texts 164

taken from question-answering datasets like Re- 165

CLor [21], LogiQA [14], and MS-Marco [5] and 166

analyzed the tokenizer inefficiencies. Based on 167

these observations, we devise generalizable rules 168

to edit the words or phrases to reduce token count 169
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Original Sentence Simplified Sentence @ 0.8 Simplified Sentence @ 0.6
Effective altruism advocates us-
ing evidence to determine the
most effective ways to benefit
others.

Effective altruism uses evidence
to find the best way to help oth-
ers.

Effective altruism is about using
evidence to help others.

The joyful choir’s harmonious
melody resonated through the
cathedral, captivating the con-
gregation.

The joyful melody could be
heard all through the cathedral.

The joyful melody could be
heard all through the cathedral.

Jeddah is the principal gateway
to Mecca, Islam’s holiest city,
which able-bodied Muslims are
required to visit at least once in
their lifetime.

Jeddah is the main gateway
to Mecca, Islam’s holiest city.
Muslims must visit Mecca at
least once in their lives.

Jeddah is the main city on the
road to Mecca, Islam’s holiest
city.

Table 1: Qualitative Examples

while retaining the maximum information of the170

original text. In total, we devise eight heuristics,171

the details of which can be found in Table 2.172

4.1 Optimized application of Heuristics173

Let us say we have a passage P where the sen-174

tences of the passage are {s1, s2, . . . , sn}. Further,175

we have {H1, H2, . . . ,Hm} as our token trimming176

heuristics. Define xi,j as the indicator variable if177

heuristic Hj is selected to be applied on sentence178

si. Define ci,j as the cost i.e., the estimated per-179

formance degradation and let pi,j be the profit i.e.,180

number of tokens saved upon applying Hj to si.181

Let us say we can tolerate a maximum performance182

loss of C , then the choice of heuristics for a given183

si reduces to the knapsack problem, where the ca-184

pacity is C, cost is ci,j and profit is pi,j for heuristic185

(item) Hj . Once we solve the knapsack problem ap-186

proximately, we will have for each sentence which187

heuristics to apply. Since the number of heuristics188

is ≤ 8, we brute force through the search space to189

determine the optimal order of application of these190

heuristics on each sentence.191

5 Experiments on Token Optimization192

We first describe the experiments on open source193

and generic datasets and wide variety of use cases194

such as Question Answering, Summarization and195

NLI tasks.196

5.1 Datasets197

We use Question Answering and NLI datasets198

to evaluate and benchmark our token optimiza-199

tion methods. We use multiple-choice question-200

answering over long-form question answering 201

datasets for a variety of reasons. Firstly, since 202

we use a powerful LLM like GPT 3.5 Turbo to 203

evaluate, we need challenging datasets that involve 204

logical reasoning to arrive at the correct response. 205

To the best of our knowledge, there are no appro- 206

priate logical long-form QA datasets; however, sev- 207

eral challenging MCQ and NLI datasets suit our 208

purpose. Secondly, metrics for evaluating long- 209

form question-answering tasks are not reliable, 210

given the subjective nature of the task. We have 211

used BERTScore to evaluate summarization on an 212

enterprise summarization dataset Dataset I, pro- 213

vided by Adobe Inc. However, BERTScore has 214

its limitations as an evaluation metric for question- 215

answering. Finally, since LLMs are proficient at 216

generating coherent and contextually appropriate 217

responses, the model compensates for the com- 218

pressed text or dropped words, and the variance in 219

results of long-form QA is minimal across various 220

compression methods. Thus, we cannot capture the 221

actual loss in information and meaning owing to 222

LLM capabilities when evaluating long-form QA 223

datasets. We give details of the datasets used for 224

our Token optimization experiments in Table 3. 225

5.2 Results on Token Optimization 226

We experimented on 3 datasets: namely Cos- 227

mosQA(QnA), Control(NLI), Dataset I (Summary). 228

We compared QReT against GPTrim and SCRL as 229

baselines (refer Section 2). Recall that in QReT, 230

the original context is converted into a simplified 231

version by the simplification module. On top of 232

this simplified context, various heuristics are ap- 233
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Heuristic (Abbv.) Description
Adjust Spaces and
Capitalizations (CS)

Prepending space and changing the case of the first letter of some words reduce
the token count.

Replace Synonyms
(RS)

We use the thesaurus [3] synonym dictionary to replace high token count words
with their less token count counterparts.

Lemmatization and
Stemming (LS)

We implement the lemmatization of words by first stemming using the NLTK
stemmer [1] and then using spell correction with [2]. This is done only in cases
where there is a reduction in the tokens.

Bracket Removal
(RB)

Removing round parenthesis is found to save tokens.

Handle Compound
Words (HC)

We create a dictionary of prefixes and split compound words by adding a space
after the prefix in the cases where there is a token count reduction.

Stop Word Removal
(RSW)

Removal of selective stop words is found to save tokens.

Punctuation Re-
moval (RP)

Removal of selective punctuation marks saves tokens. This needs to be done
carefully so as not to affect Math expressions or Time expressions

Handle Acronyms
(RA)

We remove the dots between the letters of an acronym to reduce the token count
where applicable.

Table 2: Token Reduction Heuristics

Dataset Task Description
CosmosQA [8] Question An-

swering
CosmosQA is a large-scale dataset of 35.6K problems that
require commonsense-based reading comprehension, formu-
lated as multiple-choice questions. It focuses on reading
between the lines over a diverse collection of people’s every-
day narratives, asking questions concerning the likely causes
or effects of events that require reasoning beyond the exact
text spans in the context.

LogiQA [14] Question An-
swering

LogiQA is sourced from expert-written questions for testing
human Logical reasoning. It consists of 8,678 QA instances,
covering multiple types of deductive reasoning

ReCLoR [21] Question An-
swering

ReClor is a dataset extracted from logical reasoning questions
of standardized graduate admission examinations. Empirical
results show that the state-of-the-art models struggle on Re-
Clor with poor performance.

ConTRoL [13] Question An-
swering

ConTRoL is a dataset for ConTextual Reasoning over
Long texts. Consisting of 8,325 expert-designed "context-
hypothesis" pairs with gold labels, ConTRoL is a passage-
level NLI dataset focusing on complex contextual reasoning
types such as logical reasoning.

Dataset I Summarization Dataset I is a summarization dataset constructed from sections
from 80+ PDFs from Adobe Inc. PDF corpus. The gold
summaries are obtained by using GPT-4. This data set is the
most reflective of our use case, i.e., real-world documents.

Dataset II Summarization Dataset II is a summarization dataset constructed from tak-
ing samples from public datasets namely, bigpatent[19],
samsum[7], wiki bio[10]. The gold summaries are gener-
ated using GPT-3.5-Turbo, it contains candidate summaries
from vicuna-13b, Text-Davinci-003 and Text-Curie-001.

Table 3: Overview of datasets used to evaluate our Token Optimization Module (QReT)
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plied in a controlled manner to further reduce the234

token count and complexity. The modified context235

is then used as the input context for the concerned236

task.237

5.2.1 Token Reduction and Quality:238

We found that QReT and SCRL lead to comparable239

loss in performance with more compression being240

achieved by QReT. GPTrim, on the other hand,241

though providing highest compression percentage242

also leads to much higher loss in performance as243

can be seen in Figure 3 and 2.244

Figure 2: Compression Achieved.

Figure 3: Performance Loss Obtained.

Here we list the results for each dataset on the245

token optimization experiments. Table 4 lists the246

results on CosmosQA, Table 5 on ConTRol and247

Table 6 on Dataset I.248

5.2.2 Optimized Token Reduction:249

We further experimented with optimized token250

reduction heuristics by controlling the quality loss251

parameter comparing to a brute force application252

of all heuristics in a fixed order. We can see that by253

setting the loss threshold, we are able to reduce the254

quality loss in a controlled manner, while achieving255

similar token reduction.256

Compression
Method

Accuracy Compression %

None 0.736 0.0
GPTrim 0.601 42.6
SCRL 0.718 19.5
QReT 0.711 22.5

Table 4: Token Compression on CosmosQA

Compression
Method

Accuracy Compression %

None 0.521 0.0
GPTrim 0.470 32.13
SCRL 0.497 20.3
QReT 0.493 28.6

Table 5: Token Compression on ConTRoL

Table 7 shows the tradeoff of quality loss with to- 257

kens saved optimally with respect to the brute-force 258

method of applying all heuristics in a fixed order. 259

The x% Threshold refers to setting the loss toler- 260

ance at x% of the total loss in quality incurred by 261

the brute force method and optimizing the tokens 262

accordingly. In this case, since it was a sentence 263

by sentence comparison, we measured the qual- 264

ity loss in terms of S-BERT similarity. That is, it 265

is measured as 1− SB(s1, s2), where SB(s1, s2) 266

refers to the S-BERT cosine similarity between the 267

embeddings of sentences s1 and s2. We did this on 268

Dataset I, and we are reporting the numbers for 2 269

such samples as illustrative here. 270

5.2.3 Token Optimization Module - Ablation 271

Study 272

We compress some Question-Answering, NLI and 273

Text Summarization datasets using our token opti- 274

mization module with the above-mentioned heuris- 275

tics. We evaluate and plot the contributions of each 276

heuristic on the various datasets (Fig. 4). 277

Table 8 lists the token compression obtained on 278

various datasets. 279

Compression
Method

BertScore Compression %

None 0.738 0.0
GPTrim 0.702 19.8
SCRL 0.734 16.6
QReT 0.715 35.2

Table 6: Token Compression on Dataset I
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Method Loss-1 Tokens Saved-1 Loss-2 Tokens Saved-2
Brute Force 0.04 7 0.025 14

90% Threshold 0.0285 5 0.022 13

80% Threshold 0.0285 5 0.0148 9

70% Threshold 0.008 2 0.0148 9

Table 7: Token Optimization Trade-off

Figure 4: Ablation study of various heuristics

Dataset Compression %
CosmosQA 18.27

ReCLoR 18.70
ConTRoL 21.44

Natural QA 20.91
MS Marco 21.44
Dataset I 22.07

Table 8: Token Compression obtained on various
datasets.

5.3 Experiments on Enterprise Document 280

processing use case 281

We have integrated our token optimization pipeline 282

in an enterprise specific document processing 283

pipeline and have evaluated on questing answer- 284

ing tasks. The token savings is of the order of 285

10 − 17% across the documents (input). The la- 286

tency is in milliseconds. Human evaluation studies 287

have also been done comparing the token optimized 288

outputs with the results generated with out token 289

optimization, henceforth referred to as Neptune. In 290

most metrics, token optimization seems to be doing 291

better including overall satisfaction which is higher 292

with token optimization (see Figure 5). 293

Figure 5: Box plot of various metrics comparing Nep-
tune (referring to the study done without token optimiza-
tion) with new (referring to same study done with token
optimization).

The readability scores seemed slightly lower, 294

hence a follow up evaluation focused on comparing 295

readability was conducted. Focusing only on the 296

subset of 34 questions where scores were different, 297

we wanted to understand whether there were any 298

differences between the neptune and optimization 299

answers. 30 users were asked to review both sys- 300
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tem answers simultaneously and asked to select301

which one they preferred (in terms of readability).302

Additionally users reported any readability issues303

for each answer. Presentation order was counter-304

balanced and system name was hidden from users.305

There was no clear indication of preference for306

one method over the other (Table 9). Users rated307

the answers as equivalent or picked one over the308

other uniformly. Table 10 shows the percentage of309

readability issues identified. For Neptune, 43.5%310

of answers were marked with no issues. For op-311

timization 40.63% of answers were marked with312

no issues. We conclude that readability issues are313

likely to occur in both systems with no significant314

impact from the optimization approach.315

Table 9

system mean std lower
bound

upper
bound

same 0.37 0.22 0.3 0.45
neptune 0.34 0.24 0.26 0.42
optimization 0.29 0.23 0.21 0.37

Table 10

34 questions Neptune Optimization
NO ISSUES 43.50 40.63
LONG OR COMPLEX
SENTENCES: Difficult
to follow the answer, un-
necessarily long and com-
plicated sentences.

19.50 22.14

HIGHLY TECHNICAL
LANGUAGE: Use of
highly technical language
while it can be presented
in simple language.

18.75 14.84

AMBIGUOUS LAN-
GUAGE: Vague and
confusing responses with
inconclusive answers.

9.75 8.27

IMPROPER FORMAT-
TING: Difficult to read
due to improper headers,
spaces, paragraph break
or lists.

6.50 10.95

OTHER ISSUES: please
explain in the text box be-
low.

2.00 3.16

5.4 Experiments on Enterprise Email 316

Generation Applications 317

We have further integrated our pipeline with an en- 318

terprise email generation pipeline for generating 319

marketing content emails (where the token opti- 320

mzation is applied on the input prompt containing 321

instructions for generating the email). Figure 6 322

shows the token reduction obtained by applying 323

the heuristics alone on the datasets. Figure 7 shows 324

the box plot distrbution of latency incurred by the 325

heuristics. In terms of quality, we observed there is 326

minimal impact (less than 3% drop) as measured 327

by enterprise specific adherence metrics. 328

Figure 6: Token reduction on Email Generation datasets.

Figure 7: Latency incurred on Email Generation
datasets.

5.4.1 Comparison with LLMLingua on 329

enterprise use cases 330

Apart from the issue of non-interpretability, we 331

found that LLMLingua incurs high latency of the 332

order of 15-20 seconds for enterprise documents 333

where as QRet token optimization heuristics takes 334

milliseconds. 335
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6 Conclusion336

We conclude that token optimization is a very ef-337

fective strategy for reducing token counts in a con-338

trollable manner for reducing costs. We release the339

sentence simplification annotated datasets to the340

community for further research.341

7 Limitations342

This is a heuristic method and more comprehensive343

study needs to be done.344
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