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Encoding Domain Insights into Multi-modal Fusion: Improved Performance at
the Cost of Robustness

Anonymous Authors1

Abstract
Using small-scale experiments with real and synthetic tasks, we compare multi-modal fusion methods, including a
proposed ‘Product Fusion’, to demonstrate how encoding task-specific priors affects performance. Our results
highlight a crucial trade-off: aligning fusion design with priors boosts clean-data accuracy with limited data but
significantly diminishes robustness to noisy inputs.

1. Introduction

Figure 1. experimental results showing average model performance of 20 models per fusion method across randomly and progressively
sampled training datasets. Error bars show standard deviation across the 20 models.

This study aims to determine: “Under what conditions does fusion complexity impact performance concerning data
availability and task complexity?” Real-world multi-modal inputs are rarely pristine, with textual errors or low-quality
visual data necessitating an understanding of model performance under varying noise conditions, an aspect often overlooked
beyond raw accuracy (1). To investigate this, we employ three fusion methods: Concatenation, Tensor Fusion (2), and
our proposed Product Fusion on a Twitter sentiment analysis dataset comprised of CLIP embeddings for text and images,
and human-annotated sentiment labels. We aim to move towards disentangling fusion complexity from model size, and
performance from mere validation accuracy.

We define “fusion complexity” along two axes: intrinsic computation (e.g., simple concatenation with no operations vs. N2

operations in Tensor Fusion) and the resulting embedding size, which influences subsequent layer parameters (Table 1). To
better isolate these factors, as intrinsic computation often correlates with embedding size, we introduce Product Fusion.
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This method computes an element-wise product of two equal-length modality vectors (if T is text, I is image, Fj = Tj · Ij)
to match concatenation’s output dimension (2N ), where N is the dimensionality of each uni-modal input, and maintain
comparable parameter counts in downstream layers, this operation is complemented by a second pass (FN+j = Tj · IN−j).
This design, alongside concatenation (no intrinsic computation but 2N output size) and Tensor Fusion (N2 computations,
N ·M output size), allows us to test how encoding priors via intrinsic calculations impacts learning. We specifically explore
this by training models on both real and simplified synthetic labels, a task for which Product and Tensor Fusion naturally
compute relevant element-wise features.

“Model Performance” in this study is assessed through validation accuracy and, critically, robustness to injected Gaussian
noise. This dual evaluation helps determine if designs like Product Fusion, which encode strong priors for potential accuracy
gains, consequently trade off robustness. Ultimately, this experimental setup—varying fusion methods, data availability, and
task nature (real vs. synthetic)—allows us to systematically investigate whether larger or more intrinsically complex models
consistently achieve higher accuracy, how task alignment influences performance, and the crucial interplay between fusion
design and robustness to noise.

Name Equation Mapping

Concatenation C(x1, x2) = (x1, x2) C(x, y) : R1×n × R1×m → R1×(n+m)

Product Fusion P (x1, x2) = x1

⊗
x2 P (x, y) : R1×n × R1×m → R1×(n+m)

Tensor Fusion T (x1, x2) = x1

⊕
x2 T (x, y) : R1×n × R1×m → R1×(n·m)

Table 1. Fusion methods. No method is parameterized, though Tensor Fusion produces a large output embedding. n,m are input vector
lengths;

⊗
: element-wise product;

⊕
: vector outer product.

2. Related Work
Most existing work on multi-modal fusion focuses on optimizing specific fusion architectures or exploring new methods for
a fixed approach, such as early or late fusion (3; 2). However, only some studies explicitly quantify how these methods
behave when confronted with systematically corrupted inputs (1). Architecture search has goals similar to this work, but
only in an automated fashion. Instead of explicitly comparing the performance of fusion methods, their goal is to have
the model learn the fusion method itself (4), e.g., using concatenation with learned activation functions. In another recent
work, the authors of (5) learn to dynamically select their fusion method from a smaller set of fusion methods. While these
approaches refine fusion adaptively, they fail to directly address how well such strategies cope with noisy or partially
corrupted modalities.

This work focuses on aggregation-based methods (6), which directly aggregate modalities into a latent representation
rather than alignment-based methods or channel fusion techniques (6), which rely on different architectural principles (e.g.,
loss-based alignment or specialized shared weights for similar data types like RGB and depth).

3. Experimental Design
The model architecture comprises modality encoders (producing 768-dimensional vectors), the selected fusion method,
a subsequent linear layer, and a final softmax classifier. After establishing baseline performance on clean data, we apply
controlled Gaussian noise to the inputs to examine each fusion method’s robustness, systematically varying the noise level to
observe how performance degrades. As a synthetic task we create new labels from twitter data. Instead of the real sentiment
we record the labels as the sign of the dot product between the modalities embeddings.

To explore these questions systematically, our experimentation is designed to test each task-fusion combination, evaluating
them on accuracy and robustness. Simply measuring the accuracy of each model after training is sufficient to observe
how model size and fusion complexity affect baseline performance. For robustness, we require more experiments to
validate. Next, we apply a varying level of noise to each modality and measure accuracy under these noisy conditions. Each
model predicts real and synthetic labels with random Gaussian noise sampled from n ∼ N (µm, σm) where µm & σm are
the empirical mean and standard deviation of the respective modality m embeddings in the training set. A noise factor
α ∈ [0.0, 0.95] scales this sampled noise, representing conditions from no to heavy corruption.. For more specificity, this

2



110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Encoding Domain Insights into Multi-modal Fusion: Improved Performance at the Cost of Robustness

Figure 2. Receiver Operating Characteristics (ROC) curves for the 6 unit groups. Darker lines indicate larger training subsets, and color
indicates the fusion method between concatenation (blue), product fusion (green), and tensor fusion (red). The figure shows significantly
improved synthetic vs. real data performance, particularly for product fusion. Tensor fusion, however, fails in almost all cases.

noise is applied to each modality separately and then simultaneously for three total trials.

4. Experimental Results
4.1. Fusion-Task Alignment

We first examine performance under clean conditions and then analyze how well each model handles artificial noise. Models
were trained with progressively doubled dataset sizes (32 to 327,700), averaging over 20 random initializations and data
shuffles per setting. Once we train the sets of models, their final validation accuracy score is recorded as the highest
validation accuracy epoch.

We then analyze how the average accuracy for each method evolves with training set size and task, focusing on their relative
performance. Figures 1 and 2 show the impact of aligning the fusion method with the task. For example, Concatenation
and Product Fusion have nearly identical performances on real complex data; however, when the labels are changed to be
much closer to the intrinsic calculations performed for the Product Fusion method, its performance is not only significantly
better but, more importantly, the data required for high performance is negligible. This clear example of the synthetic task
demonstrates the effect of encoding a prior belief about the nature of the multi-modal fusion into the fusion method itself.
These results establish the baseline behavior, which we will compare against noisy conditions to understand robustness.

4.2. Robustness to Noise

For robustness evaluations, we used the checkpoint of each fusion method that achieved the highest validation accuracy on
clean data. The scale for noise is determined by measuring the mean and standard deviation for each modality in the test set.
Overall results are shown in Figure 3.

These experiments reveal a nuanced pattern of how robustness relates to noisy inputs and fusion decisions. For instance,
Tensor Fusion shows impressive robustness to noise, possibly due to its larger parameter count. In contrast, Product Fusion,
which achieves the highest accuracy on clean data, struggles to perform under significant noise. Under textual noise, Product
Fusion accuracy drops from ≈ 75% to ≈ 55% with only 10% noise when other methods are barely affected, if at all. This
suggests that strong fusion-task alignment with the clean data distribution does not generalize well to noisy, unseen data.
Concatenation shows moderate resilience, maintaining relatively stable performance under moderate noise conditions and
combined modality corruption. These observations indicate that the interplay between fusion complexity, task-specific
feature alignment, and the mode of data corruption affects the model’s ability to handle noisy scenarios.
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Figure 3. Model accuracy at increasing noise levels for textual (left), image (middle), and combined (right) noise conditions. Each subplot
compares Product Fusion, Concatenation, and tensor-fusion methods.

5. Conclusions
Increasing model complexity does not improve model performance in this setting. Furthermore, the more parameterized
models exhibit a larger variance in performance across all sizes than simpler models. Evaluating models purely on accuracy
with clean data overlooks the critical dimension of robustness, as noise tests reveal stark differences in stability that accuracy
alone cannot capture.

Our experiments revealed that, under these conditions, neither increased model size nor greater intrinsic complexity
consistently translated to higher accuracy on the more difficult real-world task; the largest model, Tensor Fusion, generally
underperformed simpler methods. While Product Fusion, with more intrinsic computations than concatenation, showed
some advantage on real data with larger training sets, its primary benefit was observed on the synthetic task. Here, Product
Fusion’s design, which encoded priors aligned with the task (element-wise products for dot-product based labels), achieved
significantly higher accuracy with minimal data. This highlights that accuracy gains from fusion complexity are critically
dependent on the nature of the task and the alignment of the fusion method’s implicit calculations with that task, rather than
solely on model size or general complexity.

Interestingly, robustness to noise presented a contrasting trend. The largest model, Tensor Fusion, demonstrated significantly
greater resilience to random noise across modalities, maintaining its relative performance even under heavy corruption.
Conversely, Product Fusion exhibited substantially lower robustness despite its superior accuracy on the clean synthetic task
due to strong task alignment. This suggests a critical trade-off: designs optimized for a specific clean data distribution via
strong priors may not generalize well to noisy conditions, as the more straightforward learned task might result in a less
resilient classifier. We also noted a more substantial reliance on textual features, though concatenation uniquely maintained
performance when both modalities were noised, hinting at a potential learned mechanism for uncertain inference.

6. Limitations and Future Works
This study highlights the nuanced relationship between fusion complexity, dataset size, and task alignment, revealing
the critical role of task-specific design in multi-modal learning. While our results underscore the importance of aligning
fusion methods with task structure, the specific design of our synthetic task, for example, might have amplified Product
Fusion’s observed strengths, warranting consideration when generalizing. We were able to design a fusion method that
matched our task due to its simplicity, in real world settings fusion method design will be more difficult. Future work could
explore intermediate fusion complexities, the impact of data scaling, or explicit noise-robust training procedures to develop
architectures that better balance high accuracy with resilience without requiring larger or more complex models.
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A. Model Design and Training

Figure 4. Model diagram of the SuperFuse model. Yellow blocks are input from the dataset, green blocks are encoders functioning as
feature extractors, and blue cls block is a classifier outputting a 2-dimensional softmax classification prediction.

All fusion methods are slotted into the above model design in Figure 4. It is worth noting that while the model architectures
are identical, for Tensor Fusion the resuling embedding space is significantly larger meaning the following linear layer is
more parameterized than other fusion models. All models project from the fusion dimension to a 32-dimensional vector
before final classification (from green block to blue in figure above)

For training all models had identical training environments. All use standard torch AdamW optimizer with a learning rate of
0.001, weight decay of 0, and 100 max epochs.
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