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ABSTRACT

This paper addresses the challenge of incremental learning in growing graphs
with increasingly complex tasks. The goal is to continually train a graph model
to handle new tasks while retaining its inference ability on previous tasks. Ex-
isting methods usually neglect the importance of memory diversity, limiting in
effectively selecting high-quality memory from previous tasks and remember-
ing broad previous knowledge within the scarce memory on graphs. To address
that, we introduce a novel holistic Diversified Memory Selection and Generation
(DMSG) framework for incremental learning in graphs, which first introduces
a buffer selection strategy that considers both intra-class and inter-class diversi-
ties, employing an efficient greedy algorithm for sampling representative training
nodes from graphs into memory buffers after learning each new task. Then, to
adequately rememorize the knowledge preserved in the memory buffer when
learning new tasks, we propose a diversified memory generation replay method.
This method first utilizes a variational layer to generate the distribution of buffer
node embeddings and sample synthesized ones for replaying. Furthermore, an
adversarial variational embedding learning method and a reconstruction-based
decoder are proposed to maintain the integrity and consolidate the generaliza-
tion of the synthesized node embeddings, respectively. Finally, we evaluate our
model on node classification tasks involving increasing class numbers. Extensive
experimental results on publicly accessible datasets demonstrate the superiority
of DMSG over state-of-the-art methods. The code and data can be found in
https://anonymous.4open.science/r/DMSG-3754.

1 INTRODUCTION

Graphs, owing to their flexible relational data structures, are widely employed for many applications
in various domains, including social networks (Jiang et al., 2016), recommendation systems (Wu
et al., 2022), and bioinformatics (Zhang et al., 2021). With the increasing prevalence of graph data,
graph-based models like Graph Neural Networks (GNNs) have gained significant attention due to
their ability to capture complex structural relationships and those dynamic variants also demonstrate
remarkable inductive capabilities on growing graph data (Pareja et al., 2020; Manessi et al., 2020).
However, as the growing graph in Figure 1 shows, when new nodes are added, the associated learning
tasks can become increasingly complex. For example, the graph models on academic networks might
need to predict the topics of papers in highly dynamic research areas where the topic rapidly emerges,
and those on recommendation networks might need to continually adapt to new user preferences.
Recent research on the inductive capability and adaptability of GNNs often remains limited to a
specific task (Hamilton et al., 2017; Han et al., 2021) and cannot be readily applied to incremental
tasks. Moreover, it is often inefficient to train an entirely new model from scratch every time a new
learning task is introduced. In recent years, model reuse via incremental learning (Tan et al., 2022;
Kim et al., 2022), also known as continual learning or lifelong learning, has led to exploring more
economically viable pipelines, enabling the model to adaptively learn new tasks while maintaining
the knowledge from old tasks.

The main challenge of incremental learning on graphs lies in mitigating catastrophic forgetting. As
the graph model learns from a sequence of tasks on evolving graphs, it tends to forget the information
learned from previous tasks when acquiring knowledge from new tasks. One prevalent approach
to address this issue is the memory replay method, a human-like method that typically maintains a
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memory buffer to store the knowledge gained from previous tasks. When learning a new task, the
model not only focuses on the current information but also retrieves and re-learns from memory,
preventing the model from forgetting what was learned previously as it takes on new tasks. This
method has two major focuses to address on graphs: (1) How to select knowledge from old graphs
to form more high-quality memory buffers? Existing methods usually select representative training
samples as knowledge. However, determining which nodes in the graph are more representative is
difficult and usually a time-consuming process. Furthermore, most methods (Zhang et al., 2022c;
Wang et al., 2022) select samples all into one same buffer without considering the inter-class
differences between various previous tasks, which may degrade the quality of preserved knowledge.
(2) How to effectively replay the limited buffer knowledge to enhance the model’s memorization
of previous tasks? Due to constraints related to memory and training expenses, the samples chosen
for the buffer are often limited. Many methods (Zhou & Cao, 2021; Su & Wu, 2023) concentrate on
memory selection, neglecting to broaden the boundaries of memory within the buffer, resulting in a
discount in replay. Finding an effective way to replay knowledge from these limited nodes is critical
to incremental learning in graphs.

Growing graph

… …

…

…

GNN Classifier GNN Classifier GNN Classifier

72 73 74

2 classes 4 classes 6 classes

Graph Model
62 63 64

Incremental 
learning

Incremental 
learning

Figure 1: An example of incremental learning in
growing graphs, where nodes with distinct labels
are shaded in various colors. The number of classes
expands as the graph grows, causing increasingly
complex classification tasks.

In this paper, we propose a novel Diversified
Memory Selection and Generation (DMSG)
method on incremental learning in growing
graphs, devised to tackle the above challenges.
we consider that selecting diversified memory
helps in Comprehensive Knowledge Reten-
tion: we apply a heuristic diversified memory
selection strategy that takes into account both
intra-class and inter-class diversities between
nodes. By employing an efficient greedy al-
gorithm, we selectively sample representative
training nodes from the growing graph, placing
them into memory buffers after completing each
new learning task. Furthermore, we explore the
memory diversification in memory reply for En-
hanced Knowledge Memorization: we intro-
duce a generative memory replay method, which
first leverages a variational layer to produce the
distribution of buffer node embeddings, from
which synthesized samples are drawn for replaying. We incorporate an adversarial variational em-
bedding learning technique and a reconstruction-based decoder. These are designed to preserve the
integrity of the information and strengthen the generalization of the synthesized node embeddings on
the label space, ensuring the essential knowledge is carried over accurately and effectively.

The main contributions can be summarized as follows: (1) We propose a novel and effective memory
buffer selection strategy that considers both the intra-class and inter-class diversities to select repre-
sentative nodes into buffers. (2) We propose a novel memory replay generation method on graphs
to generate diversified and high-quality nodes from the limited real nodes in buffers, exploring the
essential knowledge and enhancing the effectiveness of replaying. (3) Extensive experiments on
various incremental learning benchmark graphs demonstrate the superiority of the proposed DMSG
over state-of-the-art methods.

2 PROBLEM FORMULATION

In this section, we present the formulation for the incremental learning problem in growing graphs.
Generally, a growing graph is represented by a sequential of m snapshots: G = {G1, G2, ..., Gm},
and each snapshot corresponds to the inception of a new task, represented as T = {T 1, T 2, ..., T m}.
Each graph Gi is evolved from the previous graph Gi−1, i.e., Gi−1 ⊂ Gi,∀i ∈ 2, ...,m., and each
learning task T i is more complex than the previous task Ti−1. This paper specifies the learning tasks
to classification tasks, i.e., the number of classes increases alongside graph growth, increasing the
task complexity. In this scenario, we aim to continually learn a model f(θ) on T . For the t-th step,
the task T t incorporates a training node set Vt with previously unseen labels (i.e., novel classes),
where each vertex vi ∈ Vt has the label yi ∈ Yt, and Yt = {yt1, yt2, ..., ytn} is the set of n novel
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Figure 2: The framework of DMSG. In this instance, the graph model underwent training on a 2-class
node classification task on G1. Two new classes of nodes are added to form G2. Certain nodes of the
previous two classes are first selected into buffers. Then, the model is further trained on the two new
classes of nodes and buffers to perform incremental learning.

classes. The task T t is to train the f(θ) : vi →
⋃t

j=1 Yj to ensure it can infer well on the current
novel classes while preventing catastrophic forgetting of the inference ability on previous classes.

Jointly Incremental Learning. This is a straightforward solution for the problem, which collects
training nodes of all classes of previous tasks to train f(θ) in each step. This treats the accumulated
tasks {T 1, T 2, ..., T t} as a whole new task and retrains the model from scratch. However, this
solution is inefficient because it leads to redundant training of labeled nodes and creates computational
challenges due to the growing graph size. Conversely, the buffer memory replay model offers a more
practical solution.

Memory Replay for Incremental Learning. This method, instead of gathering all previous training
nodes, maintains buffers B that store a small yet representative subset of training nodes for each class
of previous tasks. The objectives can be formulated as follows:

L =
∑

vi∈Vt

ℓt(f(vi; θ), yi)︸ ︷︷ ︸
Loss on new tasks

+λ

K∑
j=1

∑
vk∈Bj

ℓt(f(vk; θ), yk)︸ ︷︷ ︸
Memory replay on previous tasks

, (1)

where ℓt is the loss function on the accumulated all class set, K = |
⋃t−1

i=1 Yi| is the number of
previous classes, the λ is a balance hyper-parameter, and Bj is the buffer for the j-th class. The
second term ensures the representative training nodes from previous classes are included in the current
training phase, efficiently mitigating the risk of catastrophic forgetting of previous classes. Also, the
size of Bj is much smaller than the total node number of class j. Thus, the number of training nodes
required is significantly lower than joint training, leading to a substantial increase in efficiency.

3 METHODOLOGY

Without loss of generality, we choose the plain GCN model followed by a classifier head as the
backbone of f(θ), which can encode each node vi into an embedding zi and a probability pi. As
shown in Figure 2, initially, this model is trained on the graph G1. When the t-th task introducing
new classes arrives, we first extend new parameters (highlighted as the yellow segment) into the last
layer of the classifier, ensuring the output probabilities encompass the previous and newly introduced
classes. To facilitate continual training of f(θ), we leverage the memory replay framework, which
incorporates both the Heuristic Diversified Memory Selection (Section 3.1) and the Diversified
Memory Generation Replay (Section 3.2).

Motivation. Consider p(G<t) as the true data distribution of graphs from prior t − 1 tasks, and
q(B<t) as the data distribution encapsulated within the memory replay buffers B sampled from G<t.
To understand the efficacy of the buffer diversity in incremental learning scenarios, we engage in a
theoretical examination to indicate that a high diversity within B ensures that the empirical loss L(θ)
over B closely mirrors the total expected loss L(θ) over p(G<t).
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Theorem 1. Let the loss function L(θ, x) be β-Lipschitz continuous in respect to the input x. Under
this condition, the discrepancy between the expected loss under the true data distribution p(G<t)
and that under the replay buffer distribution q(B<t) is bounded as follows:∣∣Ev∼p(G<t)[L(θ, v)]− Ev∼q(B<t)[L(θ, v)]

∣∣ ≤ β ·W (p(G<t), q(B<t)), (2)

where W (p, q) denotes the Wasserstein distance between distributions p and q, defined by:
W (p, q) = infγ∈Γ(p,q) E(v,v′)∼γ [d(v, v

′)], and Γ(p, q) represents the set of all possible joint distri-
butions (couplings) that can be formed between p and q.

Assume that both p(G<t) and q(B<t) follow Gaussian distributions with means µp, µq and covariance
matrices Σp,Σq respectively. Thus, the squared 2-Wasserstein distance between two Gaussian
distributions is given by:

W 2
2 (N (µp,Σp),N (µq,Σq)) = ∥µp − µq∥2 +Tr(Σp +Σq − 2(Σ1/2

p ΣqΣ
1/2
p )1/2). (3)

Since the Σ measure the distribution diversity and B<t is the subset of G<t and is typically less
diverse (Detailedly analyzed in Appendix A.1). Assuming the sampling strategy is unbiased upon
means, as the B<t more diversified, Σq → Σp, leading to the Wasserstein distance decreases. Based
on Theorem 1, the discrepancy between the expected loss under true distribution and the buffer
distribution becomes less, making the optimization on the buffer more closely approximate the
optimization on all previous graph data.

3.1 HEURISTIC DIVERSIFIED MEMORY SELECTION

Based on the above motivations. For memory selection, to ensure that the selected nodes are
adequately diverse with respect to the classification task, we consider the two perspectives: P1: the
nodes within the same buffer should exhibit sufficient diversity to faithfully represent disparate regions
of their corresponding areas. Also, P2: the inter-class distance between nodes residing in distinct
buffers should be maximized to facilitate the model to delineate clear classification boundaries. Thus,
we introduce the concepts of intra-diversity and inter-diversity for the buffers. Our goal is to select
the buffer Bi corresponding to the i-th class of training nodes based on the following criteria:

Bi = arg max
Bi⊂Ci

∑
v∈Bi

[A(v,Bi)︸ ︷︷ ︸
intra-diversity

+
1

K − 1

K∑
j=1,j ̸=i,Bj⊂Cj

A(v,Bj)︸ ︷︷ ︸
inter-diversity

], (4)

where Ci is set of i-th class of training nodes, A(v,Bi, Gt) denotes the distance measure between
node v and Bi in the current graph Gt, which we define as the L2-norm distance on probabilities
between node v and its closest node in Bi. While the measure can be defined as any topological
distance, such as the shortest path, we use probability distance because it offers finer resolution,
reduced noise towards tasks, and computational efficiency. The first term quantifies the intra-diversity
within the buffer Bi, reflecting the variations among its own nodes, while the second term quantifies
the inter-diversity between Bi and other buffers, illustrating the differences between the nodes of Bi
and those belonging to other buffers.

Heuristic Greedy Solution. However, achieving this objective for selecting different classes of
buffers is an NP-hard problem. This kind of problem is usually addressed using heuristic meth-
ods (Hochbaum, 1996). Thus, we introduce a greedy algorithm to sample representative training
nodes when new tasks are introduced. Specifically, suppose Vt =

⋃K+n
i=K+1 Cti is the training nodes of

t-th task and Cti is the training set corresponding to the i-th novel class. We have previously selected
buffers {Bi}Ki=1 in previous t − 1 tasks, where K and n are the numbers of previous classes and
novel classes, respectively. Then, the greedy selection strategy is defined in the Algorithm 1, where
D(Bi) =

∑
v∈Bi

(A(v,Bi) + 1
K−1

∑K
j=1,j ̸=i,Bj⊂Cj

A(v,Bj)) is the set score function defined on
the buffer set Bi of the i-th class,△D(v|Bi) is the gain of f choosing v into Bi, and v∗ is the chosen
node using the greedy strategy. In greedy Algorithm 1, the core idea is to make the currently best
choice of buffer nodes at every step, hoping to obtain the global optimal solution for the objective
Eq.4 through this local optimal choice.
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Algorithm 1: Heuristic Buffer Selection

Input: {Bi}Ki=1. // buffers of previous tasks.
{Cti}

K+n
i=K+1. // training node sets of

novel classes of current tasks.
f(θ). // Model after trained on the
(t− 1)-th task.

Output: {Bi}K+n
i=1 // updated buffers.

/* Initializing. */

1 Create empty buffer {Bi}K+n
i=K+1.

2 for i from K + 1 to K + n do
3 Select one node with highest output

probability on the i-th label from Cti into
Bi via f(θ).

4 end
/* Greedy Selecting. */

5 repeat
6 for i from K + 1 to K + n do
7 △D(v|Bi) = D(Bi ∪ v)− D(Bi),
8 v∗ = argmaxCi\Bi

△D(v|Bi).
9 Add v∗ into Bi.

10 end
11 until b nodes are sampled in each buffer;

Below, we give a Proposition of approximation
guarantee of our greedy algorithm.
Proposition 1. (Greedy Approximation Guaran-
tee of Algorithm 1). The greedy Algorithm 1 that
sequentially adds elements to an initially empty
set based on the largest marginal gain△D under
a cardinality constraint provides a solution B∗i
that is at least (1− 1

e ) times the optimal solution,
i.e.,

f(B∗i ) ≥
(
1− 1

e

)
· f(OPT ), (5)

where OPT represents the optimal solution of
the buffer set Bi.

Proof. The above Proposition can be de-
rived from the Greedy Approximation Guar-
antee for Monotonic and Submodular Func-
tions (Nemhauser et al., 1978) (proof can be
found in Theorem 2 in the Appendix), given that
our function f is both monotonic (from Lemma
1) and submodular (from Lemma 2). The greedy
algorithm is guaranteed to produce a solution that
is at least (1− 1

e ) times the optimal solution.

Time Complexity Analysis. For each buffer of the t-th task, there are b sampling steps where b is the
size of the buffers. Each sampling can be done in O((K + n) ∗ |Cti |), by determining distances and
making comparisons. Thus, the overall complexity of selecting each buffer is O(b(K + n) ∗ |Cti |).
Note that b (the buffer size) and K +n (the total number of classes up to t-th task) are typically much
smaller than |Cti |, ensuring the efficiency of the algorithm.

3.2 DIVERSIFIED MEMORY GENERATIVE REPLAY

During training for the t-th task T t, the stored representative nodes in the buffers {Bi}Ki=1 from
previous t− 1 tasks are also recalled to reinforce what the model has previously learned, known as
memory replay. However, the limited buffer size still presents challenges: C1: the stored knowledge
may be constrained and might not encompass the full complexity of previous tasks, leading to a
potential bias in replaying, and C2: the training process can become difficult as the model may easily
overfit to the limited nodes in the buffers, undermining its ability to generalize across different tasks.
Thus, we proposed the Diversified Memory Generation Replay to address the above problems.

Broadening Diversity of Buffer Node Embeddings. Specifically, the embeddings of the buffer
nodes are first subjected to a variational layer, which aims to create more nuanced representations that
encapsulate the inherent probabilistic characteristics of nodes. Let zi ∈ Rh denote the embedding of
node vi ∈ Bj , 1 ≤ j ≤ K, where h is the hidden dimension. Specifically, we treat the nodes in the
buffers as the observed samples Vob drawn from the ground-truth distribution of the previous nodes:

Z =

K⋃
j=1

⋃
vi∈Bj

{zi} ∈ R(K×b)×h def
=== Vob. (6)

The node variable Ẑ is drawn from the variational network layer qϕv
(Ẑ|Z) with parameters ϕv.

Specifically, qϕv
outputs the mean and variance of the node embeddings distributions respectively,

expressed as Zµ = qµϕv
(Z) and Zσ = qσϕv

(Z), where qµϕv
(·) is the identity function and qσϕv

(·) is
a Liner layer followed with a Relu activation layer. Then we use the reparameterization technique
to sample from N (Zµ, Zσ), expressed as Ẑ = Zµ + Zσ ⊙ ϵ, where Ẑ ∈ Rh and ϵ is drawn
from standard normal distributions. Thus, we define the generated samples as Vge. The variational
operation augments the diversity of observed buffer nodes Vob, empowering the model to explore
more expansive distribution spaces.

5
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Maintaining Integrity of Synthesized Embeddings. Then, we further propose to maintain the
integrity of these variational node embeddings to prevent them from deviating too far, which im-
plies that while the generated embeddings should exhibit diversity, they must remain similar to
the ground-truth ones. Specifically, we adopt an adversarial learning strategy. We introduce an
auxiliary discriminator, D : Rh → R1 with parameters ϕd, tasked with distinguishing the original
embeddings and the variational embeddings of nodes. In contrast, the model is learned to generate
diversified variational node embeddings from the original ones, meanwhile ensuring the authenticity
of synthesized variational node embeddings. Thus, the learning objective is defined as follows:

LMISE = min
θ,ϕv

Ezi∼ZEqϕv (ẑi|z)

[
max
ϕd

ℓD(zi, ẑi)

]
, (7)

where ℓD is a negative binary cross-entropy loss function on the variational and original node
embeddings, defined as:

ℓD(zi, ẑi) = logD(zi, ϕd) + log (1−D(ẑi, ϕd)) . (8)

The min-max adversarial learning strategy involves training the domain discriminator to distinguish
whether the node embeddings are synthesized or original while simultaneously enforcing a constraint
on the model to generate indistinguishable node embeddings from the domain discriminator. This
interplay aims to yield synthesized node embeddings that are more comprehensive and maintain
integrity. It leverages the strengths of generative methods for increased representational complexity
of buffer nodes to address C1. Simultaneously, it employs adversarial learning and regularization to
ensure this expansion does not lead to distortions.

Consolidating Generalization of Synthesized Embeddings. Furthermore, to adequately capture the
node relationships within the variational node embeddings, we use the variational node embeddings
to generate a reconstructed graph on the buffer nodes. As the buffer nodes are sampled from disparate
regions, and the initial connections between them are sparse, we instead employ the ground-truth
label to build the reconstructed graph. Specifically, nodes sharing the same labels are linked, while
those with different labels are not connected. The reconstructed graph is denoted as Â ∈ RKb×Kb

and the decoder loss is defined as:

LCGSE = −Eqϕv (Ẑ|Z)[log p(Â|Ẑ)] + KL(qϕv
(ẑi|z)||p(ẑi))

= −Eẑi,ẑj∼Ẑ

[
Âij log p̂ij + Âij log(1− p̂ij)

]
+ KL(qϕv (ẑi|z)||p(ẑi)),

(9)

where p(Â|Ẑ) is the probability of reconstructing Â given the latent variational node embedding
matrix Ẑ, following a Bernoulli distribution. p̂ij is the probability of an edge between nodes i and j,
defined as: p̂ij = sigmoid(ẑTi · ẑj). The second term in Eq. 9 is a distribution regularization term,
which enforces the variational distribution qϕv

(ẑi|z) of each node to be close to a prior distribution
p(ẑi), which we assume is a standard Gaussian distribution. KL(·) represents the Kullback-Leibler
(KL) divergence. The detailed derivation of LCGSE is in the Appendix.

The reconstruction objective incorporates both the inter-class and intra-class relationships between
nodes in buffers. This loss facilitates the learning of variational node embeddings with well-defined
classification boundaries, further bolstering the model’s generalization on the label space. As such,
the method can effectively address C2.

Replaying on Generated Diversified Memory. Finally, we define the reply objective on the
variational embeddings of buffer nodes, rather than the original embeddings, expressed as:

LRP =

K∑
j=1

∑
vi∈Bj

ℓt(ẑi, yi). (10)

Note that the variational operation regenerates synthetic buffer node embeddings with the same size
as original embeddings in each training step, i.e., |Vge| ≡ |Vob|, broadening the diversity of memory
while guaranteeing the efficiency of the buffer replay.

6
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3.3 OVERALL OPTIMIZATION

Combining the new task loss Lt =
∑

vi∈Vt ℓt(f(vi; θ), yi) and the above memory replay losses, the
overall optimization objective can be written as follows:

min
θ
Lt +min

θ,ϕv

{
λ1LRP + λ2 max

ϕd

{LMISE}+ λ3LCGSE

}
, (11)

where λ1, λ2 and λ3 is the loss weights.

Synchronized Min-Max Optimization. A gradient reversal layer (GRL) (Ganin et al., 2016) is
introduced between the variational embedding and the auxiliary discriminator so as to conveniently
perform min-max optimization on θ, ϕv and ϕd under LMISE in the same training step. GRL acts as
an identity transformation during the forward propagation and changes the signs of the gradient from
the subsequent networks during the backpropagation.

Scaliability on Large-Scale graphs. In each training step, training DMSG on the entire graph
and buffer at once may not be practical, especially for large-scale graphs. Following methods like
GraphSAGE (Hamilton et al., 2017) and GraphSAINT (Zeng et al., 2019), we adopt a mini-batch
optimization strategy. We sample a multi-hop neighborhood for each node and set two kinds of batch
sizes, Bnew and Bbuffer, for the new task and replay losses in Eq. 11, respectively. The ratio of these
batch sizes corresponds to the ratio between the total training nodes in the new task and the buffer.

4 EXPERIMENTS

Experiment Setup. In this section, we describe the experiments we perform to validate our proposed
method. We use the four growing graph datasets, CoraFull, OGB-Arxiv, Reddit, and OGB-Products,
introduced in Continual Graph Learning Benchmark (CGLB) (Zhang et al., 2022a). These graphs
contain 35, 20, 20, and 23 sub-graphs, respectively, where each sub-graph corresponds to new tasks
with novel classes. For baselines, we establish the upper bound baseline Joint defined in Section
2. The lower bound baseline Fine-tune employs only the newly arrived training nodes for model
adaptation withour memory replay. Then, we set multiple continual learning models for graph as
baselines, including EWC (Kirkpatrick et al., 2017), MAS (Aljundi et al., 2018), GEM (Lopez-Paz &
Ranzato, 2017), LwF (Li & Hoiem, 2017), TWP (Liu et al., 2021), ER-GNN (Zhou & Cao, 2021),
SSM (Zhang et al., 2022c), and SEM (Zhang et al., 2023). For a fair comparison, the backbone is
set as two layers and the hidden dimension as 256 for all baselines. For evaluation metric, we first
report the accuracy matrix Macc ∈ RT×T , which is lower triangular where Macc

i,j (i ≥ j) represents
the accuracy on the j-th tasks after learning the task i. To derive a single numeric value after learning
all tasks, we report the Average Accuracy (AA) 1

T

∑T
i=1 M

acc
T,i and the Average Forgetting (AF)

1
T−1

∑T−1
i=1 Macc

T,i −Macc
i,i for each task after learning the last task. For more detailed introduction to

experimental setup, please refer to Appendix A.5.

Overall Comparison. This experiment aims to answer: How is DMSG’s performance on the
continual learning on graphs? We compare DMSG with various baselines in the class-incremental
continual learning task and report the experimental results in Table 1. Initially, we observe that
DMSG attains a significant margin over other baseline methods across all datasets. Certain baseline
methods demonstrate exceedingly poor results. This can be attributed to the difficulty of the problem,
which involves more than 20 timesteps’ continual learning. When the model forgets intermediate
tasks, errors are cumulatively compounded for subsequent tasks, potentially leading to the model
easily collapsing. However, our model addresses this challenge through superior buffer selection and
replay training strategies, effectively avoiding catastrophic problems. Among the various baselines,
the most comparable method to DMSG is SEM. Our method outperforms SEM mainly because we
improve the buffer selection strategy, i.e., instead of random selection, we employ distance measures
to choose more representative nodes for each class. Additionally, the variational replay method
enables our model to effectively learn the data distribution from previous tasks. When compared to
Joint, DMSG achieves comparable results, demonstrating its effectiveness in preserving knowledge
from previous tasks, even with limited training samples. Notably, our method outperforms Joint
on the Reddit dataset, and also exhibits a positive AF. This improvement can be attributed to the
proposed buffer selection strategy, which can select representative nodes, in other words, eliminate
the noise nodes, and thereby enhancing the results.
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Table 1: The model performance comparisons( ↑: higher is better, Joint is the upper bound).

Methods CoreFull OGB-Arxiv Reddit OGB-Products

AA/% ↑ AF/% ↑ AA/% ↑ AF/% ↑ AA/% ↑ AF/% ↑ AA/% ↑ AF/% ↑
Fine-tune 3.5±0.5 -95.2±0.5 4.9±0.0 -89.7±0.4 5.9±1.2 -97.9±3.3 3.4±0.8 -82.5±0.8

EWC 52.6±8.2 -38.5±12.1 8.5±1.0 -69.5±8.0 10.3±11.6 -33.2±26.1 23.8±3.8 -21.7±7.5
MAS 12.3±3.8 -83.7±4.1 4.9±0.0 -86.8±0.6 13.1±2.6 -35.2±3.5 16.7±4.8 -57.0±31.9
GEM 8.4±1.1 -88.4±1.4 4.9±0.0 -89.8±0.3 28.4±3.5 -71.9±4.2 5.5±0.7 -84.3±0.9
TWP 62.6±2.2 -30.6±4.3 6.7±1.5 -50.6±13.2 13.5±2.6 -89.7±2.7 14.1±4.0 -11.4±2.0
LwF 33.4±1.6 -59.6±2.2 9.9±12.1 -43.6±11.9 86.6±1.1 -9.2±1.1 48.2±1.6 -18.6±1.6

ER-GNN 34.5±4.4 -61.6±4.3 30.3±1.5 -54.0±1.3 88.5±2.3 -10.8±2.4 56.7±0.3 -33.3±0.5
SSM 75.4±0.1 -9.7±0.0 48.3±0.5 -10.7±0.3 94.4±0.0 -1.3±0.0 63.3±0.1 -9.6±0.3
SEM 77.7±0.8 -10.0±1.2 49.9±0.6 -8.4±1.3 96.3±0.1 -0.6±0.1 65.1±1.0 -9.5±0.8

Joint 81.2±0.4 -3.3±0.8 51.3±0.5 -6.7±0.5 97.1±0.1 -0.7±0.1 71.5±0.1 -5.8±0.3

DMSG 77.8±0.3 -0.5±0.5 50.7±0.4 -1.9±1.0 98.1±0.0 0.9±0.1 66.0±0.4 -0.9±1.6

(a) CoraFull (b) OGB-Arxiv (c) Reddit (d) OGB-Product

Figure 3: Dynamics of the average accuracy during incremental learning on different growing graphs.

In-Depth Analysis of Continuous Performance. This experiment aims to answer: How does
DMSG’s fine-grained performance evolve after continuously learning each task? To present a more
fine-grained demonstration of the model’s performance in continual learning on graphs, we analyzed
the average performance across all previous tasks each time a new task was learned. The comparative
results of Fine-tune, Joint, DMSG, and the top-performing baseline, SEM, are depicted in Figure 3.
The curve represents the model’s performance after t in terms of AA on all previous t tasks. Also, we
visualize the accuracy matrices of DMSG and SEM on the OGB-Arxiv and OGB-Product datasets.
The results are presented in Figure 4. In these matrices, each row represents the performance across
all tasks upon learning a new one, while each column captures the evolving performance of a specific
task as all tasks are learned sequentially. In the visual representation, lighter shades signify better
performance, while darker hues indicate inferior outcomes. From the results, we observed that as
the number of tasks increases, the learning objectives grow increasingly complex, resulting in a
reduction in performance across all examined methods, including Joint. That is because as tasks
accumulate and the learning objectives become multifaceted, it becomes challenging for models to
maintain optimal performance across all classes. Notably, the Fine-Tuning strategy experienced a
substantial decline, with the model collapsing with the arrival of merely two new tasks, demonstrating
that catastrophic forgetting occurs almost immediately when the model fails to access previous
memories. This reinforces the need for effective continual learning techniques on the growing graphs
where new tasks frequently emerge. While the performance drop was observed across all methods,
DMSG demonstrated resilience and outperformed the top-performing baseline SEM. Also, DMSG
predominantly displays lighter shades across the majority of blocks compared to SEM in Figure 4.
Moreover, its competitive performance with Joint in specific datasets signifies its robustness and
capability. This could be attributed to diversified memory selection and generation in DMSG that not
only help in mitigating forgetting but also in adapting efficiently to new tasks.

Component Analysis of Memory Replay. This experiment aims to answer: Are all the proposed
memory replay technologies of DMSG have the claimed contribution to continual learning? To inves-
tigate the distinct contributions of the diversified memory generation replay method, we conducted
an ablation study on it. We design three variant methods for DMSG— w/o LMISE : This variant
excludes the adversarial learning loss for maintaining the integrity of synthesized embeddings; w/o
LCGSE : This variant excludes the graph reconstruction loss on variational embeddings for consol-
idating their generalization to label space; w/o all: both losses were removed, and as a result, the
model operates without any variational embeddings and just replays the original nodes in the memory
buffers. From the results in Table 2, we can observe when both LMISE and LCGSE are removed (w/o
all), the performance is the lowest across all datasets. Also, a progressive improvement is observed as
individual components in the model. This confirms their respective contributions to continual learning.
An interesting trend emerges when comparing the individual contributions of the two components.
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Figure 4: Accuracy matrices of DMSG and SEM in different datasets.

Table 2: The ablation study of memory replay.

Methods CoreFull OGB-
Arxiv Reddit OGB-

Products

w/o all 73.9±0.6 48.2±0.4 89.3±3.6 60.1±0.8
w/o LMISE 74.4±0.8 49.3±0.3 95.1±2.9 60.1±0.9
w/o LCGSE 74.8±0.7 49.7±0.2 97.8±0.4 60.5±0.7

DMSG 77.8±0.3 50.7±0.4 98.1±0.0 66.0±0.4

The w/o LCGSE variant slightly surpasses
the performance of w/o LMISE . This
suggests that while both components are
crucial, adversarial variational embedding
learning may have a more pronounced ef-
fect in capturing essential and diverse pat-
terns inherent in the data. The best per-
formance occurs with all components, sup-
porting that the proposed components are beneficial individually and collectively, ensuring the model
can effectively memorize the previous knowledge while continually adapting to new tasks.

5 RELATED WORKS

Many graphs in real-world applications, such as social networks and transportation systems, are
not static but evolve over time. To accommodate this dynamic nature, various methods have been
developed to manage growing graph data (Wang et al., 2020a; Tang & Matteson, 2020; Daruna
et al., 2021; Luo et al., 2020). Incremental learning (Parisi et al., 2019; Schwarz et al., 2018;
Castro et al., 2018) involves models continuously learning and adapting, often facing the catastrophic
forgetting problem. Solutions include regularization techniques (Pomponi et al., 2020; Lin et al.,
2023), parameter isolation (Wang et al., 2021a; Lyu et al., 2021), and memory replay (Wang et al.,
2021b; Mai et al., 2021). Recent works (Lu et al., 2022; Wang et al., 2022; Yang et al., 2022; Tan
et al., 2022) specifies this problem to growing graph data–new nodes introduce unseen classes to the
graph. Methods of Graph Incremental Learning (Rakaraddi et al., 2022; Kim et al., 2022; Sun
et al., 2023; Su & Wu, 2023; Feng et al., 2023; Liu et al., 2023; Niu et al., 2024) strive to retain
knowledge of current classes and adapt to new ones, enabling continuous prediction across all classes.
For example, TWP (Liu et al., 2021) employs regularization to ensure the preservation of critical
parameters and intricate topological configurations, achieving continuous learning. HPNs (Zhang
et al., 2022b) adaptively choose different trainable prototypes for incremental tasks. ER-GNN (Zhou
& Cao, 2021) proposes multiple memory sampling strategies designed for the replay of experience
nodes. SEM (Zhang et al., 2023) leverages a sparsified subgraph memory selection strategy for
memory replay on growing graphs. However, the trade-off between buffer size and replay effect is
still a Gordian knot, i.e., aiming for a small buffer size usually results in ineffective memory preserving
and knowledge replay. To address this gap, this paper introduces an effective memory selection and
replay method that explores and preserves the essential and diversified knowledge contained within
restricted nodes, thus improving the model in learning previous knowledge.

6 CONCLUSION

To summarize, this paper presents a novel approach DMSG to the challenge of incremental learning in
ever-growing and increasingly complex graph-structured data. Central to memory diversification, the
proposed method includes a holistic and efficient buffer selection module and a generative memory
replay module to effectively prevent the model from forgetting previous tasks when learning new
tasks. The proposed method works in both preserving comprehensive knowledge in limited memory
buffers and enhancing previous knowledge memorization when learning new tasks.

One potential limitation of DMSG is that it does not improve the graph feature extractor of the model,
which may result in suboptimal performance when dealing with increasing graph data, as the model
parameters are insufficient to learn and retain massive amounts of information effectively. Future
work may focus on integrating more sophisticated parameter incremental learning techniques to
dynamically adapt the model to the growing complexity of graph data, ultimately leading to improved
performance in incremental learning scenarios.
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A APPENDIX

A.1 EXTENDED ANALYSIS OF THEOREM 1

In the context of Theorem 1 and Eq.3. The covariance matrices Σp and Σq are key indicators
of the diversity within the distributions of p(G<t) and q(B<t), respectively. According to the
Cochran theorem (Soch, 2023), the sampled variance σ2

q for an univariate is related to the chi-squared
distribution:

(n− 1)
σ2
q

σp
2
∼ χ2

n−1

where σp is the ture variance and n is the sample number. The mean of the chi-squared distribution
is n− 1, and its right-skewed nature implies that:

P (χ2
n−1 < n− 1) > 0.5

P (σ2
q < σ2

p) = P

(
(n− 1)

σ2
q

σ2
p

< n− 1

)
= P (χ2

n−1 < n− 1) > 0.5

This indicates that there is a greater than 50% chance that the sample variance underestimates the
population variance. In higher dimensions, the sample covariance matrix Σq (related to the Wishart
distribution) displays properties analogous to the chi-squared distribution used in the unidimen-
sional case. This statistical property extends to the sample covariance matrix in higher dimensions,
suggesting that the eigenvalues of Σq are likely to be smaller than those of Σp.

Thus, the replay buffer B<t, being a sampled subset of G<t, typically exhibits less diversity than
the entire graph dataset from previous tasks, meaning Σq is often smaller than Σp. Assuming the
sampling strategy is unbiased upon means, as the B<t more diversified, Σq → Σp, leading to the
Wasserstein distance decreases. Based on Theorem 1, the discrepancy between the expected loss
under true distribution and the buffer distribution becomes less, making the optimization on the buffer
more closely approximate the optimization on all previous graph data.

A.2 THEORETICAL ANALYSIS OF GREEDY ALGORITHM 1.

In the Heuristic Diversified Memory Selection section, we propose a heuristic buffer selection
algorithm and give a proposition of approximation guarantee of the algorithm:
Proposition 2. (Greedy Approximation Guarantee of Algorithm 1). The greedy Algorithm 1 that
sequentially adds elements to an initially empty set based on the largest marginal gain△D under a
cardinality constraint provides a solution B∗i that is at least (1− 1

e ) times the optimal solution, i.e.,

f(B∗i ) ≥
(
1− 1

e

)
· f(OPT ), (12)

where OPT represents the optimal solution of the buffer set Bi.

Below we first give a greedy approximation guarantee and then give the proof of Proposition 1.
Theorem 2. (Greedy Approximation Guarantee for Monotonic and Submodular Functions): Let
f : 2U → R be a set function defined on a finite ground set U such that:

• f is non-decreasing (monotonic), i.e., for every A ⊆ B ⊆ U ,

f(A) ≤ f(B)

• f is submodular, i.e., for every A ⊆ B ⊆ U and for every x ∈ U \B, the marginal increase
in f due to x is at least as large when added to the smaller set A as when added to the
larger set B. Formally,

f(A ∪ {x})− f(A) ≥ f(B ∪ {x})− f(B)

Then, a greedy algorithm that sequentially adds elements to an initially empty set based on the largest
marginal gain of f produces a solution S∗ such that:

f(S∗) ≥
(
1− 1

e

)
· f(OPT )
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where OPT is an optimal solution. Below is the proof:

Proof. Let S be the set constructed by the greedy algorithm. Begin with S = ∅ and f(S) = 0.

At the k-th step, the greedy algorithm picks an element xk that maximizes the marginal gain:
xk = arg max

x∈U\S
∆f (x|S)

where ∆f (x|S) = f(S ∪ {x})− f(S).

Let OPT be an optimal solution, and without loss of generality, let OPT = {o1, o2, . . . , om}. For
each k, consider the gain of the greedy algorithm in the k-th step relative to adding the k-th element
of OPT to S:

∆f (xk|S) ≥
1

m

m∑
i=1

∆f (oi|S)

This inequality is derived from the submodularity of f . The right-hand side is the average marginal
gain of adding elements of OPT to S.

The total increase in f over the first k steps of the greedy algorithm is at least:

f(S) ≥

(
1−

(
1− 1

m

)k
)
· f(OPT )

By analyzing the expression on the right and considering the limit as k approaches m, we obtain the(
1− 1

e

)
factor.

After m steps (or fewer, if the greedy algorithm terminates early), the set S∗ constructed by the
greedy algorithm satisfies:

f(S∗) ≥
(
1− 1

e

)
· f(OPT )

This completes the proof.

Given D(Bi) =
∑

v∈Bi
(A(v,Bi)+ 1

K−1

∑K
j=1,j ̸=iA(v,Bj)) is the set score function defined on the

buffer set Bi of the i-th class,△D(v|Bi) is the gain of f choosing v into Bi. We have the following
Lemmas of D:
Lemma 1. The function D is monotonic with respect to set Bi.

Proof. For the intra-class diversity, when new nodes are added to Bi, they positively contribute to
D due to their own distances to other nodes within Bi. The addition of these nodes can decrease
the distances of the existing nodes in Bi to their closest neighbors. For the inter-class diversity, the
addition of new nodes to Bi increases the value of D since these nodes have their own distances to
nodes in other classes Bj . The distances from existing nodes in Bi to nodes in other classes remain
unchanged, so there is no loss in inter-class diversity. Given that the gains from inter-class distances
generally overshadow the potential losses from intra-class distances, we can infer that as we include
more nodes in Bi, the value of D will increase. Therefore, the function is monotonic.

Lemma 2. The function D is submodular with respect to set Bi.

Proof. For the function D, to be submodular, it must satisfy the following condition: For any set Bi
and node v, and any set V− from Ci such that v is not an element of V−, the following inequality
holds:

D(Bi ∪ v)− D(Bi) ≥ D(Bi ∪ V− ∪ v)− D(Bi ∪ V−)

For the first term
∑

v∈Bi
A(v,Bi), given the definition of the function A, the distance to the nearest

point in Bi for any v will be greater than or equal to the distance to the nearest point in Bi
⋃
V−.

Therefore, adding v to Bi can potentially reduce the distance more significantly than adding it to
Bi
⋃
V−. Regarding the subsequent term, which sums the distances from all nodes in the set to

other sets of buffers Bj , it can be deduced that adding v into either Bi or Bi
⋃
V− yields an identical

gain in the function’s value. In light of the above observations, we can validate the aforementioned
inequality. Consequently, the function D is submodular with respect to set Bi.
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Eventually, our optimal solution in Equation 4 can be written as:

Bi = arg max
Bi⊂Ci

D(Bi)

The proposed greedy Algorithm 1 aims to sequentially add elements to Bi based on the largest
marginal gain of D, which is monotonic and submodular. Based on Theorem 2, Lemma 1, and
Lemma 2, we can establish the validity of Proposition 1.

A.3 DERIVATION OF LOSS LCGSE .

In the Diversified Memory Generation Replay section, we aim to use the variational node embeddings
to generate a reconstructed graph on the buffer nodes. The optimization problem is described by
the likelihood of observing a reconstructed adjacency matrix Â based on surrogate source node
embeddings Ẑ:

Theorem 3. Given the variational posterior q(ẑi|z) via the instantiating of synthesized node em-
beddings and a prior distribution p(ẑi) acting as a regularization for q(ẑi|z), we have the Evidence
Lower Bound (ELBO), which is a surrogate objective for maximizing the log-likelihood:

log p(Â) ≥ Eqϕv (Ẑ|Z)[log p(Â|Ẑ)]− KL(qϕv
(ẑi|z)||p(ẑi))

where KL(·) represents the Kullback-Leibler (KL) divergence. The term p(Â|Ẑ) denotes the re-
construction probability from the surrogate source node embeddings to the reconstructed adjacency
matrix.

Proof. The optimization problem we are dealing with is described by the likelihood of observing a
reconstructed adjacency matrix Â based on surrogate source node embeddings Ẑ:

log p(Â) = log

∫
p(Â, Ẑ)dẐ

= log

∫
p(Â|Ẑ)p(Ẑ)dẐ

This equation encapsulates the joint probability of observing the graph and the latent variables. To
enable tractable optimization, we introduce a variational distribution, qϕv

(ẑi|z), approximating the
true posterior of the node embeddings. Multiplying and dividing by this term, we can express the
likelihood as:

log p(Â) = log

∫
p(Â|Ẑ)

p(Ẑ)

qϕv
(ẑi|z)

qϕv (ẑi|z)dẐ

This expression can be interpreted as an expectation with respect to the variational distribution:

log p(Â) = logEqϕv

[
p(Â|Ẑ)

p(Ẑ)

qϕv
(ẑi|z)

]

Applying Jensen’s inequality allows us to bring the logarithm inside the expectation, leading to a
lower bound:

log p(Â) ≥Eqϕv

[
log p(Â|Ẑ)

p(Ẑ)

qϕv
(ẑi|z)

]

= Eqϕv

[
log p(Â|Ẑ)

]
+ Eqϕv

[
log

p(Ẑ)

qϕv
(ẑi|z)

]
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We recognize the second term in the above inequality as the negative of the KL divergence between
the variational distribution and the prior:

KL(qϕv
(ẑi|z)||p(ẑi)) = Eqϕv

[log
qϕv

(ẑi|z)
p(ẑi)

]

The KL divergence acts as a regularization term, penalizing deviations of our variational distribution
from the prior. Combining the terms, we have the Evidence Lower Bound (ELBO), which is a
surrogate objective for maximizing the log-likelihood:

log p(Â) ≥ Eqϕv
[log p(Â|Ẑ)]− KL(qϕv (ẑi|z)||p(ẑi))

Thus, we obtain the optimization objective LCGSE . Specifically, the actual calculation formulas of
the two components of LCGSE are defined as:

Eqϕv
[log p(Â|Ẑ)] =

[
Âij log p̂ij + Âij log(1− p̂ij)

]

KL(qϕv
(ẑi|z)||p(ẑi)) =

K∑
k=1

KL (N (µk,Σk)||N (0, I))

=

K∑
k=1

1

2

(
tr(Σk) + µT

kµk − h− log |Σk|
)

where tr(·) denotes the trace of a matrix, h is the dimensionality of the source node embedding ẑi,
and |Σk| is the determinant of Σk.

A.4 SYNCHRONIZED MIN-MAX OPTIMIZATING OF OVERALL LOSS LDMSG.

Recall that the overall optimization objective is as follows:

min
θ
Lt +min

θ,ϕv

{
λ1LRP + λ2 max

ϕd

{LMISE}+ λ3LCGSE

}
,

where λ1, λ2 and λ3 is the weights to balance different losses. Then, the parameters θ, ϕv , and ϕd of
DMSG can be optimized by Stochastic Gradient Decent (SGD) as follows:

θ ← θ − µ

(
∂Lt

∂θ
+ λ1

∂LRP

∂θ
+ λ2

∂LMISE

∂θ
+ λ3

∂LCGSE

∂θ

)
,

ϕv ← ϕv − µ

(
λ1

∂LRP

∂ϕv
+ λ2

∂LMISE

∂ϕv
+ λ3

∂LCGSE

∂ϕv

)
,

ϕd ← θ − µ

(
−λ2

∂LMISE

∂ϕd

)
.

where µ is the learning rate.
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Figure 5: Cumulative number of nodes within different growing graphs.
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Table 3: The statistics of four datasets.

Dataset #Nodes #Edges #Classes #Tasks

CoreFull 19,793 130,622 70 35
OGB-Arxiv 169,343 1,166,243 40 20

Reddit 232,965 114,615,892 40 20
OGB-Products 2,449,029 61,859,140 46 23

A.5 EXPERIMENT SETUP

A.5.1 DATASETS

We use the four graph datasets, CoraFull, OGB-Arxiv, Reddit, and OGB-Products, introduced in
Continual Graph Learning Benchmark (CGLB) (Zhang et al., 2022a). CoraFull (McCallum et al.,
2000) and OGB-Arxiv (Wang et al., 2020b) are citation networks with papers as nodes and citation
relationships as edges and labeled based on paper topics. Reddit (Hamilton et al., 2017) is a social
network with posts as nodes and posts are connected if the same user comments. The node labels
are the community the posts belong to. OGB-Products (Hu et al., 2020) is a product co-purchasing
network with nodes representing products and edges indicating that the connected products are
purchased together. The node labels are the class the products belong to. Each graph is considered a
volume-increasing graph over time, where its size expands with the arrival of new nodes with several
novel classes at each time, leading to a more complex node classification task. To elaborate, given an
original graph comprised of C class nodes, these classes are partitioned into m = C

k groups with the
original class order. This ensures that each group contains k classes of nodes. The graph is divided
into m sub-graphs accordingly, where each sub-graph represents the newly added data with novel
classes at a particular time, resulting in a new learning task. In the context of continual learning,
we commence by training a model on the first graph. Subsequently, at each time, we integrate the
succeeding sub-graph into the prevailing graph, prompting the model to continuously learn and adapt
to new tasks. To accentuate the forgetting problems in continual learning, we set k as 2 for each graph,
which basically maximizes the number of tasks on a growing graph, challenging the capabilities of
baselines. The detailed statistics of the datasets are shown in Table 3. Figure 5 shows the curves of
the cumulative number of nodes within different growing graphs..

A.5.2 BASELINES

First, we establish the upper bound and lower bound baselines of our problem. The upper bound
baseline Joint is defined in Section 2, which involves continuously training the model each time with
all accumulated training nodes from previous and new tasks, thus without the forgetting problem. The
lower bound baseline Fine-tune employs only the newly arrived training nodes for model adaptation,
yielding a fine-tuning mode that easily forgets the previous tasks. Then, we set multiple continual
learning models for graph as baselines, including EWC (Kirkpatrick et al., 2017), MAS (Aljundi
et al., 2018), GEM (Lopez-Paz & Ranzato, 2017), LwF (Li & Hoiem, 2017), TWP (Liu et al.,
2021), ER-GNN (Zhou & Cao, 2021), SSM (Zhang et al., 2022c), and SEM (Zhang et al., 2023). A
detailed introduction to these methods can be found in the Appendix. As some of the methods are not
originally designed for graph data, we utilize a Graph Neural Network (GNN) as the backbone of all
baselines for extracting graph information. The specific GNN model of baselines is selected from
GCN (Welling & Kipf, 2016), SGC (Wu et al., 2019), GAT (Casanova et al., 2018), and GIN (Xu
et al., 2018), based on which yields the best performance. For a fair comparison, the backbone is set
as two layers and the hidden dimension as 256 for all baselines. Here, we give a detailed introduction
to the baseline models.

• EWC imposes a constraint, based on the Fisher Information Matrix and weight adjustments,
to preserve knowledge from prior tasks during new task learning.

• LwF adeptly learns new tasks without necessitating the retention of old task samples
by training neural networks to minimize discrepancies between predictions on new and
preceding tasks.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

• GEM facilitates effective continual learning by storing knowledge from previous tasks and
archiving prior tasks with permitting updates solely if they don’t amplify the loss on these
tasks.

• MAS mitigates catastrophic forgetting by imposing penalties on modifications to critical
synapses, determined by the influence of weight changes on output. Successfully preserves
old knowledge without requiring the storage of previous tasks.

• TWP preserving both the minimized loss and the topological structure of the graph, har-
monizes past and new tasks knowledge, thus enabling more robust model performance and
circumventing catastrophic forgetting.

• SSM uses a strategy that sparsifies and computational graphs into a fixed size before storing
it in memory, which not only minimizes memory consumption, but also enhances the
learning of tasks from diverse classes.

• SEM develop the subgraph episodic memory to store the explicit topological information
in the form of computation subgraphs and perform memory replay-based continual graph
representation learning.

A.5.3 EXPERIMENTAL SETTING

We use a 2-layer GCN as our backbone. For the baselines, we report their experimental results
from SEM (Zhang et al., 2022c), and we set the same experimental setting with the bucket size of
DMSG as 60 for CoraFull and 400 for other datasets. For the diversified memory replay, we set the
number of generated diversified node embeddings in the memory buffers the same as the original
counts. Following (Zhang et al., 2022a;c), the training rate for each task is set as 60%, the validation
rate as 20%, and the test rate as 20%. The training epoch for each task is set as 200 epochs. The
training nodes of previous tasks exclusively come from the buffer. The learning rate is set as 0.001
and the weight decay as 1e-3, The weights for the four losses are set as [1, 20, 1, 1], respectively. For
evaluation metric, we ultilize the Average Accuracy (AA) meaning the mean accuracy of the model on
all tasks after learning the final task, and Average Forgetting (AF) meaning the average reduction in
accuracy for each task from when it was first learned to after the model has learned all tasks. we first
report the accuracy matrix Macc ∈ RT×T , which is lower triangular where Macc

i,j (i ≥ j) represents
the accuracy on the j-th tasks after learning the task i. To derive a single numeric value after learning
all tasks, we report the Average Accuracy (AA) 1

T

∑T
i=1 M

acc
T,i and the Average Forgetting (AF)

1
T−1

∑T−1
i=1 Macc

T,i −Macc
i,i for each task after learning the last task.

A.5.4 EXPERIMENTAL PLATFORM INFORMATION

All experiments were conducted on the Ubuntu 18.04.6 LTS operating system, AMD EPYC 7742
CPU, and 8 NVIDIA A100 GPUs, with the framework of Python 3.8.18 and PyTorch 2.2.0.

A.6 EXTENTAL EXPERIMENTS

A.6.1 VISUALIZATION OF ACCURACY MATRIX

To further understand the dynamics of our methods under the incremental learning task, we visualize
the accuracy matrices of DMSG and SEM on the CoraFull and OGB-Arxiv datasets. The results
are presented in Figure 4 and 6. In these matrices, each row represents the performance across all
tasks upon learning a new one, while each column captures the evolving performance of a specific
task as all tasks are learned sequentially. In the visual representation, lighter shades signify better
performance, while darker hues indicate inferior outcomes. Upon comparison, DMSG predominantly
displays lighter shades across the majority of blocks compared to SEM, showing that DMSG can
consistently achieve better performance.

A.6.2 ANALYSIS OF BUFFER SELECTION.

This experiment aims to answer: Is the proposed buffer selection strategy more effective than other
selection strategies in selecting representative nodes? The choice of buffer sampling strategies is
critical in a graph’s continual learning, as it determines which knowledge will be stored and later
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Figure 6: Accuracy matrices of DMSG and SEM in different datasets..

replayed to the model. We choose different buffer sampling strategies, including our proposed
Diversified Memory Selection (DMS) method, K-center sampling (Nguyen et al., 2018), Coverage
Maximization (CM), and Mean of Feature (MF) (Zhou & Cao, 2021). We perform these sampling
methods in our continual learning framework. The results are demonstrated in Table 4. We can
observe that our sampling method consistently excels in performance. This consistency can be
attributed to exploring both the intra-class and inter-class diversity of nodes within our method that
efficiently captures the required diversity among nodes, ensuring a holistic representation of the
dataset. The K-center approach, although it shows commendable results, lags behind our method.
This can be attributed to it sharing a similar assumption with our method–capturing diverse sample
buffers. However, the K-center approach does not fully consider intra- and inter-class diversity, ,
leading to comparatively lower performance. It’s worth highlighting that both CM and MF, when
implemented within our framework, demonstrate a marked improvement in performance compared to
their native ER-GNN framework. This outcome underscores the flexibility of our proposed diversified
memory generation replay model, suggesting that it not only complements various sampling strategies
but can potentially improve their effectiveness.

Table 4: Comparison of buffer selection methods.

Methods CoreFull OGB-
Arxiv Reddit OGB-

Products

Kcenter 74.4±0.7 43.7±0.6 85.2±2.7 49.7±0.8
CM 74.5±0.6 40.6±1.0 72.4±1.4 43.5±0.8
MF 74.5±0.8 42.3±0.9 87.2±0.7 49.3±1.1

DMS 77.8±0.3 50.7±0.4 98.1±0.0 66.0±0.4

A.6.3 ANALYSIS OF BUFFER SIZES.

This experiment aims to answer: How do different buffer size affect the performance of DMSG? To
comprehensively understand the influence of buffer size on the performance of DMSG, we evaluate
DMSG across different buffer sizes, specifically 40, 50, 60, 70, and 80 for the CoraFull dataset, and
200, 300, 400, 500, and 600 for other datasets. The results are illustrated in Figure 7. There’s a clear
trend that, generally, as the buffer size increases, the performance also sees an enhancement. This
can be intuitively understood: a more extensive buffer can store more data from past tasks, acting as a
richer source of knowledge when learning new tasks and thereby mitigating the effects of catastrophic
forgetting. An equally important observation is the consistency in the standard deviation of results
across different buffer sizes. The compact standard deviation, even for smaller buffers, is indicative of
the robustness of DMSG. On both the Reddit and OGB-Product datasets, the performance at a buffer
size of 600 exhibited a marginal decline. While it might appear counterintuitive given the general
trend, this could be due to the larger buffer size introducing more noise nodes. These nodes, which
might not be as representative or essential as others, can dilute the quality of information stored. As a
result, they consequently reduce the model’s generalization ability-—a consideration that aligns with
our discussion in the overall comparison.
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Figure 7: The model performance with different buffer sizes.

A.7 DETAILED RELATED WORKS

A.7.1 LEARNING ON GROWING GRAPHS.

Graph-based learning often operates under the assumption that the entire graph structure is available
upfront. For example, Graph Neural Networks (GNNs) have rapidly become one of the most
prominent tools for learning graph-structured data, bridging the gap between deep learning and graph
theory. Representative methods includes GCN (Welling & Kipf, 2016), GraphSAGE (Hamilton
et al., 2017), and GAT (Veličković et al., 2018), etc. However, these methods predominantly
operate on static graphs. Many graphs in real-world applications, such as social networks and
transportation systems, are not static but evolve over time. To accommodate this dynamic nature,
various methods have been developed to manage growing graph data (Wang et al., 2020a; Tang &
Matteson, 2020; Daruna et al., 2021; Luo et al., 2020). For instance, Evolving Graph Convolutional
Networks (EvolveGCN) (Pareja et al., 2020) emphasizes temporal adaptability in graph evolution.
Temporal Graph Networks (TGNs) (Rossi et al., 2020) operates on continuous-time dynamic graphs
represented as a sequence of events. Spatio-Temporal Graph Networks (STGN)(Yu et al., 2018)
integrates spatial and temporal information to enhance prediction accuracy. However, these methods
primarily concentrate on a singular task in evolving graphs and often encounter difficulties when
more complicated tasks emerge as the graph expands.

A.7.2 INCREMENTAL LEARNING.

Incremental learning (Parisi et al., 2019) refers to a evolving paradigm within machine learning where
the model continues to learn and adapt after initial training. The continuous integration of new tasks
often leads to the catastrophic forgetting problem. There are usually two types of continual learning
settings–class-incremental learning is about expanding the class space within the same task domain,
while task-incremental learning involves handling entirely new tasks, which may or may not be related
to previous ones (Schwarz et al., 2018; Castro et al., 2018). Typically, three different categories of
methods have emerged to address the continual learning problem. The first category revolves around
regularization techniques (Pomponi et al., 2020; Lin et al., 2023). By imposing constraints, these
methods prevent significant modifications to model parameters that are critical to previous tasks,
ensuring a degree of stability and retention. The second category encompasses parameter-isolation-
based approaches (Wang et al., 2021a; Lyu et al., 2021). These strategies dynamically allocate new
parameters exclusively for upcoming tasks, ensuring that crucial parameters intrinsic to previous
tasks remain unscathed. Lastly, memory replay-based methods (Wang et al., 2021b; Mai et al., 2021)
present a solution by selectively replaying representative data from previous tasks to mitigate the
extent of catastrophic forgetting, while are more preferred due to their reduced memory storage
requirements and flexibility in parameter training. This paper delve deeper and present an effective
strategy for selecting and replaying memory on graphs.

A.7.3 GRAPH CLASS-INCREMENTAL LEARNING.

Graph incremental learning, also known as graph continual learning, aims to continually train a graph
model on growing graphs to perform more complex tasks. This problem includes two settings, task-
incremental learning and class-incremental learning. Graph task incremental learning methods treat
the learning as different tasks and assume the task affectations of newly added nodes are known when
inference. Many works (Su & Wu, 2023; Su et al., 2023; Niu et al., 2023; Su et al., 2024) have been
introduced recently under this setting. Class-incremental Learning (Belouadah et al., 2021) means
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the specific scenario where the number of classes increases along with the new samples introduced,
which does not presuppose knowledge of node class assignments in different tasks, presenting a more
complex challenge. Graph class-incremental learning (Lu et al., 2022; Wang et al., 2022; Yang et al.,
2022; Tan et al., 2022) specifies this problem to growing graph data–new nodes introduce unseen
classes to the graph. Methods of graph class-incremental learning (Rakaraddi et al., 2022; Kim et al.,
2022; Sun et al., 2023; Feng et al., 2023; Liu et al., 2023; Niu et al., 2024) strive to retain knowledge
of current classes and adapt to new ones, enabling continuous prediction across all classes. In the
past years, various strategies have been proposed to tackle this intricate problem. For example, TWP
(Liu et al., 2021) employs regularization to ensure the preservation of critical parameters and intricate
topological configurations, achieving continuous learning. HPNs (Zhang et al., 2022b) adaptively
choose different trainable prototypes for incremental tasks. ER-GNN (Zhou & Cao, 2021) proposes
multiple memory sampling strategies designed for the replay of experience nodes. SSM (Zhang et al.,
2022c) and SEM (Zhang et al., 2022c) leverage a sparsified subgraph memory selection strategy for
memory replay on growing graphs. PDGNN (Niu et al., 2023) proposes parameter decoupled graph
neural networks with topology-aware embedding memory for the graph incremental learning problem.
PUMA (Liu et al., 2024) and DeLoMe (Zhang et al., 2024) both use different graph condensation
technology to preserve memory graphs. However, the trade-off between buffer size and replay effect
is still a Gordian knot, i.e., aiming for a small buffer size usually results in ineffective knowledge
replay. To address this gap, this paper introduces an effective memory selection and replay method
that explores and preserves the essential and diversified knowledge contained within restricted nodes,
thus improving the model in learning previous knowledge.
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