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ABSTRACT

Discrete diffusion models have recently shown significant progress in modeling
complex data, such as natural languages and DNA sequences. However, unlike
diffusion models for continuous data, which can generate high-quality samples in
just a few denoising steps, modern discrete diffusion models still require hundreds
or even thousands of denoising steps to perform well. In this paper, we identify
a fundamental limitation that prevents discrete diffusion models from achieving
strong performance with fewer steps – they fail to capture dependencies between
output variables at each denoising step. To address this issue, we provide a for-
mal explanation and introduce a general approach to supplement the missing de-
pendency information by incorporating another deep generative model, termed
the copula model. Our method does not require fine-tuning either the diffusion
model or the copula model, yet it enables high-quality sample generation with
significantly fewer denoising steps. When we apply this approach to autoregres-
sive copula models, the combined model outperforms both models individually
in unconditional and conditional text generation. Specifically, the hybrid model
achieves better (un)conditional text generation using 8 to 32 times fewer denois-
ing steps than the diffusion model alone. In addition to presenting an effective
discrete diffusion generation algorithm, this paper emphasizes the importance of
modeling inter-variable dependencies in discrete diffusion.

1 INTRODUCTION

Discrete diffusion models have recently achieved significant progress in modeling complex data
such as natural languages (Campbell et al., 2022; Sahoo et al., 2024), protein sequences (Gruver
et al., 2023; Morehead et al., 2023), and graphs (Vignac et al., 2022; Huang et al., 2023). In partic-
ular, recent discrete diffusion models for text generation (Lou et al., 2024; Sahoo et al., 2024) have
matched or even surpassed the performance of autoregressive models at the scale of GPT-2 (Radford
et al., 2019). Additionally, discrete diffusion models offer improved inference-time controllability
using guidance from auxiliary models such as classifiers (Dhariwal & Nichol, 2021), making them
suitable for controlled generation tasks (Li et al., 2022; Han et al., 2023).

Despite these promising results, discrete diffusion models still require hundreds to thousands of
denoising steps to produce high-quality samples (Austin et al., 2021; Sahoo et al., 2024), signifi-
cantly affecting their efficiency. In this paper, we identify a fundamental limitation in most discrete
diffusion models that hinders their ability to generate high-quality samples in just a few steps.

We illustrate the problem in Figure 1. At each denoising step, a partially completed sample shown
in the top-left is fed into a sequence-to-sequence denoising model, which predicts the univariate
marginal distributions for each masked token independently. A new output sequence is then sampled
based on these univariate marginals before proceeding to the next denoising step. The key issue
with this process is that when multiple “edits” (i.e., replacing masked tokens with data tokens)
are made simultaneously, the model does not account for the joint probability of these changes
occurring together. As a result, the generated samples often lack coherence, as shown in the bottom-
left of Figure 1. This problem is exacerbated in few-step generation, where many tokens must be
edited simultaneously. We formally demonstrate that if the diffusion model predicts each variable
independently, an irreducible term (in addition to the data entropy) remains in the negative evidence
lower bound (ELBO), preventing the model from perfectly capturing the data distribution.
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Figure 1: Discrete Copula Diffusion (DCD). At each denoising step, a partially completed se-
quence is given as input (top-left). The diffusion model independently predicts the univariate
marginals for each masked token, which leads to the samples in the bottom-left. DCD introduces
an additional copula model (top-right) to capture the inter-variable dependencies, thereby supple-
menting the information missed by the diffusion model. By combining outputs from both models
in a principled way, DCD achieves better performance than either model individually (see improved
samples in the bottom-right), enabling few-step discrete diffusion generation.

We propose using a generative model, which we refer to as the copula model, to compensate for
the missing dependency information between output variables at each denoising step. Our method
operates only at inference time and can be adapted to any discrete diffusion model and a wide
range of copula models. As illustrated on the right side of Figure 1, the input sequence is also
fed into a copula model that (implicitly) produces information on inter-variable dependencies. This
information is combined with the univariate marginals predicted by the diffusion model to produce
a more accurate distribution, resulting in higher-quality samples, shown in the bottom-right corner.

We formally show that the univariate marginals from the diffusion model and the dependencies cap-
tured by the copula model can be combined in a principled way, leading to a better approximation of
the true denoising distribution under mild assumptions. Further, finding this combined distribution
reduces to solving a convex optimization problem that can be efficiently approximated in practice.

By instantiating the copula model as an autoregressive deep generative model such as GPT (Radford
et al., 2019), we propose a practical algorithm that combines any pretrained discrete diffusion model
with an autoregressive model to form a hybrid model called Discrete Copula Diffusion (DCD). This
model is capable of producing high-quality (un)conditional samples with only a few denoising steps.
Empirical results on text and antibody generation show that DCD significantly outperforms both of
its base models. Moreover, DCD achieves comparable or better performance using 8 to 32 times
fewer denoising steps compared to the base discrete diffusion model. In addition to proposing a
discrete diffusion model capable of few-step generation, we emphasize the importance of modeling
inter-variable dependencies in discrete diffusion models, and encourage future work to consider this
when designing new models.

2 PRELIMINARIES

We aim to model the joint distribution of variables X0, a set of categorical variables with C cate-
gories. Discrete diffusion models (Austin et al., 2021) learn to sample from p(X0) by modeling the
reversal of the following noising process involving X0 and a set of auxiliary variables {Xt}Tt=1:

∀t ∈ {1, . . . , T} q(xt|xt−1) := Cat(xt;Qt ·xt−1), (1)
where Cat(x;p) refers to the Categorical distribution over x with class probabilities p, and Qt is a
C×C transition matrix that is applied independently to every variable xi

t−1 (denote xi
t−1 as the ith

variable of xt−1) to get the corresponding categorical distribution of xi
t. Specifically, each variable

xi
t−1 is treated as a one-hot vector of size C×1, which is then multiplied by Qt to compute the class

probabilities of xi
t. The noising process is designed such that p(xT ) follows a simple distribution

regardless of the data distribution.

Instead of using a fixed number of predefined time steps, we can treat t as a continuous variable
within the range [0, T ]. The noising process is now defined by the rate of change of p(xt) w.r.t. t:
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dp(xt)
dt =Q·p(xt), where Q∈RC×C is a transition rate matrix. For any 0≤s<t≤T , we have

q(xt|xs) := Cat(xt; exp((t−s)·Q)·xs),

where exp(·) denotes the matrix exponential.

Discrete diffusion models represent the reverse diffusion process as a Markov chain from xT to x0,
effectively reversing the noising process. Specifically, the reverse diffusion is modeled as:

pθ(x0:T ) := p(xT )

T−1∏
t=0

pθ(xt|xt+1).

In the discrete-time framework, the model is trained by maximizing the ELBO, which is defined by
the forward joint distribution (q(x1:T |x0)p(x0)) and the reverse joint distribution (pθ(x0:T )) (Ho
et al., 2020). In the continuous-time framework, we can either adopt an extended ELBO objective
(Zhao et al., 2024) or to learn the likelihood ratios {p(x′

t)/p(xt)}xt,x′
t
, allowing for the recovery

of p(xs|xt) (s < t) in an indirect manner (Lou et al., 2024; Meng et al., 2022; Sun et al., 2022).
Following the reverse diffusion process, sampling from a diffusion model involves first sampling
from the prior p(xT ) and then recursively sampling xT−1, . . . ,x0 following {pθ(xt|xt−1)}T−1

t=0 .

3 CHALLENGE OF MODELING VARIABLE DEPENDENCIES

Unlike continuous diffusion models, which can produce high-quality samples with just a few steps
(e.g., Song et al. (2023); Zhou et al. (2024)), discrete diffusion models exhibit a strong positive
correlation between sample quality and the number of denoising steps. For instance, to generate
1024 text tokens, a recent discrete diffusion model SEDD (Lou et al., 2024) requires 1024 steps to
reach around 35 perplexity (PPL), while with 32 denoising steps the PPL is only around 130.

We argue that the need for a large number of sampling steps in discrete diffusion models stems from
their inability to capture inter-variable dependence among the outputs. Specifically, at each time
step t, discrete diffusion models independently sample each variable from xt conditioned on xt+1,
i.e., p(xt|xt+1) :=

∏
i p(x

i
t|xt+1). As a result, when changing multiple variables from xt+1 to xt,

the model fails to account for the joint probability of these modifications happening together. In the
following, we first quantitatively analyze the performance degradation caused by this independent
denoising assumption. We then discuss approaches to mitigate this issue.

Quantifying the Performance Drop. The total correlation of a distribution p(X) is the KL-
divergence between itself and the product of its univariate marginals:

DTC(p(X)) :=
∑
x

p(x) log
(
p(x)/

∏
i

p(xi)
)
.

The following result demonstrates that, under the independent denoising assumption, there is an
irreducible component in the ELBO that directly stems from ignoring inter-variable dependencies.

Proposition 1. Assume the denoising distributions {pθ(xt|xt+1)}T−1
t=0 are fully factorized. Let

H(p(X)) denote the entropy of p(X). For any choice of denoising distributions (or equivalently,
any parameterization θ), the negative ELBO of the diffusion model is lower bounded by

H(p(X0)) +

T∑
t=1

DTC(q(Xt−1|Xt)), where DTC(p(Y|X)) := Ex∼p

[
DTC(p(Y|x))

]
. (2)

The first term represents the entropy of the data distribution and is irreducible. The second term
additionally depends on the noising process and the chosen noise levels, which set an upper limit
on the performance of discrete diffusion models that use the independent denoising assumption.
Note that although DTC(q(Xt|Xt−1)) is zero according to the definition of the noising process,
DTC(q(Xt−1|Xt)) is not unless the data distribution is fully factorized.

Closing the Performance Gap. While increasing the number of denoising steps can improve
sample quality, it also introduces significant computational overhead during inference. Our goal is to
use fewer denoising steps while maintaining good sample quality. As shown in Proposition 1, given a
fixed noising strategy and the number of denoising steps, the only way to reduce the negative ELBO

3
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lower bound in Equation (2) is to relax the independent denoising assumption. That is, in addition
to modeling the univariate marginals, we must also account for dependencies between variables.

The challenge of capturing inter-variable dependencies during each denoising step can be addressed
through adjustments during either training or inference. A direct approach involves modeling both
the univariate marginals and the inter-variable dependencies within the diffusion model. However,
this requires improving existing sequence-to-sequence architectures (e.g., Devlin (2018)) to capture
dependencies between output variables directly, which is not very well studied in the literature.

Instead, we propose an inference-time solution that complements the information missed by the pre-
trained discrete diffusion model. Specifically, we aim to combine the univariate marginals produced
by the diffusion model with the inter-variable dependencies learned by another (possibly smaller)
deep generative model, which we refer to as the copula model. The term “copula” traditionally
refers to the dependencies between random variables in statistics (Nelsen, 2006).

4 MODELING VARIABLE DEPENDENCIES WITH COPULA MODELS

As motivated in the previous section, our main goal is to combine the univariate marginals produced
by the diffusion model with the inter-variable dependencies captured by a copula model. In this
section, we first formalize the concept of “combining” two such distributions in a general context
(Sec. 4.1). We then specialize the formulation to the case of diffusion models (Sec. 4.2).

4.1 COMBINING UNIVARIATE MARGINALS WITH INTER-VARIABLE DEPENDENCIES

In this section, we discuss how to best inject inter-variable dependence using copula models given
a target distribution ptar over X. Assume we have access to ptar through two sources: (i) the set of
all univariate marginal distributions {ptar(Xi)}i, and (ii) an estimate pest of the target distribution
coming from the copula model, which is also a generative model. Our goal is to combine these two
estimates to construct p̂ that is “closer” to the true distribution ptar than either estimate individually.

We construct p̂ as the distribution that (i) matches the set of univariate marginals {ptar(Xi)}i, and
(ii) minimizes the KL divergence to pest. The intuition is that by ensuring p̂ has the correct univariate
marginals, we can achieve a good approximation of ptar even if pest is biased. To formalize this, we
first define information projection (I-projection).

Definition 1. The I-projection of a distribution q(X) onto a set of distributions P over X is

p∗ = argmin
p∈P

DKL(p ∥ q).

Let Pp
mar denote the set of distributions over X that share the same univariate marginals as p. We

define p̂ as the I-projection of pest onto Pptar
mar . The following proposition shows that regardless of the

initial estimate pest of ptar, the I-projection p̂ will be an improved estimate of ptar in KL-divergence.

Proposition 2. If there exists i and xi s.t. ptar(xi) ̸=pest(xi), then DKL(ptar∥ p̂)<DKL(ptar∥ pest).

Having now seen that p̂ is an improved estimate of ptar, we next explore whether it is feasible to
compute p̂ given {ptar(Xi)}i and pest. We start by showing that p̂ has a simple form.

Proposition 3. Assume ∀x, ptar(x)>0 and pest(x)>0. Then p̂ exists and has the form

p̂(x) = pest(x) ·
∏
i

σi(xi),

where σi is a positive function that depends on xi.

Assume X consists of N categorical variables, each with C categories, we can represent the factors
{σi}i using a matrix V∈RN×C . Under this representation, the combined distribution is

p̂(x) = pest(x) ·
∏
i

exp(V[i, xi]), (3)

where V[i, j] denotes the element at the ith row and jth column of V and V[i, xi] = log σi(xi).
Determining the true matrix V∗ corresponding to p̂, which is the I-projection of pest onto Pptar

mar , can
be reformulated as solving the following convex optimization problem.

4
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Figure 2: Illustration of the decomposition of a distribution into univariate marginals and a copula.

Theorem 1. If V∗ minimizes the following convex objective function, then the corresponding p̂
defined by Equation (3) is the I-projection of pest onto Pptar

mar .1

L(V; ptar, pest) :=
∑
x

pest(x) ·
∏
i

exp(V[i, xi])−
N∑
i=1

C∑
xi=1

V[i, xi] · ptar(xi). (4)

We proceed to explain why I-projecting pest leads to a better estimate of ptar as suggested by Propo-
sition 2. In general, a joint distribution can be viewed as combining two independent pieces of
information: (i) a set of univariate marginal distributions and (ii) a copula describing the association
or dependence among the variables. By the classical work of Sklar (1959), for continuous variables
the copula can take the form of a joint distribution with uniform margins and can be combined quite
simply with univariate marginal distributions to recover the full joint distribution, a fact heavily ex-
ploited in statistics (Nelsen, 2006). While the discrete case is somewhat less straightforward, recent
work of Geenens (2020) has developed the fundamental notions of discrete copula modeling as well,
where the information of a copula can be parameterized by odds ratios.

Figure 2 shows an example consisting of two binary variables X and Y . The probability table on
the left can be equivalently expressed using univariate marginals (i.e., p0·, p1·, p·0, p·1) and the odds
ratio (i.e., copula) ω := p00p11

p01p10
as shown in the middle of Figure 2. Intuitively, ω=125 indicates that

the phrases “alpine skiing” and “scuba diving” are more likely than others (e.g., “alpine diving”),
and the marginals decide which of the two phrases appears more frequently. The idea of representing
the copula with odds ratios generalizes to the multivariate case and is presented in Appendix C.

The following result demonstrates that, under its functional form in Equation (3), I-projecting pest
onto Pptar

mar only improves the univariate marginals and leaves the copula unchanged regardless of V.

Proposition 4. For a positive distribution p and any V ∈ RN×C , the distribution q(x) ∝ p(x) ·∏
i exp(V[i, xi]) has the same copula as p.

In general, Proposition 4 holds because scaling factors (e.g., exp(V[i, xi])) cancel in odds ratios.
For example, in the 2×2 case in Figure 2, scaling the top row of the probability table by a would
result in the odds ratio ω= ap00p11

ap01p10
= p00p11

p01p10
.

4.2 MODELING DEPENDENCE IN DISCRETE DIFFUSION MODELS

Recall from Section 3 that our goal is to capture inter-variable dependencies between the output
variables at each denoising step (e.g., sampling xt from q(Xt|xt+1)). Similar to the general case
shown in Section 4.1, we first have a set of univariate marginals {pdm(Xi

t |xt+1)}i from the dif-
fusion model. Notably, these univariate marginals are fairly accurate since for both discrete-time
and continuous-time diffusion models, if their respective training losses are minimized, the model
recovers the true univariate marginals. This is formally justified in Appendix D.

Alongside the univariate marginals, we assume access to a copula model that encodes a distribution
over Xt. Following Section 4.1, combining the copula model’s distribution with the univariate
marginals from the diffusion model will lead to an improved estimate of q(Xt|xt+1) (Prop. 2).

The performance of the augmented diffusion model hinges on two key questions: (i) how well can
the copula model capture the inter-variable dependencies in q(Xt|xt+1) (defined by the data distri-
bution and the noising process); (ii) given a good copula distribution, how to effectively combine it
with the univariate marginals obtained from the diffusion model, i.e., how to solve Equation (4).

1Equation (4) closely resembles the matrix scaling problem (Idel, 2016). See Appendix B for details.
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5 AUTOREGRESSIVE MODELS AS COPULA MODELS

This section answers the two questions above tailored to the case where the copula model is an
autoregressive model such as GPT (Radford et al., 2019) and State Space Models (Dao & Gu, 2024).
Specifically, Section 5.1 discusses how to approximate q(Xt|xt+1) using an autoregressive model
trained on the clean data distribution p(X0) under certain noising processes. Section 5.2 explores
the process of performing I-projection from the (autoregressive) copula distribution onto the set
of distributions with univariate marginals {pdm(Xi

t |xt+1)}i. Finally, Section 5.3 summarizes the
sampling procedure with a discrete diffusion model and an autoregressive copula model.

5.1 EXTRACTING COPULA DISTRIBUTIONS FROM AUTOREGRESSIVE MODELS

At step t, to sample xt conditioned on xt+1, we need a copula distribution pcopula(Xt) that closely
approximates q(Xt|xt+1). While this might suggest that the copula model should also be trained
with a diffusion model objective, which brings us back to the problem of modeling inter-variable
dependencies, we show that any model trained on the clean data distribution can serve as a copula
model that indirectly approximates q(Xt|xt+1) under the absorbing mask forward noising process.

The absorbing mask noising process gradually converts data tokens in x0∼p(X0) to a new category
denoted <MASK> through the sequence x1, . . . ,xT . Specifically, each token in x0 is independently
converted to <MASK> with probabilities 0<α1<. . .<αT =1 in x1, . . . ,xT , respectively. This is a
widely used noising strategy for discrete diffusion models. Since this process only transforms data
tokens into the mask token, it preserves the dependencies between the remaining unmasked tokens.
Therefore, we can decompose q(Xt|xt+1) as q(xt|xt+1)=

∑
x̃t

q(x̃t|xt+1)q(xt|x̃t,xt+1), where
q(x̃t|xt+1) is inuitively capturing the joint distribution of generating all currently masked tokens,
and q(xt|x̃t,xt+1) captures only the choice of which currently masked tokens will actually be
generated. Formally, define I as the set of variables i such that xi

t+1 = <MASK> and J as its
complement. The auxiliary distributions have the following form.
Proposition 5. Assume p(X0) is the clean data distribution and {q(Xt|xt−1)}Tt=1 follows the ab-
sorbing mask noising process. Let αt be the probability of conversion to the mask state from Xi

0 to
Xi

t (∀i). Define X̃t as a set of auxiliary variables such that

q(x̃t|xt+1) = p(XI
0 = x̃I

t |XJ
0 = xJ

t+1) · 1[x̃J
t = xJ

t+1]. (5)

Then, the distribution q(Xt|x̃t,xt+1) is the following: q(Xt|x̃t,xt+1)=
∏

i q(x
i
t|x̃i

t, x
i
t+1).

– For i∈I , q(xi
t|x̃i

t, x
i
t+1) equals αt/αt+1 if xi

t=<MASK> and equals 1−αt/αt+1 if xi
t= x̃i

t.

– For i∈J , q(xi
t|x̃i

t, x
i
t+1)=1 if and only if xi

t=xi
t+1.

Since q(Xt|x̃t,xt+1) is fully factorized, the copula model only needs to account for inter-variable
dependencies in q(X̃t|xt+1). Following Equation (5), we can transform pcopula(X0), which es-
timates the clean data distribution, into pcopula(X̃t|xt+1) that approximates q(X̃t|xt+1) by con-
ditioning it on the unmasked tokens in xt+1 (i.e., xJ

t+1). Specifically, for autoregressive copula
models (i.e., pcopula(x) :=

∏
i pcopula(xi|x<i)), we construct pcopula(X̃t|xt+1) by conditioning

each variable on the corresponding preceding tokens in xJ
t+1 while enforcing x̃j

t =xj
t+1 (∀j∈J):

pcopula(x̃t|xt+1) :=
∏
i∈I

pcopula(X
i
0 = x̃i

t|X<i
0 = x̃<i

t ) ·
∏
j∈J

1[x̃j
t = xj

t+1]. (6)

This copula distribution is biased even if the autoregressive model perfectly captures the data distri-
bution since it cannot condition on subsequent unmasked tokens in xt+1. In contrast, while being
able to condition on all unmasked tokens, diffusion models cannot capture dependence between
variables. Combining the two estimates in a proper way will lead to better empirical performance.

Continuing with the example in Figure 2, we assume an autoregressive copula model encodes the
probability table on the left. As shown on the right, when provided with the suffix prompt “in
Switzerland”, the copula model alone cannot adjust its probabilities, as it can only condition on
prefix prompts. However, a diffusion model that captures the strong dependence between “Switzer-
land” and Y = “skiing” can, through I-projection, set the correct marginal probabilities of Y , while
keeping the copula unchanged. This allows the model to reliably generate “how about alpine skiing.”
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Lastly, we need the univariate marginals of q(X̃t|xt+1), which can be derived by renormalizing
{q(Xi

t |xt+1)}i to zero out the probability of the mask state according to the following result.

Proposition 6. For each i and data category c ̸=<MASK>, q(X̃i
t = c|xt+1) ∝ q(Xi

t = c|xt+1).

As a result, for each i, the distribution pdm(X̃
i
t |xt+1) can be similarly obtained by renormalizing

pdm(X
i
t |xt+1), which is directly obtained from the denoising model, to exclude the mask state.

5.2 APPROXIMATE I-PROJECTION WITH AUTOREGRESSIVE MODELS

Given univariate marginals {pdm(X̃i
t |xt+1)}i and an autoregressive copula distribution

pcopula(X̃t|xt+1), both of which estimate the target distribution q(X̃t|xt+1), our goal is to com-
bine them following the I-projection procedure described in Section 4.1. Specifically, this involves
solving the convex optimization problem in Equation (4), which is specialized to the following:∑

x̃t

pcopula(x̃t|xt+1) ·
∏
i

exp(V[i, x̃i
t])−

N∑
i=1

C∑
x̃t=1

V[i, x̃i
t] · pdm(x̃i

t|xt+1). (7)

Following Theorem 1, if V minimizes Equation (7), then the distribution defined by p̂(x̃t|xt+1)=
pcopula(x̃t|xt+1)·

∏
i exp(V[i, x̃i

t]) is the I-projection of pcopula(x̃t|xt+1) onto the set of distribu-
tions with the univariate marginals {pdm(X̃i

t |xt+1)}i, which is the desired combined distribution.

Consider initializing all coefficients in V to zero, i.e., p̂(x̃t|xt+1)=pcopula(x̃t|xt+1). For each row
i, if we only optimize the values V[i, :] and fix the rest to zero, the optimal coefficients are

∀c, V[i, c] = log pdm(X̃
i
t = c|xt+1)− log pcopula(X̃

i
t = c|xt+1). (8)

We approximate the solution to Equation (7) by applying the above update (Eq. (8)) to each row in
V independently, as it strikes a proper balance between efficiency and empirical performance.

While the first term on the right-hand side of Equation (8) can be acquired from the diffusion model,
the second term is not accessible through the autoregressive copula model. Specifically, plug in the
definition in Equation (6), the required marginal probabilities can be written as2

∀i∈I, pcopula(x̃
i
t|xt+1) = pcopula(Xi = x̃i

t|XKi
=xKi

t+1), where Ki={j : j∈J and j<i}. (9)

The above probabilities cannot be computed from the autoregressive model since we need to
“marginalize out” preceding tokens that are not in Ki (i.e., those not given as evidence in xt+1).
However, these terms can be estimated using the diffusion model. Assume both the diffusion
model and the autoregressive model perfectly encode the data distribution. According to Propo-
sition 6, the diffusion model computes pdm(X̃i

t |xt+1)=q(X̃i
t |xt+1). Comparing it to Equation (9),

which gives pcopula(X̃
i
t |xt+1) = q(X̃i

t |xKi
t+1), we only need to additionally restrict the diffusion

model to only condition on preceding unmasked tokens in xt+1, since Ki is the intersection of
J and {j : j < i}. Therefore, if both models well-approximate the data distribution, we have
pcopula(x̃

i
t|xt+1) ≈ q(x̃i

t|xKi
t+1) = q(x̃i

t|x<i
t+1) ≈ pdm(x̃

i
t|x<i

t+1), where the equality holds since all
values in x<i

t+1 but not in xKi
t+1 are <MASK>, and does not “contribute to” the distribution of X̃i

t
according to Proposition 5). Correspondingly, we update V following

∀i, c, V[i, c] = log pdm(X̃
i
t = c|xt+1)− log pdm(X̃

i
t = c|x<i

t+1). (10)

For denoising neural networks that are implemented with bidirectional Transformers, we can simply
apply causal attention masks to the self-attention layers to obtain {pdm(X̃i

t |x<i
t+1)}i.

5.3 THE OVERALL DIFFUSION SAMPLING PROCESS

Given a diffusion model pdm and an autoregressive copula model pcopula, the sampling procedure
is outlined in Algorithm 1. First, we sample xT from the prior noise distribution p(XT ) (line
3). During each denoising step t, we compute the univariate marginals {pdm(X̃i

t |xt+1)}i and
{pdm(X̃i

t |x<i
t+1)}i based on the previously obtained xt+1 (line 5). These marginals are then used

2For j∈J , pcopula(x̃j
t |xt+1)=1 if and only if x̃j

t =xj
t+1
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Algorithm 1 Draw samples from a discrete diffusion model with the help of a copula model
1: Inputs: a diffusion model pdm, a copula model pcopula, number of time steps T
2: Outputs: a sample x0 from the discrete diffusion model augmented by the copula model
3: Initialize: Sample xT from the prior noise distribution p(XT )
4: for t = T−1 to 0
5: Compute {pdm(X̃i

t |xt+1)}i and {pdm(X̃i
t |x<i

t+1)}i using the diffusion model
6: Compute V[i, x̃i

t]=log pdm(x̃i
t|xt+1)− log pdm(x̃i

t|x<i
t+1) (∀i, x̃i

t) following Equation (10)
7: Sample x̃t from p̂(x̃t|xt+1)∝pcopula(x̃t|xt+1)·

∏
i exp(V[i, x̃i

t]) (pcopula is defined by Equation (6))
8: Sample xt from q(Xt|x̃t,xt+1) (defined in Proposition 5)

to compute the entries in V (line 6), which approximates the I-projection of pcopula(X̃t|xt+1) onto
the set of distributions with univariate marginals {pdm(X̃i

t |xt+1)}i (cf. Sec. 5.2).

Afterwards, we sample x̃t from the combined distribution p̂(X̃t|xt+1) (line 7). Specifically, follow-
ing Equation (6), we sample autoregressively following p̂(x̃t|xt+1)=

∏
i p̂(x̃

i
t|xt+1, x̃

<i
t ), where

p̂(x̃i
t|xt+1, x̃

<i
t ) ∝ pcopula(Xi = x̃i

t|X<t = x̃<i
t ) · exp(V[i, x̃i

t]) · 1[x̃i
t = xi

t+1].

Finally, we sample xt from q(Xt|x̃t,xt+1) (line 8) as defined in Proposition 5. To improve the
algorithm’s efficiency, we introduce a variant that unmasks tokens in an autoregressive manner.
Specifically, at step t, all tokens except the first (T−t)/T portion of the tokens in xt are converted
to <MASK>. Since p̂ is sampled autoregressively, this allows us to use techniques such as KV-
caching for autoregressive Transformers (Pope et al., 2023) to significantly reduce computation cost
introduced by the copula model. See Appendix E for a detailed elaboration.

6 EXPERIMENTS

We empirically validate the proposed method, Discrete Copula Diffusion (DCD), on language mod-
eling tasks (Sec. 6.1 and 6.2) and antibody sequence infilling tasks (Sec. 6.3). For all tasks, we eval-
uate whether DCD can effectively reduce the number of diffusion steps while maintaining strong
performance. Specifically, since DCD combines two pretrained models: a discrete diffusion model
and an autoregressive copula model, we examine whether DCD outperforms each individual model.

6.1 UNCONDITIONAL TEXT GENERATION

We first compare the quality of unconditional samples generated by models trained on either Web-
Text (Radford et al., 2019) or OpenWebText (Gokaslan & Cohen, 2019), which contain web content
extracted from URLs shared on Reddit with a minimum number of upvotes. We adopt the medium-
sized SEDD model (Lou et al., 2024) (SEDDM) since it is a SoTA discrete diffusion model for text
generation. The GPT-2-small model (Radford et al., 2019) (GPT-2S) serves as the copula model.

We generate samples of 128 tokens each. Following Han et al. (2023); Dieleman et al. (2022), we
evaluate sample quality using their generative perplexity, which is the perplexity of the samples
when evaluated with the GPT-2-large model. Since previous studies have observed that this metric
can be affected by distribution annealing methods such as nucleus sampling, we always sample
directly from the models. SEDDM is evaluated with 2 to 256 diffusion steps and DCD (i.e., SEDDM

with GPT-2S as the copula model) is run with diffusion steps ranging from 2 to 32. We adopt the
log-linear noise schedule suggested by the SEDD paper. See Appendix G.1 for more details.

For each configuration, we draw 10,000 samples and report the average perplexity in Figure 3. First,
when fixing the number of denoising steps between 2 to 32, we observe that DCD outperforms both
SEDDM with the same number of denoising steps and GPT-2S. This provides empirical validation
of the effectiveness of the I-projection procedure for modeling inter-variable dependencies.

Additionally, DCD with just 4 denoising steps achieves performance comparable to SEDDM with
128 steps, representing a 32x reduction in the number of denoising steps. This result not only
demonstrates the efficiency of DCD but also underscores the importance of modeling inter-variable
dependencies in discrete diffusion models, particularly in few-step generation settings.
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Figure 3: Generative perplexity (↓) with
different numbers of denoising steps.

He added the United States should continue “double-in-channel media 
discussions”, but stressed the importance of an agreement based on the purpose 
of the dialogue. Putin said Moscow had envisaged sending navy ships from …

Among the dozens of layoffs Detroit inflicted last week in September fell to 
layoffs of 243,000 workers, or just 7 percent of the city‘s 3.2 million population..

interesting is that the A+N start using enforcope thewhich Cookbook starts using 
in made ay antimidesis stuff (the grow and judges 7“ And ”age goods …

Singh, who served as chief minister in charge and prime minister in charge of 
the UK, had asked Russian PM to attend the Iceland meeting of 2005. …

SEDD (4 steps)

SEDD (256 steps)

DCD (4 steps)

DCD (16 steps)

Figure 4: Generated text from SEDDM and DCD with
different number of steps. See Appendix I for more.

Table 1: Evaluation of text infilling performance using the MAUVE score (↑) with 5 prompt masks.
Scores of DCD are all better than (i) SEDD with the same # denoising steps, and (ii) GPT-2S.

Prompt ranges
(remainder is masked)

SSD-LM GPT-2S SEDDM DCD (ours)

100 500 N/A 2 4 8 16 32 2 4 8 16 32

[0.1,0.2] & [0.5,0.7] 0.057 0.083 0.079 0.013 0.051 0.122 0.152 0.201 0.158 0.187 0.185 0.195 0.211
[0.25,0.75] 0.072 0.108 0.188 0.027 0.110 0.226 0.237 0.278 0.249 0.251 0.257 0.314 0.298

[0.0,0.1] & [0.4,0.6] & [0.9,1.0] 0.333 0.681 0.928 0.827 0.940 0.972 0.980 0.979 0.962 0.976 0.979 0.982 0.983
[0.4,0.5] & [0.8,1.0] 0.436 0.565 0.914 0.896 0.944 0.978 0.978 0.980 0.963 0.975 0.975 0.976 0.981
[0.2,0.3] & [0.6,0.8] 0.041 0.054 0.069 0.016 0.056 0.128 0.207 0.215 0.171 0.178 0.215 0.217 0.403

Finally, as shown in Figure 4, SEDD fails to generate fluent and meaningful sentences given only a
few diffusion steps, as too many tokens have to be generated in each step. In contrast, by modeling
the inter-variable dependencies, DCD generates smooth sentences with only 4 denoising steps.

6.2 CONDITIONAL TEXT GENERATION

We now move on to conditional text generation, where certain tokens are provided in advance, and
the task is to generate the remaining tokens. As shown in the first column of Table 1, we use five
mask strategies, where tokens in specific prompt ranges are given (we use a sequence length of 128).
We adopt the MAUVE score (Pillutla et al., 2021) with the default settings to compare the difference
between the generated and original texts. See Appendix G.2 for further details.

For all methods, we use the same set of 2,000 text sequences from the validation set of WikiText-
103 (Merity et al., 2022). After applying the prompt mask, we generate 5 samples for each prompt,
resulting in a total number of 10,000 samples.

In addition to SEDDM and GPT-2S, we compare against SSD-LM (Han et al., 2023), which is a semi-
autoregressive diffusion model designed for text infilling. We adopt the autoregressive unmasking
variant of DCD described in the last paragraph of Section 5.3.

Results are presented in Table 1. First, DCD outperforms all three baselines in all five tasks. Ad-
ditionally, when fixing the number of denoising steps between 2 and 32, DCD surpasses both of its
base models. Notably, while both GPT-2S and the 2-step SEDDM performs poorly on the first, the
second, and the fifth tasks, combining them in a principled way allows DCD to achieve significantly
better performance using only two denoising steps.

Efficiency of DCD. Figure 5 displays the generation time per sample for SEDDM, GPT-2S, and
DCD. When the number of denoising steps is small, the computation cost of running GPT-2S dom-
inates the total runtime of DCD. However, as the number of denoising steps increases, this cost is
amortized because, with KV-caching, the total computation cost for running GPT-2S stays constant.

6.3 ANTIBODY SEQUENCE INFILLING

We consider the task of unguided antibody infilling, where certain complementarity determining
regions (CDRs) of antibodies (i.e., sequences of amino acids) are missing and to be generated by the

9
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Figure 5: Sampling time of DCD and its two
base models with 2 to 128 denoising steps.

Figure 6: Antibody sequence infilling perfor-
mance measured by sequence recovery rate (↑).
We compare DCD against its two base models in
two tasks, where amino acids at different loca-
tions are masked. DCD outperforms both base-
lines with only 4 denoising steps.

Method # steps
Task

HCDR{1+2+3} {H+L}CDR1
GPT N/A 57.21 90.28

NOS-D 64 51.56 88.82
DCD 4 58.28 91.58

model. We adopt NOC-D (Gruver et al., 2023), which is a discrete diffusion model trained on 104K
antibody sequences from the Observed Antibody Space dataset (Ruffolo et al., 2023). We further
train a GPT model on the same dataset as the copula model. See Appendix G.3 for training details.

We follow Gruver et al. (2023) to select the same 10 antibody seed sequences from paired OAS
(Olsen et al., 2022). We consider two infilling tasks: (i) three CDRs {HCDR1,HCDR2,HCDR3}
are masked, and (ii) two CDRs {HCDR1,LCDR1} are masked. We follow the original paper and
run 64 diffusion steps for NOS-D. For DCD (i.e., combining NOS-D with the trained GPT model
as the copula model), we use 4 denoising steps. We measure the sequence recovery rate, i.e., the
accuracy of the infilled sequences given the ground truth sequence

As shown in Figure 6, by combining the univariate marginals from NOS-D and the dependencies
captured by the GPT model, DCD can also perform well in antibody sequence infilling tasks.

7 RELATED WORK AND CONCLUSION

Diffusion models have been widely applied to model discrete data such as text and DNA sequences.
Encouraged by the successes of continuous diffusion models (e.g., Ho et al. (2020); Song et al.
(2020)), initial attempts convert discrete data into continuous embeddings with either predefined
or learned mappings. This enables the use of continuous diffusion models for discrete data (Chen
et al., 2022; Dieleman et al., 2022; Li et al., 2022; Lovelace et al., 2023). However, due to the need
for ad-hoc mappings between the discrete data space and the continuous embedding space, which
have to be pre-defined or pre-trained, continuous diffusion models are not as effective for modeling
discrete distributions (Strudel et al., 2022; Li et al., 2022; Dieleman et al., 2022).

Austin et al. (2021) proposed the first diffusion model designed directly for discrete data. Later
works further improved discrete diffusion models from various aspects such as better loss func-
tions/learning objectives (Campbell et al., 2022; Meng et al., 2022; Lou et al., 2024; Benton et al.,
2022), better model architectures (Sun et al., 2022), better sampling algorithms (Chen et al., 2023),
and unifying and scaling up existing techniques (Sahoo et al., 2024).

Despite the recent breakthroughs of discrete diffusion models, few papers address the challenge of
sampling in a few denoising steps. Some works attribute the failure to perform high-quality few-step
generation to a scaling problem of the model. However, we show that the fundamental problem lies
in the assumption made by discrete diffusion models that each variable is denoised independently
at each step. In addition to identifying this problem, we propose a general solution Discrete Copula
Diffusion that combines a discrete diffusion model with a copula model at inference time to obtain a
better estimate of the denoising distribution at each step. Concurrently, Guo et al. (2024) show that
energy-based models can also be used as copula models to capture inter-variable dependencies.

There are a few limitations of DCD. First, in addition to a discrete diffusion model, it requires
another copula model, which may require additional training for certain applications. Second,
although the I-projected distribution is guaranteed as a better estimate of the target distribution,
the I-projection step often needs to be approximated in practice. Finally, although DCD requires
fewer denoising steps, the computation cost of each step is higher than in discrete diffusion mod-
els. Therefore, DCD may not always provide a notable speedup. However, DCD points out the
inter-dependency modeling problem and opens up the possibility of combining different types of
generative models for better overall performance.
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A PROOF OF THE THEORETICAL RESULTS

Proof of Proposition 1. Following (Ho et al., 2020; Sohl-Dickstein et al., 2015), the negative ELBO
L can be decomposed as follows:

L = Eq

[
− log p(xT )−

T∑
t=1

log
pθ(xt−1|xt)

q(xt|xt−1)

]
,

= Eq

[
− log p(xT )−

T∑
t=1

log
pθ(xt−1|xt) · q(xt−1)

q(xt−1|xt) · q(xt)

]
,

= Eq

[
− log

p(xT )

q(xT )
−

T∑
t=1

log
pθ(xt−1|xt)

q(xt−1|xt)
− log p(x0)

]
,

= DKL(q(xT ) ∥ p(xT )) + Eq

[
T∑

t=1

DKL(q(xt−1|xt) ∥ pθ(xt−1|xt))

]
+H(x0). (11)

The first term equals 0 as we assume the noise distribution p(XT ) is consistent in the noising and the
denoising processes. Given the independent denoising assumption, when the denoising distribution
are optimal, we have

∀t ∈ {1, . . . , T}, pθ(xt−1|xt) =
∏
i

q(xi
t−1|xt).

Plug in Equation (11) and using the definition of total correlation, we have:

L = DKL(q(xT ) ∥ p(xT )) + Eq

[
T∑

t=1

DKL(q(xt−1|xt) ∥
∏
i

q(xi
t−1|xt))

]
+H(x0)

= DKL(q(xT ) ∥ p(xT )) +

T∑
t=1

DTC(q(Xt−1|Xt)) + H(p(X0))

≥ H(p(X0)) +

T∑
t=1

DTC(q(Xt−1|Xt)).

Proof of Proposition 2. According to Pythagoras’ triangle-inequality theorem, if p̂ is the I-
projection of pest onto Pptar

mar , and Pptar
mar is convex (this can be shown by applying the definition

of a convex set), the following holds for any p′∈Pptar
mar :

DKL(p
′ ∥ pest) ≥ DKL(p

′ ∥ p̂) + DKL(p̂ ∥ pest). (12)

Choosing p′=ptar, we have

DKL(ptar ∥ p̂) ≤ DKL(ptar ∥ pest)−DKL(p̂ ∥ pest) < DKL(ptar ∥ pest),

where the last inequality holds since DKL(p̂ ∥ pest)>0 if the set of univariate marginals of pest and
ptar are different (as assumed in the proposition).

Proof of Proposition 3. Following the definition of p̂, we write down the constrained optimization
problem as follows

minimize
p′

DKL(p
′ ∥ pest)

s.t. ∀i ∈ {1, . . . , N}, xi ∈ {1, . . . , C},
∑
x\i

p′(x\i, xi) = ptar(xi).
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To incorporate the constraints, we use the method of Lagrange multipliers. The Lagrangian for this
problem is

L(p′, {λi}Ni=1) =
∑
x

p′(x) log
p′(x)

pest(x)
+

N∑
i=1

C∑
xi=1

λi(xi) ·

∑
x\i

p′(x\i, xi)− ptar(xi)

 ,

where the Lagrange multipliers {λi}Ni=1 enforce the univariate marginal constraints.

To minimize the Lagrangian with respect to p′(x), we take the partial derivative of L(p′, {λi}Ni=1)
with respect to p′(x) and set it to 0:

∂L(p′, {λi}Ni=1)

∂p′(x)
= log

p′(x)

pest(x)
+ 1 +

∑
i

λi(xi) = 0.

Simplifying this equation gives

p′(x) = pest(x) · exp
(
−1−

∑
i

λi(xi)

)
.

Defining σi(xi) :=exp(−λi(xi)− 1/N) gives p′(x) = pest(x)
∏

i σi(xi).

Existence of the solution follows from the fact that (i) the objective function is convex and
bounded (since probability values are in [0, 1]), and (ii) the set of constraints is feasible (e.g.,
p′(x)=

∏
i ptar(xi) or p′(x)=ptar(x)).

Proof of Theorem 1. We show that for any V∗ that minimizes the objective function
L(V; ptar, pest), the corresponding p′ defined by p′(x) = pest(x) ·

∏
i exp(V[i, xi]) belongs to

the set Pptar
mar . Specifically, for any V that minimizes the objective, the partial derivative of

L(V; ptar, pest) with respect to any V[i, xi] should be 0:

∂L(V; ptar, pest)

∂V[i, xi]
= exp(V[i, xi])

∑
x\i

pest(x\i, xi)
∏
j ̸=i

exp(V[j, xj ])− ptar(xi) = 0.

Plug in the definition of p′, we have

0 =
∑
x\i

p′(x\i, xi)− ptar(xi) = p′(xi)− ptar(xi). (13)

Since Equation (13) holds for all (i, xi) pairs, we have that every minimizer of L(V; ptar, pest)
corresponds to a distribution p′ in Pptar

mar . Since L(V; ptar, pest) is convex, we can also argue the
converse: if a distribution p′ with the above-defined form belongs to Pptar

mar , then the corresponding
V is a minimizer of L(V; ptar, pest).

According to Proposition 3, the solution to the following I-projection exists and its solution p̂ has
the same form as p′.

p̂ = argmin
p′∈Pp

mar

DKL(p
′ ∥ pest).

Since p̂ has the same form as p′ (by Prop. 3) and belongs to Pptar
mar , it is the a minimizer of

L(V; ptar, pest).

Proof of Proposition 4. The copula of p is shown to be invariant under rescalings of the form q(x) ∝
p(x) ·∏i exp(V[i, xi]) for any V ∈ RN×C by using the parameterization of a discrete copula by
conditional odds ratios (Definition 2). The scaling factors cancel in the ratios as shown, e.g. by
Rudas (2018, Theorem 12.3).
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Proof of Proposition 5. We start by writing the probability q(xt|xt+1) using the Bayes’ rule:

q(xt|xt+1) = q(xt+1|xt) ·
q(xt)

q(xt+1)
,

=
∑
x0

1

q(xt+1)
· q(xt+1|xt) · q(xt|x0) · p(x0), (14)

where the last equality follows from q(xt)=
∑

x0
q(xt|x0)·p(x0). Recall from the proposition that

I is defined as the set of variables i such that xi
t+1=<MASK> and J is the complement of I .

First, we must have xj
t =xj

t+1 for j∈J since for any other value of Xj
t , we have q(xt+1|xt)=0 in

Equation (14). As a result, q(xt|xt+1) is also zero.

We then move our attention to the variables in I . We first consider the probability q(Xi
t =

<MASK>|xt+1) for any i∈I . Following Equation (14), we have

q(Xi
t = <MASK>|xt+1) =

∑
x0

∑
x

\i
t

1

q(xt+1)
· q(xt+1|xt) · q(xt|x0) · p(x0),

=
∑
x

\i
t

1

q(xt+1)
· q(xt+1|xt) · q(xt),

=
q(Xi

t+1 = <MASK>|Xi
t = <MASK>) · q(Xi

t = <MASK>)

q(Xi
t+1 = <MASK>)

,

=
q(Xi

t = <MASK>)

q(Xi
t+1 = <MASK>)

=
αt

αt+1
. (15)

We then focus on XI
t =xI

t , where none of the value in xI
t is <MASK>. Note that we also need to

have XJ
t =xJ

t+1.

q(xt|xt+1) ∝
∑
x0

q(xt+1|xt) · q(xt|x0) · q(x0),

(a)
= q(xt+1|xt) · q(X0 = xt),

=

(
αt+1 − αt

1− αt

)|I|

· q(X0 = xt),

∝ q(X0 = xt), (16)
where p(X0) is the data distribution; (a) follows from the fact that no value in xt is <MASK>, hence
x0=xt;

αt+1−αt

1−αt
is the probability of transitioning into the mask state from time t to time t+1.

Denote X̃t as a set of variables with the same configuration and semantics as Xt, with the only dif-
ference that the category <MASK> is excluded. By following Equation (16) and apply normalization,
we conclude that

q(x̃t|xt+1) = p(XI
0 = x̃I

t |XJ
0 = xJ

t+1) · 1[x̃J
t = xJ

t+1]. (17)
This matches the definition in Equation (5).

Finally, we verify the correctness of the distribution q(Xt|x̃t,xt+1) defined in the proposition by
verifying the following for any xt

q(xt|xt+1) =
∑
x̃t

q(x̃t|xt+1) · q(xt|x̃t,xt+1). (18)

Denote K as the set of variables i such that xt=<MASK> and L as its complement. First, if L ⊆ J
(i.e., I ⊆ K), then both the left-hand side (LHS) and the right-hand sides (RHS) are zero. Specifi-
cally, the RHS is zero since according to the definition, ∀i∈J & i∈K, we have q(xi

t|x̃i
t, x

i
t+1)=0.

Next, if K ⊆ I , we can decompose q(xt|xt+1) as follows

q(xt|xt+1) = q(x
I\K
t |xt+1) ·

∏
i∈K

q(xi
t|xt+1) ·

∏
j∈J

q(xj
t |xt+1). (19)
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For any j∈J , if xj
t ̸=xj

t+1 then both the LHS and the RHS of Equation (18) are zero. Otherwise we
always have q(xj

t |xt+1)=1. Therefore, Equation (19) can be further simplified as

q(xt|xt+1) = q(x
I\K
t |xt+1) ·

∏
i∈K

q(xi
t|xt+1). (20)

We then proceed to simplify the RHS of Equation (18):∑
x̃t

q(x̃t|xt+1) · q(xt|x̃t,xt+1),

=
∑
x̃K

t

q(x̃K
t , x̃

I\K
t |xt+1) ·

(
αt

αt+1

)|K|

·
(
αt+1 − αt

αt+1

)|I|−|K|

,

(a)
=
∑
x̃K

t

q(x̃K
t , x̃

I\K
t |xt+1) ·

(
αt+1 − αt

αt+1

)|I|−|K|

·
∏
i∈K

q(xi
t|xt+1),

= q(x̃
I\K
t |xt+1) ·

(
αt+1 − αt

αt+1

)|I|−|K|

·
∏
i∈K

q(xi
t|xt+1),

(b)∝ p(X
I\K
0 = x̃

I\K
t ,XJ

0 = x̃J
t ) ·

∏
i∈K

q(xi
t|xt+1),

(c)∝ q(X
I\K
t = x̃

I\K
t |xt+1) ·

∏
i∈K

q(xi
t|xt+1), (21)

where (a) follows from Equation (15), (b) applies the definition in Equation (17), and (c) is a result
of applying Equation (16) to the case where x̃L

t ={x̃I\K
t , x̃J

t } are not <MASK>.

By combining Equations (21) and (20), we conclude that the LHS and the RHS of Equation (18)
are proportional to each other. Since they are both properly-normalized distributions, they must also
match exactly.

Proof of Proposition 6. We first state a more detailed version of the proposition: for each variable i
and data category c (c ̸=<MASK>), we have

q(X̃i
t = c|xt+1) =

1

Z
· q(Xi

t = c|xt+1), where Z =
∑

c ̸=<MASK>

q(Xi
t = c|xt+1).

According to the proof of Proposition 5, Equation (18) holds for all xt. Therefore, we have that for
each i and each data category xi

t ̸=<MASK>,

q(xi
t|xt+1) =

∑
x̃t

q(x̃t|xt+1) · q(xi
t|x̃t,xt+1). (22)

If i ∈ J , then both the LHS of the above equation and q(xi
t|x̃t,xt+1) equals one if and only if

xi
t=xi

t+1. Therefore, the result holds trivially.

Next, if i∈I , denote I\i :=I\{i}, Equation (22) is simplified to

q(xi
t|xt+1) =

∑
x̃t

q(x̃t|xt+1) · q(xi
t|x̃t,xt+1),

=
∑
x̃i
t

∑
x̃

I\i
t

q(x̃i
t, x̃

I\i
t |xt+1) · q(xi

t|x̃i
t, x

i
t+1),

= q(X̃i
t = xi

t|xt+1) · q(xi
t|X̃i

t = xi
t, x

i
t+1),

= q(X̃i
t = xi

t|xt+1) ·
αt+1 − αt

αt+1
.
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Therefore, we have

q(X̃i
t = xi

t|xt+1) =
1

Z
· q(Xi

t = xi
t|xt+1), where Z =

∑
xi
t ̸=<MASK>

q(Xi
t = xi

t|xt+1).

B RELATION BETWEEN L(V; ptar, pest) AND MATRIX SCALING

The matrix scaling problem gives a matrix A as input and asks for diagonal ‘scaling’ matrices X
and Y such that XAY is doubly stochastic (its row and column sums are all one). More gener-
ally, target row and column sum vectors r and c are provided and need not contain only ones. The
solvability of this problem for positive matrices was established by Sinkhorn (1964), and its algo-
rithms (sometimes called iterative proportional fitting), generalizations, and numerous applications
have been studied thoroughly (Kalantari & Khachiyan, 1993; Ruschendorf, 1995; Allen-Zhu et al.,
2017); see (Idel, 2016) for a review. Taking the multidimensional generalization of the problem
and interpreting the tensor as a (unnormalized) probability distribution yields the connection to our
problem, with the target sums being the univariate marginal distributions.

C PARAMETERIZING DISCRETE COPULAS BY ODDS RATIOS

We start by formally defining odds ratios.

Definition 2 (Rudas (2018)). Let p be a distribution over variables X each taking values in {0, 1}.
For a partition of X into sets A and B, the conditional odds ratio of variables A conditioned on the
assignment B = b is

CORp(A|B = b) =

∏
a∈s p(a, b)∏
a∈d p(a, b)

where s is the set of assignments to A whose parity is the same as the number of variables in A, and
d is the set of assignments whose parity is different.

In the case of more than two categories per variable, CORp(A|B = b) can generalized further to be
a set of similarly defined ratios (see, e.g., Rudas (2018)). Together the set of all conditional odds ra-
tios CORp(A|B = b) for partitions of X into sets A and B with |A| ≥ 2, completely specifies the
association among the variables in the joint distribution p, as established by the following theorem.

Theorem 2 (Rudas (2018)). Let q and r be positive probability distributions on a the set of variables
X each taking values in {0, 1, . . . , k}. Then there exists a unique probability distribution p such
that p has the same univariate marginal distributions as q, that is, for all i

p(xi) = q(xi),

and p has the same copula as q, that is for all partitions of X into sets A and B with |A| ≥ 2,

CORp(A|B = b) = CORr(A|B = b).

Proof. This follows from (Rudas, 2018, Theorem 10.2) by taking the descending set to contain the
empty set and all singletons (and the ascending set, its complement).

Theorem 2 shows how any distribution p can be viewed as combining independent marginal distri-
butions (i.e., from r) and odds ratios (i.e., from q). Such a combination has desirable properties.
For example, in the case of two variables with possibly many categories, it has been shown that
among all distributions with the same margins as r, the distribution p minimizes the KL-divergence
to q (Geenens, 2020, Theorem 6.2), i.e. that p is the information projection of q onto the set of
distributions with the margins of r.
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D UNBIASED UNIVARIATE MARGINALS FROM DISCRETE DIFFUSION
MODELS

In this section, we show that when their respective training losses are minimized, discrete-time and
continuous-time discrete diffusion models recover the true univariate marginals.

Discrete-Time Diffusion Models. Discrete-time diffusion models (Austin et al., 2021) are trained
to maximize the ELBO between the forward joint distribution p(x0)q(x1:T |x0), where p(x0) is the
data distribution, and the reverse joint distribution pθ(x0:T ). The ELBO can be simplified to

Eq

[
log

p(xT )

q(xT )
+

T∑
t=1

log
pθ(xt−1|xt)

q(xt−1|xt)
+ log p(x0)

]
.

Assume that pθ(xt−1|xt) encodes fully-factorized distribution, the above objective can be simplified
as

T∑
t=1

∑
i

q(xi
t−1|xt) log

pθ(x
i
t−1|xt)

q(xi
t−1|xt)

+ Eq

[
log

p(xT )

q(xT )
+ log p(x0)

]
,

where the second term is independent to pθ. From the first term of the above formula, we can
conclude that the ELBO objective is maximized when pθ(x

i
t−1|xt) = q(xi

t−1|xt) for every t and
every i.

Continuous-Time Diffusion Models. As described in Section 2, many continuous-time diffusion
models learn to approximate the likelihood ratio (defined as sθ(xt,x

′
t; t)) at all noise levels t∈ [0, T ]:

sθ(xt,x
′
t; t) :=

q(Xt = x′
t)

q(Xt = xt)
.

Specifically, Lou et al. (2024); Meng et al. (2022) directly parameterize a neural network to ap-
proximate the likelihood ratios, and Sun et al. (2022) approximates the likelihood ratios with the
conditional distributions pθ(Xi

t |x\i
t ) (∀i, t).

For each xt, since there are exponentially many possible x′
t, it is infeasible to have a neural network

to directly model the likelihood ratio for all pairs of (xt,x
′
t). Instead, they focus on (xt,x

′
t) pairs

where xt and x′
t are only different in one single variable, i.e., their Hamming distance is one. For

example, in Lou et al. (2024), they represent sθ as sθ(xt, y
i
t; t, i), which computes the likelihood

ratio between xt and x′
t={x\i

t , yit}. sθ is trained by minimizing the following objective:

Et,xt∼q(Xt)

∑
i

∑
yi
t ̸=xi

t

wt

(
sθ(xt, y

i
t; t, i)−

q(Xt = {x\i
t , yit})

q(Xt = xt)
log sθ(xt, y

i
t; t, i)

) ,

where {wt}t are positive weights. When the above objective is minimized, sθ recovers the correct
likelihood ratios:

∀i, t, sθ(xt, y
i
t; t, i) =

q(Xt = {x\i
t , yit})

q(Xt = xt)
. (23)

At inference time, continuous-time discrete diffusion models select a list of time steps 0 < t0 <
· · ·< tk = T to sample from: first sample from the prior p(Xtk) and then sample recursively from
{pθ(xti−1

|xti)}ki=1, where pθ(xti−1
|xti) is obtained from sθ(xt, y

i
t; t, i) in an indirect manner.

Specifically, assume dp(xt)
dt =Q·p(xt), we have3

q(xti−1
|xti) = q(xti |xti−1

) · q(xti−1)

q(xti)
,

= q(xti |xti−1
) ·
(∑

x

exp(−∆t·Q)(xti−1
,x) · q(Xti = x)

q(Xti = xti)

)
,

3This argument largely follows Theorem 4.1 in Lou et al. (2024). We include it for the sake of completeness.
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Sequence length 128 Sequence length 128 Sequence length 1024 Sequence length 1024

Figure 7: Comparison between generative perplexity (↓), diversity (measured by sentence entropy;
↑), and runtime (↓) of DCD with baselines.

where ∆t := ti−ti−1 and exp(−∆t·Q)(xti−1
,x) denotes the product of exp(−∆t·Q)(xj

ti−1
, xj),

the xj
ti−1

-th row and xj-th column of exp(−∆t·Q).

Plug in Equation (23), we can compute the marginal of xj
ti−1

(i.e., pθ(x
j
ti−1

|xti)) following

q(Xj
ti−1

= y|xti) ∝ q(xti |xti−1) ·

∑
y′

exp(−∆t·Q)(y, y′) · sθ(xti , y
′; ti, j)

 ,

= exp(∆t·Q)(y, xj
ti) ·

∑
y′

exp(−∆t·Q)(y, y′) · sθ(xti , y
′; ti, j)

 .

Therefore, if sθ perfectly learns the likelihood ratios between inputs with Hamming distance at most
one, then the correct marginals q(xj

ti−1
|xti) can be computed using sθ.

E IMPLEMENTATION DETAILS OF DCD

We describe details about the “autoregressive” version of DCD introduced in Section 5.3. According
to Section 5.3, the first (T−t−1)/T portion of the tokens in xt+1 are unmasked. At step t, we only
need to additionally unmask the tokens spanning the (T−t−1)/T to (T−t)/T fraction of the sequence
xt. We do this by caching the keys and values generated by the attention layers of tokens generated
in previous denoising steps. So at step t, we will have the KV-caches of the first (T − t−1)/T
fraction of tokens. As a result, the computational cost for running the autoregressive Transformer is
independent of the number of denoising steps.

F ADDITIONAL UNCONDITIONAL GENERATION EXPERIMENTS

To better understand the relation between quality (measured by generative perplexity), diversity
(measured by sentence entropy4), and speed for DCD and its baselines. Specifically, we run the
more efficient version of DCD described in the last paragraph of Section 5.3 and Appendix E to
generate text sequences of lengths 128 and 1024. In addition to SEDD and GPT2, the two base
models used by DCD, we compare them with MDLM (Sahoo et al., 2024), a more recent discrete
diffusion model that is more efficient than SEDD. Note that DCD can use any discrete diffusion
model as its base model.

First, we compare the sample time and the generative perplexity (the second and the fourth sub-plot
in Figure 7). Compared to SEDD, GPT, and MDLM, DCD consistently achieves better generative
perplexity given a fixed runtime constraint. It also requires less time to achieve a desired perplexity
value.

Additionally, we compare the perplexity and diversity of the generated text sequences. Following
community standards, we adopt the sentence entropy to measure the diversity of generated text.
Specifically, the entropy of each text sequence is the entropy of its token frequency distribution, and

4The sentence entropy of a sequence is the entropy of its token frequency distribution. The reported number
is averaged across all samples.
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the final sentence entropy is the average entropy over all generated sequences. The desired behavior
is to have low generative perplexity and high sentence entropy (which means high diversity). Results
are shown in the table below and Figure 7’s first and third sub-plot. Compared to the two discrete
diffusion models (SEDD and MDLM), DCD achieves better generative perplexity under the same
entropy, which offers a better perplexity-diversity tradeoff. Compared to the autoregressive GPT
model, although the entropy of DCD is lower, it achieves better generative perplexity with slightly
worse entropy.

G ADDITIONAL EXPERIMENTAL DETAILS

This section provides additional details of the experiments.

G.1 UNCONDITIONAL TEXT GENERATION

SEDD. We adopt the SEDD-medium model with 320M non-embedding parameters trained on
OpenWebText. The model is accessed through HuggingFace: https://huggingface.co/
louaaron/sedd-medium. We follow the original paper (Lou et al., 2024) and use the log-
linear noise schedule σ(t) =− log(1−(1−ϵt)), which leads to the forward transition probabilities
(0≤s<t≤T ):

q(xt|xs) := Cat(xt; exp(σ(t− s) ·Q) · xs).

The absorbing mask forward noising process is used. The corresponding transition rate matrix is

Q :=


−1 0 · · · 0 0
0 −1 · · · 0 0
...

...
. . .

...
...

0 0 · · · −1 0
1 1 · · · 1 0

 ,

where the last category is <MASK>.

GPT. The GPT-2-small model is obtained from HuggingFace: https://huggingface.co/
openai-community/gpt2.

DCD. We implement DCD by combining SEDDM and GPT-2S following the steps in Algorithm 1.
In line 8, instead of masking tokens independently, we group chunks of 8 tokens together and
mask/unmask them with the same probability given the noise schedule (i.e., αt/αt+1 as shown
in Prop. 5).

G.2 CONDITIONAL TEXT GENERATION

MAUVE Score. We adopt the MAUVE implementation available in the Python package
evaluate. We use the default hyperparameters established by the original paper (Pillutla et al.,
2021), which is also the default used by the package. We found that the number of samples and the
number of samples given a fixed prompt influenced the score. Therefore, we randomly selected the
2,000 prompts and generated 5 samples for each prompt for all methods.

Detailed Runtime Analysis. As shown in Algorithm 1, in each denoising step of DCD, we need
to run the discrete diffusion model twice: first to compute {p(X̃i

t |xt+1)}i and next to compute
{p(X̃i

t |x<i
t+1)}i by applying causal attention masks to the same denoising neural network given that

it is based on the Transformer architecture. Next, as discussed in Appendix E, the total runtime
consumed by the autoregressive model remains constant across different numbers of denoising steps
thanks to the KV-caching mechanism. Therefore, the runtime of DCD will be dominated by the
computation cost of the autoregressive model with only a few denoising steps. As the number of
denoising steps increases, the runtime of the autoregressive model will be amortized and the total
computation cost will be dominated by the cost to evaluate the diffusion model.

SSD-LM. SSD-LM (Han et al., 2023) is a semi-autoregressive model that uses techniques from dis-
crete diffusion models to predict/denoise chunks of sequences in an autoregressive manner. Specifi-
cally, given a predefined chunk size, SSD-LM diffuses tokens in each chunk one by one conditioned
on all previous chunks. As a result, the model is semi-autoregressive and cannot see suffix prompts.
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While the official implementation on GitHub (https://github.com/xhan77/ssd-lm)
only allows conditioning on tokens in previous prompts, we improved their code to also allow con-
ditioning on tokens in the current chunk that is being diffused. Specifically, we replace the diffusion
model’s input corresponding to the prompt tokens with the ground truth token embeddings.

We followed the original paper to choose a chunk size of 32 and use top-p sampling with p=0.95.
The remaining hyperparameters are kept as default.

G.3 ANTIBODY SEQUENCE INFILLING

Detailed Task Description. The adopted antibodies with an immunoglobulin G (IgG) format,
which comprises a heavy (H) chain and a light (L) chain. Each chain has three complementarity
determining regions (CDRs) that are crucial toward the binding affinity to the target antigen.

Training NOS-D. We use the training script as well as the dataset provided in the official GitHub
repo of NOS-D (https://github.com/ngruver/NOS). The model is trained with 50 epochs
using the default settings (e.g., learning rate and its schedule).

Training GPT. We use the same dataset provided in the repository of NOS-D and use the GPT
implementation from https://github.com/karpathy/nanoGPT/tree/master. The
GPT model has 6 layers, an embedding size of 512, and 16 attention heads. The model is trained for
10 epochs with the default settings in the nanoGPT repository.

DCD. When implementing DCD for the antibody sequence infilling task, we add an additional
scaling factor to the coefficients in V. That is, V is updated in line 6 of Algorithm 1 following

∀i, x̃i
t, V[i, x̃i

t] = β ·
(
log pdm(x̃

i
t|xt+1)− log pdm(x̃

i
t|x<i

t+1)
)
,

where we set β=0.1 for this task. We note that β=1 works well for the language modeling tasks.
The need to choose a smaller β in this task may be caused by the fact that the dataset and the models
are much smaller and are more prone to overfitting.

H ADDITIONAL RELATED WORK

We briefly review a class of related works that perform (semi-)autoregressive diffusion, which is
weakly related to our work since we also “combine” discrete diffusion models with autoregressive
models. Specifically, Wu et al. (2023); Chen et al. (2024) perform diffusion in an autoregressive
manner by allowing the noising schedule to be variable-dependent. Variables at the beginning are
kept unchanged at small ts and are corrupted only when t is close to T ; variables at the end are
corrupted in the first few time steps. During sampling where t moves from T to 0, initial vari-
ables/tokens are first denoised, followed by later tokens. This allows the diffusion model to perform
“autoregressive denoising”.

I ADDITIONAL TEXT SAMPLES

We provide randomly selected unconditional samples in Figure 8 and 9 and conditional samples in
Figure 10 and 11.
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…, DHHS, Dion Todd of Detroit, Detroit Tigers team players Marcus Johnson of Detroit 
Lions, Minnesota Vikings team players Troy Polamalu of Detroit Tigers, mellow lines for 
opposing teams, but they do not share a common mentality.

“At the end of the day, if you‘re just grouping me but you also come for the tram stop, 
everybody plays by the rules,” Kalim said of Johnson. “If you start to play offense, you’re 
going to make mistakes. We don‘t just give them time because we don’t think they‘re 
going to win. We don’t just teach them how to take care …

Both 1-2 range panels are available for 3 hours of ongoing use (25 burning power 
consumption plus periodic gas combustion cycle). Also included moisture protection from 
agricultural insects and biological spills of greenhouse gases due to different costs of 
livestock sit idle in the energy cycle of so many nations.

The high yield yields from large, agricultural biofuels rely entirely on larger projections 
placed together by country by government into 2020. Such predictions assume an 1 billion 
tonne increase in capacity to 5 billion tonnes per year six billion years from now then 
consumption for nearly all full-time, undertaking- Stage 3 + 2.0 exponential growth. 

… acquisition jack. Add this to the negotiations, and the place starts going down. Veteran 
grocers like State Farm have halted stocking their own toll booths and warnings because 
they fear getting squeezed out by major retailers. Meanwhile, stores like Wal-Mart have 
reduced shelf space by as much as 8.6 percent. Wal-Mart Stores Canada has been the most 
profitable Wal-Mart store chain in Canada (green grocer WalMart Stores Canadian now 
accounts for nearly a third of sales, up from just 1 percent in 1996). Meanwhile Wal-Mart 
continues to aggressively sell Canadian goods. Since 1995, Wal-Mart Stores Canada has 
more than tripled the volume and …

I find myself divided. Like I was growing up in this world. I saw my dad constantly being 
obsessed about faith, constantly being remembered in my mind his name. My dad thought 
that I wasn't going to grow up to say myself, if I tried to make my family happy they 
wouldn't believe me anymore. Every time I looked in my eyes I thought I was crazy, but I 
thought I was my brother. I was worried I would always feel jealous of my father and 
slowly, I started to think about family. I found a family where everyone ruled me alone 
towards the end, in hell. Family was always there, it was

flap: Now you can lay your hands on a wavy pattern without touching the nerves, or if you 
fancy you can lay your arms on an occluded specialty? Any hypothesis relied from those 
vainly generalized action.[303] Reconciling the patient‘s single hairs with multiple llings
stipulated that a single story could be shortened in half, but in fact lengthened in less 
flexible forms. If, however, little succeeded at the scholarly step, that compromise was 
subtlety in his notes, provided he lacked enough hairs to lie straight down. He could even 
weave rings for his harp—especially wheat—but there was …

Figure 8: Randomly selected unconditional samples from DCD (SEDDM+GPT-2S) with 4 denoising
steps.
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March if they can overcome federal complaints.

Farmers say they have acquiesced to pressure from U.S. agribusiness giants to cut back on 
pesticides, while environmentalists say regulators allege a lack of oversight by officials.

"We won't tolerate anything bad," said Rutko Guerra, spokesman for Cornell University 
Extension. "It's a clear conflict of interest."

Cornell University Extension estimates about 400 pesticides are sold through the city each 
year in violation of the Public Health Act and other state laws, prompting over $49 million 
in fines — the largest ever levied by a public university.

Each time components are created a buffer is created. This buffer holds the components 
and should be updated whenever they touch on the screen. The buffer foundation passes 
every buffer value from the component to the component's buffer.

After the component has been created a markers is placed inside the marker stating which 
colors are used in the new paint direction. During the paint direction there are three modes: 
launch to draw pixels, around draw so baccarat will appear misaligned, and lowdraw so 
baccarat will appear perfectly aligned.

… in on their autobiographical stories of realizing happiness.The Stimulant Prophecy was 
an important spiritual awakening that occurred during the 1950s, 1960s and 1970s. It 
awakened believers to cultivate spiritual fortitude as well as resolve conflicts and lead to 
more successful relationships.According to Tages Jephzei (The Stimulant Prophecy), this 
event ultimately caused Muslims to develop compassion for one another by their 
communal experiences.It also fueled support for incongruity in mainline Muslim societies 
and gave hope for physical cleansings.In 1976, Tages Jephzei published his book The 
Stimulant Prophecy: Understanding Muslims …

…would proper address regulations affecting this country." He recalled how he supported 
Deputy Minority Leader Nancy Pelosi's (D-Calif.) efforts to explore Russian meddling in 
the 2016 election: "When Nancy Pelosi [D-Calif.] spoke to me, he wanted to consider 
Russian interference in our election." Kennedy also added that he believes a new law 
requiring commercial polluters to disclose their emissions during emissions tests will help 
clean up the air: "[I] hope that the EPA will follow through with two years of programs 
that are going to reduce [during gas] emissions in some form or another," Kennedy told 
reporters.

Figure 9: Randomly selected unconditional samples from DCD (SEDDM+GPT-2S) with 32 denois-
ing steps.
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… are hear the exhortations “We ask of everyone to speak the voice of God” and “we ask 
to be loved for the game and what they wanted to do next for the series.” In fact, PS3 
announcement executives confirmed this month that Sony Pictures Entertainment plans to 
release PS Vita versions of Sony PlayStation Classics PlayStationGS, The Last of Us, 
Ratchet, Square did not come up with the “ revolutionary ” idea that would warrant a 
new entry for the PlayStation 3. Speaking in an interview, it was revealed that Square 
Enix felt Square Enix could not offer a few new plugins without seeing Square Enix make 
Square Enix‘s “ visionary Battle …

… in the American version, and Warner Bros. added Nobuo Ukiura of Miyazaki 
Animation to directing on character design. A large team of writers handled the script. 
The game‘s story was developed by Kouki Watanabe in Chouki no Namco Europe, and 
Fujikyo Pictures Entertainment released it theatrically on May 25, 1999 in North America, 
followed with an expanded edition in November of that year. It was also adapted into 
manga and an original video animation series. Due to low sales, Warner Bros. suffered 
widespread cancellation due to lack of revenue. Warner Bros. also shut it down due to its 
failure to …

They save as many enemies as you can through Chrono Trigger Online missions, unlock 
quests in missions missions, unlock special quests, having a higher difficulty than those 
found in the rest of the game. These include boss & combat objectives. Chrono Trigger 
Online contains one Chrono Trigger EP with unlockable Chrono Trigger ARC girls.

This is the first patch which implements the PTZ system, is carried over directly from 
Valkyira Chronicles. During missions, players select each unit using a top @-left 
position. They determine their unit type, which determines their ability and the size of 
their field of vision. They can only activate …

The Final Fantasia in Japanese / Media.Vision for the PlayStation Portable. Released 
in January 2011 in Japan, it debuted as a novel while on hold in the North East Stand. It 
garnered reviews for its breathtaking narrative, disappointing plot, and creepy characters. 
A fourth graphic novel is in the first game and follows the " Nameless ", a penal 
military unit serving the nation of Gallia during the Second Europan War.

… scenery was was composed in short animation. When the game ended early on Mikami
Sakura was drawn by Makoto Masui.. A large team of writers handled the script. The 
game‘s soundtrack lasted around 12 hours and Sugiyama Shogarashi, Makoto Masuyama
and Kyoko Takamura included Takme Ibara. The music theme was originally released in 
2009, with an expanded edition in November of that year. It was also adapted into 
manga and an original video animation series. Due to low sales, the game release was 
delayed to three weeks in spring 2011. Following its final release on May 23rd 2013. …

Figure 10: Randomly selected conditional samples from DCD (SEDDM+GPT-2S) with 4 denoising
steps. Prompt texts are bolded and in blue.
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… every character has. You can choose combat situation best suit the character. To learn 
Battle Potentials, each character has a unique skills makes them invaluable. One of 
Potentials best suit the character is Point squirrel on the map, the character Leda can use 
skills like “ Star Wars Matchmaker”, the character Jaden can activate “ Direct 
Command ” and move around the battlefield without depleting his Action Point 
gauge, the character Reila can shift to melee objects to send morgues (so more reliable), 
Mira can change her story situation to battle nweire battle to ward strategise, a 
“ Command Pointcher ” is …

… this State building institution. We could be build a defensive system to the United 
States Arsenal in this city ( Little Rock ). This system seem really feasible and good. 
The name of the City that would to this scenario go by the Rocky Mountain Sound as the 
Academy as well is MADISON FIREWRIGHT NASHA ROCK. -John M Harrel 
Telegram, January 31, 1861 
The item was intended simply as a piece of news, but it also served as an “opportunity” 
for the U.S. Fortresses on Little Rock. Setting aside the exception of the 
basisicks‘ menansi slogan, it was all …

… on the air at the end of those years run in early 1923. An original design for the 
society called The Darling of the American for Being Unnamed was put forth on the air 
at the end of those years held early 1925. The unnamed pursuits of the American were 
previously documented by History Magazine called St. Luke's Society for the 
Propagation of the Gospel in its November 1919 exhibition. 
Religious @-@ themed books include The Red Book, The Hidden Voyage, an opera 

which was written on behalf of John Ford and produced under the contract of the 
Protestant revival organization, The Evangelical Fund (without Contemplation) …

letter to city Evans noted in more details reminded Christine Barker to supervise the 
household, and to give both her mother and sister complete authority to their 
development. (See Evansdone & Sullivan) 79. Christine Barker continued her adult life 
but when she reached ends of age, during which time her big sister Ruth had died 
unexpectedly of a heart attack. Barker was unable to pursue her art to any significant 
extent following her sister's death, as all of her parents perished and she lacked the 
discipline, learning needed to be as a professional age. (See Evanssic) 80. Although 
moving art was a lifetime profession for Christine Barker, bear …

Pool : At Mumbai airport Shivaji Park. Women Technical girls under @-@ 17 women's 
team competed in Confederation of Asian Football’s premier youth competition. 2011 
year-13 results : :U 13 medal : NW15 qualification : A pool order : Of the 155 young 
women, five girls had to be narrowed from an initial pool of 49 young women. Two 
girls from the SOS Children ’ s Village Bakoteh were chosen for the USC and two girls 
from the Meijer ’s Village Bakoteh. The remaining Meijer girl was selected for the 
opening ceremony. After the AU’s teams

Figure 11: Randomly selected conditional samples from DCD (SEDDM+GPT-2S) with 32 denoising
steps. Prompt texts are bolded and in blue.
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