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Abstract
We study the problem of teaching multiple learners simultaneously in the nonpara-
metric iterative teaching setting, where the teacher iteratively provides examples
to the learner for accelerating the acquisition of a target concept. This problem
is motivated by the gap between current single-learner teaching setting and the
real-world scenario of human instruction where a teacher typically imparts knowl-
edge to multiple students. Under the new problem formulation, we introduce a
novel framework – Multi-learner Nonparametric Teaching (MINT). In MINT, the
teacher aims to instruct multiple learners, with each learner focusing on learning a
scalar-valued target model. To achieve this, we frame the problem as teaching a
vector-valued target model and extend the target model space from a scalar-valued
reproducing kernel Hilbert space used in single-learner scenarios to a vector-valued
space. Furthermore, we demonstrate that MINT offers significant teaching speed-
up over repeated single-learner teaching, particularly when the multiple learners
can communicate with each other. Lastly, we conduct extensive experiments to
validate the practicality and efficiency of MINT.

1 Introduction
Machine teaching [81, 83] considers the problem of how to design the most effective teaching set,
typically with the smallest amount of (teaching) examples possible, to facilitate rapid learning of the
target models by learners based on these examples. It can be thought of as an inverse problem of
machine learning, in the sense that the student aims to learn a target model on a given dataset, while
the teacher constructs such a (minimal) dataset. Machine teaching has many applications in computer
vision [67, 68], crowd sourcing [59, 60, 78, 79] and cyber security [2, 3, 39, 53].

Roughly speaking, machine teaching can be carried out in a batch [80, 81, 33] or iterative [36, 37,
38, 52] fashion, depending on how teachers and learners interact with each other. Batch teaching
focuses on single-round interaction, that is, the most representative and effective teaching dataset are
designed to be fed to the learner in one shot. After that, the leaner solely and assiduously learns a
target model from this dataset without further interaction. With practical considerations, iterative
teaching extends such a single-round mode to a multi-round one. It studies the case where the teacher
feeds examples based on learners’ status (current learnt models) round by round, such that the learner
can converge to a target model within fewer rounds. The minimal count of such rounds (or iterations)
is referred to as iterative teaching dimension [36, 37].

Considering that previous works on iterative machine teaching usually limit target models in a
parameterized family, that is, assuming the target model can be represented by some parameters,
nonparametric iterative machine teaching [73] extends such single family to a general nonparametric
one. This allows multiple possibility of the target model family. Specifically, by formulating
nonparametric teaching in a reproducing kernel Hilbert space (RKHS), [73] introduce various
families of target models associated with kernels, e.g., Gaussian and Laplacian kernels in RKHS.
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Figure 1: Comparison between the single-learner teaching and MINT.
(a) In order to facilitate single-learner teaching, it is imperative to
transform a colored image into a grayscale format. (b1) MINT allows
for the simultaneous teaching of three scalar-valued target models,
which are three (RGB) channels of a colored image. (b2) Partitioning
a single image into multiple pieces and teaching them concurrently is
also considered as a form of MINT.

However, existing nonparametric
teaching only focuses on the single-
learner setting (i.e., teaching a
scalar-valued target model or func-
tion to a single learner), and it is
computationally inefficient to carry
out this same single-learner teach-
ing repeatedly for the multi-learner
scenario, where the teacher needs to
teach numerous scalar-valued target
functions to multiple learners and
a single learner can only learn one.
For example, when taking a colored
picture with three (RGB) channels
as a multi-learner target function1

(e.g., [62, 20]), the iteration num-
ber of repeatedly performing single-
learner teaching for each channel
is intuitively triple that of carry-
ing out them simultaneously. An-
other example is the scenario where
the single-learner target model hav-
ing a large input space. Such a
model can be divided into multiple
smaller ones with an input space of
appropriate size, and these smaller
models can be formulated together
into a multi-learner target model
[7, 64, 66, 61, 74]. Concretely, one can divide a single high-revolution picture into multiple sub-
regions, and the original single-learner target function will become a multi-learner one. These
examples motivate us to study a generalized framework, called multi-learner nonparametric teaching
(MINT), where a vector-valued target model (instead of a scalar-valued model) is being taught. A
comparison between single-learner teaching and MINT is illustrated in Figure 1.

It is therefore of great significance to generalize the recent single-learner nonparametric teaching
[73] to MINT [11, 14, 77]. MINT is guided by the insight that repeatedly (or sequentially) teaching
multiple scalar-valued target functions can be viewed as teaching a vector-valued target function. The
theoretical motivation comes from the well-developed results of kernels for vector-valued functions
[56, 44, 21], an important approach to deal with multiple data sources. This inspires us to formulate
MINT as a teaching problem of a vector-valued target function, where sequentially teaching multiple
scalar-valued functions (for single-learner teaching) becomes a special case of teaching a vector-
valued function [43, 21, 14]. We emphasize that, compared to the case where a single learner is
learning a vector-valued target function, the multi-learner setting offers a general framework that can
be generalized to more complicated scenarios, e.g., learners operate within different feature spaces,
and learners are able to communicate with each other. We summarize our major contributions below:

• By analyzing general vector-valued RKHS [10, 45, 4], we study the multi-learner nonparametric
teaching (MINT), where the teacher selects examples based on a vector-valued target function
(each component of the vector-valued function is a scalar-valued function for a single learner)2,
such that multiple learners can learn their own target models simultaneously.

• By enabling the communication among multiple learners, learners can update themselves with a
linear combination of current learnt functions of all learners [23, 12].We study a communicated
MINT where the teacher not only selects examples but also injects the guidance of communication.

• Under mild assumptions, we characterize the efficiency of our multi-learner generalization of
nonparametric teaching. More importantly, we also empirically demonstrate its efficiency.

1Each channel in a colored picture can be viewed as a single-learner (scalar-valued) target function whose
inputs and outputs are the pixel location and values, respectively [73].

2When components of it are highly correlated with each other, the teacher in each iteration can select a
teaching set based on one component, and use it to teach all learners simultaneously.
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2 Related Works

Machine teaching. Recently, there has been a surge of interest in the field of machine teaching,
see [81, 83, 36, 37, 67] and references therein. Batch machine teaching has examined the behaviors
of various types of learners, including linear learners [33], forgetful learners [27, 37], version
space learners [13, 65], hypothesis learner [40] and reinforcement learners [29, 76]. Further, by
extending the single-round teaching mode to a multi-round one, iterative teaching has attracted
growing attention in recent studies [36, 37, 40, 50, 32, 38, 69, 52, 73]. Specifically, [38] focuses
on label synthesis teaching, while [52] proposes generative teaching. Additionally, [73] relaxes
the parametric assumption on target models and generalizes the previous iterative teaching to a
nonparametric iterative one [30, 51]. In contrast to previous works that mainly concentrate on the
single-learner teaching, this work aims to address a more practical task – teaching multi-learner
(vector-valued) target models. In this regard, the realistic practical scenario, classroom teaching
[82, 71], is highly relevant, where it examines multiple learners by partitioning them into groups
in batch and iterative setting, respectively. However, their works are also limited to the parametric
setting, and their methods therefore are not immediately generalizable to nonparametric situations. In
contrast, our work investigates multi-learner teaching in the nonparametric setting.

Multi-task functional optimization. Functional optimization [58, 6, 58, 22, 84, 63, 75] is a fun-
damental and significant task in various fields, such as variational inference [35, 34], barycenter
problem [57, 70], and Residual Networks [48, 49, 26]. It involves mapping from input to output
without having pre-defined parameters, optimized over a more general function space such as the
reproducing kernel Hilbert space (RKHS), Sobolev space [1, 46], and Fréchet space [47]. Notably,
the functional gradient descent algorithm has been studied extensively for functional optimization
in RKHS due to its regular properties [41, 42, 16, 35, 46, 5, 57]. Meanwhile, modeling in RKHS of
vector-valued functions [56, 21, 44, 10, 9, 14, 19, 45] is an important approach to handle multi-task
problem. Specifically, [21, 9, 4] focus on the analysis of the kernel and [28, 12] study multi-task
versions of online mirror descent, which displays the similarity to multi-learner teaching in the sense
of simultaneous execution. These theoretical and empirical works motivate us to extend single-learner
teaching to a multi-learner one by analyzing functional gradient in vector-valued RKHS.

3 Background

Notation. Let X ⊆ Rn be a n dimensional input (i.e., feature) space and Y ⊆ R be a output
(i.e., label) space. By X d = X1 × · · · × Xd ⊆ Rn×d we denote a d-learner input space, and let
Yd = Y1 × · · · × Yd ⊆ Rd be a d-learner output space. Let a d-dimensional column vector with ai,
entries indexed by i ∈ Nd ( Nk := {1, · · · , k}), be [ai]

d = (a1, · · · , ad)T (we may denote it by a
for simplicity), and a 1-vector of size d be [1]d = (1, · · · , 1)T ∈ Rd. By M(i,·) we denote i-th row
vector of a matrix M , and let M(·,i) be its i-th column vector. A d-learner teaching sequence in size
d × k is a collection of examples, notated as D = {(xi,j , yi,j) ∈ X × Y}3 with the learner index
i ∈ Nd and the example index j ∈ Nk. We notate the collection of such teaching sequence candidates
by Dd ∋ D, which is referred to as the knowledge domain of the teacher [36].

Let K(x, x′) : X × X 7→ R be a scalar-valued positive definite kernel function, which can be
equivalently notated by K(x, x′) = Kx(x

′) = Kx′(x), and one can abbreviate Kx(·) by Kx.
The scalar-valued reproducing kernel Hilbert space (RKHS) H defined by K(x, x′) is the closure
of linear span {f : f(·) =

∑r
i=1 αiK(xi, ·), αi ∈ R, r ∈ N, xi ∈ X} equipped with inner

product ⟨f, g⟩H =
∑

ij αiβjK(xi, xj) when g =
∑

j βjKxj
. We assume that given the scalar-

valued target model f∗ ∈ H, one can uniquely identify a teaching example by its x† for brevity,
(x†, y†) = (x†, f∗(x†)). LetHd = Hi × · · · × Hd be a RKHS of vector-valued functions f = [fi]

d

with fi ∈ H4, equipped with inner product ⟨f , g⟩Hd =
∑d

i=1⟨fi, gi⟩H. For simplicity, we use the
vector-input K(x,x′) = [K(xi, x

′
i)]

d to denote kernels in vector-valued RKHSHd. For a functional
F : Hd 7→ R, its Fréchet derivative [16, 34, 57] is defined as following:

3To avoid clutter in the notation, we assume that all learners share same input and output spaces, i.e., Xi = X
and Yi = Y . The results for different input and output spaces can be derived by plugging into specific Xi and
Yi directly.

4To simplify the notation, we assume that the RKHS of target models are the same for all learners, i.e.,
Hi = H.
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Definition 1. (Fréchet derivative in vector-valued RKHS) For a vector-valued functional F :
Hd 7→ R, its Fréchet derivative ∇fF [f ] at f ∈ Hd is defined implicitly as F [f + ϵg] =
F [f ] + ϵ⟨∇fF [f ], g⟩Hd +O(ϵ2) for any g ∈ Hd and ϵ ∈ R, which is a function inHd.

Using the Riesz–Fréchet representation theorem [31, 55], the evaluation functional of vector-valued
functions is defined in the following:
Definition 2. For a vector-valued reproducing kernel Hilbert spaceHd with a positive definite kernel
Kx ∈ Hd, where x = [xi,ji ]

d ∈ X d and the example index ji ∈ Nk, we define evaluation functional
Ex[·] : Hd 7→ R as

Ex[f ] = ⟨f ,Kx(·)⟩Hd =

d∑

i=1

⟨fi,Kxi,ji
⟩H =

d∑

i=1

fi(xi,ji),f = (f1, · · · , fd)T ∈ Hd. (1)

Single-learner nonparametric teaching. [73] formulates the single-learner nonparametric teaching
as a functional minimization over single-learner D in scalar-valued RKHS:

D∗ = argmin
D∈D

M(f̂∗, f∗) + λ · len(D) s.t. f̂∗ = A(D), (2)

whereM is a disagreement between f̂∗ and f∗ (e.g., L2 distance defined in RKHSM(f̂∗, f∗) =
∥f̂∗− f∗∥H), len(·) is the length of the teaching sequence D (i.e., the ITD defined in [36]) controlled
by a regularized constant λ, andA denotes the learning algorithm of learners. Usually, A(D) is taken
as empirical risk minimization:

f̂∗ = argmin
f∈H

E(x,y)∼Q(x,y) [L(f(x), y)] , (3)

with single-learner convex loss function L. As introduced in Section 1, iterative teaching [36, 37]
focuses on some specific optimization algorithm that the learner adopts [38]. In the nonparametric
setting, we consider the functional gradient descent:

f t+1 ← f t − ηtG(L; f t;Dt), (4)

where t = 0, 1, . . . , T serves as an iteration index, ηt > 0 (i.e., a small constant) denotes the learning
rate for the t-th iteration, and G represents the gradient functional evaluated at Dt.

Specifically, [73] investigates the teaching algorithms within a practical teaching protocol and gray-
box setting. This involves a teacher that has no knowledge about the learner, including the learning
rate and specific loss function, but still is able to keep track of the learnt model during each iteration.
Two functional teaching algorithms are proposed: Random Functional Teaching (RFT) and Greedy
FT (GFT). The former essentially adopts random sampling, and it serves as a simple baseline, which
can also be viewed as a functional analogue of stochastic gradient descent [54, 25]. In contrast, GFT
picks examples by maximizing the corresponding disagreement between the target and current models
[5, 18], and has been shown to be more effective than RFT both theoretically and experimentally.

4 MINT: Multi-learner nonparametric teaching

In this section, we begin by defining multi-learner nonparametric teaching as a functional min-
imization in a vector-valued RKHS. Next, we analyze a vanilla MINT where multiple learners
independently and simultaneously learns corresponding components of a vector-valued target func-
tion. Lastly, we investigate a communicated MINT where the teacher does not only provide examples
but also guide multiple learners in the process of linearly combining present learnt functions.

4.1 Teaching settings

To define MINT, we expand scalar-valued target models in single-learner teaching to vector-valued
ones and modify other notations to suit the multi-learner setting. More specifically, we redefine
functional minimization of Eq. 2 as follows:

D∗ = argmin
D∈Dd

M(f̂∗,f∗) + λ · len(D) s.t. f̂∗ = A(D), (5)
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where f∗ ∈ Hd refers to a vector-valued target model, and other notations bear the same meaning as
in Eq. 2. The learning algorithm A arrives at the following solution:

f̂∗ = argmin
f∈Hd

E(x,y) [L(f(x),y)] , (6)

where (x,y) ∈ X d × Yd and (x,y) ∼ [Qi(xi, yi)]
d. Evaluated at an example vector (x,y) =

[(xi,ji , yi,ji)]
d with the example index ji ∈ Nk, the multi-learner convex loss L therein is

L(f(x),y) =
d∑

i=1

Li(fi(xi,ji), yi,ji) = Ex

[
[Li(fi, yi,ji)]

d
]
, (7)

where Li is the convex loss for i-th learner. We can also express it as ⟨[1]d, [Li(fi(xi,ji), yi,ji)]
d⟩Hd ,

where the vector [1]d can be replaced by a weight vector [wi]
d ∈ Rd to adjust the significance of each

learner relative to others. Under iterative setting [36, 37] which explores teaching algorithms from the
viewpoint of optimization and approximation, we present vector-valued functional gradient descent:

f t+1
At ← At · f t − ηt ⊙ G(L;At · f t;Dt), (8)

where ⊙ denotes the element-wise multiplication, ηt = [ηi]
d = (ηt1, · · · , ηtd)T is a vector of learning

rates that corresponds to d learners and the communication matrix At = argminA∈Rd×d ∥Af t −
f∗∥Hd signifies a matrix with row sums that are equal to one in order to maintain the output’s
scale. Equivalently, by denoting that At

(i,·) = argminMt
(i,·)∈R1×d ∥M t

(i,·) · f t − f∗
i ∥H, it can also be

expressed in a learner-specific (i.e., component-wise) fashion as f t+1
i ← At

(i,·) · f t
i − ηtiGi(L;At

(i,·) ·
f t;Dt), where i ∈ Nd is the learner index.

We investigate MINT in the gray-box setting, which is equivalent to the one considered in [73]. To
facilitate the theoretical analysis, we adopt some moderate assumptions regarding Li and kernels,
which align with those made in [73].
Assumption 3. Each loss Li(fi), i ∈ Nd is LLi

-Lipschitz smooth, i.e., ∀fi, f ′
i ∈ H, xi ∈ X and

i ∈ Nd

|Exi
[∇fLi(fi)]− Exi

[∇fLi(f
′
i)]| ≤ LLi

|Exi
[fi]− Exi

[f ′
i ]| ,

where LLi
≥ 0 is a constant. To simplify the notation, we assume that LLi

= LL for all i ∈ Nd.
Assumption 4. Each kernel K(x, x′) ∈ H is bounded, i.e., ∀x, x′ ∈ X , K(x, x′) ≤ MK , where
MK ≥ 0 is a constant.

With regards to diverse knowledge domains, we narrow the scope of investigation in this study to the
synthesis-based teacher setting [36]. Furthermore, it’s worth noting that by limiting the knowledge
domain to a specific pool, it can result in multiple learners converging to a suboptimal f∗′, such
findings of pool-based teachers are comparable and can be deduced accordingly, as discussed in
Remark 7 of [73].

4.2 Vanilla multi-learner teaching

In tackling MINT, we begin by examining a basic scenario in which multiple learners concurrently
learns corresponding components of a vector-valued target function without communication between
them [28, 12], that is, At in Eq. 8 is assigned the identity matrix Id. This simplifies Eq. 8 to

f t+1 ← f t − ηt ⊙ G(L;f t;Dt). (9)

In this vanilla setting, multiple learners do not linearly combine learned functions of all learners;
rather, it updates its functions by Eq. 9 alone.

In light of the definition of Fréchet derivative in vector-valued RKHS (as presented in Defi.1), we
present Chain Rule for vector-valued functional gradients [24] as a Lemma.
Lemma 5. (Chain rule for vector-valued functional gradients) For differentiable functions G : R 7→
R that are functions of functionals F , G(F [f ]), the expression

∇fG(F [f ]) =
∂G(F [f ])

∂F [f ]
· ∇fF [f ] (10)

is usually referred to as the chain rule.
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To obtain the derivative of the evaluation functional [16], we introduce Lemma 6, with the proof of
this lemma deferred to Appendix B.

Lemma 6. For an evaluation functional in vector-valued RKHS Ex[f ] =
∑d

i=1 fi(xi,ji) : Hd 7→ R
where x = [xi,ji ]

d ∈ X d, its gradient is a d-dimensional vector∇fEx[f ] = Kx = [Kxi,ji
]d ∈ Hd.

Using Lemma 5 and Lemma 6, we offer an expansion viewpoint on the vector-valued functional
gradients of L [41, 16]: Suppose we have a specific example vector (x,y) = [(xi,ji , yi,ji)]

d ∈
X d × Yd, the gradient G of the multi-learner loss function L w.r.t. the vector-valued model f can be
expressed by

G(L;f ; (x,y)) =
[
∂Li/∂fi|fi(xi,ji

),yi,ji
Kxi,ji

]d
. (11)

We also broaden the applicability of RFT and GFT from their single-learner versions [73] to a
multi-learner one. Under this context, RFT involves randomly picking examples for each learner,
while GFT selects examples that satisfy

(
xt∗ = argmax

[xi]d∈Xd

∥∥∥∥
[
∂Li/∂fi|ft

i (xi)

]d∥∥∥∥
Hd

, yt∗ = [yt
∗
]d =

[
f∗
i

(
xt
i
∗)]d

)
(12)

To avoid clutter in the notation, our examination is restricted to the selection of a single example for
each learner during every iteration, and we provide the pseudo code in Appendix A.

In the upcoming discussion, we shall present our theoretical examination of the convergence perfor-
mance of multi-learner RFT and GFT. Our approach differs from [73] as we focus on RFT’s average
performance by introducing the expectation operation over random sampling. This helps us gain
valuable insights by averaging out the impact of randomness. Recall the teaching settings (Eq. 6, 9),
we then proceed with our analysis of RFT’s per-iteration reduction concerning L.
Lemma 7. (Sufficient Descent for multi-learner RFT) Suppose there are d learners, and the example
mean for each learner is µi = Exi∼Pi(xi)(xi) <∞, and the variance σ2

i = Exi∼Pi(xi)(xi − µi)
2 <

∞, i ∈ Nd. Under the assumptions outlined in both 3 and 4, if ηti ≤ 1
2LL·MK

for all i ∈ Nd, then
RFT teachers can, on average, reduce the multi-learner loss L(f) by:

Ex∼[Pi(xi)]d
[
L(f t+1)− L(f t)

]
≤ − η̃t

2

d∑

i=1

(mi,t(µi) +
m′′

i,t(µi)

2
σ2
i ), (13)

where η̃t = mini∈Nd
ηti and mi,t(ẋ) := Eẋ[(∇fLi(f)|f=ft

i
)2].

Intuitively, mi,t(µi) serves as a measure of the gradient’s magnitude (loss Li w.r.t. f t
i ) for the i-th

learner at the example mean µi in the t-th iteration, and as f t
i approaches f∗

i , mi,t(µi) becomes
increasingly small. According to Lemma 7, as proven in Appendix B, the average reduction of
multi-learner loss L per iteration is constrained by a negative upper bound. To be more precise, this
upper bound is determined by a range of elements, such as the learning rate, the count of learners, the
example variance σ2

i and the gradient of Li at the example mean µi (i ∈ Nd), and these elements
are independent of each another. When the gradient at each µi is large, RFT on average can reduce
L by a significant amount. Meanwhile, the variance also has an impact on the reduction and this is
governed by a diminutive constant of m′′

i,t(µi)/2.

The least helpful teaching scenario in the t-th iteration across the d learners is represented by
mini∈Nd

(
mi,t(µi) +m′′

i,t(µi)σ
2
i /2
)
, which has the smallest gradient at the example mean. It is

observed from Lemma 7 that the reduction of L per iteration is, at a minimum, d times greater than
that of the worst-case scenario −η̃t/2 ·mini∈Nd

(
mi,t(µi) +m′′

i,t(µi)σ
2
i /2
)
. In other words, when

multi-learner RFT achieves a stationary point in the worst-case scenario, the multi-learner loss L
reaches convergence as well. This indicates that the convergence rate of multi-learner RFT is at least
as fast as in the single-learner worst-case scenario (also faster than repeatedly teaching).

Introducing the expectation operation enables us to eliminate the randomness that arises from random
sampling. In contrast to [73], which determines the decrease based on the discrepancy at specific
but randomly chosen example xt (involving randomness), we establish that the decrease on average
is determined by the mean and variance. This valuable insight is important to understand the
fundamentals of RFT, which is not considered in [73].
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Theorem 8. (Convergence for multi-learner RFT) Suppose the vector-valued model for multiple
learners is initialized with f0 ∈ Hd and returns f t ∈ Hd after t iterations, we have the upper bound
of mini∈Nd

(
mi,t(µi) +m′′

i,t(µi)σ
2
i /2
)

w.r.t. t:

min
i∈Nd

(
mi,t−1(µi) +m′′

i,t−1(µi)σ
2
i /2
)
≤ 2Ex∼[Pi(xi)]d

[
L(f0)

]
/(dη̇t), (14)

where 0 < η̇ = min
l∈{0}⋃

Nt−1

η̃l ≤ 1/(2LL ·MK), and given a small constant ϵ > 0 it would take

approximately O(2Ex∼[Pi(xi)]d
[
L
(
f0)
]
/(dη̇ϵ)

)
iterations to reach a stationary point.

The proof for Theorem 8 can be found in Appendix B. Theorem 8 tells that the minimum of the non-
negative term within the upper bound in Theorem 7, which is mini∈Nd

(
mi,t(µi) +m′′

i,t(µi)σ
2
i /2
)
,

is also upper bounded, and the iterative teaching dimension is 2Ex∼[Pi(xi)]d
[
L(f0)

]
/(dη̇ϵ).

In comparison to RFT, GFT achieves a larger reduction in multi-learner lossL per iteration, suggesting
a faster convergence rate and a lesser number of iterations required to achieve convergence.
Lemma 9. (Sufficient Descent for multi-learner GFT) Under Assumption 3 and 4, if ηti ≤ 1

2LL·MK

for all i ∈ Nd, the GFT teachers can achieve a greater reduction in the multi-learner loss L:

Ex∼[Pi(xi)]d
[
L(f t+1)− L(f t)

]
≤ − η̃t

2

d∑

i=1

mi,t(x
t
i
∗
), (15)

where η̃t and mi,t(·) retain their previous meaning.

The proof of the Lemma 9 is presented in Appendix B. GFT selects examples with the steepest
gradient, which leads to mi,t(x

t
i
∗
) ≥

(
mi,t(µi) +m′′

i,t(µi)σ
2
i /2
)

for each learner. Consequently, it
can be observed that per-iteration L reduction of GFT has a tighter bound compared to RFT. This
is due to the fact that GFT uses a greedy approach to select examples that maximizes the norm of
difference between the current and target models. This allows the learners to take a larger step forward
f∗ in per iteration. The tighter bound provides theoretical evidence supporting the effectiveness of
GFT, which is consistent with the findings in the single-learner teaching [73].
Theorem 10. (Convergence for multi-learner GFT) Suppose the vector-valued model for multiple
learners is initialized with f0 ∈ Hd and returns f t ∈ Hd after t iterations, we have the upper bound
of mini∈Nd

mi,t(x
t
i
∗
) w.r.t. t:

min
i∈Nd

mi,t−1(x
t−1
i

∗
) ≤ 2

dη̇t
Ex∼[Pi(xi)]d

[
L(f0)

]
+

1

dt

t−1∑

l=0

d∑

i=1

(
∥xl

i

∗ − µi∥2
)
, (16)

where η̇ has the same definition as before.

It follows from Lemma 7 and 9 that when xt
i
∗ is close to µi for i ∈ Nd, then GFT and RFT perform

similarly. In Theorem 10 (The proof is given in Appendix B), we theoretically show this relation by
introducing the distance between xt

i
∗ and µi, which provides a deep insight of the difference between

RFT and GFT that is not considered in [73]. Specifically, the per-iteration loss reduction under both
RFT and GFT has negative upper bounds, and the difference between these two upper bounds can be
seen by comparing Theorem 8 and Theorem 10. From a qualitative perspective, GFT can achieve
better convergence speed-up because its negative upper bound can take smaller values than that of
RFT. This gap is characterized by 1

dt

∑t−1
l=0

∑d
i=1

(
∥xl

i
∗ − µi∥2

)
which is the cumulative distance

between select xt
i
∗ and mean µi for all learners and averaged over iterations. We emphasize that the

purpose of our results is to show the difference between RFT and GFT, rather than proving that GFT
always achieves better convergence than RFT (which is not always true). By comparing Theorem 8
and Theorem 10, we can learn that it is possible for GFT to have larger per-iteration loss reduction
than RFT. However, we also recognize the intrinsic difficulty to show the exact conditions such that
GFT can always be better than RFT. In contrast to our results, the parametric case (e.g., [36]) also has
not obtained the necessary and sufficient conditions for greedy teaching to be better than random
teaching. More generally, [38] also considers some alternative teaching strategies other than the
greedy teaching, such as the parameterized teaching with a multi-iteration reward function. Despite
not being able to fully characterize the difference of convergence rate between GFT and RFT, our
existing theoretical analysis still poses an important open problem: when and how can GFT provably
achieve faster convergence than RFT?
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t=0 t=10000 t=30000 t=60000 t=70000 t=100000

(a) Single-learner teaching

t=0 t=5000 t=10000 t=30000 t=50000 t=100000

(b) Vanilla MINT
t=0 t=5000 t=10000 t=30000 t=50000 t=80000

(c) Single-learner teaching

t=0 t=5000 t=10000 t=30000 t=50000 t=80000

(d) Vanilla MINT

Figure 2: Comparison between single-learner teaching and MINT. (a) Repeatedly invoking single-learner GFT:
teaching a white tiger at first and subsequently teaching a cheetah. (b) Simultaneous teaching of a white tiger
and a cheetah by GFT. (c) Single-learner teaching of the lion. (d) Partitioning a single lion image into 16 pieces
and teaching them concurrently.
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(a) Tiger & cheetah.
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(b) Gray lion.
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(c) RGB lion.

Figure 3: Comparison of convergence performance between single-learner teaching and MINT. (a) is corre-
sponding to (a)-(b) in Figure 2. (b) is for (c)-(d) in Figure 2. (c) pertains to teaching of a colored lion.

4.3 Communicated multi-learner teaching

An infant would often compose previously learnt knowledge in order to grasp a new target concept,
such as understanding what a zebra is by combining the learnt ideas of horses and black-and-white
stripes. Such an efficient learning motivates us to explore the idea of communicated MINT, which
enables the communication between learners. In other words, multiple learners can execute linear
combination on the currently learnt functions of all learners [21, 23, 77, 12], that is, At is no longer
constrained to be an identity matrix.

In practice, to direct this communication, the teacher can utilize a two-layer perceptron (MLP) to
derive the matrix At in Eq. 8 by searching a matrix A that minimizes ∥Af t − f∗∥Hd as much as
possible, which is an addition step beyond example selection in each iteration.

Proposition 11. If the proximity between f t and f∗ is sufficiently close, meaning that ∥f t−f∗∥Hd ≤
ϵ where ϵ is a tiny positive constant, then At equals the identity matrix Id.

The proof of Prop.11 is given in Appendix B. This suggests that there is no need for MLP to be used
in solving matrix At in every iteration, but only at the beginning, because as the iterations progress,
f t will approach near to f∗.

Lemma 12. Under Assumption 3, the communication across learners will result in a reduction of the
multi-learner convex loss L by 0 ≤ L(f t)− L(Atf t) ≤ 2LL∥f t − f∗∥Hd .

Proof of Lemma 12 is given in Appendix B. The difference in L between the case where the
communication exists and that where it doesn’t is lower bounded by zero and upper bounded by the
distance between f t and f∗. This suggests that if f t is far from f∗, then matrix At can potentially
decrease L significantly at the best case while not causing any increase at the worst case.

Theorem 13. Suppose the communication in the t-th iteration of multiple learners is denoted by the
matrix At and returns f t+1

At ∈ Hd, for both RFT and GFT we have:

Ex∼[Pi(xi)]d
[
L(f t+1

At )− L(f t)
]
≤ Ex∼[Pi(xi)]d

[
L(f t+1

At )− L(Atf t)
]
≤ 0. (17)
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t=0 t=10000 t=50000 t=100000 t=150000 t=210000

(a) Single-learner teaching.
t=0 t=10000 t=50000 t=100000 t=150000 t=210000

(b) Vanilla MINT.
t=0 t=10000 t=50000 t=100000 t=150000 t=210000

(c) Communicated MINT.
Figure 4: Visualization of f t taught by GFT. Starting from a random initialization, the communicated multi-
learner GFT help multiple learners learn a more clear image than the vanilla one followed by single-learner one.

Proof of Theorem 13 is in Appendix B. This shows that the addition of communication has led to an
improvement in model updates, which is evident from the larger loss discrepancy between f t+1

At and
f t compared to the difference observed between f t+1

At and Atf t.

5 Experiments and Results

Testing the teaching of a multi-learner (vector-valued) target model, MINT presents more satisfactory
performance than repeatedly carrying out the single-learner teaching, which is consistent with
our theoretical findings. Detailed configurations and supplementary experiments are given in the
Appendix C.

MINT in gray scale. A grayscale figure can be viewed as a 3D surface where the z axis corresponds
to the level of gray, while the x, y axes depict the placement of pixels [73]. We consider two scenarios:
one involves the simultaneous teaching of a tiger and a cheetah figure, while the other focuses on
the teaching of a lion. After comparing (a) and (b) in Figure 2, we see that when teaching two target
functions by GFT simultaneously, the vanilla MINT requires almost half the number of cost iterations
compared to single-learner teaching, which is also evident from the loss plot shown in Figure 3 (a).
By comparing (c) and (d) in Figure 2, we can observe that dividing a single-learner target figure into
smaller pieces and recasting them into MINT can significantly improve the efficiency, which is also
demonstrated by the loss plot in Figure 3 (b).

MINT in three (RGB) channels. To further demonstrate the benefits of communication, we examine
with a lion image with three channels in RGB format. The loss plot in Figure 3 (c) reveals that the
most efficient teaching is the communicated MINT for both RFT and GFT. The vanilla MINT and
single-learner teaching follow in order of decreasing efficiency. Furthermore, as anticipated, the
multi-learner GFT proves to be more efficient compared to RFT. One intriguing observation is that
the communicated MINT leads to a significant reduction in multi-learner loss at the outset, which
aligns with our theoretical findings in Lemma 12 and confirms the validity of Prop.11 that At could
eventually become an identity matrix after numerous iterations. Figure 4 compares the specific learnt
f t for three versions of GFT during each iteration, wherein we observe that MINT consistently
outperforms the single-learner one, and the learnt image under the communicated MINT is more
clear compared to that of the vanilla one. To be more persuasive, we also offer detailed and additional

Our source code is available at https://github.com/chen2hang/MINT_NonparametricTeaching.
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experiments in Appendix, including channel-wise visualization of specific f t (Figure 7), RFT-taught
f t (Figure 8-9) and teaching multiple learners with a particular initialization of f0 (Figure 11-10),
which includes an extreme case that only one-time communication is sufficient to help multiple
learners learn f∗ (Figure 15).

6 Concluding Remarks and Future Work

In this paper, we seek to address a practical limitation of current nonparametric iterative machine
teaching by enabling the teaching of multi-learner (vector-valued) target models. This generalization
of teaching ability involves generalizing the model space from space of scalar-valued functions to
that of vector-valued functions. In order to address multi-learner nonparametric teaching, we start by
analyzing a vanilla MINT where the teacher picks examples based on a vector-valued target function
such that multiple learners can learn its components simultaneously. Additionally, we consider the
communicated MINT (i.e., multiple learners are allowed to carry out linear combination on current
learnt functions) for further exploration. Through both theoretical analysis and empirical evidence,
we demonstrate that the communicated MINT is more efficient than the vanilla MINT.

Moving forward, it could be interesting to explore other practical aspects related to nonparametric
teaching. This will involve a deeper theoretical understanding and the development of more efficient
teaching algorithms. Besides, it would be intriguing to establish connections between MINT and
multi-output neural networks, which can further enhance its practical applications such as knowledge
distillation. Moreover, generating teaching examples with a surrogate objective that does not need
a target model (e.g., black-box teaching) is also an important direction (e.g., [17, 72]). More
generally, (iterative) machine teaching is intrinsically connected to the recent popular data-centric AI.
Understanding data-centric learning (e.g., text prompting, data augmentation, data distillation) may
require a deeper understanding towards (iterative) machine teaching.
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Appendix

A Additional Discussions

Broader Impact

This paper is to address a practical limitation of recently introduced Nonparametric Iterative Machine
Teaching from the theoretical aspect, which is to enable multi-learner teaching. We also provide
empirical evidence to demonstrate that multi-learner nonparametric teaching is effective in addressing
such a limitation. Although we hope that the outcomes of this study will enlighten the theoretical
community, we do not expect any immediate effects on society from this work.

Pseudo code for multi-learner RFT and GFT

The pseudo code for RFT and GFT in the vanilla and communicated MINT is given as following:

Algorithm 1 Greedy (Random) Functional Teaching for the Communicated (Vanilla) MINT
Input: Target f∗ ∈ Hd, initial f0 ∈ Hd, small constants ϵ, ϵ0 > 0 and maximal iteration numbers
T, T0.

Set f t ← f0, t = 0.

while t ≤ T and ∥f t − f∗∥Hd ≥ ϵ do
The teacher is not only to construct the communication matrix but alos to select the teaching set
for multiple learners:

// Construction of the communication matrix.

Initialize a two-layer perceptron with a linear layer, i.e., initialize the communication matrix with
an indentity one (A = Id), and set t0 = 0.

while t0 ≤ T0 and ∥Af t − f∗∥Hd ≥ ϵ0 do
Train the linear weight (A) of this two-layer perceptron, such that ∥Af t − f∗∥Hd decreases.

end
/* For the Vanilla MINT, omit the above procedure of solving for the

communication matrix, just need to set A = Id. */

// Selection of the teaching set.

Initialize the teaching set D = ∅;
Pick xt

i
∗ ∈ Xi, i ∈ Nd with the maximal difference between f t

i and f∗
i for multiple learners

simultaneously:
xt
i
∗
= argmax

xt
i∈Xi

∣∣f t
i (x

t
i)− f∗

i (x
t
i)
∣∣ ;

/* For random functional teaching, Pick xt
i
∗ ∈ Xi, i ∈ Nd randomly and

concurrently. */

Add
(
xt
i
∗
, yti

∗
= f∗

i

(
xt
i
∗)) into the teaching set D.

Provide A and D to multiple learners.

The learners update f t based on received At = A and Dt = D:
f t+1
At ← At · f t − ηt ⊙ G(L;At · f t;Dt).

Set t← t+ 1.
end

Further discussion about the idea behind MINT

In practical scenarios, it is a commonly accepted fact that a single object can possess multiple
characteristics. For instance, when describing a fruit, we often take into account its various attributes
such as shape, color, and texture. This highlights the notion that limiting oneself to scalar-vector
functions in nonparametric iterative machine teaching would not be enough to capture the complexity
of real-world data. We thus extend the current nonparametric teaching from the single-learner version
to a multi-learner one (MINT) by considering vector-valued functions. Compared to parameterized
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(a)  Vanilla MINT

(b)  Communicated MINT

Update Converge
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Figure 5: Comparison between vanilla and communicated MINT.

teaching, MINT can be seen as a type of extension which involves replacing the vector unit from
values to functions.

The idea of communicated MINT partially comes from linear algebra. If f0 ∈ Hd forms a basis of
Hd, and f∗ can be linearly expressed by this basis, then it is noteworthy that learners can successfully
learn f∗ with only one-time communication.

Let us consider a scenario in which the components of f0 are from different function families.
Suppose we take f0 = (ex, sinx, x)T and f∗ = (2ex − sinx− x, sinx+ 2x,−ex + sinx+ x)T ,
it holds that

(
2ex − sinx− x

sinx+ 2x
−ex + sinx+ x

)
=

(
2 −1 −1
0 1 2
−1 1 1

)

︸ ︷︷ ︸
communication matrix A

·
(

ex

sinx
x

)
, (18)

which indicates that the teacher can teach f∗ to multiple learners through providing the communica-
tion matrix A within one iteration. To draw a practical analogy, we can view ekx as denoting shape,
sin kx as indicating color, and x1/k as representing texture.

Another scenario is when the components of f0 belong to the same function family. Consider the
scenario where two learners are familiar with the shapes of a circle and a square, respectively, and
they need to learn two different shapes as shown in Figure 5. In this case, we can model it by
assuming that f0

j , j ∈ N2 belong to the cosine family, i.e., f0 = (
√
2 cos(2πx),

√
2 cos(4πx))T .

Here, f0
j are not linearly related, which is a property of basis. The target function is denoted as

f∗ = (
√
2 cos(2πx)−

√
2 cos(4πx),− cos(2πx) +

√
2 cos(4πx))T . It is trivial to derive that

(√
2 cos(2πx)−

√
2 cos(4πx)

− cos(2πx) +
√
2 cos(4πx)

)
=

(
1 −1

−1/
√
2 1

)
·
(√

2 cos(2πx)√
2 cos(4πx)

)
. (19)

By referring to the illustration in Figure 5, we can compare the performance of vanilla MINT and
communicated MINT. It can be observed that the communicated MINT is capable of helping to learn
f∗ within just one iteration, whereas the vanilla MINT requires numerous iterations to achieve the
same.

B Detailed Proofs

Our suggestion for further reading on functional calculus would be to consult the literature [24, 16]
and the references therein.

Proof of Lemma 6 We firstly define a function q by adding a small disturbance ϵg (ϵ ∈ R, g ∈ Hd)
to f ∈ Hd, that is, q = f + ϵg. We see that q ∈ Hd since vector-valued RKHS is closed under
addition and scalar multiplication. For a evaluation functional Ex[f ] =

∑d
i=1 fi(xi,ji) : Hd 7→ R

where x = [xi,ji ]
d ∈ X d, we thus can evaluate q at x as

Ex[q] = Ex[f + ϵg]

= Ex[f ] + ϵEx[g] + 0

= Ex[f ] + ϵ⟨K(x, ·), g⟩Hd + 0 (20)
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Recall the definition of the Fréchet derivative in a vector-valued reproducing kernel Hilbert space
(RKHS), which is defined implicitly and can be found in Definition 1, Ex[f + ϵg] = Ex[f ] +
ϵ⟨∇fEx[f ], g⟩Hd + O(ϵ2), it follows from Eq. 20 that the gradient of a evaluation functional in
vector-valued RKHSHd is∇fEx[f ] = Kx = [Kxi,ji

]d.

■

Proof of Lemma 7 Note that one example (x, y) ∼ Qi(x, y) can be uniquely identified by its x,
we take expectation on x ∼ P(x) only for the sake of simplicity. It follows from the convexity of Li

and the definition of Fréchet derivative in Definition 1 that we have

Exi∼Pi(xi)

[
Li(f

t+1
i )− Li(f

t
i )
]

≤ Exi∼Pi(xi)

[
⟨f t+1

i − f t
i , ∇fLi(f)|f=ft+1

i
⟩H
]

= Exi∼Pi(xi)

[
−ηtiExt

i

[
∇fLi(f)|f=ft

i

]
· Ext

i

[
∇fLi(f)|f=ft+1

i

]]

= −ηti · Exi∼Pi(xi)

[
Ext

i

[
∇fLi(f)|f=ft

i
· ∇fLi(f)|f=ft+1

i

]]
. (21)

Under LL-Lipschitz smooth Assumption 3 and bounded kernel function Assumption 4, we can show
that

Ext
i

[
∇fLi(f)|f=ft

i
· ∇fLi(f)|f=ft+1

i

]
≥
(
3/4− L2

L(η
t
i)

2(MK)2
)
Ext

i

[(
∇fLi(f)|f=ft

i

)2]
. (22)

For succinctness, we define
(
∇fLi(f)|f=ft

i

)2
:= ∇2

fLi(f)
∣∣
f=ft

i

(23)

and

mi,t(ẋ) := Eẋ

[
∇2

fLi(f)
∣∣
f=ft

i

]
= Eẋ

[(
∇fLi(f)|f=ft

i

)2]
. (24)

Then, we can apply Taylor expansion for mi,t(x
t
i) on µi = Exi∼Pi(xi)(x

t
i) and derives

mi,t(x
t
i) = mi,t(µi) +m′

i,t(x
t
i)(x

t
i − µi) +

m′′
i,t(µi)

2
(xt

i − µi)
2 +R2(x

t
i), (25)

where the remainder R2(x
t
i) usually is omitted, and we assume mi,t(x

t
i) is 2-times differentiable.

We see that evaluated at mean µi, mi,t(µi) is monotonically decreasing w.r.t. iteration t. Combining
Eq. 21, 22 and 25, we have

Exi∼Pi(xi)

[
Li(f

t+1
i )− Li(f

t
i )
]

≤ −ηti · Exi∼Pi(xi)

[(
3/4− L2

L(η
t
i)

2(MK)2
)
Ext

i

[
∇2

fLi(f)
∣∣
f=ft

i

]]

= −ηti
(
3/4− L2

L(η
t
i)

2(MK)2
)
· (mi,t(ui) +

m′′
i,t(µi)

2
σ2
i ), (26)

where σ2
i = Exi∼Pi(xi)(x

t
i − µi)

2 is the variance of xi. Therefore,

Ex∼[Pi(xi)]d
[
L(f t+1)− L(f t)

]

= Ex∼[Pi(xi)]d

[
d∑

i=1

Li(f
t+1
i )−

d∑

i=1

Li(f
t
i )

]

=

d∑

i=1

Exi∼Pi(xi)

[
Li(f

t+1
i )− Li(f

t
i )
]

≤
d∑

i=1

−ηti
(
3/4− L2

L(η
t
i)

2(MK)2
)
· (mi,t(µi) +

m′′
i,t(µi)

2
σ2
i ). (27)
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Hence, if ∀i ∈ Nd, η
t
i ≤ 1

2LL·MK
, we have

Ex∼[Pi(xi)]d
[
L(f t+1)− L(f t)

]
≤ − η̃t

2

d∑

i=1

(mi,t(µi) +
m′′

i,t(µi)

2
σ2
i )

≤ − η̃td

2
· min
i∈Nd

(
mi,t(µi) +

m′′
i,t(µi)

2
σ2
i

)
, (28)

where η̃t = mini∈Nd
ηti .

■

Proof of Theorem 8 Recall Lemma 7, ∀i ∈ Nd, η
t
i ≤ 1

2LL·MK
, we have

Ex∼[Pi(xi)]d
[
L(f t+1)− L(f t)

]
≤ − η̃t

2

d∑

i=1

(mi,t(µi) +
m′′

i,t(µi)

2
σ2
i )

≤ − η̃t

2
d · min

i∈Nd

(
mi,t(µi) +

m′′
i,t(µi)

2
σ2
i

)
, (29)

where η̃t = mini∈Nd
ηti . Rearranging above, we have:

2Ex∼[Pi(xi)]d
[
L(f t)− L(f t+1)

]

dη̃t
≥ min

i∈Nd

(
mi,t(µi) +

m′′
i,t(µi)

2
σ2
i

)
. (30)

Equivalently, replace index t by l,
2E

x∼[Pi(xi)]
d [L(f l)−L(f l+1)]
dη̃l ≥ mini∈Nd

(
mi,l(µi) +

m′′
i,l(µi)

2 σ2
i

)
.

Consequently, plugging l = 0, 1 . . . , t− 1 in it and summing them up, we hence have

t−1∑

l=0

min
i∈Nd

(
mi,l(µi) +

m′′
i,l(µi)

2
σ2
i

)

≤ 2

d

t−1∑

l=0

Ex∼[Pi(xi)]d
[
L(f l)− L(f l+1)

]

η̃l

≤ 2

dη̇

t−1∑

l=0

Ex∼[Pi(xi)]d
[
L(f l)− L(f l+1)

]
, (31)

where η̇ = min
l∈{0}⋃

Nt−1

η̃l > 0. Expanding the r.h.s. term in Eq. 31 yields

2

dη̇

t−1∑

l=0

Ex∼[Pi(xi)]d
[
L(f l)− L(f l+1)

]

=
2

dη̇
Ex∼[Pi(xi)]d

[
L(f0)− L(f t)

]

≤ 2

dη̇
Ex∼[Pi(xi)]d

[
L(f0)

]
. (32)

In terms of the l.h.s. term in Eq. 31, we must have

t−1∑

l=0

min
i∈Nd

(
mi,l(µi) +

m′′
i,l(µi)

2
σ2
i

)
≥ t · min

l∈{0}⋃
Nt−1

min
i∈Nd

(
mi,l(µi) +

m′′
i,l(µi)

2
σ2
i

)
. (33)

Combining expression 32 and 33, we thus have

t · min
l∈{0}⋃

Nt−1

min
i∈Nd

(
mi,l(µi) +

m′′
i,l(µi)

2
σ2
i

)
≤

t−1∑

l=0

min
i∈Nd

(
mi,l(µi) +

m′′
i,l(µi)

2
σ2
i

)

≤ 2

dη̇
Ex∼[Pi(xi)]d

[
L(f0)

]
. (34)
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Since mi,t(µi) is monotonically decreasing w.r.t. iteration t, we have

min
l∈{0}⋃

Nt−1

min
i∈Nd

(
mi,l(µi) +m′′

i,l(µi)σ
2
i /2
)
= min

i∈Nd

(
mi,t−1(µi) +m′′

i,t−1(µi)σ
2
i /2
)
.

Therefore, we can derive

min
i∈Nd

(
mi,t−1(µi) +

m′′
i,t−1(µi)

2
σ2
i

)
≤ 2

dη̇t
Ex∼[Pi(xi)]d

[
L(f0)

]
, (35)

when the returned vector-valued model for multiple learners is f t and index t− 1 denotes the last
iteration.

On the other hand, it follows from Eq. 32 and the fact that mi,t(µi) is monotonically decreasing w.r.t.
iteration t that we have

Ex∼[Pi(xi)]d
[
L(f t)− L(f0)

]
≤ −dη̇

2

t−1∑

l=0

min
i∈Nd

(
mi,l(µi) +

m′′
i,l(µi)

2
σ2
i

)

≤ −dη̇

2
t · min

i∈Nd

(
mi,t−1(µi) +

m′′
i,t−1(µi)

2
σ2
i

)
. (36)

After rearranging, we obtain

min
i∈Nd

(
mi,t−1(µi) +

m′′
i,t−1(µi)

2
σ2
i

)
≤ 2

dη̇t
· Ex∼[Pi(xi)]d

[
L(f0)− L(f t)

]

≤ 2

dη̇t
· Ex∼[Pi(xi)]d

[
L(f0)

]
(37)

Let r.h.s. of Eq. 37 be controlled by a small constant ϵ > 0, we have

t ≥ 2

dη̇ϵ
· Ex∼[Pi(xi)]d

[
L(f0)

]
, (38)

which means given a small constant ϵ > 0 it would take approximately
2

dη̇ϵ
· Ex∼[Pi(xi)]d

[
L(f0)

]

iterations to reach a stationary point.

Additionally, this suggests that multiple learners could achieve the stationary state as: In each iteration,
check if mi,t−1(µi)+

m′′
i,t−1(µi)

2 σ2
i is small enough. Assuming this condition is satisfied, the learners

will have already reduced the multi-learner loss to an acceptably low level, allowing them to send a
signal indicating termination back to the teachers. If the condition is not fulfilled, the teachers will
continue with the process. The termination occurs within 2

dη̇ϵ · Ex∼[Pi(xi)]d
[
L(f0)

]
iterations.

■

Proof of Lemma 9 Recall practical Greedy Functional Teaching in Eq. 12
(
xt∗ = argmax

xt∈X

∣∣∣Ext

[
∇fL(f)|f=ft

]∣∣∣ , y∗ = Ext∗ [f∗]

)
. (39)

Obviously, it is trivial to see that ∀xt ∈ X ,
∣∣∣Ext∗

[
∇fL(f)|f=ft

]∣∣∣
2

≥
∣∣∣Ext

[
∇fL(f)|f=ft

]∣∣∣
2

. (40)

Analogous to the Proof of Lemma 7 in B, we can derive

Exi∼Pi(xi)

[
Li(f

t+1
i )− Li(f

t
i )
]

≤ −ηti · Exi∼Pi(xi)

[
Ext

i
∗

[
∇fLi(f)|f=ft

i
· ∇fLi(f)|f=ft+1

i

]]

∗
= −ηti · Ext

i
∗

[
∇fLi(f)|f=ft

i
· ∇fLi(f)|f=ft+1

i

]

≤ −ηti ·
(
3/4− L2

L(η
t
i)

2(MK)2
)
Ext

i
∗

[
∇2

fLi(f)
∣∣
f=ft

i

]

= −ηti ·
(
3/4− L2

L(η
t
i)

2(MK)2
)
mi,t(x

t
i
∗
), (41)

19



where ∗
= holds because selected xt

i
∗ by GFT is determined. Therefore,

Ex∼[Pi(xi)]d
[
L(f t+1)− L(f t)

]
≤

d∑

i=1

−ηti
(
3/4− L2

L(η
t
i)

2(MK)2
)
mi,t(x

t
i
∗
). (42)

Hence, if ∀i ∈ Nd, η
t
i ≤ 1

2LL·MK
, we have

Ex∼[Pi(xi)]d
[
L(f t+1)− L(f t)

]
≤ − η̃t

2

d∑

i=1

mi,t(x
t
i
∗
) ≤ − η̃td

2
· min
i∈Nd

mi,t(x
t
i
∗
), (43)

where η̃t = mini∈Nd
ηti . Note that GFT is to select examples such that the gradient is the steepest,

thus mini∈Nd
mi,t(x

t
i
∗
) ≥ mini∈Nd

(
mi,t(µi) +

m′′
i,t(µi)

2 σ2
i

)

■

Proof of Theorem 10 Recall the result of Lemma 7, when ∀i ∈ Nd, η
t
i ≤ 1

2LL·MK

d∑

i=1

(mi,t(µi) +
m′′

i,t(µi)

2
σ2
i ) ≤

2Ex∼[Pi(xi)]d
[
L(f t)− L(f t+1)

]

η̃t
, (44)

where η̃t = mini∈Nd
ηti .

Before converging to the stationary state,
∑d

i=1 mi,t(x
t
i
∗
) > 0. Therefore, we can express it as

d∑

i=1

mi,t(x
t
i
∗
) ·
∑d

i=1(mi,t(µi) +
m′′

i,t(µi)

2 σ2
i )∑d

i=1 mi,t(xt
i
∗
)

≤ 2Ex∼[Pi(xi)]d
[
L(f t)− L(f t+1)

]

η̃t
. (45)

We see that
∑d

i=1(mi,t(µi)+
m′′

i,t(µi)

2 σ2
i )∑d

i=1 mi,t(xt
i
∗)

≤ 1 measures the difference between two algorithms at t
iteration. And this is deterministic in each iteration, that is, this can be estimated before sampling, so
we can see the superiority of GFT.

∑d
i=1(mi,t(µi) +

m′′
i,t(µi)

2 σ2
i )∑d

i=1 mi,t(xt
i
∗
)

= 1−
∑d

i=1

(
mi,t(x

t
i
∗
)−mi,t(µi)− m′′

i,t(µi)

2 σ2
i

)

∑d
i=1 mi,t(xt

i
∗
)

≥ 1−
∑d

i=1

(
∥xt

i
∗ − µi∥2 − m′′

i,t(µi)

2 σ2
i

)

∑d
i=1 mi,t(xt

i
∗
)

≥ 1−
∑d

i=1

(
∥xt

i
∗ − µi∥2

)
∑d

i=1 mi,t(xt
i
∗
)

(46)

where we assume mi,t(ẋ) is Lipschitz continuous w.r.t. input ẋ to tract the relation between this
quantity and the distance between µi and xt

i
∗. Now, we have

1−
∑d

i=1

(
∥xt

i
∗ − µi∥2

)
∑d

i=1 mi,t(xt
i
∗
)
≤
∑d

i=1(mi,t(µi) +
m′′

i,t(µi)

2 σ2
i )∑d

i=1 mi,t(xt
i
∗
)

≤ 1. (47)

We see that when selected xt
i
∗ by GFT is close to µi then RFT and GFT on average share the same

performance. (show that if maximal model disagreement occurs at the mean of x distribution, then
such a greedy teacher may share similar performance with a random teacher on average.) This is
important to gain an insight on when a greedy teacher is better than a random teacher. Then, we have

d∑

i=1

mi,t(x
t
i
∗
)−

d∑

i=1

(
∥xt

i
∗ − µi∥2

)
=

d∑

i=1

(
mi,t(x

t
i
∗
)− ∥xt

i
∗ − µi∥2

)

≤ 2Ex∼[Pi(xi)]d
[
L(f t)− L(f t+1)

]

η̃t
. (48)

20



d∑

i=1

mi,t(x
t
i
∗
) ≤ 2Ex∼[Pi(xi)]d

[
L(f t)− L(f t+1)

]

η̃t
+

d∑

i=1

(
∥xt

i
∗ − µi∥2

)
. (49)

Therefore,

2Ex∼[Pi(xi)]d
[
L(f t)− L(f t+1)

]

dη̃t
+

1

d

d∑

i=1

(
∥xt

i
∗ − µi∥2

)
≥ min

i∈Nd

mi,t(x
t
i
∗
). (50)

Equivalently, replace index t by l,
2E

x∼[Pi(xi)]
d [L(f l)−L(f l+1)]
dη̃l + 1

d

∑d
i=1

(
∥xl

i
∗ − µi∥2

)
≥

mini∈Nd
mi,l(x

l
i
∗
). Consequently, plugging l = 0, 1 . . . , t − 1 in it and summing them up, we

hence have
t−1∑

l=0

min
i∈Nd

mi,l(x
l
i

∗
)

≤ 2

d

t−1∑

l=0

Ex∼[Pi(xi)]d
[
L(f l)− L(f l+1)

]

η̃l
+

1

d

t−1∑

l=0

d∑

i=1

(
∥xl

i

∗ − µi∥2
)

≤ 2

dη̇

t−1∑

l=0

Ex∼[Pi(xi)]d
[
L(f l)− L(f l+1)

]
+

1

d

t−1∑

l=0

d∑

i=1

(
∥xl

i

∗ − µi∥2
)
, (51)

where η̇ = min
l∈{0}⋃

Nt−1

η̃l > 0. Expanding the r.h.s. term in Eq. 51 yields

2

dη̇

t−1∑

l=0

Ex∼[Pi(xi)]d
[
L(f l)− L(f l+1)

]
+

1

d

t−1∑

l=0

d∑

i=1

(
∥xl

i

∗ − µi∥2
)

=
2

dη̇
Ex∼[Pi(xi)]d

[
L(f0)− L(f t)

]
+

1

d

t−1∑

l=0

d∑

i=1

(
∥xl

i

∗ − µi∥2
)

≤ 2

dη̇
Ex∼[Pi(xi)]d

[
L(f0)

]
+

1

d

t−1∑

l=0

d∑

i=1

(
∥xl

i

∗ − µi∥2
)
. (52)

In terms of the l.h.s. term in Eq. 51, we must have

t−1∑

l=0

min
i∈Nd

mi,l(x
l
i

∗
) ≥ t · min

l∈{0}⋃
Nt−1

min
i∈Nd

mi,l(x
l
i

∗
). (53)

Combining expression 51, 52 and 53, we thus have

t · min
l∈{0}⋃

Nt−1

min
i∈Nd

mi,l(x
l
i

∗
) ≤

t−1∑

l=0

min
i∈Nd

mi,l(x
l
i

∗
)

≤ 2

dη̇
Ex∼[Pi(xi)]d

[
L(f0)

]
+

1

d

t−1∑

l=0

d∑

i=1

(
∥xl

i

∗ − µi∥2
)
. (54)

Since mi,t(x
t
i
∗
) is monotonically non-increasing w.r.t. iteration t, we can derive

min
i∈Nd

mi,t−1(x
t−1
i

∗
) ≤ 2

dη̇t
Ex∼[Pi(xi)]d

[
L(f0)

]
+

1

dt

t−1∑

l=0

d∑

i=1

(
∥xl

i

∗ − µi∥2
)
, (55)

when the returned vector-valued model for multiple learners is f t.

To compare with RFT, we can plug the r.h.s. of Eq. 38 and see that the loss reduction is more than
Ex∼[Pi(xi)]d

[
L(f0)

]
, which indicates GFT needs less iterations to converge and the efficiency of

GFT. Compared with Eq. 35 and 55, we see that the inferiority of RFT compared to GFT comes from
the cumulative distance between the example mean and the example selected by GFT.
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■

Proof of Proportion 11 When the proximity between f t and f∗ is sufficiently close, we have
ϵ < ϵ0 where ϵ0 is the pre-defined approximation error of employed two-layer perceptron. Take
A = Id, then we have ∥A · f t − f∗∥Hd = ∥Id · f t − f∗∥Hd = ∥f t − f∗∥Hd ≤ ϵ ≤ ϵ0, which
means that this perceptron have searched the matrix A = Id that satisfies ∥A · f t − f∗∥Hd ≤ ϵ0.

■

Proof of Lemma 12 Since the multi-learner convex loss L(f) will decrease as input f close to
f∗ and matrix At comes from At = argmin

A∈Rd×d

∥Af t − f∗∥Hd , searching a matrix A to minimize the

disagreement between Af t and f∗, it is trivial to see that

L(f t)− L(Atf t) ≥ 0. (56)

Based on Assumption 3, we can derive that

|L(Atf t)− L(f∗)| ≤ LL∥Atf t − f∗∥Hd (57)

and

|L(f t)− L(f∗)| ≤ LL∥f t − f∗∥Hd . (58)

Therefore, we have

L(f t)− L(Atf t) = L(f t)− L(f∗) + L(f∗)− L(Atf t)

≤ |L(f t)− L(f∗)|+ |L(f∗)− L(Atf t)|
≤ LL · (∥Atf t − f∗∥Hd + ∥f t − f∗∥Hd)

≤ 2LL · ∥f t − f∗∥Hd , (59)

which concludes the proof.

■

Proof of Theorem 13 Following the style of the previous proof, e.g., the proof of Lemma 7, we
begin by investigating the reduction in the loss for a single learner.

Exi∼Pi(xi)

[
Li(f

t+1
At,i)− Li(f

t
i )
]

= Exi∼Pi(xi)

[
Li(f

t+1
At,i)− Li(A

t
(i,·)f

t) + Li(A
t
(i,·)f

t)− Li(f
t
i )
]

= Exi∼Pi(xi)

[
Li(f

t+1
At,i)− Li(A

t
(i,·)f

t)
]
+ Exi∼Pi(xi)

[
Li(A

t
(i,·)f

t)− Li(f
t
i )
]

∗
≤ Exi∼Pi(xi)

[
Li(f

t+1
At,i)− Li(A

t
(i,·)f

t)
]
, (60)

where it follows from Lemma 12 that
∗
≤ holds. Therefore, we have

Ex∼[Pi(xi)]d
[
L(f t+1

At )− L(f t)
]

= Ex∼[Pi(xi)]d

[
d∑

i=1

Li(f
t+1
At,i)−

d∑

i=1

Li(f
t
i )

]

=

d∑

i=1

Exi∼Pi(xi)

[
Li(f

t+1
At,i)− Li(f

t
i )
]

≤
d∑

i=1

Exi∼Pi(xi)

[
Li(f

t+1
At,i)− Li(A

t
(i,·)f

t)
]

= Ex∼[Pi(xi)]d
[
L(f t+1

At )− L(Atf t)
]
≤ 0, (61)

which completes the proof.

■
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t=0 t=10000 t=20000 t=30000 t=50000 t=69999

t=70000 t=80000 t=90000 t=100000 t=120000 t=139999

t=140000 t=150000 t=160000 t=170000 t=190000 t=209999

Figure 6: Extensive visualization of f t for single-learner teaching.

t=0 t=10000 t=50000 t=100000 t=150000 t=210000

(a) Vanilla MINT.

t=0 t=10000 t=50000 t=100000 t=150000 t=210000

(b) Communicated MINT.
Figure 7: The channel-wise visualization of specific f t corresponding to Figure 4 (b)-(c).

C Detailed Experiments and Extensions

Since computers operate in a discrete manner, we employ dense pairwise points {(xi, f(xi))}i∈Nn to
represent a scalar-valued function f and points {([xi]

d
j , [fi(xi)]

d
j )}j∈Nm

to represent a vector-valued
function f = [fi]

d ∈ Hd. To facilitate visualization, our experiments have utilized 2D (1D Gaussian
data), 3D (a grayscale image) and 4D (a colored image) examples to demonstrate the insights obtained
from our theoretical analysis. Generally, the domain of the functions being learned in 3D cases is
determined by the x and y values, which represent the pixel locations, while the range is represented
by the z values, indicating the color levels. This is comparable for 2D and 4D cases. Besides, for
high-dimensional vision datasets that can be formulated as vector-valued functions, the methodology
developed in this work can be applied as well. For all experiments, we align with [73] to set RBF

K(x, x′) = exp

(
−
∥∥∥x−x′

2

∥∥∥
2

2

)
as the kernel and to take empirical (average) L2 norm defined in

vector-valued Hilbert space to measure the difference between f ∈ Hd and f∗ ∈ Hd,

M(f ,f∗) = ∥f − f∗∥Hd =
1

dn

√√√√
d∑

i=1

n∑

j=1

(fi(xi,j)− f∗
i (xi,j))

2
.

Our implementation relies on the Intel(R) Core(TM) i7-8750H processor and utilizes NVIDIA
graphics cards, specifically the GTX 1050 Ti with Max-Q Design and RTX6000.

MINT in gray scale. For impartation of a tiger5 and a cheetah [15], we assume the loss functions for
both learners are square loss Li = (y − fi(x))

2
, i ∈ N2. For the monochrome lion divided into 4×4

5https://www.etsy.com/ie/listing/837781388/icy-gaze-white-tiger-original
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Table 1: Peak signal-to-noise ratio (PSNR) corresponding to learnt f t show in Figure 4.

0 10,000 50,000 100,000 150,000 210,000

Single-learner teaching 8.73 9.16 10.23 11.66 12.99 14.49
Vanilla MINT 8.73 10.01 13.19 16.27 18.98 22.00
Communicated MINT 8.73 12.38 15.62 18.74 21.50 24.58

Table 2: PSNR corresponding to learnt f t show in Figure 8.

0 10,000 50,000 100,000 150,000 210,000

Single-learner teaching 8.73 8.87 9.45 10.17 10.89 11.75
Vanilla MINT 8.73 9.16 10.88 13.03 15.19 17.76
Communicated MINT 8.73 11.46 13.20 15.39 17.58 20.19

pieces, each piece is learnt by a single learner whose loss function is set to be square loss, and all loss
functions are the same, Li = (y − fi(x))

2
, i ∈ N16. This enables the teaching of a single-learner

target model having large input spaces.

MINT in three (RGB) channels. Three learners, each with their own randomly-initialized f0, are
tasked with learning the three (RGB) channel lion image6. Each learner is equipped with a square
loss function to learn their respective channels. In the case of single-learner teaching, the teacher
must repeatedly teach all three channels. In Vanilla MINT, the teacher can teach all three channels
concurrently. In communicated MINT, the teacher uses a two-layer perceptron to solve for the
communication matrix At, with the linear layer initialized by an identity matrix. This allows the
teacher to teach all three channels simultaneously.

We present a comprehensive visualization of f t for Figure 4 (a) in Figure 6, while the channel-specific
visualization of certain f t corresponding to Figure 4 (b)-(c) is exhibited in Figure 7. In order to
evaluate the quality of the learned f t (as images), we utilize the Peak Signal-to-Noise Ratio (PSNR),
and the results corresponding to Figure 4 are presented in Table 1. Meanwhile, Figure 8 displays the
specific learned f t for RFT, and its corresponding PSNR is listed in Table 2. Additionally, Figures
9 (a) and (b) respectively exhibit the channel-specific visualizations of vanilla (Figure 8 (b)) and
communicated (Figure 8 (c)) MINT for RFT.

In addition, we also investigate the performance of single-learner teaching, as well as vanilla and
communicated MINT under a specific initialization of f0, which is obtained through a linear
combination of f∗ using the inverse of matrix

(
1.26 2.22 3.60
2.47 −0.53 2.36
2.40 1.68 0.40

)
.

Figure 10 displays the plot of the loss. Figure 11 showcases the specific learned f t for three
versions of GFT throughout each iteration. From Figure 11, we can observe that MINT consistently
outperforms the single-learner teaching, and additionally, communicated MINT exhibits better
performance compared to vanilla MINT. Figure 12 presents the channel-specific visualization of
certain f t that correspond to Figure 11 (b)-(c), while Table 3 lists the PSNR for all comparable f t in
Figure 11. Additionally, Figure 13 displays the specific learned f t for RFT, while the channel-specific
visualization of certain f t for MINT is exhibited in Figure 14. The corresponding PSNR values are

6https://bmild.github.io/fourfeat/img/lion_orig.png

Table 3: PSNR corresponding to learnt f t show in Figure 11.

0 2,000 10,000 20,000 50,000 90,000

Single-learner teaching 7.58 7.65 7.88 8.15 8.88 10.07
Vanilla MINT 7.58 7.82 8.56 9.35 11.37 13.68
Communicated MINT 7.58 16.29 17.12 17.98 20.19 22.75
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Table 4: PSNR corresponding to learnt f t show in Figure 13.

0 2,000 10,000 20,000 50,000 90,000

Single-learner teaching 7.58 7.60 7.72 7.87 8.33 8.92
Vanilla MINT 7.58 7.66 8.03 8.48 9.82 11.62
Communicated MINT 7.58 16.08 16.44 16.89 18.23 20.03

t=0 t=10000 t=20000 t=30000 t=50000 t=69999

t=70000 t=80000 t=90000 t=100000 t=120000 t=139999

t=140000 t=150000 t=160000 t=170000 t=190000 t=209999

(a) Single-learner teaching.
t=0 t=10000 t=50000 t=100000 t=150000 t=210000

(b) Vanilla MINT.
t=0 t=10000 t=50000 t=100000 t=150000 t=210000

(c) Communicated MINT.
Figure 8: Visualization of f t taught by RFT under the random initialization.

listed in Table 4. An interesting finding is that with this specific initialization, the teacher can assist
the learners in directly learning f∗ by providing the communication matrix

(
1.27 2.22 3.60
2.47 −0.53 2.36
2.40 1.68 0.40

)
,

which is solved by a two-layer perceptron. In order to elaborate this observation, we offer an
illustration in Figure 15.

Synthetic 1D Gaussian data. We use a synthetic 1D Gaussian data set for teaching a single learner to
demonstrate that the greater the distance between the example mean and the example selected by GFT,
the more significant the difference between RFT and GFT. We set f0 = 0 and f∗ = N (x; 0, 52),
whereN (x;µ, σ2) represents the probability density function of a Gaussian distribution with mean µ
and standard deviation σ. It is trivial to see that GFT will select examples primarily around x = 0.
Looking at the loss depicted in Figure 16 (a), we observe that GFT reduces the loss more rapidly than
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t=0 t=10000 t=50000 t=100000 t=150000 t=210000

(a) Vanilla MINT.

t=0 t=10000 t=50000 t=100000 t=150000 t=210000

(b) Communicated MINT.
Figure 9: The channel-wise visualization of specific f t corresponding to Figure 8 (b)-(c).
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Figure 10: Convergence performance for teaching RGB lion under a particular initialization of f0.

RFT in the settings of µ = 0, µ = −4, µ = −7 (in an order of decreasing speed). This is consistent
with the observation in Theorem 10. Additionally, we present the specific learned function f t in
Figure 16 (b).

Synthetic bivariate mixture Gaussian data. To further showcase the effectiveness of MINT, we
utilize synthetic bivariate mixture Gaussian data. It is well-established that a bivariate Gaussian
distribution fX1,X2

(x1, x2) can be factored as the product of two independent univariate Gaussian
distributions fX1,X2

(x1, x2) = fX1
(x1)fX2

(x2)
7 [8], regardless of whether X1 and X2 are corre-

lated. For simplicity, our primary focus is on the scenario where there is no correlation (ρ = 0), and
on GFT. We set

f0
X1,X2

(x1, x2) = f0
X1

(x1)f
0
X2

(x2) = N (x;−2, 1.52)N (x; 2, 12)

and

f∗
X1,X2

(x1, x2) = f∗
X1

(x1)f
∗
X2

(x2)

=
(
N (x;−2, 1.52)/3 + 2N (x; 2, 12)/3

) (
3N (x;−2, 1.52)/4 +N (x; 2, 12)/4

)
.

Figure 17 depicts the visualization of f∗
X1,X2

(x1, x2). One can also formulate such a single-learner
target function into a multi-learner (vector-valued) one f , with the first component being fX1(x1) and
the second component being fX2(x2). Thus, we can represent f as f = (fX1 , fX2)

T . To simplify
the notation, we can represent it as f = (f1, f2)

T . In Figure 18, we can observe the specific learned
f t of single-learner teaching, vanilla and communicated MINT. Based on the observations from
Figure 18, it can be concluded that MINT method is much more effective in terms of efficiency when
compared to single-learner teaching. Furthermore, for communicated MINT, the teacher can provide
the communicated matrix to let f being learnt within a single iteration. Besides, Figure 19 shows the
loss plot which tracks convergence performance.

Synthetic 1D data. We use synthetic one-dimensional data to evaluate when the communication
matrix At is advantageous. Specifically, our main focus is on t = 1, which refers to the first iteration

7http://athenasc.com/Bivariate-Normal.pdf

26

http://athenasc.com/Bivariate-Normal.pdf


t=0 t=2000 t=5000 t=10000 t=20000 t=29999

t=30000 t=32000 t=35000 t=40000 t=50000 t=59999

t=60000 t=62000 t=65000 t=70000 t=80000 t=89999

(a) Single-learner teaching.
t=0 t=2000 t=10000 t=20000 t=50000 t=90000

(b) Vanilla MINT.
t=0 t=2000 t=10000 t=20000 t=50000 t=90000

(c) Communicated MINT.

Figure 11: Visualization of f t taught by GFT under a particular initialization.

t=0 t=2000 t=10000 t=20000 t=50000 t=90000

(a) Vanilla MINT.

t=0 t=2000 t=10000 t=20000 t=50000 t=90000

(b) Communicated MINT.
Figure 12: The channel-wise visualization of specific f t corresponding to Figure 11 (b)-(c). The communicated
MINT exhibits better performance compared to vanilla MINT.
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t=0 t=2000 t=5000 t=10000 t=20000 t=29999

t=30000 t=32000 t=35000 t=40000 t=50000 t=59999

t=60000 t=62000 t=65000 t=70000 t=80000 t=89999

(a) Single-learner teaching.
t=0 t=2000 t=10000 t=20000 t=50000 t=90000

(b) Vanilla MINT.
t=0 t=2000 t=10000 t=20000 t=50000 t=90000

(c) Communicated MINT.
Figure 13: Visualization of f t taught by RFT under a particular initialization.

t=0 t=2000 t=10000 t=20000 t=50000 t=90000

(a) Vanilla MINT.

t=0 t=2000 t=10000 t=20000 t=50000 t=90000

(b) Communicated MINT.
Figure 14: The channel-wise visualization of specific f t corresponding to Figure 13 (b)-(c).
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Figure 15: Illustration of an extreme case of teaching. The teacher can help the learners directly learn f∗ through
providing the communication matrix.

0 500 1000 1500 2000 2500 3000

Iteration t

0.5

1.0

1.5

2.0

2.5

Lo
ss

×10 3

GFT
= 0
= 4
= 7

(a) Convergence performance

10 0 10
0.00

0.05

0.10

0.15

x = -0.0

0th Iteration
Target
GFT

= 0
= 4
= 7

10 0 10

x = 0.1

500th Iteration

10 0 10

x = 7.0

1000th Iteration

10 0 10

x = 3.9

2000th Iteration

10 0 10

x = -7.1

3000th Iteration

10 0 10

5000th Iteration

(b) Visualization of f t and f∗

Figure 16: Examination of relation between RFT and GFT.

(the results of t > 1 can be derived similarly), where there are two learners attempting to learn
separate target functions. We set f0 = (f1, f2)

T = (x, x2)T and f∗
γ = (γx/2 + γx2/2 + (1 −

γ) cosx, γx/3 + 2γx2/3 + (1− γ) sinx)T , γ ∈ [0, 1], and we generate γ by arange(-1,1,0.01).
In Figure 20, we present the corresponding ∥Aγf

0 − f∗
γ ∥H2 against γ. The observed trend is that as

γ increases, the distance between Aγf
0 and f∗

γ decreases. This indicates that Aγ performs better
when f∗ can be linearly expressed by f0, but poorly when f∗ cannot be linearly expressed by f0.
Moreover, A is beneficial when f∗ can be partially expressed in a linear manner by f0.
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Figure 17: The visualization of a multivariate mixture Gaussian distribution f∗
X1,X2

(x1, x2).
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(a) Single-learner teaching.
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(b) Vanilla MINT.
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Figure 18: The specific learned f t = (f t
1, f

t
2)

T .
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Figure 19: Convergence performance for the synthetic bivariate mixture Gaussian data.
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