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Abstract

Reinforcement learning algorithms typically consider discrete-time dynamics,
even though the underlying systems are often continuous in time. In this paper,
we introduce a model-based reinforcement learning algorithm that represents
continuous-time dynamics using nonlinear ordinary differential equations (ODEs).
We capture epistemic uncertainty using well-calibrated probabilistic models,
and use the optimistic principle for exploration. Our regret bounds surface the
importance of the measurement selection strategy (MSS), since in continuous
time we not only must decide how to explore, but also when to observe the
underlying system. Our analysis demonstrates that the regret is sublinear
when modeling ODEs with Gaussian Processes (GP) for common choices of
MSS, such as equidistant sampling. Additionally, we propose an adaptive,
data-dependent, practical MSS that, when combined with GP dynamics, also
achieves sublinear regret with significantly fewer samples. We showcase the
benefits of continuous-time modeling over its discrete-time counterpart, as well
as our proposed adaptive MSS over standard baselines, on several applications.

1 Introduction

Real-world systems encountered in natural sciences and engineering applications, such as robotics
(Spong et al., 2006), biology (Lenhart and Workman, 2007; Jones et al., 2009), medicine (Panetta and
Fister, 2003), etc., are fundamentally continuous in time. Therefore, ordinary differential equations
(ODEs) are the natural modeling language. However, the reinforcement learning (RL) community
predominantly models problems in discrete time, with a few notable exceptions (Doya, 2000; Yildiz
etal., 2021; Lutter et al., 2021). The discretization of continuous-time systems imposes limitations on
the application of state-of-the-art RL algorithms, as they are tied to specific discretization schemes.

Discretization of continuous-time systems sacrifices several essential properties that could be
preserved in a continuous-time framework (Nesic and Postoyan, 2021). For instance, exact
discretization is only feasible for linear systems, leading to an inherent discrepancy when using
standard discretization techniques for nonlinear systems. Additionally, discretization obscures
the inter-sample behavior of the system, changes stability properties, may result in uncontrollable
systems, or requires an excessively high sampling rate. Multi-time-scale systems are particularly
vulnerable to these issues (Engquist et al., 2007). In many practical scenarios, the constraints imposed
by discrete-time modeling are undesirable. Discrete-time models do not allow for the independent
adjustment of measurement and control frequencies, which is crucial for real-world systems that
operate in different regimes. For example, in autonomous driving, low-frequency sensor sampling
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and control actuation may suffice at slow speeds, while high-speed driving demands faster control.
How to choose aperiodic measurements and control is studied in the literature on the event and
self-triggered control (Astrom and Bernhardsson, 2002; Anta and Tabuada, 2010; Heemels et al.,
2012). They show that the number of control inputs can be significantly reduced by using aperiodic
control. Moreover, data from multiple sources is often collected at varying frequencies (Ghysels
et al., 2006) and is often not even equidistant in time. Discrete-time models struggle to exploit this
data for learning, while continuous-time models can naturally accommodate it.

Continuous-time modeling also offers the flexibility to determine optimal measurement times based
on need, in contrast to the fixed measurement frequency in discrete-time settings, which can easily
miss informative samples. This advantage is particularly relevant in fields like medicine, where
patient monitoring often requires higher frequency measurements during the onset of illness and
lower frequency measurements as the patient recovers (Kaandorp and Koole, 2007). At the same time,
in fields such as medicine, measurements are often costly, and hence, it is important that the most
informative measurements are selected. Discrete-time models, limited to equidistant measurements,
therefore often result in suboptimal decision-making and their sample efficiency is fundamentally
limited. In summary, continuous-time modeling is agnostic to the choice of measurement selection
strategy (MSS), whereas discrete-time modeling often only works for an equidistant MSS.

Contributions Given the advantages of continuous-time modeling, in this work, we propose
an optimistic continuous-time model-based RL algorithm — OCORL. Moreover, we theoretically
analyze OCORL and show a general regret bound that holds for any MSS. We further show that
for common choices of MSSs, such as equidistant sampling, the regret is sublinear when we model
the dynamics with GPs (Williams and Rasmussen, 2006). To our knowledge, we are the first to give a
no-regret algorithm for a rich class of nonlinear dynamical systems in the continuous-time RL setting.
We further propose an adaptive MSS that is practical, data-dependent, and requires considerably
fewer measurements compared to the equidistant MSS while still ensuring the sublinear regret for
the GP case. Crucial to OCORL is the exploration induced by the optimism in the face of uncertainty
principle for model-based RL, which is commonly employed in the discrete-time realm (Auer et al.,
2008; Curi et al., 2020). We validate the performance of OCORL on several robotic tasks, where
we clearly showcase the advantages of continuous-time modeling over its discrete-time counterpart.
Finally, we provide an efficient implementation' of OCORL in JAX (Bradbury et al., 2018).

2 Problem setting

In this work, we study a continuous-time deterministic dynamical system f* with initial state
do
xrog € X CR% e,

x(t) = x +/0 I (x(s),u(s)) ds.

Here u : [0,00) — R is the input we apply to the system. Moreover, we consider state feedback
controllers represented through a policy 7 : X — U C R, that is, u(s) = mw(x(s)). Our objective
is to find the optimal policy with respect to a given running cost function ¢ : R% x R% — R. Specifi-
cally, we are interested in solving the following optimal control (OC) problem over the policy space II:

T
7 ¥ argmin C(m, f*) = argmin/ c(x,m(x))dt
0

mell mell ey
st. &= f"(z,w(x)), =(0)=wx.
The function f* is unknown, but we can collect data over episodes n = 1 ..., N and learn about the

system by deploying a policy 7,, € II for the horizon of T" in episode n. In an (overly) idealized
continuous time setting, one can measure the system at any time step. However, we consider a
more practical setting, where we assume taking measurements is costly, and therefore want as few
measurements as necessary. To this end, we formally define a measurement selection strategy below.
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Definition 1 (Measurement selection strategy). A measurement selection strategy S is a se-
quence of sets (Sn)nzl, such that S,, contains m,, points at which we take measurements, i.e.,

Sn C [0,T7],]Sn| = mp.2

During episode n, given a policy 7r,, and a MSS S,,, we collect a dataset D,, ~ (7, S, ). The dataset
is defined as

Di = {(20(tn)s Yn(tn)) |t € Snri € {1....ma}}  where

def . def .
zn(tn,i) é (mn(tn,l)vﬂ-n(xn(tn,z)))a yn(tn,z) é mn(tn,i) + 6n,i~

Here x,,(t), ,,(t) are state and state derivative in episode n, and €,, ; is i.i.d, o-sub-Gaussian noise
of the state derivative observations. Note, even though in practice only the state x(¢) might be
observable, one can estimate its derivative &(t) (e.g., using finite differences, interpolation methods,
etc. Cullum (1971); Knowles and Wallace (1995); Chartrand (2011); Knowles and Renka (2014);
Wagner et al. (2018); Treven et al. (2021)). We capture the noise in our measurements and/or
estimation of &(t) with €; .

In summary, at each episode n, we deploy a policy 7, for a horizon of 7', observe the system
according to a proposed MSS S,,, and learn the dynamics f*. By deploying 7r,, instead of the optimal
policy 7*, we incur a regret,

def

rn(S) = C(mn, f*) — C(wx*, f*).
Note that the policy 7r,, depends on the data D;.,,_1 = U;<,D; and hence implicitly on the MSS S.

Performance measure We analyze OCORL by comparing it with the performance of the best

policy 7w* from the class II. We evaluate the cumulative regret Ry (.S) &f Zf:le 7 (S) that sums
the gaps between the performance of the policy 7,, and the optimal policy 7* over all the episodes.
If the regret Ry (S) is sublinear in N, then the average cost of the policy C(7,,, f*) converges to

the optimal cost C'(w™*, f*).

2.1 Assumptions

Any meaningful analysis of cumulative regret for continuous time, state, and action spaces requires
some assumptions on the system and the policy class. We make some continuity assumptions, similar
to the discrete-time case (Khalil, 2015; Curi et al., 2020; Sussex et al., 2023), on the dynamics,
policy, and cost.

Assumption 1 (Lipschitz continuity). Given any norm ||-||, we assume that the system dynamics
f* and cost c are Ly and L.-Lipschitz continuous, respectively, with respect to the induced metric.
Moreover, we define 11 to be the policy class of Lr-Lipschitz continuous policy functions and F a
class of Ly Lipschitz continuous dynamics functions with respect to the induced metric.

We learn a model of f* using data collected from the episodes. For a given state-action pair
z = (x,u), our learned model predicts a mean estimate p,,(z) and quantifies our epistemic
uncertainty o, (z) about the function f*.

Definition 2 (Well-calibrated statistical model of f*, Rothfuss et al. (2023)). Let Z dzefX X U. An
all-time well-calibrated statistical model of the function f* is a sequence { My, (0)}, o where

M) E{f:25R™ [Vze 2,V € {1,...,du} : pns(2) = [;(2)] < Bu(6)on;(2)}

if, with probability at least 1 — 0, we have f* € (,,~, Mn(0). Here, [, ; and oy, j denote the
j-th element in the vector-valued mean and standard deviation functions ., and o, respectively,
and f3,,(0) € Rxq is a scalar function that depends on the confidence level 6 € (0,1] and which is
monotonically increasing in n.

Assumption 2 (Well-calibration). We assume that our learned model is an all-time well-calibrated
statistical model of f*. We further assume that the standard deviation functions (o ,,(-))n>0 are
L-Lipschitz continuous.

Here, the set S,, may depend on observations prior to episode 7 or is even constructed while we execute the
trajectory. For ease of notation, we do not make this dependence explicit.



This is a natural assumption, which states that we are with high probability able to capture the
dynamics within a confidence set spanned by our predicted mean and epistemic uncertainty. For
example, GP models are all-time well-calibrated for a rich class of functions (c.f., Section 3.2) and
also satisfy the Lipschitz continuity assumption on (o, (+))»>0 (Rothfuss et al., 2023). For Bayesian
neural networks, obtaining accurate uncertainty estimates is still an open and active research problem.
However, in practice, re-calibration techniques (Kuleshov et al., 2018) can be used.

By leveraging these assumptions, in the next section, we propose our algorithm OCORL and derive
a generic bound on its cumulative regret. Furthermore, we show that OCORL provides sublinear
cumulative regret for the case when GPs are used to learn f*.

3 Optimistic Continuous-time RL Algorithm

OCoRL: OpTIMISTIC CONTINUOUS-TIME RL

Init: Statistical model M, Simulator SiM, MSS S, Probability §
for episode n =1,..., N do

T, =argmin min _ C(m, /* Select optimistic policy /*
n=argmin min o (7, f) p policy

D, ={(zn(tns), Un(tni)) | tni € Sn} < SIM(7y,,.Sy) /* Measurement collection /*
My = (fn; Ty B (9)) <= D1 /* Update statistical model/*

Optimistic policy selection There are several strategies we can deploy to trade-off exploration and
exploitation, e.g., dithering (e-greedy, Boltzmann exploration (Sutton and Barto, 2018)), Thompson
sampling (Osband et al., 2013), upper-confidence RL (UCRL) (Auer et al., 2008), etc. OCORL is a
continuous-time variant of the Hallucinated UCRL strategy introduced by Chowdhury and Gopalan
(2017); Curi et al. (2020). In episode n, the optimistic policy is obtained by solving the optimal
control problem:

(Mo f2) € argmin C(m, f) @
well, feEM,,_1NF

Here, f,, is a dynamical system such that the cost by controlling f,, with its optimal policy 7, is
the lowest among all the plausible systems from M,,_; N F. The optimal control problem (2) is
infinite-dimensional, in general nonlinear, and thus hard to solve. For the analysis, we assume we
can perfectly solve it. In Appendix B, we present details on how we solve it in practice. Specifically,
in Appendix B.1, we show that our results seamlessly extend to the setting where the optimal control
problem of Equation (1) is discretized w.r.t. an arbitrary choice of discretization. Moreover, in
this setting, we show that theoretical guarantees can be derived without restricting the models to
f € M,_1 N F. Instead, a practical optimization over all models in M, _; can be performed as
in Curi et al. (2020); Pasztor et al. (2021).

Model complexity We expect that the regret of any model-based continuous-time RL algorithm
depends both on the hardness of learning the underlying true dynamics model f* and the MSS. To
capture both, we define the following model complexity:

Tn(£*.8) " max Z/ lomos (zn(®)]? dt. 3)

7T€Hn1

The model complexity measure captures the hardness of learning the dynamics f*. Intuitively, for a
given IV, the more complicated the dynamics f*, the larger the epistemic uncertainty and thereby the
model complexity. For the discrete-time setting, the integral is replaced by the sum over the uncertain-
ties on the trajectories (c.f., Equation (8) of Curi et al. (2020)). In the continuous-time setting, we do
not observe the state at every time step, but only at a finite number of times wherever the MSS S pro-
poses to measure the system. Accordingly, S influences how we collect data and update our calibrated
model. Therefore, the model complexity depends on S. Next, we first present the regret bound for
general MSSs, then we look at particular strategies for which we can show convergence of the regret.



Proposition 1. Let S be any MSS. If we run OCORL, we have with probability at least 1 — 6,
RN(S) < 2BNLe(1 4 Lp)T2 el OHET /NT (*)5). (4)

We provide the proof of Proposition 1 in Appendix A. Because we have access only to the
statistical model and any errors in dynamics compound (continuously in time) over the episode, the
regret Ry (.S) depends exponentially on the horizon 7. This is in line with the prior work in the
discrete-time setting (Curi et al., 2020). If the model complexity term Zy (f*,.S) and Sy grow at
a rate slower than N, the regret is sublinear and the average performance of OCORL converges
to C(7*, f*). In our analysis, the key step to show sublinear regret for the GP dynamics model is
to upper bound the integral of uncertainty in the model complexity with the sum of uncertainties
at the points where we collect the measurements. In the next section, we show how this can be done
for different measurement selection strategies.

3.1 Measurement selection strategies (MSS)

In the following, we present different natural MSSs and compare the number of measurements they
propose per episode. Formal derivations are included in Appendix A.2.

Oracle Intuitively, if we take measurements at the times when we are the most uncertain about
dynamics on the executed trajectory, i.e., when ||o,—1 (2,(t))] is largest, we gain the most
knowledge about the true function f*. Indeed, when the statistical model is a GP and noise is
homoscedastic and Gaussian, observing the most uncertain point on the trajectory leads to the
maximal reduction in entropy of f*(z,(t)) (c.f., Lemma 5.3 of Srinivas et al. (2009)). In the ideal
case, we can define an MSS that collects only the point with the highest uncertainty in every episode,

i.e., SORA &t {tn1} where t,, 1 &ef argmaxg< < ||on_1 (2 (t))||*. For this MSS we bound the
integral over the horizon T with the maximal value of the integrand times the horizon T":

IN(.f SORA)< max TZHU,L 1 Zn n, 1))”2 (5)

.....

The oracle MSS collects only one measurement per episode, however, it is impractical since it requires
knowing the most uncertain point on the true trajectory a priori, i.e., before executing the policy.

Equidistant Another natural MSS is the equidistant MSS. We collect m,, equidistant measurements
in episode n and upper bound the integral with the upper Darboux integral.

My,

TLy>
Z(Un Galta DI+ T2, ©

Here Lo.z is the Lipschitz constant of ||o,_1(-)||>. To achieve sublinear regret, we require that

ij 1o € o(N). Therefore, for a fixed equidistant MSS, our analysis does not ensure a sublinear

regret. This is because we consider a continuous-time regret which is integrated (c.f., Equation (1))
while in the discrete-time setting, the regret is defined for the equidistant MSS only (Curi et al., 2020).
Accordingly, we study a strictly harder problem. Nonetheless, by linearly increasing the number of

observations per episode and setting m,, = n, we get Zn 1 m— € O(log(N)) and sublinear regret.

The equidistant MSS is easy to implement, however, the required number of samples is increasing
linearly with the number of episodes.

In(f*,SEY) < max Z

1,y TN
€Il n= 1

Adaptive Finally, we present an MSS that is practical, i.e., easy to implement and at the same
time requires only a few measurements per episode. The core idea of receding horizon adaptive
MSS is simple: simulate (hallucinate) the system f,, with the policy 7,,, and find the time ¢ such
that ||o,—1(2,(t))] is largest. Here, 2, (t) is the state-action pair at time ¢ in episode n for the
hallucinated trajectory.



However, the hallucinated trajectory can deviate
from the true trajectory exponentially fast in time,
and the time of the largest variance on the halluci-
nated trajectory can be far away from the time of
the largest variance on the true trajectory. To rem-
edy this technicality, we utilize a receding horizon
MSS. We split, in episode n, the time horizon T’
into unlform length intervals of A,, time, where
A, € Q( —), c.f., Appendix A. At the beginning
of every tlme interval, we measure the true state-
action pair z, hallucinate with policy 7r,, starting
from z for A,, time on the system f,, and cal-
culate the time when the hallucinated trajectory
has the highest variance. Over the next time hori-  ,,(0) = %,,(0) = x
zon A,,, we collect a measurement only at that

time. Formally, let m,, = [T//A, | be the num- Figure 1: In episode n we split the horizon T'
ber of measurements in episode n and denote for into intervals of A,, time. We hallucinate the

f// ('/;’// » Tn(Tn H

every i € {1,...,m,;} the time with the highest trajectory in every interval and select time ¢,, ;
variance on the hallucinated trajectory in the time in the interval i where the uncertainty on the
interval [(i — 1)A,,,i1A,] by L5, i hallucinated trajectory is the highest.

def . ~
tn.i = (i —1)A, + argmax ||o,—1(Zn(t))]]
0<t<A,

Z,(0) =x,((i — 1)A,)
For this MSS, we show in Appendix A the upper bound

In(f*,548%") < max 92 ZHo'n L (Zaltn)I @)

1., TN
T, €11 n= 1

The model complexity upper bound for the adaptive MSS in Equation (7) does not have the L,2-
dependent term from the equidistant MSS (6) and only depends on the sum of uncertainties at the col-
lected points. Further, the number of points we collect in episode n is O (8,,), and 3, e.g., if we model
the dynamics with GPs with radial basis function (RBF) kernel, is of order polylog(n) (c.f., Lemma 2).

3.2 Modeling dynamics with a Gaussian Process

We can prove sublinear regret for the proposed three MSSs coupled with optimistic exploration
when we model the dynamics using GPs with standard kernels such as RBF, linear, etc. We consider
the vector-valued dynamics model f*(z) = (fi(2),..., f (2)), where scalar-valued functions
f ¥ € Hj, are elements of a Reproducing Kernel Hilbert Space (RKHS) #, with kernel function k&,

def
and their norm is bounded ||f ||’c < B. We write f* € ’Hk s = {(f, . fa) | Fill, < B}
To learn f* we fit a GP model with a zero mean and kernel k to the collected data Dy.,. For ease
of notation, we denote by ¥7.,, the concatenated j-th dimension of the state derivative observations

from Djs.,,. The posterior means and variances of the GP model have a closed form (Williams and
Rasmussen (2006)):

-1 .

pnj(2) = ky (2) (Ko +0*I) " 9.,

J?L’j(z) =k(z,2)— k! (2) (Kn + 0'21)71 k. (2),
where we write K,, = [k(z1, 2m)]2,,2,eD1...» and ki, (2) = [k(21, 2)]2,eD,.,,- The posterior means
and variances with the right scaling factor 3,,(0) satisfy the all-time well-calibrated Assumption 2.

Lemma 2 (Lemma 3.6 from Rothfuss et al. (2023)). Let f* € HZTB and 0 € (0,1). Then

there exist 3,(0) € O(\/Yn + log(1/0)) such that the confidence sets M,, built from the triplets
(Hn,, On, Br(9)) form an all-time well-calibrated statistical model.



Here, ~,, is the maximum information gain after observing n points (Srinivas et al., 2009), as defined
in Appendix A, where we also provide the rates for common kernels. For example, for the RBF
kernel, 7, = O (log(n)d=Tdut1),

Finally, we show sublinear regret for the proposed MSSs for the case when we model dynamics
with GPs. The proof of Theorem 3 is provided in Appendix A.

Theorem 3. Assume that f* € Hi"p, the observation noise is i.i.d. N'(0;02I), and |-|| is the
Euclidean norm. We model f* with the GP model. The regret for different MSSs is with probability
at least 1 — 6 bounded by

Rn(57) < O (ByT2ebr 00T /Ny ) =1
Ry(S") <O (ﬁNTQ@Lf(HL")T\/N (yv + 10g(N))> ; mp =n
Ry (S"") <O (5NT2€Lf(1+L")TM) ; my,”" = O(By)

The optimistic exploration coupled with any of the proposed MSSs achieves regret that depends on the
maximum information gain. All regret bounds from Theorem 3 are sublinear for common kernels, like

linear and RBF. The bound for the adaptive MSS with RBF kernel is O (\/N log(N)Q(dw+du+1)> ,

where we hide the dependence on 7" in the O notation. We reiterate that while the number of
observations per episode of the oracle MSS is optimal, we cannot implement the oracle MSS in
practice. In contrast, the equidistant MSS is easy to implement, but the number of measurements
grows linearly with episodes. Finally, adaptive MSS is practical, i.e., easy to implement, and requires
only a few measurements per episode, i.e., polylog(n) in episode n for RBF.

Summary OCORL consists of two key and orthogonal components; (i) optimistic policy selection
and (ii) measurement selection strategies (MSSs). In optimistic policy selection, we optimistically,
w.r.t. plausible dynamics, plan a trajectory and rollout the resulting policy. We study different MSSs,
such as the typical equidistant MSS, for data collection within the framework of continuous time
modeling. Furthermore, we propose an adaptive MSS that measures data where we have the highest
uncertainty on the planned (hallucinated) trajectory. We show that OCORL suffers no regret for the
equidistant, adaptive, and oracle MSSs.

4 Related work

Model-based Reinforcement Learning Model-based reinforcement learning (MBRL) has been
an active area of research in recent years, addressing the challenges of learning and exploiting
environment dynamics for improved decision-making. Among the seminal contributions, Deisenroth
and Rasmussen (2011) proposed the PILCO algorithm which uses Gaussian processes for learning
the system dynamics and policy optimization. Chua et al. (2018) used deep ensembles as dynamics
models. They coupled MPC (Morari and Lee, 1999) to efficiently solve high dimensional tasks
with considerably better sample complexity compared to the state-of-the-art model-free methods
SAC (Haarnoja et al., 2018), PPO (Schulman et al., 2017), and DDPG (Lillicrap et al., 2015). The
aforementioned model-based methods use more or less greedy exploitation that is provably optimal
only in the case of the linear dynamics (Simchowitz and Foster, 2020). Exploration methods based
on Thompson sampling (Dearden et al., 2013; Chowdhury and Gopalan, 2019) and Optimism (Auer
et al., 2008; Abbasi-Yadkori and Szepesvari, 2011; Luo et al., 2018; Curi et al., 2020), however,
provably converge to the optimal policy also for a large class of nonlinear dynamics if modeled with
GPs. Among the discrete-time RL algorithms, our work is most similar to the work of Curi et al.
(2020) where they use the reparametrization trick to explore optimistically among all statistically
plausible discrete dynamical models.

Continuous-time Reinforcement Learning Reinforcement learning in continuous-time has been
around for several decades (Doya, 2000; Vrabie and Lewis, 2008, 2009; Vamvoudakis et al., 2009).
Recently, the field has gained more traction following the work on Neural ODEs by Chen et al.
(2018). While physics biases such as Lagrangian (Cranmer et al., 2020) or Hamiltonian (Greydanus
et al., 2019) mechanics can be enforced in continuous-time modeling, different challenges such



as vanishing @-function (Tallec et al., 2019) need to be addressed in the continuous-time setting.
Yildiz et al. (2021) introduce a practical episodic model-based algorithm in continuous time. In
each episode, they use the learned mean estimate of the ODE model to solve the optimal control
task with a variant of a continuous-time actor-critic algorithm. Compared to Yildiz et al. (2021) we
solve the optimal control task using the optimistic principle. Moreover, we thoroughly motivate
optimistic planning from a theoretical standpoint. Lutter et al. (2021) introduce a continuous fitted
value iteration and further show a successful hardware application of their continuous-time algorithm.
A vast literature exists for continuous-time RL with linear systems (Modares and Lewis, 2014;
Wang et al., 2020), but few, only for linear systems, provide theoretical guarantees (Mohammadi
et al., 2021; Basei et al., 2022). To the best of our knowledge, we are the first to provide theoretical
guarantees of convergence to the optimal cost in continuous time for a large class of RKHS functions.

Aperiodic strategies Aperiodic MSSs and controls (event and self-triggered control) are mostly
neglected in RL since most RL works predominantly focus on discrete-time modeling. There exists
a considerable amount of literature on the event and self-triggered control (Astrom and Bernhardsson,
2002; Anta and Tabuada, 2010; Heemels et al., 2012). However, compared to periodic control, its
theory is far from being mature (Heemels et al., 2021). In our work, we assume that we can control
the system continuously, and rather focus on when to measure the system instead. The closest to
our adaptive MSS is the work of Du et al. (2020), where they empirically show that by optimizing
the number of interaction times, they can achieve similar performance (in terms of cost) but with
fewer interactions. Compared to us, they do not provide any theoretical guarantees. Umlauft and
Hirche (2019); Lederer et al. (2021) consider the non-episodic setting where they can continuously
monitor the system. They suggest taking measurements only when the uncertainty of the learned
model on the monitored trajectory surpasses the boundary ensuring stability. They empirically
show, for feedback linearizable systems, that by applying their strategy the number of measurements
reduces drastically and the tracking error remains bounded. Compared to them, we consider general
dynamical systems and also don’t assume continuous system monitoring.

5 Experiments

We now empirically evaluate the performance of OCORL on several environments. We test OCORL
on Cancer Treatment and Glucose in blood systems from Howe et al. (2022), Pendulum, Mountain
Car and Cart Pole from Brockman et al. (2016), Bicycle from Polack et al. (2017), Furuta Pendulum
from Lutter et al. (2021) and Quadrotor in 2D and 3D from Nonami et al. (2010). The details of the
systems’ dynamics and tasks are provided in Appendix C.

Comparison methods To make the comparison fair, we adjust methods so that they all collect
the same number of measurements per episode. For the equidistant setting, we collect M points per
episode (we provide values of M for different systems in Appendix C). For the adaptive MSS, we
assume A,, > T, and instead of one measurement per episode we collect a batch of M measurements
such that they (as a batch) maximize the variance on the hallucinated trajectory. To this end, we
consider the Greedy Max Determinant and Greedy Max Kernel Distance strategies of Holzmiiller
et al. (2022). We provide details of the adaptive strategies in Appendix C. We compare OCORL with
the described MSSs to the optimal discrete-time zero hold control, where we assume the access to

the true discretized dynamics fj (@, u) = = + fOT/(Mfl) F*(x(t), u) dt. We further also compare
with the best continuous-time control policy, i.e., the solution of Equation (1).

Does the continuous-time control policy perform better than the discrete-time control policy?
In the first experiment, we test whether learning a continuous-time model from the finite data
coupled with a continuous-time control policy on the learned model can outperform the discrete-time
zero-order hold control on the true system. We conduct the experiment on all environments and
report the cost after running OCORL for a few tens of episodes (the exact experimental details are
provided in Appendix C). From Table 1, we conclude that the OCORL outperforms the discrete-time
zero-order hold control on the true model on every system if we use the adaptive MSS, while
achieving lower cost on 7 out of 9 systems if we measure the system equidistantly.



Table 1: OCORL with adaptive MSSs achieves lower final cost C(my, f*) compared to the
discrete-time control on the true system on all tested environments while converging towards the best
continuous-time control policy. While equidistant MSS achieves higher cost compared to the adaptive
MSS, it still outperforms the discrete-time zero-order hold control on the true model for most systems.

Known True Model Optimistic Exploration with different MSS
System Continuous  Discrete zero- ~ Max Kernel Max Equidistant
time OC order hold OC Distance Determinant quidistam
Cancer Treatment 20.57 21.05 20.70 £ 0.06 20.68 = 0.05 21.05+1.60
Glucose in Blood  15.23 15.30 15.23 +£0.01 15.244+0.01 15.25 £ 0.01
Pendulum 20.16 20.59 20.20+0.02 20.20+£0.02 20.294+0.03
Mountain Car 34.63 35.04 34.63 +£0.01 34.63+0.01 34.64+0.01
Cart Pole 17.49 19.96 17.52+0.04 17.53+0.04 17.63 £ 0.05
Bicycle 9.45 10.24 9.53 +£0.02 9.53 +£0.03 9.67 £ 0.05
Furuta Pendulum  23.31 25.11 23.64 £ 0.22 23.52+0.18 314.77 +411.01
Quadrotor 2D 3.54 4.01 3.54 +0.01 3.54+0.01 3.57 4+ 0.01
Quadrotor 3D 7.38 7.84 7.51+£0.21 7.54 +0.28 9.414+1.43

Does the adaptive MSS perform better than equidistant MSS? We compare the adaptive and
equidistant MSSs on all systems and observe that the adaptive MSSs consistently perform better than
the equidistant MSS. To better illustrate the difference between the adaptive and equidistant MSSs
we study a 2-dimensional Pendulum system (c.f., Figure 2). First, we see that if we use adaptive
MSSs we consistently achieve lower per-episode costs during the training. Second, we observe that
while equidistant MSS spreads observations equidistantly in time and collects lots of measurements
with almost the same state-action input of the dynamical system, the adaptive MSS spreads the
measurements to have diverse state-action input pairs for the dynamical system on the executed
trajectory and collects higher quality data.

x1073 x10-3
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Figure 2: All MSSs coupled with continuous-time control achieve lower cost than the optimal
discrete zero-order hold control on the true model. Adaptive MSSs (Greedy Max Kernel Distance
and Greedy Max Determinant) reduce the suffered cost considerably faster than equidistant MSS and
are converging towards the best possible continuous-time control. Whereas equidistant MSS spreads
the measurements uniformly over time, the adaptive MSSs spread the data over the state-action space
(dynamical system’s input) and collect higher quality data.

Does optimism help? For the final experiment, we examine whether planning optimistically helps.
In particular, we compare our planning strategy to the mean planner that is also used by Yildiz et al.
(2021). The mean planner solves the optimal control problem greedily with the learned mean model
My, in every episode n. We evaluate the performance of this model on the Pendulum system for all
MSSs. We observe that planning optimistically results in reducing the cost faster and achieves better
performance for all MSSs.
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Figure 3: Both greedy and optimistic continuous-time control strategies outperform the discrete-time
zero-order hold control on the true model. However, the optimistic strategy is particularly notable
as it expedites cost reduction across all MSSs.

6 Conclusion

We introduce a model-based continuous-time RL algorithm OCORL that uses the optimistic
paradigm to provably achieve sublinear regret, with respect to the best possible continuous-time
performance, for several MSSs if modeled with GPs. Further, we develop a practical adaptive MSS
that, compared to the standard equidistant MSS, drastically reduces the number of measurements per
episode while retaining the regret guarantees. Finally, we showcase the benefits of continuous-time
compared to discrete-time modeling in several environments (c.f. Figure 1, Table 1), and demonstrate
the benefits of planning with optimism compared to greedy planning.

In this work, we considered the setting with deterministic dynamics where we obtain a noisy measure-
ment of the state’s derivative. We leave the more practical setting, where only noisy measurements of
the state, instead of its derivative, are available as well as stochastic, delayed differential equations,
and partially observable systems to future work.

Our aim with this work is to catalyze further research within the RL community on continuous-time
modeling. We believe that this shift in perspective could lead to significant advancements in the field
and look forward to future contributions.
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A Theory

We begin in Appendix A.1 by deriving the cumulative regret bound of Proposition 1 which depends
on the model complexity. In Appendix A.2, we bound the model complexities of the presented MSSs.
Finally, in Appendix A.3, we bound the measurement uncertainty when a GP is used as the statistical
model, yielding sublinear regret guarantees for many commonly used kernels. We include useful
facts and inequalities in Appendix A.4.

A.1 Bounding Regret with the Model Complexity
The main goal of this section is to derive Proposition 1 which relates the cumulative regret Ry (.S) to

the model complexity Zy (f*,.5). In what follows, the quantifier “with high probability” refers to
“with probability at least 1 — ¢ as in Definition 2”.

Lemma 4. Assuming x,,(0) = Z,,(0), the distance between the true and the hallucinated trajectory
at any time t > 0 is bounded with high probability by

t
&0 (t) — 2n ()] < QﬂneLf(”L")t/ lon—1(zn(s))ll ds ®)
0

and

t
|n (t) — a(8)]| < %e“““"”/o o1 (Za(s)| ds. ©)

t

s [Fn-1(2n(8)) = Far1(za()) + | Fa-1(2n(5)) = £ (zn(s))] ds

< Ly(1+ Ln) / |2 (s) — Bn(s)] ds + 28, / |G s (zn(s))]| ds

where the final inequality follows from Lemma 15 and Definition 2 (with high probability). We
obtain Equation (8) by applying Grénwall’s inequality (Fact 14).

Equation (9) is obtained analogously by expanding with f*(Z,,(s)) rather than f,,_1(2,(s)). O

Lemma 5. For any MSS S, the regret of any episode n is bounded with high probability by

T
rn(S) < 2BnLC(1+L,,)TeLf(1+L")T/ lom1 (2n(8))]] dt. (10)
0

Proof. By definition of 7r,, in OCORL we have with high probability, C(f*, 7*) > C(fn-1,7n)-
Therefore, with high probability,

T7z,(s) = C(.f*a 7T7L) - C(f*,ﬂ'*)
S C(.f*a 7Tn) - C(fn—la 7717,)

_ /O c(2a()) — c(Za (1)) dt.

By Lemma 15, we further have that

T
ra(S) < Lo(1+ Ly) / |2 (t) — Ba(t)]] dt.
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By Lemma 4 (with high probability), we further have that

T t
r(S) gzﬁnLc(1+L,,)eLf<1+L«>T/ / lom_1 (zn(s))l| ds dt
0 0
T T
< 2B,L.(1 +L,r)eLf(1+L")T/ / lon_1(2n(5))| dsdt
0 0

T
:2ﬁnLc(1+L,,)TeLf(1+L")T/ o1 (2 ()] dt.
0

O
Now we are ready to prove Proposition 1.
Proof of Proposition 1. Let us first bound R%;(S). By the Cauchy-Schwarz inequality,
N
N(S) SN r2(S)
n=1
By Lemma 5 (with high probability), we have that
N T 2
R3(S) < NALZ(1+ Ly )*T?e*Ls (1 HEOT N " 2 ( / lon—1 (zn (1)) dt)
n=1 0
N T
< N4BYL2(1 + Ly )2T3e2bs LT Z/ lon_1 (zn(t))|? dt.
— /0
Taking the square root, we obtain
N T
3
Ry (S) < 2BNLo(1+ Ly)T2 ks (WHET I NS / o1 (zn(£))[|* dt.
0
The result follows by noting that
3 / s (2O dt < Tn(£7.,5).
n=1
O

A.2 Bounding Model Complexities

In this section, we derive the model complexity bounds for the presented MSSs. Our bounds are
based on the approximation of integrals using an upper Darboux sum.

Fact 6 (Upper Darboux approximation). Given any a < b, a function f : R — R, and a partition
P =(a,...,b) of [a,b] into k sub-intervals,

/f Ydx < A max f(x) (11)

z€P[i]
where P[i] denotes the i-th sub-interval and A; denotes the length of Pli].

We are now ready to bound the model complexities.

Lemma 7 (Oracle model complexity). For any N > 1,

In(f*,57) < max TZHU,L L (Za(ta )P (12)

ﬂHEH n=1
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Proof.

In(f*,S%%) = max Z/ o1 (zn(t))]* dt.

T, TN
€I n=1

For each episode n, use an upper Darboux approximation (Fact 6) with k£ = 1 to obtain

N
= max T Z lon—1 (Zn(tn,l))||2 :

1,y TTN
7, €11 n=1

O
Lemma 8 (Equidistant model complexity). For any N > 1,
- TL,e
EQI < o
In(f*, 5% < i Z . Zl<'”” 1 (Za (b)) + ) (13)
TTh n= i

Proof.

I (£, 5%) = max Z/ lon_1 (zn(t))]? dt.

Y TN
€Il n=1

For each episode n, let P, o (0,An,2A,,,...,T) with A, & L be a partition of [0, 7] into m,,
sub-intervals, each of length A,,. Using the upper Darboux approximations (Fact 6) of ||o,—1(+) 12
with respect to P,,, we have

My,

< max ZAZ max o1 (z, ().
TR a1 o el DARA] om0

Observe that ¢,, ; € [(i —1)A,,iA,], and hence, using that |, —1(-) |? is L,2-Lipschitz continuous,

mMn

< S A S (I Galta I + Lo

€Il n=1 i=1

O

In the remainder of this section, we study the model complexity of the adaptive MSS. In each episode
n, we partition [0, T'] into equally sized sub-intervals (called “buckets”) of length A,,, where A,, is
the solution to

Ay =70 (14)

where T, (A,) 98, L o(14 Ly)els(+Ll=)A AsT, is a monotonically increasing function of

A,, it is clear that a suitable A,, exists. Moreover, it follows from A,, < T thatT,, € O(3,,), and
hence that m,, = T'/A,, € O(,). Without loss of generality, we assume m,, € N.

The definition of the adaptive MSS can be interpreted as follows: In every bucket, we take two
measurements. One measurement is saved and used later for updating the statistical model. The other
measurement is taken at the beginning of every bucket, and used to inform OCORL of the current
state position. For the purposes of our theoretical analysis, these initial measurements are not saved
and not used for the construction of the statistical model.
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Lemma 9. For any episode n, bucket i € {1,...,m,}, andt € [(i — 1)A,,iA,] where the real
and hallucinated trajectories are “synced” initially, i.e., Z,((i — 1)A,) = z,((i — 1)A,), we have
with high probability that

lon-1(Zn(t)) = on-1(za(t)l| < T / lon-1(zn(s))l ds  and (15)
(i—1)A,

Jow1Za(®) = s O < T [ owea(Zals))] ds (16)
(i—1)A,

Proof. Using that 0,,_1 is L-Lipschitz continuous and applying Lemma 15,
lon-1(Zn(t)) = on—1(20 ()| < Lo(1+ Lx) |[Zn(t) — xa(t)] -

The result then follows from Lemma 4, where the lower integral bounds can be tightened to (i — 1) A,
as the real and hallucinated trajectories are “synced” in the beginning of the bucket. O

Lemma 10. For any episode n and i € {1,...,my}, if t,, ; is selected according to the adaptive
MSS then with high probability,

2 2
n— n t S 9 n— n tni . 17
o o) 90zt )] a7
Proof. By applying Lemma 9 we have (with high probability) for every ¢ € [(i — 1)A,, A,],
t
on—1 (zn ()] < llon—1 (Za(t))]l +Fn/ llon—1 (Zn(s)) ds.
(i_l)An
Note that ||o7,—1 (2, (£))]| < ||on-1 (Zn(tn.:))| by the definition of ¢,, ;, and hence,
lon—1(zn() < llon-1(Zn(tn)|l + Tnln lon-1 (Zn(tn:))ll

= (1 + 2) ||O'n—1 (En(tn,z)>|| . (18)

Similarly, by applying Lemma 9, we have (with high probability) that
tn,i

lon—1 (Zn(tn))| Z lom—1 (Zn(tni) - Fn/ lon—1(Za(s))ll ds

(i_l)An
> ||on—1 (*/Z\n(tn,i))H -TnA, Ho'n—l (gn(tn,z))”

= (1-3) lou-s Gattnsl. (19)

Combining Equations (18) and (19), we obtain

2
1+
2 2 2
o1 (a1 < (12 ) s Galtn) I = 9llnms (nltn DI
2
O
Corollary 11 (Adaptive model complexity). Forany N > 1,
In(f*,5"") < mayg 92 Znan L Zata )P (20)

7\'71 EH n= 1

Proof. The result follows analogously to the proof of Lemma 8, using Lemma 10 in the last step. [
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A.3 Bounding Measurement Uncertainty of GPs

Our goal in this section is to prove Theorem 3.

The informativeness of a set of sampling points A C Z about a function f ~ GP(0, k) with the noisy
observations y4 = fa + €4 can be measured by the information gain (c.f., Cover (1999); Srinivas
et al. (2009)),

Wya; f) € Uya; fa) = H(ya) — H(ya | £a), @1

which quantifies the reduction in entropy of f4 when observing y 4. Here, we write f4 = [f()]zca
and €4 ~ N (0,02I). For a Gaussian, H(N (, X)) = 1logdet(2meX), so that when f is a
Gaussian process, I(y4; f) = 3 logdet(I+ o0 2K 44) where Ksa = [k(2,@)]2,2/c 4. We denote
the maximal information gain by observing n points by

def
Yo = max I(ya; f). (22)
|Al=n
Clearly, v,, depends on the kernel k. In Table 2, we state the magnitude of ~,, for different kernels.
We take the magnitudes from Theorem 5 of Srinivas et al. (2009) and Remark 2 of Vakili et al. (2021).

Table 2: Here we present different magnitudes of ,,. The magnitudes hold under the assumption that
Z is compact. Here, B,, is the modified Bessel function.

Kernel  k(z,z’) Tn

Linear x'a’ O (dlog(n))
o=

RBF e 22 (@] (logd+1(n)>

e s (), () 0 (ne o)

The maximum information gain can be interpreted analogously in the setting where f € Hy, g, see
Srinivas et al. (2009) and section 5.2 of Kirschner and Krause (2018). The following result relates
mutual information and epistemic uncertainty.

Lemma 12 (Lemma 5.3 from Srinivas et al. (2009)). Forany A C Z,if f ~ GP(0,k) or f € Hy B,
and if the observation noise is i.i.d. N'(0; o) then

1o Var[f(zi) | y(®1:-1)]
s f) =52 log(l + = 23)
where {x1,..., 2} =
In our setting, denote by Apn def (S1,...,Sn) the set of times of observations D;.y until episode N.
We define for every episode n,
i &ef argmax HU'n—1(Zn(tn,i))||§ ) (24)
i€{l,...,mn}

We write ¢f & ¢, and Ay & ({t7},...,{tx}). Note that Ay[n] C An[n] (¥n) and Ay

comprises exactly N observations.
Lemma 13. If f; ~ GP(0,k) forall j € {1,...,d,}orif f € Hng, and if the observation noise
is i.i.d. N'(0;02I) then

N Mn

S llowa(zalta ) < 20Tdery 25)
n=1 ™oi=1
0,2
log(l-ﬁ—:—a;o’2

) »
max

2

where G = Opax = MAXze 2 je(l,....dy} o8 ;(2), and ~yx is with respect to kernel k.
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Proof. We have

Mn

Z Z”"'n 1(2zn(tn,q H2<TZ||Un 1(zn(t )”2

nl n=1

This inequality is tight when m,, = 1 (Vn). When more than one measurement is obtained per
episode then the regret may be smaller. Expanding the squared Euclidean norm, yields

Write 67, ;(2)  Var[f;(2) | 94, ) whereas o7, ;(z) = Var[f;(2) | §a,]. The variance is mono-
tonically decreasing as one conditions on more observations, 57, ;(z) > o, ;(2) (Vn,j,2), and
hence,

N d.
<T Z Z 53—1,3‘(271(71‘2))-
n=1j=1

Again, this bound is tight when only one measurement 1s obtained per episode, but may be loose
otherwise. Lemma 15 of Curi et al. (2020) shows that 6, ;(z) < 7 log(1 + 0~257, ;(2)) for any
n, 7, z. Applying this inequality, we obtain

By Lemma 12,

dy
= 26TZI(yAN;fj)
j=1

O

Proof of Theorem 3. We derive the regret bound for the adaptive MSS. The regret bounds for the
other MSSs follow analogously.

From Corollary 11, recall the model complexity bound

My,

In(f*,5") < _max 92 ZHan L Za(tn )P

L,
7rn€H n= 1

By Lemma 13, we can further bound this by
< 18cTd,vN-.
Combining this bound with Proposition 1, with high probability the regret is bounded by

RN(SADP) S O(ﬂNT2eLf(1+L.,r)T /N’)/N)

A.4 Useful Facts and Inequalities

Fact 14 (Gronwall’s inequality, theorem 1.1 in chapter 3 of Hartman (2002)). Let ¢(t) be a non-
negative continuous function on the interval [a,b] C R, and let C, K be a pair of non-negative
constants. If the function g satisfies

¢
g(t) <C+K [ g(s)ds, Vtela,b, (26)

then we have
g(t) < CeXt=D) vt e [a,b). (27



Lemma 15. For any two metric spaces (X,dx) and (Y, dy), and any two Lipschitz continuous
Sfunctions f : X x X — Y and g : X — X with Lipschitz constants L and L, respectively, we have

that f(-, g(+)) is L-Lipschitz continuous with respect to dy with L “ Li(1+ Ly).

Proof. Fix any @, x’ € X. By the triangle inequality,

dy(f(z,9(x)), f(2',9(x))) < dy(f(2',9(2)), f(2,9(2))) + dy(f(z',9(x)), (2", 9(x")))
< Lydx(z,2') + Lydx(9(z), g(z"))
< Lydx(z,x')+ LyLydx(z, ")
= Lf(l + Lg)dx(.’ll, .’11’).

B Solving Optimistic Optimal Control Problem

The optimal control problem solved by OCORL is constrained to L ¢-Lipschitz continuous dynamics.
When the dynamics are modeled with a GP using a linear kernel, the control problem can easily be
solved directly in weight-space. Beyond this special case, it is commonly assumed that there exists
an oracle which solves this optimization problem exactly (see, e.g., assumption 1 of Kakade et al.
(2020)).

In this work, we do not explicitly address the problem of approximating the optimal control problem
reasonably well. Kakade et al. (2020) give a brief overview of gradient- and sampling-based methods
which may be useful (Jacobson and Mayne, 1970; Todorov and Li, 2005; Mordatch et al., 2012;
Williams et al., 2017; Wagener et al., 2019). They alternatively suggest to use Thompson sampling
(Thompson, 1933; Osband and Van Roy, 2014), that is, to sample f,_; from M, _; (which is
straightforward when the dynamics are modeled by a GP, see Williams and Rasmussen (2006)) and
then to compute and execute the optimal policy 7,, = argmin . C(7, f,—1) using a planning
oracle. Kakade et al. (2020) conjecture that corresponding regret bounds can be derived using
standard techniques for analyzing Bayesian regret of Thomposon sampling (Russo and Van Roy,
2014, 2016).

B.1 Application to Arbitrary Discretizations

In this section, we briefly show that our guarantees carry over to discretized dynamics and costs for
arbitrary discretizations. Importantly, in the discrete-time setting the lemma mirroring Lemma 4
does not require the assumption that the models f,, are L ¢-Lipschitz continuous, hence, simplifying
the optimistic optimal control problem solved by OCORL. In the discrete-time setting, it is sufficient
to assume that f* is L g-Lipschitz continuous.

Consider the dynamical system

def
Tpr1 = h*(zg, 1), where zg = (g, 7(xy))

with initial state £y € X where 73, € R+ ( measures the “time” between control points xj, and &y 1.
We make the assumption that h* is L -Lipschitz continuous in all arguments. The (discrete-time)
control problem is

T

7 < argmin C(m,h") = argminz c(zg). (28)
well well 7

In many applications, the cost to be minimized is defined at discrete control points to begin with.
In this case, the continuous-time control of Equation (1) can be approximated arbitrarily well with
Equation (28) by choosing a sufficiently dense discretization. Commonly, the discretization is taken
to be equidistant, i.e., 7, = 7 (Vk), but we remark that our results hold more generally for any
discretization.
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B.1.1 Bounding Regret with the Model Complexity

In the following, we denote by x,, j the k-th state visited during episode n.

Lemma 16. Assuming x, o = Zn o, the distance between the true and the hallucinated trajectory at
any iteration k > 0 is bounded with high probability by

k-1

1@k — Bkl < 260(1+ Ly + 260L5)7 1 S s (20| 29)
1=0
where we write L}, dzeth(l + Lz)and L & o(14+ Lz)

Proof (based on Lemma 4 of Curi et al. (2020)). We begin by showing by induction that for any
k>0,

k—1

Znk — okl < 26, Z( b+ QﬁnL;)k_l_l lon—1(zna)ll- (30)
=0

The base case is implied trivially. For the induction step, assume that Equation (30) holds at iteration
k. We have
Hin,k-&-l - xn,k-&-ln = th—l(g’n,kaTk) - h*(zn,vak)”
< Nhn-1(Zn ks Tk) — B (205 i) |
[n—1(Znk i) = B (Znges o) |+ (R (Zn ke, Th) = B (20 s 70 |
< 2Bn llon—1 (Znp)ll + La(1 + La) [[@n 1 — Zn k|
where the final inequality follows from Definition 2 (with high probability) and Lemma 15.

IN

= 2671 ||o'n—1 (zn,k) +0opn-1 ('/z\n,k) —Op—1 (zn,k)H
+ La(1+ Lx) @0k — T il

Using that 0,1 is Ls-Lipschitz continuous and applying Lemma 15,
< 2Bn(llon-1 (zn,k)” + Lo(1+ Ly) ”fc\n,k — Tnk )
+ Lr(1+ Lx) |@n ke — Zn il
=28, |lon—1 (Zn)| + (La(1+ La) + 28, Lo (1 + L)) [|@nk — Tk
By the induction hypothesis,

k

< 2B, Z(L/h + Qﬂn[/;)kil lon—1(zn1)| -
1=0

Thus, Equation (30) holds. Since £ < T, we have
k—1
[Znk — okl < 26, Z( bt 25nL;)kilil lon-1(zn0)ll
1=0
k—1
<28, (14 Ly, +28,L5)" " low 1 (zn)
1=0

k—1
< 2B, (1+ Ly, + 2ﬁnL;)T_l Z lon—1(zn0)l-
1=0
O
Lemma 17. For any MSS S, the regret of any episode n is bounded with high probability by
T
rn(S) < 28, T(1+ Li, + 28, L) ' LY llon—1 (20l (31)
k=1

where L', % Lo(1 + Ly).

24



Proof. By definition of 7r,, in OCORL we have with high probability, C(f*, 7*) > C(fn—1,mn)-
Therefore, with high probability,

S C(.f*»ﬂ-n) - C(fn—laﬂ-n)

T
= Z c(2nk) — c(Zn,k)-
k=0

By Lemma 15, we further have that

T
§) <Ly |k —
k=1

By Lemma 16 (with high probability), we further have that

T k-1
r(S) < 28,(1+ Ly, + 26, L5)" 'L, Z Z lon—1 (zn)ll
k=1 1=0
T
=26, T(1+ Ly +26,L5) LY ot (zam)] -
k=1

The above results allow us to prove a general regret bound which is analogous to Proposition 1.

Lemma 18. Let S be any MSS. If we run OCORL with arbitrary discretization h*, we have with
high probability,

RN (S) < 2BNT3(1+ Ly, + 285 L5) T 1 LL\/ NIy (h*, S) (32)

where we define the discrete-time model complexity,

N T
* de
In(h*,S) :fw}}}?% D> llon-1 (zas)l? (33)

T, €Il n=1k=1

Proof. Let us first bound R%(S). By the Cauchy-Schwarz inequality,

N(S) <N r2(S)

By Lemma 5 (with high probability), we have that

[M]=

o1 (zn,k)H)

lon-1(2n k)||2 .

N
R3,(8) < NAT?L2 S B2(1 + L + 26, L, )20 (

n=1

=
Il
—

[M]=

N
< N4BRT3 (1 + Ly, + 285 L, )* T ~IL2 Y
n=1k

Il
—

Taking the square root, we obtain

lon—1 (zn, k)H2

M=

N
Ry(S) < 28NT3(1+ Ly, + 285 L5) 'L N>

n=1

>
Il
—

The result follows by noting that

Z llon—1( znk)HQSiN(h*aS)-

n=1k=1
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B.1.2 Bounding Model Complexities

The model complexity bounds from the continuous-time setting (c.f., Appendix A.2) extend seam-
lessly to the discrete-time setting. In the following we briefly sketch the bound for the oracle
MSS.

Lemma 19 (Discrete-time oracle model complexity). Forany N > 1,

In(h*,87) < max TZHan L (Za(tn )P (34)

.....

‘rrn EH n=1

Proof.

In(h*, SO = L max ZZHO’n 1 (Znk |

ﬂ'nel'[ n=1k=1

< max T max }||0'n71(zn,k)||2
T

veny

< _max TZHO'n 1 (2n(tn, )

n-nel‘[ n=1

O

Note that the MSS S can (but not has to) be restricted to the discretization of [0, 7] used for the
dynamics and costs. The derivations for the equidistant and adaptive MSSs follow analogously, where
we note that the bucket length A,, is to be defined with respect to a modified constant I';,.

Finally, applying the measurement uncertainty bound presented in Appendix A.3, we obtain the
following theorem.

Theorem 20. Fix an arbitrary discretization h* and assume that h* € ’Hn 5, the observation noise

isi.i.d. N'(0;02I), and let ||-|| be the Euclidean norm. We model h* with the GP model. The regret
for the adaptive MSS is with probability at least 1 — § bounded by

Rn(S"™P) <O (5NT2(1 +Lj, + ZﬁNL;)T‘lx/NVN) : my”" = O(By).

C Experimental Setup

C.1 System’s dynamics
Here we either give reference to the equations of the dynamical system or provide their equations:
* Cancer Treatment:
1
() = t)1 — | = du(t)x(t
i(6) = ra)1og 1) = Sttt
2(0) =0.975,r = 0.3,0 = 0.45

¢ Glucose in Blood:

(t) = —azo(t) — ba1(t)
t) = —Cﬂh( )+ u(t),
=1,b=1,¢=1,2(0) = (0.75,0)

¢ Pendulum:



¢ Mountain Car:
Zo(t) = 10z (t)
#1(t) = 3.5u(t) — 2.5 cos(3zo(t))

Cart Pole: Equation 6.1 and 6.2 of Kelly (2017)

* Furuta Pendulum: Equation 18 of Géfvert (2016)

* Bicycle: Dynamics from (Singh and Theers, 2021)

* Quadrotor 2D: Equations 1, 2, 3 of Paing et al. (2020)

* Quadrotor 3D: Equations 12, 13, 14 of Thomas et al. (2017)

C.2 System’s tasks

In all considered settings the running cost has the following quadratic form:
co(x,u) = (z —2r)" Q(x — xr) + (u —ur) R(u — ur).

Here, 1 is the target state, and up is the target control. Descriptively, in cancer treatment and
glucose in Blood systems, our objective is to reduce the prevalence of unhealthy cells, while striving
to be as minimally invasive as possible. For the pendulum, Furuta pendulum, and cart pole systems
our goal is to skillfully swing the pendulum upwards from its lowest point. In the mountain car
system, the challenge is to guide the car from the valley’s depth to the hill’s summit. Finally, in
systems bicycle, quadrotor 2D, and quadrotor 3D our objective is to adeptly navigate the agent to
reach a desired target state.

Table 3: Cost specifications for considered systems.

System Running Q Running R Target T Target ur
Cancer Treatment I I [0.54] 0,

Glucose in Blood I I [0.47,0.33] 0,
Pendulum I, I, [0,0] 0,
Mountain Car I, I [%0] 0,

Cart Pole I, I, 0y 0,

Furuta Pendulum I, I, 04 0,

Bicycle N I, 2,1, %,0] 0,
Quadrotor 2D I 10 - I, 04 [g - m, 0]
Quadrotor 3D dlggl(%’11’11’5’11’01’10)'1’ diag([5,0.8,0.8,0.3]) [g’g’f’g’g’&’ [0.15,0,0, 0]

C.3 Adaptive MSSs

In this section, we describe in detail the two adaptive MSSs from Section 5.

Greedy Max Determinant In the Greedy Max Determinant adaptive strategy we solve the following
objective:

det (K3). 35

scloTHSI=p (K3) 53

Here, K2 & [k, (Z0(1), 20 (t)]tires and ko (2, 2') € k(z,2') — k] (2) (K, + 02I) "k, (2).

The goal here is to find at every episode n a set S,, of M time points from [0, T]. Solving problem
(35) is NP-hard and we approximate it by solving it greedily:

Algorithm 1 GREEDY MAX DETERMINANT

Init: S, = {argmax;c( 71 kn (20 (1), 2n(t)) }
fork=2,...,M do

Sp =S, U {argmax det (Kgnu{t})}

te[0,7]
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Greedy Max Kernel Distance The second adaptive MSS we consider in Section 5 is the Greedy
Max Kernel Distance. Here we greedily solve the metric M-center problem in space [0, 7] with
the kernel metric: d,, (t,t')? & n(Zn(t), 2, (1) + kn(Zn(t), 2, (1) — 2k, (Z0(t), 2, (t')) on the
hallucinated trajectory.

Algorithm 2 GREEDY MAX KERNEL DISTANCE

Init: S, = {argmax;c( 71 kn (20 (1), 20 ()}
fork=2,...,M do

S, =S, U {argmax min dn(t,t’)}

tefo,7] Y'ESn

C.4 Episodes Hyperparameters

Table 4: We take a few tens of measurements per episode in each environment. We run the
experiments for at most 40 episodes in each environment.

System Nl.lmber of Number of Measurements Time
episodes NV per episodes M horizon T'

Cancer Treatment 20 10 20
Glucose in Blood 20 10 0.45
Pendulum 20 10 10
Mountain Car 40 10 1
Cart Pole 40 10 10
Furuta Pendulum 40 10 10
Bicycle 20 10 10
Quadrotor 2D 20 10 8
Quadrotor 3D 25 20 15

C.5 Practical Implementation

In practice, we approach solving the optimal control problem (2) with offline planning and online
tracking strategy. Before the episode starts we obtain an open loop trajectory &,,(t), @, (¢) by offline
planning:

T
&, (t), Uy (t) = argmin min/ c(x(t), u(t))dt
z(t),u(t) 7(t) Jo

s.t. () = pn (2(t), w(t)) + Buon(x(t), w(t))n(t)
n(t) € [-1,1]%, vt e[0,T].

(36)

We solve the optimization problem (36) with Iterative Linear Quadratic Regulator (ILQR) (Li and
Todorov, 2004). Then we track the open loop trajectory &, (t) online with MPC:

. s+Tvpc _ 9 _ 9
w(t) = axgmin [ (Jalo) S0 + ut) - w0)2)

s.t. (t) = pn(x(t), u(t))

(37

Here, horizon T'y; pc depends on the system.
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Table 5: The MPC horizon for considered systems.

System Tvpc

Cancer Treatment 5.0
Glucose in Blood 0.2

Pendulum 6.0
Mountain Car 1.0
Cart Pole 5.0
Furuta Pendulum 5.0
Bicycle 5.0
Quadrotor 2D 3.0
Quadrotor 3D 5.0

We solve MPC tracking problem (37) also with the ILQR.

D Additional Experiments on Number of Measurements

EQUIDISTANT MAX_KERNEL_DISTANCE MAX_DETERMINANT

102 )

101 1
@
o
O

100,

10—1,

Episode Episode Episode
— M=2 M =5 — M=38 — M =10 == = Best continuous === Best discrete (M=10)

(a) We vary number of measurements we take per episode for the Pendulum system. As expected the more
observation results in lower achieved cost for every MSS.

M=2 M=5 M=38 M=10
10?
10!
o
wn
o
o
10°
1071
Episode Episode Episode Episode
—— EQUIDISTANT MAX_KERNEL_DISTANCE ~—— MAX_DETERMINANT == Best continuous === Best discrete (M=10)

(b) For the same number of measurments we compare different MSSs. We see that equidistant MSS repeatedly
suffers higher cost compare to the adaptive Max Kernel Distance and Max Deteriminant MSS.
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