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Abstract—The rapid growth of Artificial Intelligence (AI)
in healthcare has sparked interest in Trustworthy AI and Al
Implementation Science, both of which are essential for acceler-
ating clinical adoption. Yet, barriers such as strict regulations,
gaps between research and clinical settings, and challenges in
evaluating Al systems hinder real-world implementation. This
study presents an AI Implementation case study within Shriners
Children’s (SC), a large multisite pediatric system, showcasing
the modernization of SC’s Research Data Warehouse (RDW) to
OMOP CDM v5.4 within a secure Microsoft Fabric environ-
ment. We introduce a Python-based data quality assessment tool
compatible with SC’s infrastructure, an extension of OHDSI’s
R/ Java-based Data Quality Dashboard (DQD) that integrates
Trustworthy AI principles using the METRIC framework. This
extension enhances data quality evaluation by addressing infor-
mative missingness, redundancy, timeliness, and distributional
consistency. We also compare systematic and case-specific Al
implementation strategies for Craniofacial Microsomia (CFM)
using the FHIR standard. Our contributions include a real-world
evaluation of AI implementations, integration of Trustworthy
Al in data quality assessment, and evidence-based insights into
hybrid implementation strategies, highlighting the need to blend
systematic infrastructure with use-case-driven approaches to
advance Al in healthcare.

Index Terms—health informatics, FHIR, OMOP-CDM, data
standard, data harmonization, data quality, trustworthy Al, Al
implementation science

I. INTRODUCTION

Artificial Intelligence (AI) has made significant progress
over the past decade, driven by advancements in technology
and adoption. In healthcare, this has led to a growing emphasis
on Trustworthy AI (TAI), aimed at mitigating uncertainty
and improving data and model transparency, as well as Al
Implementation Science, which identifies barriers and practical
solutions to Al adoption in clinical settings.

However, implementing Al in healthcare remains challeng-
ing due to strict data privacy regulations and the multimodal
nature of patient data, including time series, monitoring,
imaging, genomics, and structured or unstructured Electronic
Health Records (EHRs) [1]-[3]. These challenges are ampli-
fied in large multisite healthcare systems. Current research
addresses these issues by improving model generalizability
through data standardization, federated learning, or foundation
models [4]-[8].

Given the choice between working on Al model implemen-
tation or data quality assessment and improvement, we priori-
tized building the foundations for high-quality data, recogniz-
ing that model performance depends on the quality of the input
data. To support our research, we adopted two standards, the
Fast Healthcare Interoperability Resources (FHIR) standard for
data harmonization and the Observational Medical Outcomes
Partnership (OMOP) Common Data Model (CDM) for data
standardization [9]. We identify several critical potential weak-
nesses in current research that hinder the implementation and
widespread adoption of Al in healthcare. There is a gap in Al
research conducted in controlled environments with curated
datasets, and real-world implementation [10]. Most existing
frameworks prioritize model evaluation over implementation
or data quality improvement, overlooking the nuanced chal-
lenges and opportunities involved in deploying Al in clinical
practice [11]. The challenges lie in the multidimensionality
of data quality evaluation, encompassing the adherence to
technical standards, the fidelity of data in representing real-
world phenomena, and the usefulness of data for both Al
models and users. While tools like Observational Health Data
Sciences and Informatics (OHDSI)’s Data Quality Dashboard
(DQD) support structured evaluations within OMOP CDM,
broader frameworks such as Measurement Process, Timeliness,
Representativeness, Informativeness, Consistency (METRIC)
offer more comprehensive but abstract guidance, leaving im-
plementation details to users [12], [13]. Although current Al
Implementation Science emphasizes systematic, generalizable
frameworks, these often fall short when applied to specific
healthcare use cases, which require tailored approaches.

To address these gaps, we collaborated with Shriners Chil-
dren’s (SC), a large multisite pediatric healthcare system with
over 22 hospitals across North America. SC provides an ideal
case study due to its diverse, multimodal data and its multiple
specialties, including craniofacial disorders, burns, and ortho-
pedics, offering unique case studies. Our key contributions are
as follows:

« We provide Real-World Evidence (RWE) of data infras-
tructure standardization and modernization from an Al
Implementation Science study in a real-world, multisite,
and multimodal healthcare system.
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Fig. 1. Overview of our adaptation and implementation of OHDSI Data
Quality Dashboard (DQD) within Shriners Children’s MS Fabric environment.

« We extend the OHDSI DQD standard data quality eval-
uation to include TAI approaches and the METRIC
framework.

« We provide evidence-based details and insights into the
differences and similarities between systematic and case
study-specific implementations.

II. BACKGROUND
A. SC Data Infrastructure

SC established the Shriners Health Outcomes Network
(SHONet) to build a Research Data Warehouse (RDW) fol-
lowing the OMOP CDM. The SHONet initiative began as a
means to leverage SC’s data, thereby enhancing SC’s clinical
efficacy studies and enabling its clinicians to conduct com-
prehensive patient cohort analyses. SC utilizes standardized
Extract-Transfer-Load (ETL) processes to map its data from
its Cerner Millennium and newer Epic System EHR systems.
SC RDW is currently housed in a secure Microsoft (MS)
Azure environment with more than 240 Gigabytes (GB) of
data and billions of data points, accessible only via Azure
Virtual Machines (VMs) controlled via a Role-Based Access
Control (RBAC) mechanism.

Recently, SC adopted MS Fabric, enabling researchers to ac-
cess real-world data within a secure environment that complies
with the Health Insurance Portability and Accountability Act
(HIPAA) [14]. MS Fabric integrates various data services, such
as Lakehouse data storage that leverages Spark Data Frames
for large-scale data processing. The MS Fabric notebook
provides an interactive coding environment to enable data
engineers and scientists to develop programs and Al models
with direct access to the data. For this study, SC copied its
RDW into an MS Fabric workspace environment, which we
used to perform the various experiments and analyses.

B. OHDSI OMOP CDM

OHDSI developed the OMOP CDM data standard to enable
large-scale collaboration between healthcare institutions [15].
This standard revolves around the OMOP CDM Concept Code
ID, which represents various concepts encountered in medical
practice, including procedures, measurements, drugs, devices,
observations, and conditions. To support the OMOP CDM,
OHDSI developed a standard vocabulary to harmonize the
different classification and code systems that medical profes-
sionals use in their practice (e.g., International Classification
of Diseases (ICD)-9, ICD-10, Systematized Nomenclature
of Medicine - Clinical Terminology (SNOMED-CT), Cur-
rent Procedural Terminology, 4th Edition (CPT4), etc) [16].

OHDSI also developed a tool suite to facilitate the ETL
process between source EHR data and OMOP CDM databases,
or to evaluate the quality of an OMOP CDM database with
the DQD [12].

C. HL7 FHIR

FHIR is a modern interoperability standard developed by
Health Level Seven (HL7) that enables the structured ex-
change of healthcare data using internet-based technologies.
The standard defines a set of modular data components,
called Resources, that represent common clinical concepts.
These Resources, such as Patient, Observation, Medication,
and Condition, can be accessed and manipulated through
Representational State Transfer (RESTful) Application Pro-
gramming Interfaces (API), typically in JavaScript Object
Notation (JSON) or eXtensible Markup Language (XML)
formats, allowing for flexible and scalable data integration
across healthcare systems [9].

D. METRIC Framework

The METRIC framework published by Schwabe et al.
in 2024 plays a crucial role in the development of TAI
systems by providing a structured framework to assess the
quality of training data, with the assumption that high-quality
and reliable data is key to robust and ethical Al systems,
implying that we can’t have TAI without trustworthy data
[13]. The authors developed this framework based on a
systematic review of scientific studies to increase adoption
of Al in healthcare, providing guidelines for Al scientists,
engineers, end-users, and regulators. However, this framework
does not provide any specific software or tools contrary to
OHDSI DQD, and therefore, its implementation relies on
the developer. This framework comprises five dimensions: 1)
MEasurement Process measures the uncertainty related to
data acquisition, from sensors to human-induced error and
source credibility; 2) Timeliness ensures that the data is up
to date with the latest knowledge and standard (e.g., ICD9 vs.
ICD10); 3) Representativeness measures how well the data
represents a target population; 4) Informativeness evaluate
the amount of information represented by the data (e.g., data
redundancy, data missingness); and 5) Consistency measures
dataset consistency regarding standards.

E. Case Study: Craniofacial Microsomia

Craniofacial Microsomia (CFM) is a complex congenital
condition characterized by the underdevelopment of the ear,
mandible, and associated facial structures. Care and treatment
often require long-term, multidisciplinary care across psy-
chosocial, surgical, and other domains. Given the variability in
phenotypic presentation and treatment trajectories, managing
CFM presents significant challenges for care coordination, data
standardization, and clinical decision-making. One crucial task
is evaluating the impact of surgeries and CDM on patient
mental health. This makes CFM an ideal use case for exploring
how Al implementation science, driven by FHIR, can support
personalized care planning, automate data integration across



specialties, and potentially enhance longitudinal tracking of
outcomes.

III. AI IMPLEMENTATION SCIENCE

Al implementation science is an emerging field that focuses
on bridging the gap between the development of Al models
and their practical and ethical integration into real-world
healthcare settings. Unlike traditional Al research, which often
emphasizes model performance in controlled environments, it
focuses on how these tools are adopted, utilized, and evaluated
in complex clinical workflows. Another specificity of Al
implementation science is its heavy reliance on engineering.
However, unlike Al engineering, which focuses on building
the tools, Al implementation science is the systematic study
of how to integrate evidence-based practices/ interventions/
approaches into real-world practice to bridge the gap of the
well-documented “know-do-gap” [17].

A. Modernization and Evaluation of SC RDW

SC developed its RDW around 2015, coinciding with the
development of the OMOP CDM versions 5.1 and 5.2. Due to
the complexity associated with developing new ETL pipelines,
SC RDW still adheres to the same version, thereby limiting its
potential use for collaborative research or the implementation
of peer-reviewed tools [18]-[20]. Moreover, SC personalized
some tables to fit their needs, specifically with data related to
the ETL process version, care site specialty, a table specific
to Patient-Reported Outcome Measurements (PROM) Obser-
vations, and pain mitigation medications.

To modernize SC RDW to the latest OMOP CDM version
5.4, we started by mapping SC’s RDW tables and columns to
version 5.4. We then identified the relevant functions and logic
of the DQD developed by OHDSI, which includes the gener-
ation of SQL scripts based on templates. We then selected
Python as the programming language as it is natively imple-
mented and supported by multiple environments (such as MS
Fabric or Databricks). We then implemented our version of the
DQD within MS Fabric, validating the SQL scripts generated
by our implementation with the SQL scripts generated by the
original DQD by OHDSI. We ultimately evaluated the quality
of SC RDW before and after modernization. Essentially, we
tried to answer the following Research Questions (RQs):

e RQOI: How does modernizing SC OMOP CDM databases

influence its data quality assessment using OHDSI DQD?

1) Al Implementation Challenges and Opportunities:
OHDSI developed its tools using the R and Java programming
languages, both of which are technically supported by MS
Fabric. However, these tools require a specific version of
Java that is incompatible with MS Fabric, presenting an
implementation barrier. Previous research either had the option
to create a whole infrastructure compatible with this version
of Java or manually run the tools on the database [20], [21].
These tools usually comprise three parts: a part that uses
templates to generate SQL scripts, a part that interacts with
the database, and a part that acts as a dashboard with the
use of web applications. We propose an alternative solution

to the current OHDSI R-based implementation: converting the
first part (SQL generation) to Python to be used as a package,
while leaving the second and third parts as use-case dependent
implementations. Specifically, we allow the user to change the
interaction mechanism and dashboard visualization easily. This
choice is based on the dependence between the interaction
mechanism and dashboard visualization on the environment.
For example, MS Fabric has specific APIs to interact with
the databases, and we used Power BI to create our dashboard.
We acknowledge that this still leaves some implementation
to the user; however, this should be mitigated over time as
more researchers implement different interaction mechanisms
and dashboard visualizations across different environments and
share them. We provide an overview of our implementation
and conversion of OHDSI’s DQD in Fig. 1. We validated our
implementation by comparing the SQL scripts generated and
results obtained with the original OHDSI DQD. This iterative
process enabled us to identify and fix code and logic mistakes
in our implementation. Our current implementation yields
the same SQL scripts and results as the R-based DQD. We
then integrated our converted code into an automated pipeline
within SC MS Fabric and created an interactive dashboard that
regularly monitors SC RDW quality over time.

B. TAI-based Implementation Evaluation

We extended OHDSI's DQD with approaches inspired by
TAI research, such as the METRIC framework. We believe
that such a framework proposes a natural extension of OHDSI
DQD, with additional evaluation dimensions. The primary
challenge lies in applying these abstract evaluation concepts
to real-world data. This is why in this study, we selected
and implemented four quality assessments based on evaluation
dimensions from the METRIC framework. Specifically, we
selected Informative Missingness, Timeliness, and Distribution
Consistency, as we could translate these evaluation concepts
into specific research questions:

e RQ2 (Informative Missingness): Are missing data pre-
senting a specific pattern based on their type (e.g., pro-
cedure, condition) or hospital site?

e RQ3 (Timeliness): Are all unique source data mapped
to the same concepts (e.g., are mappings of the same
concept different based on the version of the code (ICD9
vs. ICD10))?

o RQ4 (Distribution Consistency): Is data distribution uni-
form across the different hospital sites?

We think that not all the assessments proposed by the
METRIC framework can be applied to a systematic imple-
mentation evaluation. For example, evaluating Informativeness
and Representativeness partially requires expertise and is case
study dependent (e.g., what is the target population). The mea-
surement process also requires manual expert investigation,
notably to understand the potential causality chain that led
to a device or human-induced error. That being said, some of
these limitations to systematic evaluations can be overcome by
using multiple data sources as a reference. For example, the
application of Natural Language Processing (NLP) techniques



to clinical notes may help mitigate human-induced errors
and enhance credibility by providing multiple sources, as
demonstrated by previous studies [22].
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Fig. 2. We modernized Shriners Children’s Research Data Warehouse
OMOP CDM database, and observed an improvement of the OHDSI DQD
assessment, with more tests performed post-modernization.

C. Systematic vs. Case Study

To evaluate the benefits of our systematic approaches in a
specific case study, we chose to work on a case study on CFM.
For this case study, we had access to only a subset of SC’s
RDW, which limited our ability to perform all the analyses
that could be conducted using systematic approaches, notably
regarding multisite analysis. However, this use case enabled us
to assess the usefulness of the data, using AI models to analyze
the impact of the patients’ diagnoses and procedures on their
mental health. This means that for our case study, we first had
to define a cohort definition to retrieve the a priori relevant data
with the help of clinicians. Moreover, clinicians were heavily
involved in the data quality assessment and pre-processing,
notably in our case study, providing important insights on
how codes were generated. Specifically, the fact that multiple
procedure codes are generated for a single surgery, the change
of code vocabulary between ICD-9 and ICD-10 in 2015, and
the evaluation of the relevance of the procedure and psychiatric
diagnosis to the case study.

We also leveraged this case-study to evaluate the impact of
data harmonization on Al performance. The Al model was
trained using patients’ diagnoses to classify whether they had
a psychiatric-related diagnosis or not. We collaborated with
clinicians to generate the list of relevant psychiatric diagnoses.
We then identified the diagnoses and procedure codes of
every patient, and created one-hot encoding as our input
features. This means that we have as many features as different
diagnoses and procedure codes, using ”1” representing a code
linked with the patient. We repeated the operation using the
source codes (e.g., ICD, SNOMED, CPT4, ...) and then using
the harmonized OMOP CDM concept codes. We present the
results of the Al performance using either source or OMOP
CDM concept codes in the next section.

This case-study enabled us to answer the following ques-
tions:

e RQ5: Does Data Harmonization impact Al model per-
formance? Due to the use of multiple similar vocabulary
(e.g., ICD9 and ICD10), using the OMOP CDM con-
cept codes to harmonize the data reduices the effective
number of unique source codes required to represent the
data (which means that two source codes in different
vocabulary represent the same concept, and therefore are
mapped to the same OMOP CDM concept code).

e RO6: Does reducing the number of concept code to
represent a data improves Al model performance (using
OMOP CDM concept relationship by grouping OMOP
CDM concept codes together in supersets)?

Ultimately, we focused on FHIR for the case study, as we
believe this standard to be more appropriate for the concrete
adoption of Al, not only with EHR data, but with multimodal
data. Indeed, although the OMOP CDM is more suitable for
storing observational EHR data, FHIR enables the creation of
interactive and user-friendly web applications that can directly
interact with the database, rather than merely visualizing it
(e.g., through dashboards). To create the FHIR resources, we
determined the exact nature of the data and how it could
be converted into FHIR for Al-based integration with FHIR
applications. The study dataset integrated patient demograph-
ics, clinical conditions, and surgical procedures, all mapped
to HL7® FHIR® resources. The Patient resource captured
demographics, using standard extensions for race and ethnicity.
The Condition resource encoded diagnoses using ICD-10 and
OMOP terminologies. The Procedure resource included both
standardized OMOP codes for analytics and local source codes
as custom URIs to ensure data fidelity. All Condition and
Procedure records were linked to the corresponding Patient
resource via the subject field.

IV. RESULTS
A. Improving SC Data Infrastructure

Our implementation of the OMOP CDM v5.4 was partially
successful, as we were able to map SC’s existing RDW
to OMOP CDM v5.4. However, numerous data points are
missing, notably because the OMOP CDM v5.4 is more
comprehensive than previous versions, resulting in some fields
being left blank.

B. Implementation Evaluation Analysis

We observed that the modernization had a positive impact
according to the DQD, with a general quality test success
rate improvement of 4% (from 84.78% to 88.88%), and
8% conformance improvement (from 80.73% to 88.09%),
validating our RQ1. However, we were not able to achieve
100% conformance, notably because multiple data points were
in the wrong table/ category (e.g., an observation in the
procedure table), meaning that further investigation is required.
We also developed our dashboard using Power BI, showing
pre- and post-modernization DQD results in a user-friendly
and accessible interactive application, which we show Fig. 2.



We implemented several dimensions of the METRIC frame-
work evaluation. We present the specific approaches and
results we obtained for the different RQs:

For RQ2 (Informative Missingness), we assessed data
completeness across different hospital sites, calculated for each
column as the proportion of non-null, non-zero entries. We
then compared these metrics across sites and data types. The
divergence in data completeness between sources, illustrated
in Fig. 3, suggests that the data are not missing completely at
random and that missingness is dependent on the data source.
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Fig. 3. We calculated the completeness for each hospital site, and observed
a slight difference in completeness.

For RQ3 (Timeliness), we compared the overlap between
ICD-9 and ICD-10 procedure codes. We found that only half
of the ICD-9 codes shared a common mapping with an ICD-10
code (Table I). This limited overlap suggests that Al models
are at risk of performance degradation when encountering data
with different distributions of these coding systems. While
ICD-10 codes were more prevalent, likely due to their greater
comprehensiveness [23], the poor mapping indicates a broader
potential risk that may affect other clinical vocabularies and
warrants further investigation.

| Both ICD9 and ICD10 | ICD9 Only | ICD10 Only
# unique concept mapped from | 7,125 | 7.754 | 205,329
TABLE 1
OVERLAPPING BETWEEN ICD9-ICD10 AND OMOP CDM CODES

For RQ4 (Distribution Consistency), we analyzed the dis-
tribution of different data types (e.g., procedures, conditions)
across hospital sites. Fig. 4 shows that the data distribu-
tions varied between sites, likely reflecting different clinical
specializations. However, consistent cross-site patterns were
observed: observations (e.g., vital signs) were uniformly the
most prevalent data type, while clinical notes were the least.
We propose several hypotheses to explain this: (1) not all
notes are entered into the EHR or may be omitted during the
ETL process; (2) clinicians may input multiple billing codes
for procedures to ensure accuracy, whereas notes may not
be duplicated in the same way; and (3) a single note often
summarizes multiple observations, procedures, or conditions.

C. Case Study Specificity

We identified key challenges and implementation barriers
inherent to our use case.

1) Data Retrieval: We retrieved patient data using CFM-
specific ICD-9 and ICD-10 codes. However, we do not expect
that a systematic OMOP CDM-based data quality assessment
would have benefited data retrieval, as clinicians are familiar

All sites
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mEE measurement i |
note !
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Fig. 4. We represented the distribution of the different data for different data
sources (hospital sites). We can observe that the distribution differs from one
site to another.

with ICD-9 and ICD-10 codes, but not necessarily with the
OMOP CDM concept code. To nuance this, the OMOP CDM
provides a centralized repository containing data from all
hospital sites, which facilitates the retrieval of all CFM patients
across all SC systems. Moreover, the implementation of an
automated cohort discovery tool (such as OHDSI Atlas) might
greatly benefit data retrieval [24].

2) Data Fidelity and Usefulness: We observed that data fi-
delity and usefulness were more critical than their compliance
with the OMOP CDM. For example, we identified limitations
for systematic approaches regarding the assessment of data
fidelity and usefulness for AI models. We think that a good
evaluation of data usefulness would be represented by the
upper bound of any Al model performance, meaning that it is
case-study dependent.

3) CFM Case-Study and FHIR Implementation: The CFM
study enabled us to assess the impact of data harmonization
on Al model performance. We used the Area Under the
Receiver Operating Characteristic (AUROC) curve to evaluate
our model performance, with the label being the patient’s
presence or absence of psychiatric diagnosis. We represent the
results for 3 Al models: RandomForest (RF), eXtreme Gradi-
ent Boosting (XGBoost), and Adaptive Boosting (AdaBoost)
[25]-[27], using 5-fold Cross-Validation (CV). We observed
two phenomena based on Fig. 5: (1) data harmonization
do not significantly impact model performance with a mean
AUROC of 71.3% using source medical codes, and 70.0%
using OMOP CDM codes, validating RQS, and (2) reducing
the number of OMOP CDM concept code features decreased
our Al model performance, suggesting that although making
the taks “easier” (by reducing the number of features), we also
loose granularity in the data. Further investigation is required
as we did not validate RQ6, notably since we applied a brute-
force approach in our AI model implementation. These results,
however, are encouraging, as they provide additional evidence
that data harmonization won’t negatively impact Al model



performance, while increasing interoperability and facilitating
collaboration. We still believe that better approaches could
leverage the OMOP CDM relationships to increase Al per-
formance.

CV ROC Curves: Source vs OMOP vs Parent (Grouped by Dataset)
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Fig. 5. We show the AUROC for different models when using source codes
(blue) vs. using harmonized OMOP CDM concept code (orange) vs. using
supersets of OMOP CDM concept codes (green).

The implementation of FHIR within the SC MS Fabric
environment presents significant challenges. SC MS Fabric is
closed to external API connections, mitigating the implemen-
tation of FHIR servers capable of supporting FHIR Resource
exchange. Moreover, FHIR does not rely on OMOP CDM
concept code ID, but rather on the source codes (e.g., ICD-9,
ICD-10), meaning that mapping from the OMOP CDM and
FHIR is not straightforward, and might depend on the data
context (e.g., specific ICD-9 codes map to different OMOP
CDM concept code IDs, or vice-versa). This complexity limits
the ability to implement FHIR systematically. However, we
believe that FHIR remains the best option for implementing
Al in case studies. Despite its limited scope, this work serves
as a foundation by creating specific FHIR resources that sup-
port future research and development of FHIR infrastructure
compatible with MS Fabric within SC’s secure environment.

V. DISCUSSIONS

The focus on Al implementation science in healthcare has
increased in the last few years, with a positive impact on Al
adoption by healthcare stakeholders (e.g., patients, providers,
insurers) [28]. Most importantly, this study demonstrates that
implementing Al in a multisite healthcare system is not a
trivial task and that systematic approaches are insufficient for
adoption of Al in healthcare. We believe that data distribution
drift is one of the most critical risks that can compromise Al
implementation, as it can significantly reduce Al performance
(e.g., sudden population migration to one site) [29]. Therefore,
it is crucial to have an effective monitoring mechanism. Al
implementation is a complex task, often involving all stake-
holders in a highly iterative development and implementation
process. Based on our effort, we identified some critical
variables that impact Al implementation.

1) Environmental: The implementation depends on the
resources available (e.g., cloud servers, computation capabil-
ities), the existing infrastructure and workflows, which might
impact usability of specific tools/ code (e.g., OHDSI DQD

and Java within MS Fabric), and the type of interaction the
end-user (e.g., clinicians) will have with the system.

2) Data Access: Data Access plays a significant role in Al
Implementation. It depends on the local regulations in place,
the existing data infrastructure, as well as standardization and
harmonization. For example, access to raw data or access to
only a subset will drive the scope and adoption of Al (e.g.,
restricted access to data will limit Al implementation).

3) Expertise Access: As mentioned above, Al implementa-
tion is a collaborative enterprise involving many stakeholders
with different expertise. However, the need from the primary
end-users, such as patients and medical providers, will drive
the need for implementation, while engineers and data scien-
tists lead the technical implementation.

To contextualize our findings within medical data quality
research, we benchmarked our experience against the large-
scale European Health Data and Evidence Network (EHDEN)
consortium [30]. This comparison yields two insights for
our study. First, our experience mirrors theirs in identifying
data model conformance with the highest number of data
quality issues, confirming that this is a common challenge in
OMOP CDM implementation. Second, we observed a data
quality gap, with the overall data quality scores improvement
across the mature EHDEN network being higher than in our
system implementation. We argue this gap is not a limitation
but rather empirical evidence for the key implementation
variables discussed previously, namely: Environmental, Data
Access, and Expertise. Several key factors can explain the
discrepancy. While there are apparent differences in the ma-
turity of the data infrastructure, inherent variations in patient
cohorts, and methodological differences can explain some of
the differences, as the EHDEN analysis utilized a different and
smaller subset of DQD tests (with an average of 881 tests per
organization in the EHDEN study vs. 1798 tests performed in
ours). This highlights that while general patterns are shared, a
direct comparison of quality scores across institutions can be
misleading without accounting for local context.

Ultimately, an ideal Al Implementation Science framework
should encompass both systematic and case study needs,
with a hybrid approach to AI implementation. Moreover,
as demonstrated by the METRIC framework and TAI, Al
Implementation Science researchers should draw inspiration
from other fields with similar problems (e.g., finance for
anomaly and data drift detection, or Extended Reality (XR)
implementation frameworks in healthcare). In addition to TAI,
Al Implementation Science should incorporate approaches and
techniques from Safe AI, Actionable Al, or Responsible Al
(STAR-AD).

Future Work: There are several limitations to this study,
notably the fact that we did not have access to the raw EHR
data (pre-ETL process). This limits our ability to evaluate
data fidelity, although we aim to apply Al-based techniques
for improved data anomaly detection. We also plan to utilize
clinical notes, combined with NLP techniques and AI models
such as Large Language Models (LLMs), to obtain a secondary
data source, thereby increasing confidence and trust in the



data by reducing its uncertainty. As a next step, we will
conduct a more formal comparison with external healthcare
system, and perform a dedicated usability study of our tools,
using the System Usability Scale (SUS) and open-ended
surveys to gather feedback from end-users, namely SC’s data
engineers and physicians [31]. Lastly, we plan to explore Al
Implementation Science from the perspective of Al models.

VI. CONCLUSION

This study highlights the methods and importance of inte-
grating Al implementation science principles into the deploy-
ment of TAI within SC, a large, multi-site healthcare system.
As Al technologies continue to advance, their capabilities will
not be judged solely on accuracy, but also on their real-world
impact. The integration of Al systems into clinical workflows,
their acceptance by end-users, and their governance in ac-
cordance with ethical and regulatory standards will be key
factors in determining the real-world clinical impact that Al
implementation science addresses. Accordingly, our findings
suggest that technical performance alone is not sufficient to
ensure clinical utility; instead, attention must also be paid
to factors such as data interoperability, clinician engagement,
workflow alignment, and transparency of model outputs.

INTERNAL REVIEW BOARD NOTE

For the systematic approach, the work was undertaken as
a Quality Improvement Initiative at Shriners Hospitals for
Children and, as such, was not formally supervised by an
Institutional Review Board (IRB).

The CFM case study involving human subjects was con-
ducted in accordance with the ethical standards outlined in
the Belmont Report and received approval from the Georgia
Institute of Technology, IRB approval number H21297.
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