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Abstract
Generative diffusion models have achieved re-
markable success in producing high-quality im-
ages. However, because these models typically
operate in continuous intensity spaces—diffusing
independently per pixel and color channel—they
are fundamentally ill-suited for applications
where quantities such as particle counts or ma-
terial units are inherently discrete and governed
by strict conservation laws like mass preserva-
tion, which limits their applicability in scientific
workflows. To address this limitation, we propose
Discrete Spatial Diffusion (DSD), a framework
based on a continuous-time, discrete-state jump
stochastic process that operates directly in discrete
spatial domains while strictly preserving mass in
both forward and reverse diffusion processes. By
using spatial diffusion to achieve mass preserva-
tion, we introduce stochasticity naturally through
a discrete formulation. We demonstrate the ex-
pressive flexibility of DSD by performing image
synthesis, class conditioning, and image inpaint-
ing across widely-used image benchmarks, with
the ability to condition on image intensity. Addi-
tionally, we highlight its applicability to domain-
specific scientific data for materials microstruc-
ture, bridging the gap between diffusion models
and mass-conditioned scientific applications.

1. Introduction
Diffusion-based generative models have emerged as power-
ful tools for high-quality image generation (Sohl-Dickstein
et al., 2015; Ho et al., 2020; Song et al., 2021b). Typi-
cally, these models inject noise into the images, then learn
to reverse this noise-adding process to recover meaning-
ful structure. In most frameworks, this is based on an Itô
Stochastic Differential Equation (SDE) with Gaussian noise.
While effective for many vision tasks, these approaches
inherently assume continuous pixel intensities, which can
cause difficulty when dealing with the discrete nature of
many datasets. Beyond vision-related tasks, such as in the
physical sciences, there are many applications which require
discrete physical quantities, such as particle counts in a sim-

ulation, or phases in materials microstructure. Conservation
of total quantities (such as mass) can be critical for scientific
applications, and so generative modeling which can operate
under constrained, discrete pixel intensities would be scien-
tifically valuable. Such a capability might also prove useful
within vision tasks, such as inpainting and super-resolution.

Scientific and engineering studies of the natural world using
computational techniques often involve discrete variables
in space and/or time. On microscopic scales, everyday ma-
terials exhibit extremely complex structural patterns which
encode the history of their formation, and play a large role
in how the material functions on a macroscopic level. An
important and wide-reaching field of study is materials mi-
crostructure, which is used in materials design (Gu et al.,
2018), forensic analysis, hydrology (Blunt et al., 2013), en-
ergy storage (Simon & Gogotsi, 2008), and even medicine,
such as in bone structure studies (Montoya et al., 2021).
For example, crystal grain shapes can give rise to com-
plex stress patterns which affect the yield strength of a
metal (Calcagnotto et al., 2011). A materials microstruc-
ture can often be represented in terms of a small number
of discrete phases which describe the underlying chemical
structures involved in the microstructure. In sandstone, the
overall arrangement of nanocrystals is highly disordered
and gives rise to complex pore structures, through which
subsurface water flows, and this microstructure can have an
enormous influence on the rate of transport of fluids and
contaminants. Microstructure of electrodes is also known
to have an immense impact on the characteristics of elec-
trochemical devices (Phogat et al., 2024). Small changes in
thermodynamic properties can cause drastic changes in mi-
crostructure, such as in stainless steels (Xiong et al., 2010),
necessitating study of microstructure as a function of phase
contents. Furthermore, gathering real-world data on these
systems is often complex and expensive; decades of work
have been applied to computational modeling of the gen-
eration and consequences of microstructure prior to the
widespread popularization of machine learning (Torquato,
2002).

In this work, we introduce Discrete Spatial Diffusion (DSD),
a discrete-state Markov chain-based diffusion framework
in which the forward process redistributes discrete units of
intensity in space. Unlike previous diffusion models, DSD
exactly preserves total intensity throughout both the forward
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Discrete Spatial Diffusion

and reverse phases, ensuring that global properties—such
as mass fractions or total particle count—are exactly con-
served. We demonstrate that DSD not only enables scientific
applications but also applies to more conventional tasks, like
image generation and in-painting in discrete domains. By
directly modeling discrete transitions, DSD paves the way
for generative modeling under mass conservation, allowing
models that specialize for constrained conditions in scien-
tific applications and beyond.

2. Background
2.1. Related work

Among the body of literature on generative diffusion mod-
els, originating from the pioneering work of Sohl-Dickstein
et al. (2015), the most relevant to our work fall into two
broad categories: (1) those employing discrete-state Markov
chains to introduce noise in the forward process (Hooge-
boom et al., 2021; Austin et al., 2021; Campbell et al., 2022;
Santos et al., 2023; Sun et al., 2022; Lou et al., 2024), and
(2) those incorporating spatial dynamics into the forward
diffusion process (Bansal et al., 2022; Rissanen et al., 2022;
Hoogeboom et al., 2021).

Generative diffusion modeling based on discrete-state
Markov chains has become an active area of research in
recent years. Early work, such as Hoogeboom et al. (2021);
Austin et al. (2021), introduced discrete-state and discrete-
time Markov chains as an alternative to the Gaussian noise
used in conventional diffusion models (Sohl-Dickstein et al.,
2015; Ho et al., 2020; Song et al., 2021b). Campbell et al.
(2022) generalized these formulations to a continuous-time
framework, providing a more rigorous theoretical founda-
tion for discrete-state generative diffusion modeling. Santos
et al. (2023) employed operator algebraic analysis to for-
mally establish the existence of the reverse-time dynamics
and derived the stochastic generator for arbitrary discrete-
state Markov processes. Similar formulations were indepen-
dently developed by Sun et al. (2022) and Lou et al. (2024),
with an emphasis on defining and estimating score functions
for discrete-state systems. The Markov process operates
in intensity space in all the aforementioned diffusion mod-
els, treating each pixel as an independent stochastic process
(Fig. 1(a): Gaussian; Fig. 1(b): Discrete).

This study focuses on a spatially correlated process for
generative modeling for two reasons: (1) for structured
images, a more natural approach is to incorporate spatial
correlations into the generative process, and (2) spatially
decorrelated noise makes it difficult to preserve total inten-
sity. A spatially correlated approach has been explored for
continuous systems. Cold Diffusion (Bansal et al., 2022)
introduced a deterministic blurring transformation, where
image degradation follows a predefined forward process,

and reconstruction is learned as an inverse mapping. How-
ever, lacking a probabilistic latent distribution (as in VAEs
(Kingma & Welling, 2014)), Cold Diffusion is not a true
generative model. Inverse Heat Dissipation Model (IHDM,
Rissanen et al. (2022)) uses the heat equation as a corrup-
tion model. Since the heat equation is deterministic and
reversible (except for the homogeneous solution at t→∞
is singular), a naı̈ve inversion would again result in de-
terministic reconstructions. Uncorrelated Gaussian noise
was added to the heat equation to overcome this limitation,
relaxing the deterministic process into a probabilistic Itô
diffusion. Later, Blurring Diffusion Model (BDM, Hooge-
boom & Salimans (2022)) recognized that IHDM could be
recast as a Gaussian diffusion model in the spectral domain.
BDA extended IHDM and achieved SOTA generative per-
formance, validating the hypothesis that spatially structured
diffusion processes can enhance image generation. Never-
theless, the probabilistic formulation of IHD and BDM only
preserves mass on average, not exactly per-sample, and their
continuous-state nature makes it difficult to apply to discrete
datasets.

Our goal of generating samples with exactly conditioned
total intensity aligns with conditional diffusion modeling.
However, existing approaches all rely on some degree of
approximation. Song & Ermon (2019) proposed a simple
conditional sampling method by passing class labels into the
neural network during training, but this does not guarantee
exact enforcement of the condition in generated samples. A
more structured approach was introduced by Chung & Ye
(2022); Chung et al. (2022c;b), which interleaved projection
steps with diffusion sampling to enforce linear constraints
in image generation. However, these projections disrupt
the exactness of the forward corruption and reverse infer-
ence dynamics (Anderson, 1982; Campbell et al., 2022;
Santos et al., 2023), leading to a mismatch between the
projected and true data manifolds. To address this, Chung
et al. (2022a) eliminated projection steps but instead relaxed
deterministic constraints into a probabilistic formulation via
a noisy measurement model. However, this method does
not apply to deterministic constraints, as it becomes singu-
lar in the limit of zero measurement noise. An alternative
approach leverages Bayes’ theorem for a posteriori condi-
tional sampling, that is, p(S|C) ∝ p(S)p(C|S), where “S”
stands for samples and “C” for condition(s). Because p(S) is
given by a trained unconditional diffusion model, condition-
ing can be performed if one has p(C|S), which is however
intractable for arbitrary data distributions1. Existing meth-
ods approximate this term crudely or by training a separate
classifier as in Song et al. (2021b), or by a Gaussian ap-
proximation with moment-matching as in (Finzi et al., 2023;

1It is challenging because the constraint is imposed on the final
samples at the end of the inference, but the conditioning “S” are
samples generated during the inference.
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Discrete Spatial Diffusion

Figure 1. Schematic diagrams of various diffusion models. (a) Gaussian Diffusion relies on the Ornstein–Uhlenbeck diffusion process
in the intensity space.(b) Previous discrete-state diffusion models rely a discrete-state Markov process of the transition of discretized
intensities. (c) Discrete Spatial Diffusion (this study) relies on a Markov jump process of the intensity units on the discrete lattice,
conserving the total intensity seperately in each color channel.

Du et al., 2024). None of these methods guarantees the
generated samples are exactly conditioned.

2.2. Summary of our contributions

The principal contribution of our work is that it provides
a new capability for diffusion models to preserve intensity
exactly in a fully discrete-state context. The approach is
based entirely on how the diffusion process is built, and
how the model is trained; it is readily usable with exist-
ing diffusion model neural network (NN) architectures. To
our knowledge, this is the first diffusion model to incor-
porate a spatially correlated noise, which is accomplished
using a stochastic jump process allow units of intensity to
perform a random walk. This fact also demonstrates that
more complex noise processes can themselves be tractable.
We furthermore demonstrate that such a model is power-
ful enough for conventional image synthesis tasks. The
relevance and power of the approach is then demonstrated
through application to scientific data in the field of materi-
als microstructure, where the ability to generate complex
data-driven images with constrained total intensity is highly
desirable.

3. Methods
3.1. Corruption Process

In this manuscript, we adopt the language of image process-
ing and consider 2-dimensional images, although the context
and spatial dimensionality of the data are not constrained
by the mathematical framework provided here. We treat a
digital image with discretized intensities Ix,y,c ∈ Z≥0 at
pixel (x, y) ∈ {1, . . . ,W} × {1, . . . ,H} in color channel
c ∈ {1, . . . , C}. Within the DSD framework, the image
is treated as a spatially organized collection of particles;
one for each intensity unit. Below, we will interchangeably
use “particles” and “intensity units” to denote these funda-
mentally discrete units. Specifically, Ix,y,c = n implies n
particles of type c at location (x,y), and the total number

of particles of the system is
∑H

x=1

∑W
y=1

∑C
c=1 Ix,y,c. In

the forward stochastic process with the time parameter t,
each of the particles in the system independently performs a
continuous-time and discrete-state random walk:

(x, y, c)
r−→ (x+ νx, y + νy, c), (1a)

ν := (νx, νy) ∈ {(1, 0) , (−1, 0) , (0, 1) , (0,−1)} (1b)

where r is the transition rate of the particle jumping to one
of their nearest neighbors, and ν is a set of four directions
the particles can hop to their nearest neighbors. Note that the
particles perform jumps in the (x, y) space at random times,
but do not change their color coordinate c. A schematic
diagram is shown in Fig. 1c. We impose either no-flux
boundary condition, such that the transition rates of jumping
out of the image domain are zeros, or periodic boundary
conditions so that a jump to x = W + 1 becomes a jump
to x = 0, vice-versa, and analogously for y. Note that
the forward process conserves the total number of particles,∑H

x=1

∑W
y=1 Ix,y,z in each color channel independently.

We refer to the spatial hopping process (1) as the Discrete
Spatial Diffusion (DSD), noting the “discreteness” refers
to both the discretized intensity units and the discreteness
of the spatial lattice {1, . . . ,W} × {1, . . . ,H} where the
particles are allowed to reside. DSD, as well as similar
discrete-state random walks, have been extensively studied
in non-equilibrium statistical physics and stochastic pro-
cesses (Van Kampen (2007), Gardiner (2009), Giuggioli
(2020) and references therein). The evolution of the proba-
bility distribution of the single random walk in the contin-
uum space limit, under the appropriate scaling of the transi-
tion rate (Einstein, 1905), converges to the Fokker–Planck
Equation (FPE, Van Kampen (2007); Risken (1984)), which
is mathematically identical to the heat equation. Because of
the duality between the probabilistic FPE and the determin-
istic heat equation (Lawler, 2010), DSD can be considered
as a microscopic description of the macroscopic heat dissi-
pation that inspires IHD and BDM. Notably, the correlated
noise is built in DSD, in contrast to the heuristic addition
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Discrete Spatial Diffusion

of uncorrelated Gaussian noise in IHD and BDM. Figure 2
illustrates the application of DSD to a sample image. Due to
the stochasticity of the random jumps, the limiting behavior
(t → ∞) of this process is a random configuration with
no discernible structure or similarity to the original spatial
organization aside from the conserved global particle counts
in each color channel.

We use (Xt, Yt, Ct) to denote the random process in (x, y, c)
space, and (x0, y0, c0) are the initial condition of a specific
particle. We use It to denote the randomly corrupted image
at the time t, where [It]x,y,c is the total number of particles
at (x, y) in color channel c. The process can be represented
in these two dual representations: with (Xt, Yt, Ct) the
process is formulated in the frame of a moving particle (the
Lagrangian frame), and with It the process is formulated as
a histogram in space-time (the Eulerian frame). Below, we
will use these two representations interchangeably.

The forward solution, the transition probabilities
pt(x, y, c|x0, y0, c0) := P{Xt = x, Yt = y, Zt = z|X0 =
x0, Y0 = c0, C0 = c0}, can be computed by integrating
the Master Equation (Van Kampen, 2007; Gardiner, 2009;
Weber & Frey, 2017). This corresponds to exponentiating
the Markov transition matrix of the process defined in
Eq. (1). While the matrix exponential required numerically
for no-flux boundaries is expensive, the solution can be
stored and reused to generate corrupted images and to
compute the reverse-transition rates (see Sec. 3.3) for
learning. When periodic boundary conditions are imposed,
the transition matrix is diagonal in the discrete Fourier
space, facilitating the efficient computation of pt(·|·).

3.2. Designing Noise Schedules by Structural Similarity
Index Metric (SSIM)

The corruption process (1) is a time-homogeneous stochas-
tic process. Consequently, the noise induced in the sys-
tem, per particle and per unit time, remains constant. How-
ever, it has been shown that inhomogeneous noise schedules
can facilitate learning (Nichol & Dhariwal, 2021). We use
the formulation of a recent study (Santos & Lin, 2023)
identified the unique correspondence between non-uniform
observation times in a homogeneous Ornstein–Uhlenbeck
process (Uhlenbeck & Ornstein, 1930) and noise schedule
in conventional diffusion models (Ho et al., 2020; Song
et al., 2021a). We follow the same philosophy as Santos
& Lin (2023) to construct a sequence of observation times
t0 = 0 < t1 < t2 < . . . < tT = 1, at which we will
generate random samples for learning. Here, T is the total
number of discrete times we will generate corrupted sample
images for learning.

We adopt a heuristic approach to construct the discrete times.
The idea is to use a metric to quantify how much the “quality”
of the images has been degraded up to time t, and we aim

to design tk’s such that the metric degrades from k = 0 to
k = T as evenly as possible. In this manuscript, we chose
the Structural Similarity Index Metric (SSIM, Wang et al.
(2004)) between the corrupted image and the original one.
We generalize a generic monotonic relation between k to tk
proposed by Santos et al. (2023):

Φ
(
e−τ2tk

)
≜

(k − 1)Φ (e−τ2)− (T − k) Φ (e−τ1)

T − 1
, (2)

where Φ(p) := log p/(1 − p) is the logit function, τ1 and
τ2 are parameters used to construct the observation times.
Note that tT = 1 in the above parametrization. Specifically,
we tune τ1, τ2 and the unit transition rate r in process (1),
using a subset of training samples, aiming to cover an even
degradation of the SSIM throughout observation times. We
found that setting τ1 = 7.5 and τ2 = 2.5, and r = 120-160
is sufficient for numerical experiments. We remark that
the choice of the functional form in Eq. (2) is arbitrary and
without any theoretical foundation; we only treat Eq. (2) as
a versatile monotonic fitting function, whose corresponding
SSIM degradation is empirically more symmetric than poly-
nomial and cosine schedules (Nichol & Dhariwal, 2021) for
the DSD process (see Appendix Fig. 6).

3.3. Reverse-time process

Following the general theoretical framework developed in
(Campbell et al., 2022; Santos et al., 2023), there exists
a reverse-time process that evolves in opposite time and
whose joint probability distribution is identical to that of the
forward process (1). Specifically, the reverse-time process
corresponding to process (1) is

(x, y, c)
r

pt(x+ν̄x,y+ν̄y,c|x0,y0,c0)

pt(x,y,c|x0,y0,c0)−−−−−−−−−−−−−−−−→ (x+ ν̄x, y + ν̄v, c), (3)

where the admissible reverse-time transitions ν̄ =
(ν̄x, ν̄y) :=∈ {(−1, 0) , (1, 0) , (0,−1) , (0, 1)} are the re-
versed direction of the forward jumps (ν̄x = −νx, ν̄y =
−νy). The framework ensures the same boundary condition
to be imposed (no-flux or periodic, according to the forward
process). We note that the reverse-time process, and there-
fore the generated images, also conserve the total particle
number per color channel.

We note that the reverse transition rate depends on both the
initial condition (x0, y0, c0) of a particle and the forward
solution pt (x, y, c|x0, y0, c0), ∀(x, y, c). This is analogous
to conventional diffusion models, where either the reverse-
time drift (Sohl-Dickstein et al., 2015; Ho et al., 2020) or
the score function (Song et al., 2021b) formally depend on
the initial sample and the solution of the forward process.
However, during the inference, the initial particle configu-
ration is not known, and as such, we train an NN to learn
the reverse transition rates using samples It generated from
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Discrete Spatial Diffusion

Figure 2. (a) The forward processes for Gaussian Diffusion (Ho et al., 2020), Inverse Heat Dissipation Model (Rissanen et al., 2022), and
Discrete Spatial Diffusion (ours) applied on an image, sampled at discrete times. (b) Percentage change in mass relative to the original
image under the forward process.

the forward process (1) at t > 0. Additionally, the parti-
cles are indistinguishable, but the rate prescribed in Eq. 3
is per-particle, raising the question: what is the appropri-
ate per-pixel reverse transition rate that the NN ought to
model? This question can be answered by performing the
survival analysis of the many-particle system in light of
the independence of particle motion; see Appendix A for a
derivation. Intuitively, this can also be derived by combining
the first-reaction method (Gillespie, 1976) and inhomoge-
neous Poisson process (e.g., see Corbella et al. (2022)). The
analysis shows that the reverse transition rate of the first
jump of n = [It]x,y,c particles is simply the sum of the
instantaneous transition rates:

r̄ν̄,x,y,c = r

n∑
i=1

pt(x+ ν̄x, y + ν̄y, c|x[i]
0 , y

[i]
0 , c

[i]
0 )

pt(x, y, c|x[i]
0 , y

[i]
0 , c

[i]
0 )

, (4)

The above prescribes the rate for the first of all the particles
(which is [It]x,y,c) to jump to one of its neighboring pixels.
It also prescribes the rate that the NN will model. This
rate is still time-dependent through the dependence on the
forward solution pt, similar to standard continuous-time
diffusion models.

3.4. Loss functions

Our goal is to provide the corrupted images It at a sampled
time t > 0 to a neural network (NN) and to train it to
predict the reverse-time transition rates (3). We denote the
NN modeled rates as rNN

ν̄,x,y,c(It, t) ∈ R4×H×W×C
+ . The

four in the first dimension here corresponds rates for four
nearest-neighbor transitions.

There exist two approaches to formulate the loss functions.
The first and more common approach adopts a metric and

heuristically matches the NN prediction and the ground
truth. DDPM (Ho et al., 2020), score-matching (Song et al.,
2021b), and flow-matching (Lipman et al., 2022). When pre-
dicting rates, we extend these schemes to “rate-matching”,
where we minimize the chosen norm of the difference be-
tween the predicted and true rates: r̄NN and r̄. For example,
for using L1, a loss L:

LL1 = EItk ,k

[
mean(

∣∣r̄NN − r̄ log r̄NN
∣∣)] . (5)

Here, k ∈ {1, . . . T} is uniformly sampled, Itk is drawn
from the random process (1) at the sampled times, r̄ =
r̄ν̄,x,y,c(It, t|I0) is the theoretically computed reverse-time
transition rate (4), r̄NN = r̄NN

ν̄,x,y,c(It, t) is the NN-predicted
reverse-time transition rate, and the mean is over all the in-
dices (ν̄, x, y, c). The second and more principled approach
is through minimization of the negative log-likelihood L of
the NN-induced process to predict the analytical reverse-
time process (Sohl-Dickstein et al., 2015; Campbell et al.,
2022; Santos et al., 2023):

LL = − logL = −EIt

[∫ ∞

0

∑(
r̄NN − r̄ log r̄NN)dt] .

(6)
Because we only observe the process at discrete times pre-
scribed in Eq. (2), we approximate the continuous-time
integration above by

logL = EItk ,k

[
(tk − tk−1)

∑(
r̄NN − r̄ log r̄NN)] , (7)

where we again take expectation over randomly sampled
tk and Ik. In this study, we experimented with both loss
functions and did not discover any noticeable difference,
giving evidence that the DSD forward process (1) is not
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sensitive to the choice of the loss function. This is favor-
able over the Gaussian diffusion models as discussed in Ho
et al. (2020), which used the heuristic approach to improve
over Sohl-Dickstein et al. (2015), which adopted the sec-
ond approach. We focus on learning the transition rates
of the reverse-time dynamics, which is distinct from the
ratio-matching approach (Sun et al., 2022; Lou et al., 2024)
which focuses on learning the probability distribution pt(·),
although a similar formulation (“implicit score entropy”)
proposed by (Lou et al., 2024) can be regarded as the pro-
cess likelihood (7) first proposed in Santos et al. (2023).
Algorithm 1 describes the DSD training pseudocode.

3.5. Sampling with Adaptive Time Stepping

Once trained, the neural network will predict reverse-time
rates (4), given the configuration of system, It, at time
t ≥ 0. Because the reverse rates are time-dependent, we
could generate the exact sample paths of the inhomogeneous
Poisson process by integrating the survival function of the
first reaction on each pixel in each color channel (see e.g.,
algorithms reported in Corbella et al. (2022)). However,
this approach is not computationally efficient, so we resort
to τ -leaping (Gillespie, 2001), an integrator that has been
adopted by essentially all continuous-time and discrete-state
diffusion models (Campbell et al., 2022; Santos et al., 2023;
Winkler et al., 2024; Ren et al., 2024), analogous to the
Euler’s method for ordinary or partial differential equations
and Euler–Maruyama for Itô SDEs. The central idea of
τ -leaping is to approximate the reverse-time transition rates
r̄ as a fixed constant in a small enough window (s− τ, s),
assuming the time-dependent rates change slowly in the
period, a condition often termed as the “leap condition”
(Gillespie, 2001; Cao et al., 2005). With this assumption, the
original τ -leaping algorithm by Gillespie (2001) generates
Poisson random numbers to update the system’s discrete
states. However, this approach could sometimes lead to a
negative population of particles, which cannot happen in the
process, due to violations of the leap condition. Mitigation
strategies exist (for example, see Gillespie & Petzold (2003),
Cao et al. (2005) and Cao et al. (2006)), however, some of
them are limited to small reaction networks and not suitable
for the DSD sampling task, which involves a very large
number of (4×H ×W ×C) of transition rates to estimate.

As such, we propose a more efficient (but arguably cruder)
approach to select the stepper τ adaptively. Our idea is to
combine the binomial τ -leaping (Tian & Burrage, 2004;
Chatterjee et al., 2005) and the Courant–Friedrichs–Lewy
(CFL) condition (Courant et al., 1928) to conservatively de-
termine the adaptive step size τ . Specifically, since the jump
scale is fixed at the pixel length scale, the timescale τ fully
determines the CFL condition. The idea is to choose a τ

such that the CFL number is fixed throughout the inference2.
To achieve this, we compute the reverse-time transition rates
r̄ν̄ for each pixel in each channel, noting that the probability
of a particle in that channel will jump to one of its neigh-
boring locations is r̄ν̄τ . Then, we determine τ by fixing the
largest probability across all the pixels and color channels
at a constant. Algorithm 2 describes the DSD inference
pseudocode.

4. Computational Experiments
We employ the Noise Conditional Score Network
(NCSN++) (Song et al., 2021b) with two modifications:
the final convolutional layer outputs 4 times the number of
input channels (e.g., 3 for RGB) to represent four directions
(up, down, left, right), and we use a SoftPlus activation
function to ensure non-negativity in the predicted rates. The
hyperparamters can be found in Appendix D.

4.1. Image synthesis benchmarks

While the primary motivation for developing DSD is to en-
able generative modeling under a strict intensity constraint,
we first demonstrate the approach on MNIST (LeCun et al.,
2010) and CelebA (Liu et al., 2015), demonstrating that the
approach can achieve reasonable generative performance
for these commonly studied datasets. Unconditionally gen-
erated samples are shown in Fig. 3 (a) and (b). Generated
samples of the CelebA dataset show that complex patterns
including human facial features, lighting, and textures can
be captured by DSD.

Next, we explored additional applications of mass conser-
vation for handwritten digits. In Fig. 3 (c), we show results
from an in-painting experiment with a fixed mask. In this
training, the no-flux boundary conditions were implemented
inside the image region, and particles outside of this region
were fixed. Throughout the generation process, the disor-
dered particles inside the mask align themselves given the
structure outside of the mask. Given the same structure out-
side of the masked region, we varied the number of particles
in the active region, leading to the generation of different
digits, as exemplified in the Fig. 3 (c). Additionally, we
trained a conditional DSD model that employed the stan-
dard class-conditioning (Song et al., 2021b). Figure 3 (d)
illustrates the class-conditioned generated images with dif-

2Even though CFL condition is more commonly used in PDE
integrators, the concept can be applied for our stochastic system.
Suppose the reverse-time rate is r̄. On average, the particle would
move at a timescale 1/r̄ to one of its neighbors, traveling ∆x.
Then, the velocity c = r∆x. The CFL condition is then c∆t/∆x
where in our scheme ∆t is the τ ; thus, the classical CFL con-
vergence condition translates to the obvious bound of transition
probability r̄τ < 1. This motivates us to ensure a conservative
estimation of τ , but enforcing a small r̄τ to reduce the error.
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Figure 3. (a) Unconditional CelebA generation. (b) Unconditional MNIST generation. (c) Unconditional inpainting on MNIST; 15%
difference of conditioning intensity between consecutive rows. (d) Conditioned MNIST generations across different intensities.

ferent total numbers of particles, varying from low, typical,
and high total intensities. While these do exhibit some ar-
tifacts, DSD surprisingly learns the spatial structure of the
digits and generates “Bolder” or “Lighter” digits without
saturating the upper bound of the intensity (i.e. 255 for
uint8). This would not have been precisely realizable
using conventional diffusion models.

4.2. Subsurface rock microstructures

The microstructure of subsurface rocks governs a wide range
of physical processes, including fluid transport, electrical
resistivity, and mechanical deformation (Blunt et al., 2013).
This originates from connected pores on the nano- and
micro-scale, which vary in size, structure, and coordina-
tion degree across rock types. High-resolution 3D imaging
via X-ray microtomography enables detailed pore-scale re-
constructions, but these scans are expensive and limited
to sample sizes on the order of millimeters to centimeters
(Cnudde & Boone, 2013). While direct imaging of rock
microstructure is costly, measuring porosity (defined here
as average intensity over the image) across large formations
is inexpensive and can be performed without specialized
equipment (Leonard, 1948; Passey et al., 1990). This en-
ables large-scale field measurements of porosity, even when
high-resolution microstructural data is unavailable.

To overcome this limitation, synthetic models are frequently
used to generate representative pore structures for compu-
tational physics studies (Øren & Bakke, 2002). However,
conventional reconstruction techniques impose strong ge-
ometric assumptions that fail to capture the heterogeneity
observed in real rocks like Berea Sandstone, Savonnières
Carbonate, and Massangis Carbonate. We trained DSD
models using these types of rock samples, which represent a
broad spectrum of pore structures (including granular, fossil-
iferous, and dissolution-driven features) across two litholo-
gies: sandstone and carbonate. A description of the training
datasets is provided in Appendix E. Figure 4 presents rep-
resentative outputs from our models trained on 256×256
binary images. The generated samples successfully replicate
key statistical properties of the original datasets, including
spatial correlation and pore size distribution, both of which
are critical for fluid transport. Given that DSD allows for
precise control over total porosity, one can generate syn-

thetic microstructures that match the porosity measured in
the field, enabling the reconstruction of representative pore-
scale samples even in the absence of direct imaging. The
model accurately reconstructs microstructural statistics rele-
vant to flow in the subsurface–for details see Appendix E.1.

4.3. Lithium-ion electrodes

Electrodes in lithium-ion batteries are porous materials with
a complex microstructure that governs key properties like
ion transport and electrochemical performance. Nickel-
manganese-cobalt cathodes, among the most common, are
composed of three phases: the active material driving the
electrochemical reaction, the carbon binder ensuring electri-
cal conductivity and mechanical stability, and the pore space
filled with electrolytes. The active material is expensive, cre-
ating a strong economic incentive to understand how its vol-
ume fraction and distribution influence electrode behavior.
While tomographies are needed for studying microstructures
and enabling computational modeling, acquiring diverse
datasets is challenging (Deng et al., 2021). To overcome
this, researchers often rely on computational methods to
generate synthetic microstructures (Duquesnoy et al., 2023).
While generative adversarial networks have been explored
for this purpose, they did not control phase volume ratio pa-
rameters (Gayon-Lombardo et al., 2020). We trained a DSD
model on tomography data (Usseglio-Viretta et al., 2018),
where two color channels were used to represent the carbon
binder and active materials. The results, shown in Fig. 5,
demonstrate DSD enables precise tuning of phase volume
fractions, making a powerful tool for systematically study-
ing and optimizing electrode microstructures. For more
details on datasets and reconstruction metrics applied to
these samples, see Appendix F.

5. Limitations
The computational cost of forward sampling during train-
ing and reverse-time sampling during inference in DSD
scales linearly with the total intensity of the image. While
this makes DSD highly efficient for low-bit-depth or bi-
nary datasets, it may become less efficient than other tech-
niques for higher-resolution images or datasets with higher
intensity saturation, such as standard uint8 images. Addi-
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Figure 4. Schematic representation of three rock types: Berea Sandstone, Savonnières Carbonate, and Massangis Carbonate. The first
image (top left) for each rock type shows one training sample, while the second one (top right) displays the generated sample conditioned
on the mean intensity µ of the training set. The third (bottom left) and fourth (bottom right) samples illustrate the generated samples
conditioned on µ− 2σ and µ+ 2σ, respectively, where σ represents the standard deviation of the training set intensity distribution.

Figure 5. Generated cathodes with various exactly conditioned
phase volume fractions. Carbon binder domain in black, active
material particles in gray, electrolyte in white.

tionally, enforcing strict intensity conservation requires a
custom forward process code (Eq. (1)) and a novel sam-
pling scheme, deviating from conventional Gaussian diffu-
sion models. This introduces a steeper learning curve for
practitioners accustomed to standard diffusion approaches.
However, we argue that these trade-offs are necessary to
achieve exact constraint enforcement, which is not possible
with existing methods.

6. Conclusion
We introduced Discrete Spatial Diffusion (DSD), a fully
discrete, mass-preserving generative model approach for
images and scientific data. The foundation is to use discrete-
state, continuous time statistical processes incorporating
jump dynamics, rather than SDEs, as a foundation, and in
particular is the first discrete diffusion model to explore
spatially correlated noisification. DSD demonstrates com-
petitive quality on standard benchmarks while enabling ex-
act global constraints in total intensity (particle count, or
mass) that are critical in many scientific applications. By
preserving these constraints in both forward and reverse
processes, DSD provides for exactly constrained data gener-
ation, which we explored on image synthesis and domain-
specific datasets. It also demonstrates that more complex
statistical processes (in this case, random walks) can be
used for diffusion modeling, perhaps opening the door for
further models to exploit structure in their dynamics such as
conservation laws and symmetries.

Impact Statement
This paper presents work whose goal is to advance the field
of generative modeling for spatial data. There are many
potential societal consequences for generative modeling re-
search, however, these are largely unspecific to the research
presented here. This paper advances the ability to generate
image data under constraints, which could improve the ca-
pabilities of generative models, and in particular in settings
which are treated mathematically, such as physical simula-
tions; we believe this does not broaden the scope of ethical
concerns associated with generative models.
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A. Deriving reverse-time transition rates
Here, we derive the reverse-time transition rate. Because
the particles are moving independently, it is sufficient to
discuss n particles colocalized at (x, y) in channel c, and
the conclusion applies to other locations and color channels.
For brevity, we will drop the (x, y, c) dependence in this
section when the context is clear. Let us index the particles
by i = 1 . . . n = [It]x,y,c. For each of the n particles, the
reverse-time transition rates moving to (x + ν̄x, y + ν̄y),
where (ν̄x, ν̄y) ∈ {(−1, 0) , (1, 0) , (0,−1) , (0, 1)} is

r̄
[i]
ν̄ (t) = r

pt

(
x+ ν̄x, y + ν̄y, c|x[i]

0 , y
[i]
0 , c

[i]
0

)
pt

(
x, y, c|x[i]

0 , y
[i]
0 , c

[i]
0

) , (8)

according to the general theory of reverse-time dynam-
ics for continuous-time Markov systems (Campbell et al.,
2022; Santos et al., 2023). We now perform the survival
analysis for the inhomogeneous process. Within time dt,
the probability that particle i leaves (x, y, c) and moves
to (x + ν̄x, y + ν̄y, c) is r̄iν̄ (t) dt + O

(
dt2

)
. As such,

the probability of the particle remains at (x, y, c) at time
t − dt is 1 −

∑
ν̄ r̄

[i]
ν̄ (t) dt + O

(
dt2

)
. Thanks to the in-

dependence between the particle dynamics, the probabil-
ity of all n particles remaining at (x, y, c) at time t − dt
(recall that we are evolving the reverse-time dynamics) is
1 −

∑n
i=1

∑
ν̄ r̄

[i]
ν̄ (t) dt + O

(
dt2

)
. Then, the probability

of no particle leaving at a previous time t − ∆t, where
∆t := Ndt is

N∏
k=1

[
1−

n∑
i=1

∑
ν̄

r̄
[i]
ν̄ (t− (k − 1) dt) dt

]
+O

(
dt2

)
, (9)

which by sending dt ↓ 0 leads to the continuous-time sur-
vival function:

P {T > t} = exp

−∫ t

0

∑
i,ν̄

r̄
[i]
ν̄ (t′)dt′

 , (10)

where T is the random time of the first particle moving
out of (x, y, c), the sum is over all possible directions and
all particle index i ∈ {1 . . . n}. Identifying the total rate∑

i,ν̄ r̄
[i]
ν̄ (t′)dt′ and the reverse-time transition rate for each

particle and in each direction, Eq. (8), we arrived at Eq. (4).

B. Training and generation algorithms.
Algorithm 1 gives the training algorithm using standard
gradient descent techniques, and Algorithm 2 gives the in-
ference algorithm used in this work.
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Algorithm 1 DSD training
Given the full transition probabilities pt(x′, y′, c′|x, y, c)
repeat
I0 ← a sample drawn from the training set
Draw an index k from {1, . . . T} uniformly
for Each discrete intensity unit in [I0]x,y,c do

Draw (x′, y′, c′) ∼ pt(x
′, y′, c′|x, y, c)

Move the unit from (x, y, c) to (x′, y′, c′)
end for
Itk ← the corrupted image
Compute the reverse transition rate Eq. (4)
if Using L1 rate-matching then

Loss←
∑

x,y,c,ν̄

∣∣r̄NN − r̄
∣∣

else if Using process likelihood then
Loss← − logL, defined in Eq. (7)

end if
Take a gradient step on∇θLoss

until Converged

Algorithm 2 DSD inference
Given CFL condition number ε < 1 and desired total
intensities in the color channels, initiate an image I0 with
desired total intensities in the color channels
for Each discrete intensity unit in [I0]x,y,c do

Draw (x′, y′, c′) ∼ p1(x
′, y′, c′|x, y, c)

Move the unit from (x, y, c) to (x′, y′, c′)
end for
I1 ← the fully corrupted image, t← 1
while t > 0 do

Evaluate NN predicted reverse rates r̄NN
ν̄,x,y,c

τ ← min
{
t, εminν̄,x,y,c

(
r̄NN
ν̄,x,y,c

)−1
}

for each (x, y, c) do
Sample total moving particles:
nΣ ∼ Binom

(
[It]x,y,c ,

∑
ν̄ r̄

NN
ν̄,x,y,c

)
Sample a direction ν̄ for each moving particle:

nν̄ ∼ Multinomial
(
nΣ, pν̄ =

r̄NN
ν̄,x,y,c∑

ν̄′ r̄NN
ν̄′,x,y,c

)
Move nν̄ intensity units to (x+ ν̄x, y + ν̄y)

end for
Advance time: t← t− τ
It ← the configuration after movements

end while
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Discrete Spatial Diffusion

Figure 6. Structural Similarity Index Metric between the original and corrupted MNIST and CelebA images (1,000 samples evaluated at
uniformly sampled random time k ∈ {1 . . . 2000}) with various noise scheduler. We fixed r = 120 for MNIST and r = 200 for CelebA
in this analysis. For ours, we use Eq. (2) with τ1 = 7.5 and τ2 = 2.5. For the polynomials, tk = (k/T )n, n = 1 . . . 7. For the cosine
schedule, we use the heuristic formula given in (Nichol & Dhariwal, 2021). We remark that although the cosine schedule has been shown
to be superior in previous studies (Nichol & Dhariwal, 2021; Santos & Lin, 2023), the conclusion is based on the Ornstein–Uhlenbeck
process, which is distinct from the spatial diffusion process (1).

C. Additional MNIST experiments
In our additional MNIST experiments, we explored class-conditional and in-painting generation. These experiments
are particularly notable due to their interactions with the mass-preserving property of DSD. For class-conditioning, we
introduced class embeddings into our model following the approach described in (Song et al., 2021b). Our model performed
well at the task of class retrieval, consistently producing the desired class 8. For our mass-related experiment, we tested our
model on its ability to generate all of the classes given different starting masses. Because generative models struggle to
extrapolate beyond training data, our model demonstrated poor performance for certain digits on masses that were too high
or too low. In response to this, we picked the ’1’ with the highest mass for our high-mass test, and the ’0’ with the lowest for
our low mass test, as 1 had the lowest mass of any of the numbers, and 0 had the highest. Our model performed very well on
this task, consistently producing the target class even with varying mass. See Fig. 3 (d) for results.

In training our model to perform in-painting, we shrunk the size of the transition matrix and held the rest of the image static.
We observed high quality generations very quickly, within only 40K training steps. For our mass-related experiment, we
tested the model’s reaction to increasing mass within the in-painted region and were able to see different number generations
from the same starting image (Fig. 9 ).

D. Hyperparameters for experiments
In our experiments, we thoroughly tested our model on various hyperparameters using the MNIST dataset. The MNIST
dataset was chosen as a baseline for hyperparameter testing due to its low computational training cost. We found that
our model was very robust with respect to the hyperparameters used, consistently generating quality generations without

14



770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Discrete Spatial Diffusion

Figure 7. Unconditional MNIST generations

Figure 8. Conditional MNIST generations

hyperparameter tuning. Due to limited compute, only limited tests were performed on CelebA, but we hypothesize that our
model would perform well with different hyperparameters than the ones used. For the choice of our ’r’, we chose a rate that
was large enough to allow full degradation, enabling the model to learn to predict starting from full noise. See 1 for our
hyperparameters used.

E. Detailed description of X-ray scans of subsurface rocks
• Berea Sandstone: This sandstone sample from (Neumann et al., 2021) provides a high-resolution image of the rock

microstructures obtained through X-ray microtomography (X-ray µCT). In this process, the rock sample is rotated
while being scanned by an X-ray beam, capturing a series of 2D radiographs at different angles. These projections
are then computationally reconstructed into a 3D volume, where each voxel represents the X-ray attenuation of the
material at that location. The X-ray microtomography scans were performed using a SkyScan 1272 system, operating
at 50 kV and 200 µA, with a CCD detector capturing projections at a resolution of 2.25 µm per voxel. The resulting
dataset consists of grayscale images with a voxel size of 2.25 µm, where variations in intensity distinguish between
the solid matrix and the pore space. The solid matrix primarily consists of tightly packed mineral grains—mostly
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Figure 9. MNIST in-painting with progressively added mass (unconditioned)

Table 1. Hyperparameters Used

Boundary CFL Channel Training
Dataset r Schedule Condition Loss Tolerance Multiplier Iterations Notes

MNIST 120 Ours Periodic Eq. 5 0.15 (2,2,2) 100K unconditional
MNIST 120 Ours Periodic Eq. 6 0.15 (2,2,2) 90K unconditional
MNIST 120 Ours No-flux Eq. 6 0.15 (2,2,2) 80K unconditional
MNIST 120 Ours No-flux Eq. 6 0.11 (2,2,2) 70K class-conditioned
MNIST 85 Ours No-flux Eq. 6 0.07 (2,2,2) 40K inpainting (14x14)
CelebA 200 Ours No-flux Eq. 5 0.1 (1,2,2,2) 700k
Electrodes 200 x5 Periodic Eq. 6 0.01 (1,2,2,2) 180k
Rocks 250 x4 Periodic Eq. 6 0.1/0.2/0.05 (1,2,2,2) 50k tolerance avoids over-

lapping mass

quartz—while the pores are voids that can be occupied by fluids such as water or hydrocarbons. After preprocessing
steps like contrast enhancement, noise reduction, and segmentation, the final dataset represents the pore network. The
Berea sample has a measured porosity of 18.96% and permeability of 121 mD. This dataset is particularly useful for
computational modeling, as it enables direct comparison between numerical simulations and experimentally measured
permeability, providing a rich testbed for learning-based methods that seek to map complex microstructural information
to macroscopic transport properties. This sedimentary rock is a well-characterized geological benchmark, widely used
in fluid flow studies due to its homogeneous grain structure and consistent permeability properties, making it a good
first benchmark for our study.

• Savonnières Carbonate: This carbonate sample, described in (Bultreys et al., 2016), is a layered, oolithic grainstone
with a wide porosity and a permeability varying from 115 to over 2000 mD, depending on local heterogeneities.
The rock is characterized by a highly multimodal and interconnected pore structure, with distinct macropores and
microporosity. X-ray microtomography (X-ray µCT) was used to image the sample at a resolution of 3.8 µm voxel size,
revealing intricate pore geometries. The sample was scanned at the Ghent University Centre for X-ray Tomography
(UGCT) using their HECTOR scanner, developed in collaboration with XRE, Belgium. The macropores include both
intergranular voids and hollow ooids, while the microporosity is found within ooid shells and intergranular spaces.
Micropores in the sample often serve as the primary pathways connecting poorly connected macropores, creating a
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Figure 10. Quantitative comparison between training and generated rock samples. (Left) Two-point correlation function, showing excellent
agreement of spatial features between training data (gray) and 10 randomly generated samples (blue). (Middle) Normalized pore size
distribution schematic, with colors indicating relative pore sizes. (Right) Cumulative distribution function (CDF) of the normalized pore
sizes, comparing the statistical distribution of training and generated samples.

complex hierarchical network. After preprocessing steps, including noise reduction, anisotropic diffusion filtering, and
watershed segmentation, a multiscale pore network model was extracted. This dataset is particularly compelling due to
its extreme heterogeneity, with pore sizes spanning orders of magnitude, and its ability to represent coupled serial and
parallel flow pathways. Savonnières serves as a test case for studying the impact of complex samples in our workflow.

• Massangis Limestone: This oolitic limestone sample from (Boone, 2014) is a highly heterogeneous carbonate
rock with a complex, multimodal pore structure resulting from diagenetic alterations, including dolomitization and
dedolomitization. The rock contains a mix of intergranular and moldic macroporosity, along with microporosity
concentrated in ooid rims and partially dissolved dolomite regions. Its porosity ranges from 9.5% to 13.8%, depending
on local variations, and its permeability is highly anisotropic due to the interplay between connected macropores
and poorly accessible microporosity. X-ray microtomography (X-ray µCT) was used to image the sample at a voxel
resolution of 4.54 µm, capturing the intricate connectivity of macro- and micropores. The sample was scanned
at the Ghent University Centre for X-ray Tomography (UGCT) using a FeinFocus FXE160.51 transmission tube,
in collaboration with Paul Scherrer Institute (PSI), Switzerland. Differential imaging was applied to enhance the
detection of fluid-filled microporosity, revealing the rock’s internal heterogeneities. Unlike more uniform carbonate
samples, Massangis exhibits significant spatial variations in pore connectivity, leading to zones of high permeability
interspersed with isolated pore networks. This dataset serves as another challenging benchmark for modeling porous
media microstructure.

E.1. Effective metrics

In porous media analysis, characterizing the spatial arrangement and size distribution of pores is crucial for understanding
transport properties, mechanical behavior, and overall structure-function relationships. To quantify these characteristics,
we compute the spatial correlation function and pore size distribution (PSD) using PoreSpy (Gostick et al., 2019), a
Python-based toolkit for quantitative analysis of porous media images. The Pore Size Distribution (PSD) characterizes the
variation of pore sizes within a porous material, providing insights into connectivity, permeability, and flow dynamics. The
most common method to determine PSD computationally is the local thickness approach. Given a binary image I(x, y),
where pore space is represented as 1 and solid space as 0, the pore size function f(r) is defined as the probability density
function (PDF) of the largest sphere that can be inscribed at any point within the pore space. The PSD provides a statistical
summary of pore connectivity and transport properties. Small pores dominate permeability, while large pores govern bulk
flow. Both of these metrics for the training and generated samples are shown in Figure 10.
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F. X-ray scans of NMC cathodes
F.1. Dataset description

This dataset provides high-resolution 3D images of a Li-ion battery cathode composed of active material (nickel-manganese-
cobalt oxide, NMC), carbon black, and a polymer binder (Usseglio-Viretta et al., 2018). The cathode sample was imaged
via X-ray microtomography (X-ray µCT) and nano-tomography (X-ray nano-CT) to capture both the overall electrode
architecture and fine-scale features of the carbon/binder domain (CBD). For micro-CT, a Zeiss Xradia Versa 520 system was
operated at 80 kV and 88 µA, acquiring projections at an effective isotropic voxel size of approximately 398 nm over a field
of view of about 400 µm. The nano-CT scans were performed using a Zeiss Xradia Ultra 810 system with a chromium
target (35 kV, 25 mA), yielding isotropic voxel sizes on the order of 126 nm across a field of view of approximately 64 µm.
In both cases, the 2D radiographs were reconstructed into 3D grayscale volumes using a filtered back-projection algorithm,
capturing the X-ray attenuation due to the dense NMC particles and the less attenuating pore/CBD regions.

These tomographic datasets reveal the hierarchical microstructure of the electrode, from tens-of-micrometers NMC active
particles to nanometer-scale pores within the percolated carbon network. After preprocessing—such as non-local mean
filtering, contrast enhancement, and slice-by-slice local thresholding—segmentation identifies three main phases: (1) the
NMC active material, (2) the CBD, and (3) the pore space. Measured porosity values for these cathodes can exceed 30%,
while the typical volume fraction of active material is on the order of 40%. The overall areal loading of the active material
is around 29.78 mg·cm-2, corresponding to about 33 mAh·cm-2 in specific capacity. These 3D reconstructions enable
computational modeling of transport properties (e.g., tortuosity factor) and electrochemical performance, facilitating direct
comparisons with experimentally measured parameters. Because of the electrode’s well-defined spherical NMC particles
and percolating carbon network, this dataset serves as a robust benchmark for multi-scale modeling and data-driven methods
that aim to link microstructural features to macroscopic cell behavior.

F.2. Effective metrics

The analysis of NMC cathode tomography and the generated images was conducted using three metrics: interface length,
triple-phase boundary, and relative diffusivity. These metrics are essential for quantifying the morphological and transport
characteristics that influence the electrode’s electrochemical performance. Below we describe these metrics in detail.

Interface length refers to the total length of boundaries where two distinct phases, such as active material and pore or
electrolyte, intersect. A higher interface length indicates more active sites for electrochemical reactions and enhances ion
transport pathways, thereby improving the electrode’s overall performance. This metric is calculated by identifying and
summing the perimeters of all phase boundaries in the segmented image.

Triple-Phase Boundary denotes the regions where three different phases—typically solid active material, electrolyte, and a
conductive phase or pore space—converge in the microstructure. TPBs are crucial for facilitating efficient electrochemical
reactions, as they provide optimal sites where all necessary phases interact. The total TPB length is determined by locating
points or lines where three phases meet and summing their lengths within the image.

Relative Diffusivity quantifies the reduction in ion transport within the porous cathode structure relative to an unobstructed
medium. It is defined as the ratio of the effective diffusivity, Deff, through the porous medium to the intrinsic diffusivity,
D0, of the conductive phase: Drel = Deff/D0. This reduction is primarily attributed to the geometric complexities of the
microstructure, encapsulated by the tortuosity factor, τ , in fact Drel = Deff/D0 = Vf/τ , where Vf is the volume fraction of
the phase under analysis.

We computed these metrics using the Python library TauFactor (Kench et al., 2023), and the comparisons between the real
and generated images based on these metrics are illustrated in Fig. 12, while a collection of the training data and generated
images is in Fig.11.
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Figure 11. Microstructural characterization metrics for 80 training samples and 80 generated samples. The boxes show the 25th-50th-75th
percentile, the whiskers the minimum and maximum values. Metrics computed using TauFactor (Kench et al., 2023).

Figure 12. (Top) Eight randomly picked samples from the NMC cathodes dataset. (Bottom) Random unconditional realizations of our
model.
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