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ABSTRACT

Broad textual understanding and in-context learning require language models that
utilize full document contexts. Due to the implementation challenges associated
with directly training long-context models, many methods have been proposed for
extending models to handle long contexts. However, owing to differences in data
and model classes, it has been challenging to compare these approaches, leading
to uncertainty about how to evaluate long-context performance and whether it
differs from standard evaluation. We implement a controlled protocol for extension
methods with a standardized evaluation, utilizing consistent base models and
extension data. Our study yields several insights into long-context behavior. First,
our findings suggest that perplexity can serve as a helpful way to measure how well
models perform on tasks involving longer contexts. Second, current approximate
attention methods systematically underperform across long-context tasks. Finally,
we confirm that exact fine-tuning based methods are generally effective within their
extension range, whereas extrapolation remains challenging. All codebases, models,
and checkpoints will be open-sourced, promoting transparency and facilitating
further research in this critical area of AI development.

1 INTRODUCTION

The pretraining data scale of large language models (LLMs) has expanded greatly in recent years
with open models trained up to 15T tokens (AI@Meta, 2024). Implementation challenges make it
difficult to fully train models with longer context windows during pretraining (Liu et al., 2023a). Still,
long-context windows are considered central, as they enable LLMs to perform tasks that require more
extensive textual understanding, such as utilizing information from textbooks (Tanzer et al., 2024),
summarizing novels (Kryściński et al., 2022), and engaging in many-shot learning (Bertsch et al.,
2024; Li et al., 2023a).

As a trade-off, researchers have proposed context extension, where an LLM initially pretrained on
standard sequences is adapted for significantly longer context lengths (Chen et al., 2023a; Peng et al.,
2023; Han et al., 2023; bloc97, 2023). These methods differ in the type of attention used and in
post-training adaptation techniques. They vary in complexity, training requirements, and qualitatively
exhibit significantly different performance profiles.

Unfortunately, there is a relatively poor understanding of the quantitative rankings of these different
methodologies. Owing to the perceived challenges of evaluation, several new metrics, such as long
context perplexity (Chen et al., 2023a;b; Han et al., 2023; Hsieh et al., 2024), and retrieval accuracy
(Mohtashami and Jaggi, 2023; gkamradt, 2023) have been introduced (Bai et al., 2023; An et al.,
2023). However, the differences in long-context extension procedures make it hard to calibrate these
metrics while controlling for other factors.

In this work, we implement a controlled protocol for context extension. The aim is to compare context
extension while removing spurious factors that impact LLM ability.

Modeling: We standardize on the same base models for comparison. Different base models behave
significantly differently, making it challenging to draw general conclusions. For instance, past work
evaluates LM-Infinite (Han et al., 2023) on LongBench (Bai et al., 2023) using different base models
(Xiao et al., 2024; Lu et al., 2024). We use five distinct open-weight base models with varying sizes
and model families to validate the transferability of our findings from smaller to larger models.
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Extensions: We implement various context extension methods within the same framework. We use
a standardized recipe to eliminate potential gains from tailored hyperparameters. We also fix each
method’s post-training data, utilizing an identical and open-sourced training corpus (Fu et al., 2024;
Chen et al., 2023b).

Metrics: We look at both intrinsic metrics, such as perplexity, and extrinsic properties, such as
downstream task performance (Hsieh et al., 2024; gkamradt, 2023; Bai et al., 2023). We consider
metrics within the extension length as well as an extrapolation to longer contexts.

Our study identifies several takeaways for future research. First, while there have been suggestions
that we need new ways to measure performance, our findings show that perplexity does align with
how well models perform to some extent on various tasks in our controlled studies. Though some
newer attention methods don’t show this pattern as clearly, we generally found that when models got
better at predicting text, they also got better at most other tasks we tested them on.

Second, we find relatively poor results for approximate attention methods. While they can handle
longer length contexts, there generally is a trade-off in terms of accuracy for most of our bench-
marks. Exact frozen methods also tend to degrade model performance, showing high sensitivity to
hyperparameters and often failing with a general training recipe.

Finally, continual fine-tuning with exact attention generally works well, particularly within the
extended context length. Specifically, Dynamic NTK (emozilla, 2023) works best among these
methods. Extrapolation to longer lengths remains a challenging problem. The aggregated results
across various base models further support the broader applicability of our findings.

2 RELATED WORK

Long Context Methods We divide extension methods into three broad classes: exact attention,
approximate attention, and context compression. Exact attention methods augment the parameter-
ization of attention. Position interpolation (PI) (Chen et al., 2023a), NTK-aware (bloc97, 2023),
Dynamic NTK (emozilla, 2023), YaRN (Peng et al., 2023), and CLEX (Chen et al., 2024), all based
on RoPE (Su et al., 2021), design position embeddings for length extension. These methods may be
applied with fine-tuning or to frozen models. Other exact attention methods focus on training-time
improvements, such as contrastive training (Tworkowski et al., 2023). Approximate attention methods
uses structured attention approximations to minimize the computational cost of length growth. Chen
et al. (2023b) uses LoRA (Hu et al., 2021) and a specialized local attention mechanism to reduce
further the computational overhead of further fine-tuning with long context. Other approaches break
the text into chunks and utilize a well-designed "chunk representation" to retrieve relevant chunks
for attention (Mohtashami and Jaggi, 2023; Xiao et al., 2024; Lu et al., 2024). LM-Infinite and
StreamLLM (Han et al., 2023; Xiao et al., 2023) retain only a few tokens from the beginning of
the text and a local window to keep the attention window within the pretrained length. Xu et al.
(2024) focuses on using retrievers to retrieve relevant blocks from long documents. Finally, context
compression methods, which we do not explore in this work, reduce length extension to length
compression via a summarization step (Jiang et al., 2023; Li et al., 2023b).

Long Context Evaluation Benchmarks The Long Range Arena (LRA) (Tay et al., 2020) is
an early efforts evaluating the proficiency of processing long contexts. Since then, a growing
number of benchmarks have emerged, including LongBench (Bai et al., 2023), LEval (An et al.,
2023), and LooGLE (Li et al., 2023c). These benchmarks are a mixture of diverse downstream
tasks explicitly tailored to assess the capabilities of LLMs in understanding and generating lengthy
contexts. Among these benchmarks, LongBench stands out for its inclusion of diverse sequences
with varying lengths, distributions, patterns, languages, and domains, enabling a comprehensive,
nuanced evaluation. In addition to evaluating LLMs’ performance on downstream NLP tasks, there is
another line of benchmarks that specifically focuses on assessing particular aspects of long context
processing ability Liu et al. (2023b); Hsieh et al. (2024). For instance, Mohtashami and Jaggi
(2023) propose the passkey retrieval task to challenge a language model to accurately locate and
retrieve a simple passkey (a five-digit random number) in a long context sequence. Similarly, the
Needle in a Haystack (gkamradt, 2023) test requires the model to accurately recite the information
from a specified sentence(the "needle"). However, most existing works mainly focus on evaluating
mainstream commercial models (e.g. GPT-4 and Claude), open-source base models, or just perform
individual evaluations of a few long context methods. There is a lack of comprehensive, yet controlled
evaluation on long-context extension techniques themselves.
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3 CONTEXT EXTENSION METHODS

3.1 BACKGROUND: ATTENTION AND ROPE

The bottleneck in long context modeling in Transformers is attention. Attention is defined over C
embeddings X = [x1,x2, . . . ,xC ]

⊤ ∈ RC×d where d is the model dimension. Learned weight
matrices Wv ∈ Rd×dk , Wq ∈ Rd×dk , and Wk ∈ Rd×dk are used to transform these inputs where
dk is the projected hidden dimension. The attention mechanism itself computes the attention matrix
and applies it to produce a weighted sum of the value vectors:

Attention(Q,K,V) = AV = softmax
(
QK⊤
√
dk

)
V. (1)

Basic attention was originally defined with: Q = XWq,K = XWk,V = XWv. However, this
approach does not directly encode the relative position of keys and values.

Rotary Position Embeddings (RoPE) (Su et al., 2024) encode positional information by applying a
phase rotation to each element of the embedding vectors. Formally, we define a transformation f :

fW(xi,θ) = R(θ, i)W⊤xi (2)

Here xi ∈ Rdk is an embedding for position i, W is a projection matrix, and θ ∈ Rdk/2 is a
frequency basis. The function is defined based on the rotary position matrix:

R(θ, i) =


cos iθ1 − sin iθ1 · · · 0 0
sin iθ1 cos iθ1 · · · 0 0

...
0 0 · · · cos iθ dk

2

− sin iθ dk
2

0 0 · · · sin iθ dk
2

cos iθ dk
2

 (3)

Due to the arrangement of frequencies, this matrix has the property that R(θ, n − m) =
R(θ,m)⊤R(θ, n) by Ptolemy’s identity. We redefine the query-key product between two posi-
tions m and n as,

q⊤
mkn = fWq

(xm,θ)⊤fWk
(xn,θ) (4)

=
(
R(θ,m)W⊤

q xm

)⊤ (
R(θ, n)W⊤

k xn

)
(5)

= x⊤
mWqR(θ, n−m)W⊤

k xn (6)

In this way, the relative positional information n−m is implicitly injected into the query and key
product, thus the attention score.

The standard RoPE transformation, fW(xi,θ), sets the components θj = b
− 2j

dk with base b = 10000.

3.2 ADJUSTING THE FREQUENCY OF ROPE FOR LONG CONTEXT EXTENSION

We consider four methods for performing length extension on RoPE embeddings: Position Inter-
polation (PI) (Chen et al., 2023a), NTK-RoPE (emozilla, 2023), YaRN (Peng et al., 2023) and
CLEX (Chen et al., 2024). In this section our goal is to extend a method trained to extend position
embeddings for context length C to length C ′ >> C. The methods in this section perform this
extension by scaling the frequencies with the base scaling vector α ∈ R

dk
2 :

fW(xi) = f(xi,α⊙ θ). (7)

Linear Position Interpolation (PI) decreases the frequencies of the basis functions so that more
tokens fit within each period. PI is implemented by setting the components of the base scaling vector
to

αPI
j =

C

C ′ =
1

t
. (8)

3
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where t = C′

C is target length ratio. PI has been integrated into many open-source models such as
LLaMA2-7B-32K (Together.AI, 2023), Vicuna-7B-v1.5 (Chiang et al., 2023), and LongAlpaca (Chen
et al., 2023b).

Neural Tangent Kernel Interpolation RoPE (NTK-RoPE) builds on linear position interpolation
by introducing a per-dimension scaling factor. Inspired by findings from the NTK literature that show
that high-frequency features are difficult for MLPs to learn, NTK-RoPE preserves high-frequency
features while extending the period of low-frequency features. This is accomplished via a dimension-
dependent base scaling vector α:

αNTK-RoPE
j = κ

− 2j
dk , (9)

where κ = (t)
dk

dk−2 so that the lowest frequency is scaled to match PI and the highest frequency
remains the same as in RoPE.

An extension to this approach, Dynamic NTK-RoPE suggests that instead of fixing scaling based on
a set ratio s for all examples during inference, the formula should adapt to the current context length
for a specific example. We followed the set up of Fu et al. (2024) for Dynamic NTK-RoPE. More
details can be found in the Appendix 7.8.

YaRN, another RoPE extension method, uses “NTK-by-parts" interpolation strategies across different
dimensions of the embedding space and introduces a temperature factor to adjust the attention
distribution for long inputs.

αYaRN
j = ((1− γj)

1

t
+ γj)/

√
T (10)

We use a ramp vector γ to determine the interpolation between the 1
t and the original frequency base.

The interpolation gating is set based on the frequency for the dimension j. More details about this
ramp function can be found in the Appendix 7.6.

Other methods such as CLEX Chen et al. (2024) models the scaling vectors as a dynamical system,
with the goal of learning target-length dependent scaling vectors.

3.3 ADJUSTING ATTENTION FOR CONTEXT EXTENSION

An alternative approach is to modify the attention function itself. Approaches to handling longer con-
texts fall into two main categories: approximate attention and attention modification. In approximate
attention, instead of computing the full attention matrix, methods select a subset of positions to attend
to. In attention modification, the approach incorporates additional information through retrieval or
other mechanisms. We examine four established methods across these categories: sparse attention,
sliding window attention, and retrieval attention.

LongLoRA (Chen et al., 2023b) avoids computing attention ranges over C ′ by only computing
the block-diagonl part of attention. Formally, given a sequence length of C ′, LongLoRA divides it
into M blocks of size B, resulting in a sparse attention matrix A ∈ RC′×C′

with a block-diagonal
structure:

A =


A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · AM

 (11)

where Ai ∈ RB×B is the attention matrix for the i-th block. In addition, they shift the blocks for half
of the heads enabling the information flow between groups via shifting. Notably, while they employ
local attention during the fine-tuning phase, full attention is still adopted during the inference stage.

Landmark Attention (Mohtashami and Jaggi, 2023) addresses the challenge of attending over
long sequences by breaking the input sequence into chunks and using trainable “landmark" tokens
to summarize these chunks. The attention process is carried out in two stages. Given a sequence
of C ′ embeddings, divided into M chunks, each of length B, the first step is to compute global
attention between the query vectors Q ∈ RC′×dk (corresponding to all input embedding) and the
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landmark vectors L ∈ RM×dk (which represent the chunks). From this global attention, a set of
n-most attended-to chunks is selected for further processing. Next, a local attention mechanism is
applied within each of the selected chunks. For the n-th selected chunk, the key matrix for the chunk
is denoted as Kn ∈ RB×dk and Qn ∈ RB×dk . The attention matrices are then computed as follows:

A1 = softmax
(
QLT

√
dk

)
∈ RC′×M ,A2,n = softmax

(
QnK

T
n√

dk

)
∈ RB×B , (12)

The final attention for each embedding is a combination of these two attention. This method efficiently
scales attention mechanisms for long sequences by focusing on landmark tokens that summarize
large parts of the sequence, followed by local attention within the relevant chunks.

LM-Infinite (Han et al., 2023) (a.k.a., Sliding Window Attention) maintains a sliding local window of
size M along with a fixed global memory of G positions at the starting point of the given embedding.
Given C ′ embeddings, attention is computed over the M embeddings in its local window and G
embeddings in global memory. LM-Infinite replaces relative positional information n − m with
min(n−m,C) while computing the query and key product in Eq 4. Altogether, LM-Infinite reduces
the complexity from O((C ′)2) to O(C ′(M +G)) without the need to scale positional encoding.

Self-Extend (Jin et al., 2024) maps the unseen positions in extended context length C ′ to positions
within the pretraining context length C to avoid training. For each embeddings, Self-Extend chooses
closest M embeddings and any embeddings beyond are divided into multiple groups. Each group
contains N embeddings. When performing query-key product between two positions m and n in
Equation 4, the relative positional information n−m is replaced by r which is computed by scaling
n−m w.r.t M and N :

r =

{
n−m, n−m ≤ M,

M +
⌊
n−m
N

⌋
−
⌊
M
N

⌋
, n−m > M.

(13)

where ⌊·⌋ denotes the floor division. The maximum extended context length C ′ is (C −M) ·N +M .

4 LONG-CONTEXT EXTENSION PROTOCOL

Base Model All models start from an identical base checkpoint. We choose to use five different base
models LLaMA2-7B, LLaMA2-13B, LLaMA2-70B (Touvron et al., 2023), Phi-2(Javaheripi et al.,
2023), LLaMA3-8B(Dubey et al., 2024)for context extension experiments, to verify whether the trends
and analyses we observed are consistent across different base models, thereby avoiding potential
over-generalization. Note that in our main findings, we only report results with LLaMA2-7B
base model to maintain conciseness and avoid redundancy as we find most of general findings from
LLaMA2-7B can be transferred to all other models. Results from other models are provided in
Appendix 7.7.

Fine-Tuning We sample 1B tokens from a long-context data mixture following Fu et al. (2024).
The data details are reported in Appendix 7.9. We focus on extending the context window from 4k
to 32k since most benchmarks require contexts under 32k. We maintain a fixed training recipe to
ensure consistency across all models (Chen et al., 2023b). We follow existing practices by keeping an
exponential moving average (EMA) of model weights with a constant decay, a linear learning rate
warm-up and zero weight decay. Most training hyperparameters are based on (Fu et al., 2024), with
the learning rate set to 2× 10−5. Our experiments are done on 8 NVIDIA A100 GPUs.

For LongLora, we fine-tune the weights of the LoRA adapter with trainable embedding and nor-
malization, then merge these trainable weights with the LLaMA2 base model for evaluation. For
Landmark Attention, the training context length is set to 512, with a block size of 64. For CLEX, we
set the max scale factor to 32 and use the SiLU activation function.

We reuse the original scale factor to maintain consistency for NTK, YaRN, and Position Interpolation
methods. However, this base factor significantly degrades continual fine-tuned models, particularly
causing performance deterioration in shorter sequences. Therefore, we conduct a grid search to
determine a better scale factor for different input lengths for NTK-RoPE method. Based on our
findings, we follow and improve upon Fu et al. (2024) to set the scale factor for NTK-RoPE method.
The scale factor and its relationship with perplexity are reported in the Appendix 7.11. Please refer to
the Appendix 7.8 for detailed hyperparameter setups.
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Table 1: Overview of results across different extension types.

Attention Mechanisms Model PPL Needle Mshots LongB RULER

Exact
Attention

Frozen NTK-F 14.52 18.8 64.5 25.54 0.72

Fine-Tuned

PI 5.95 42.1 75.5 33.48 57.66
YaRN 5.93 46.7 75.0 33.45 36.95
CLEX 5.82 71.1 74.0 33.48 52.17

NTK-32K 5.79 83.7 71.0 35.32 59.42
NTK-64K 5.93 69.1 73.0 34.30 60.03

Modified.
Attention

Modified. LM-Infinite 6.71 23.9 61.5 25.84 12.34
Attention Self-Extend 6.11 25.8 72.0 33.62 29.50

Approxi. LongLora 9.89 20.3 55.5 23.30 3.53
Attention Landmark 8.13 50.9 50.0 28.19 13.56

Metrics We consider two sets of intrinsic metrics. The first is based on perplexity. We use the
book corpus PG19 (Rae et al., 2019) and the Proof-pile dataset (Azerbayev et al., 2023) to evaluate
the long sequence language modeling performances. Following Press et al. (2022), all perplexity
evaluations are calculated using a sliding window with a window size of 256.

The second is based on retrieval. We focus on the needle in the haystack task (gkamradt, 2023)(NIAH).
NIAH involves identifying a specific, relevant piece of information (the "needle") within a large
set of irrelevant data (the "haystack"). This task is commonly used to test the precision and recall
capabilities of LLMs in scenarios where the relevant data is sparse and surrounded by a significant
amount of noise. Additionally, we evaluate with RULER (Hsieh et al., 2024). RULER enhances the
standard NIAH test by incorporating variations with different types and quantities of needles with
new task categories, such as multi-hop tracing and aggregation.

For extrinsic metrics, we consider a collection of tasks. LongBench (Bai et al., 2023) is a family of
bilingual, multitask evaluations for long-context understanding widely used in measuring the long-
context abilities of LLMs (Jin et al., 2024; Xiao et al., 2024; Lu et al., 2024). LongBench includes
single-document question answering, multi-document QA, summarization, few-shot learning, and
code completion. We follow Bai et al. (2023) to evaluate the models on 32k context window sizes by
truncating the prompt from the middle when the task length exceeds a designated context window
size. We also consider the ManyShots tasks, where the long-context model will be given several
examples as prompts. We use the Trec News (Li and Roth, 2002) dataset for this task.

5 EXPERIMENTAL RESULTS AND ANALYSIS

5.1 RESULT OVERVIEW

Table 1 overviews the results across both types of evaluation. The main result demonstrate that
fine-tuned exact attention methods for long contexts, such as NTK-32K and YARN, consistently
outperform approximate attention methods by a significant margin. This suggests that trading accuracy
for speed in approximate attention methods can result in a loss of important reasoning capabilities,
particularly for retrieval-based tasks. The performance disparity highlights the importance of exact
attention in maintaining high accuracy over extended contexts, emphasizing the need for careful
consideration of attention type in model design for long-context tasks. We now consider each type of
result in more detail.

5.2 INTRINSIC TASKS

Perplexity Table 2 shows perplexity scores across length. We see that continuous fine-tuning
methods like PI, YaRN, and LongLora effectively keep low perplexity scores within the pre-training
context length. However, when the context length exceeds perplexity scores escalate once the context
surpasses the pre-trained window. Only NTK and CLEX can generalize to unseen sequence length in
both pretraining and continual finetuning. Additionally, we find that exact attention maintains better
perplexity than LoRA, which may reduce LongLora’s ability. We also note that results on both PG19
and Proof-file gave nearly consistent conclusions.
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Table 2: Perplexity of different methods on PG 19 and Proof-file. NTK-32K and NTK-64K refer to
NTK-Dynamic, which requires finetuning. Len refers to the longest-length examples seen at training
or fine-tuning. Ex refers to the exact attention. All results are produced by our experiments.

Model Details Eval Length
Len Ex Methods 2k 4k 8k 16k 32k 64k

PG19

Frozen
4k ✓ LLaMA2 6.61 6.30 - - - -
4k LM-Infinite 6.61 6.30 6.25 6.45 6.71 8.49
4k ✓ NTK-Frozen 6.61 6.30 6.82 7.94 14.52 -
4k Self-Extend 6.61 6.32 6.15 6.07 6.11 7.15

Finetuned

32k ✓ PI 6.88 6.52 6.27 6.08 5.95 -
32k ✓ NTK-32K 6.63 6.32 6.09 5.92 5.79 5.76
32k ✓ YaRN 6.70 6.39 6.16 6.01 5.93 -
32k ✓ CLEX 6.85 6.62 6.14 5.93 5.82 5.79
32k LongLora 12.80 11.52 10.70 10.18 9.89 -
32k Landmark 8.15 8.14 8.14 8.11 8.13 8.15

64k ✓ NTK-64K 6.83 6.49 6.25 6.07 5.93 5.85

Proof-file

Frozen
4k ✓ LLaMA2 3.34 3.04 - - - -
4k LM-Infinite 3.34 3.04 2.94 3.02 3.11 3.12
4k ✓ NTK-Frozen 3.34 3.04 2.91 3.09 4.06 12.65
4k Self-Extend 3.35 3.06 2.88 2.78 2.75 2.90

Finetuned

32k ✓ PI 3.34 3.03 2.83 2.68 2.58 -
32k ✓ NTK-32K 3.27 2.98 2.78 2.64 2.54 2.48
32k ✓ YaRN 3.29 3.00 2.81 2.68 2.59 106.38
32k ✓ CLEX 3.37 3.10 2.80 2.65 2.55 2.48
32k LongLora 5.97 5.10 4.58 4.27 4.13 -
32k Landmark 4.51 4.50 4.48 4.49 4.49 4.49

64k ✓ NTK-64K 3.33 3.03 2.83 2.69 2.58 2.51

Table 3: RULER evaluation at lengths from 4k to 64k. Score is computed by averaging the accuracy
of 13 tasks. Train Len refers to the longest-length examples seen at continuous finetuning.

Models Train
Len 4k 8k 16k 32k 64k 128k

Frozen
LLaMA2 4k 80.94 - - - - -
LM-Infinite 4k 81.05 30.01 18.02 12.34 10.56 -
NTK-Frozen 4k 81.14 44.45 14.79 0.72 0.91 -
Self-Extend 4k 65.03 50.73 44.02 29.50 9.34 -

Finetuned

PI 32k 84.56 76.04 69.64 57.66 0.00 -
NTK-32K 32k 86.58 77.75 70.01 59.42 46.26 29.91
YaRN 32k 79.12 65.60 54.21 36.95 0.00 -
CLEX 32k 50.18 63.93 64.35 52.17 30.61 -
LongLora 32k 10.58 6.37 3.67 3.53 0.00 -
Landmark 32k 22.37 17.52 16.31 13.56 14.15 -

NTK-64K 64k 86.60 76.34 69.56 60.03 49.31 40.09

Needle-in-the-haystack NIAH results are shown in Figure 1. Continuous finetuning approaches
such as NTK, PI, and YaRN have successfully retrieved the "needle" within the pretraining length.
Yet, only the NTK and CLEX method can retrieve the needle beyond the pretraining length, aligning
with the perplexity results. The performance of the Exact Attention Method generally surpasses that
of the Approximate Attention Methods. LM-Infinite and Landmark Excel are only within the local

7
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Figure 1: Needle in a Haystack evaluation. Green squares indicates a high retrieval success rate, the
white dashed line denotes the longest length examples seen at training or finetuning, and the Y-axis
represents the distance to the retrieved target.
window, and they struggle to retrieve the intermediate text accurately. Regarding the Dynamic NTK
method, NTK-F exhibits weak generalization when not trained. When trained on the same amount of
data(1B), NTK-32K outperforms NTK-64K. When trained on 2B tokens, NTK-64K demonstrated a
significant performance improvement, details are in Appendix 7.10.

RULER We test all models on 13 tasks from the four RULER (Hsieh et al., 2024). Each model is
evaluated with 500 examples for lengths of 4k, 8k, 16k, 32k, 64k and 128k. Results are compared
with the Llama2-7B baseline in Table 3. We observed a similar trend as in the NIHK task, NTK has
the minimal performance degration w.r.t the increase of length beyond pretrained or finetuned length.
NTK-32k maintained relatively good performance compared to other methods finetuned with a length
cap of 32k. Performance of models on different length and breakdown by 13 subtasks can be found
in Appendix 7.14.

5.3 EXTRINSIC TASKS

LongBench The evaluation results of most methods on LongBench are presented in Table 4, and
results on all methods are presented in Appendix 7.13. Both LM-Infinite and Landmark Attention
exhibit significant performance degradation compared to the base model. In contrast, the NTK, PI,
and YaRN methods have successfully maintained their performance at 32k, demonstrating comparable
results among these methods. This suggests that PI and YaRN perform similarly in downstream tasks,
while the NTK family of models remains stable.

Notably, the LongLoRA method, which utilizes LoRA, also experiences a performance decline
relative to the base checkpoint, LLaMA2. We argue that this may be due to the sensitivity of the
training procedures for LongLoRA, and we acknowledge this in our limitation discussion section.

Furthermore, the overall performance on LongBench has not shown significant improvement over
LLaMA2.We hypothesize that this is due to the average length of LongBench test data (approximately
7.5k) being considerably shorter than the 32k context window of the long-context methods.
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Table 4: LongBench results. N-32 and N-64 refer to NTK finetuned on 32K and 64K context
lengths respectively. SE refers to Self-Extend. YN refers to YaRN. CX refers to CLEX. LLR refers
to LongLora. Len refers to average length of the datasets. Train Len refers to the longest length
examples seen at training or finetuning. Eval Len refers to the maximum length of the input prompt.
✓refers to whether the method is exact attention.

Frozen Finetuned
Len Base N-F SE PI N-32 YN CX LLR Land N-64

✓ ✓ ✓ ✓ ✓ ✓

Train Len 4k 4k 4K 32k 32k 32k 32k 32k 32k 64k
Eval Len 4k 32k 32K 32k 32k 32k 32k 32k 32k 32k

NQA 18k 21.09 3.88 23.49 23.02 23.73 19.82 24.19 12.07 12.47 24.31
QAP 4k 26.94 26.79 28.75 25.85 27.50 26.98 23.36 20.15 19.06 24.97
MQA 5k 32.42 29.82 32.66 35.10 38.22 37.11 40.83 24.50 21.86 40.60
HQA 9k 31.23 32.10 37.63 36.98 41.56 38.60 35.59 27.41 33.66 41.47
WQA 5k 25.75 22.34 30.70 29.38 31.58 30.63 28.24 21.46 24.94 28.62
MSQ 11k 10.55 8.84 15.73 16.80 17.41 22.08 17.12 11.46 11.41 18.24
GR 9k 17.32 17.87 13.15 25.61 28.27 20.98 24.68 24.05 17.20 24.37
QSM 11k 21.28 15.35 20.20 21.19 21.52 20.66 21.55 17.66 18.83 21.65
MWS 2k 3.44 9.30 1.50 10.55 22.13 8.91 16.96 21.19 19.43 25.02
TRE 5k 66.00 67.50 69.00 71.00 69.00 69.00 67.50 50.00 49.00 69.00
TQA 8k 87.89 18.69 88.44 88.55 88.86 89.63 89.36 12.28 74.75 88.65
SMS 6k 41.70 32.46 43.76 43.35 42.21 44.25 43.02 13.45 40.38 41.59
PSC 11k 2.10 2.67 0.00 1.50 2.68 1.05 2.50 4.57 0.64 2.09
PSR 9k 9.00 3.77 4.50 4.50 4.62 3.79 8.50 3.50 2.50 6.50
LCC 1k 68.22 63.64 68.47 55.05 56.78 54.06 49.45 57.12 56.70 52.04
REP 4k 61.73 53.69 59.99 47.26 49.09 47.60 42.84 51.92 48.23 39.68

Avg. 7k 32.92 25.54 33.62 33.48 35.32 33.45 33.48 23.30 28.19 34.30
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Figure 2: Perplexity and averaged downstream task accuracy for NIAH, LongBench and RULER.

6 ADDITIONAL ANALYSIS

Perplexity and Downstream Tasks While prior work (Sun et al., 2021; An et al., 2023) suggests
that perplexity may not reliably predict long-range task performance, our analysis in Figure 2 reveals
to some extent perplexity might be reliable. We observe a general correlation between perplexity and
model performance across tasks. However, we also observed that approximate attention methods,
including LongLora and Landmark on RULER, show minor deviations but maintain a roughly linear
relationship. We hypothesize that this apparent discrepancy with previous findings may stem from
their less controlled experimental conditions and noisier datasets.

Context extension hurts in the short term and gains in the long term While context extension
seems to improve perplexity, in Table 4, we do not notice a significant gain in performance. We
hypothesize that while this dataset contains long tasks, the average length is much shorter than 32K.
These methods seem to improve the ability to model language over the long term but hurt in the short
term. To understand this better we compute the averaged negative likelihood of each position of
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Figure 3: (Left) Average negative log-likelihood of different models by context position. (Right)
Performance of different context extension methods across model sizes.

YaRN, LLaMa2, and NTK-32K per position (with LLaMa2 seeing just tokens every 4k chunks) in
Figure 3(Left). Additionally, we evaluated these methods on short tasks from standard benchmarks
and found that extension methods exhibited a slight decrease in performance on short-text tasks
compared to the base model, as shown in Appendix Table 7. This aligns with our observations in
Figure 3(Left), which analyzes the average negative log-likelihood across different context positions.

General Discoveries across Model Sizes Our analysis across LLaMA2-7b, 13b, and 70b base
models reveals several key patterns. Non-extension methods like NTK-Frozen and Self-Extend
demonstrate improved performance on intrinsic tasks such as Needle-in-a-Haystack at larger scales,
while maintaining consistent performance rankings across model sizes. Although continual fine-
tuning methods still outperform non-extension approaches within their extension range, the correlation
between perplexity and downstream task performance remains robust. These findings, shown in
Figure 3(Right), validate our conclusions about long-context capabilities across model scales and
provide deeper insights into the relationship between model scaling and context extension.

NTK Generalizes Beyond 32k In Figure 1, we observe that NTK-32K successfully generalizes to
unseen sequence lengths beyond 32k in both Needle-in-the-Haystack and RULER tasks, performing
on par with NTK-64K. In contrast, NTK-F demonstrates generalization up to 8k but fails to extend
further. This suggests that while NTK methods may possess the capability to generalize to longer
unseen sequences, their effectiveness is contingent upon conditions such as continual fine-tuning.

We find that up until 4K they all improve as expected with LLaMa2 having the best NLL. After 4K
they all fluctuate in average, but we see a clear separation with Yarn and NTK taking into account the
long context. At extremely long context NTK remains a strong model whereas Yarn becomes reverts
to a similar performance as LLaMa2.

7 LIMITATIONS AND CONCLUSION

Our study has several limitations. The experiments are confined to context extensions up to 32k
tokens, and behavior patterns may vary at longer extensions. Additionally, our standardized training
protocol with fixed hyperparameters might disproportionately affect certain models’ performance.
Furthermore, our perplexity findings may be specific to our experimental settings and may not
generalize to models beyond our test scope.

In this paper, we use a standardized approach to assess the performance of various long-context
methods in LLMs. Our study underscores the role of perplexity as a crucial, performance indicator
at length and highlights the trade-offs inherent in different attention mechanisms. We analyze the
strengths and weaknesses of various approaches, providing valuable insights for future research. All
our resources, including codebases, models, and checkpoints, will be open-sourced upon acceptance,
fostering future advancements in this pivotal area of AI research.
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work on evaluating context extension of LLMs, we have taken the
following steps: (1) We provide detailed descriptions of our model architectures, training procedures,
and hyperparameters in the methodology section of our paper; (2) Our code, including scripts for data
preprocessing, model training, and evaluation, will be available in a public GitHub repository; (3) We
have used standard, publicly available datasets for both training and evaluation, which are clearly
referenced in our paper; (4) For context extension method, we provide a step-by-step explanation in
the main text; (5) Finetuned model checkpoints will be available for download in the huggingface
hub. By following the instructions in the future repository and using the provided resources, other
researchers should be able to replicate our experiments and verify our results.
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APPENDIX

7.1 RESULTS ON LARGER MODEL SIZES OF LLAMA-2

7.1.1 RESULT OVERVIEW

Result overview of 7b, 13b, and 70b models results across different extension types. Note that the
perplexity is evaluated on Proof-file. Llama2-13b and Llama2-70b is evaluated on 4k context length
for perplexity, Longbench and RULER.

Table 5: Overview of 7b, 13b, and 70b models results across different extension types.

Model Method PPL Needle LongB RULER

Llama2-7b

Base (4k) 3.04 8.40 32.92 80.94
NTK-Frozen 4.06 18.80 25.54 0.72
Self-Extend 2.75 25.80 33.62 29.50

PI 2.58 42.10 33.48 57.66
NTK-32k 2.54 83.70 35.32 59.42

YaRN 2.59 46.70 33.45 36.95
CLEX 2.55 71.10 33.48 52.17

Llama2-13b

Base (4k) 2.90 17.00 33.84 86.35
NTK-Frozen 3.31 43.00 31.87 2.30
Self-Extend 2.65 53.50 33.69 30.23

PI 2.46 45.00 37.45 55.95
NTK-32k 2.44 82.20 38.41 58.38

YaRN 2.46 44.20 34.03 44.79
CLEX 2.43 78.90 35.89 52.76

Llama2-70b

Base (4k) 2.66 14.70 34.00 93.67
NTK-Frozen 3.25 30.90 32.40 11.39
Self-Extend 2.43 32.60 29.10 31.94

PI 2.26 49.80 42.44 77.98
NTK-32k 2.25 90.50 41.51 76.97

7.1.2 PERPLEXITY AND DOWNSTREAM TASKS

As shown in Figure 4, we observe a general correlation between perplexity and model performance
across different model sizes. Most models exhibit a negative correlation between perplexity and
performance on LongBench and RULER. However, the correlation is weaker on Needle-in-the-
haystack.
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Figure 4: Perplexity and averaged downstream task accuracy for NIAH, LongBench and RULER.

7.1.3 NEEDLE-IN-THE-HAYSTACK

The result of the Needle-in-the-haystack task across different model sizes and extension types are
shown in Figure 5. Non-extension methods like NTK-Frozen and Self-Extend demonstrate improved
performance at larger scales, while maintaining consistent performance rankings across model sizes.
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Figure 5: Needle in a Haystack evaluation with different sizes of models. Green squares indicates a
high retrieval success rate, the white dashed line denotes the longest length examples seen at training
or finetuning, and the Y-axis represents the distance to the retrieved target.

7.2 KENDALL CORRELATION OF DOWNSTREAM TASK PERFORMANCE AND PERPLEXITY

We use a non-parametric method, the ken-tau correlation to evaluate the correlation between down-
stream task performance and perplexity.

Consistency Across Tasks The results show a strong and statistically significant negative correla-
tion between perplexity and downstream performance for most tasks. This supports the claim that
lower perplexity values are generally associated with better downstream task performance.

Task-Specific Observations The strongest correlations are observed for Needle and RULER, where
Kendall’s tau indicates a robust alignment between perplexity and task performance rankings. For
Mshots, the correlation is moderate and statistically weaker, suggesting that perplexity’s predictive
ability may vary slightly depending on the task.

Impact of Perplexity Range Even when perplexity values are close (e.g., below 6), perplexity
rankings remain a reliable indicator of downstream performance. However, the narrower range may
amplify the observed performance differences, highlighting the need for nuanced interpretation.
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Table 6: Perlexity and Downstream Tasks Correlations and Interpretations.

Task Kendall’s Tau p-value Interpretation
Needle -0.7191 0.0041 Statistically significant (p < 0.01).
Mshots -0.4944 0.0482 Borderline significant (p ≈ 0.05).
LongB -0.6136 0.0149 Statistically significant (p < 0.05).
RULER -0.7191 0.0041 Statistically significant (p < 0.01).

7.3 PERFORMANCE ON SHORT GENERAL TASKS

Short-context Tasks We analyzed performance on short tasks from the Open LLM Leaderboard1

to validate our hypothesis regarding context length impact. Results are shown in Table 7. Our analysis
revealed three key findings: (1) long-context extension methods generally show minor performance
degradation on short-text tasks compared to the base model, with NTK-Frozen outperforming NTK-
RoPE, (2) continuous fine-tuning methods demonstrate more significant short-text performance
reduction, suggesting a trade-off between long and short context capabilities, and (3) these results
corroborate the negative log-likelihood patterns observed in Figure 3 (Right).

Table 7: Model Performance on short Tasks. HS refers to Hellaswag, TQA refers to TruthfulQA and
WG refers to WinoGrande.

Methods ARC-c ARC-e HS MMLU TQA WG Avg.
Llama2-7b 52.73 81.31 78.96 42.09 38.97 74.43 61.42
LM-Infinite 52.56 81.36 78.95 42.09 38.96 74.11 61.34
Self-Extend 52.56 81.31 78.94 42.07 38.97 74.43 61.38
NTK-Frozen 52.73 81.31 78.96 42.09 38.97 74.43 61.42

PI 51.11 81.14 77.44 37.19 38.03 71.74 59.44
NTK-32k 49.15 80.22 74.48 35.25 38.13 72.61 58.31
NTK-64k 46.08 78.32 70.68 34.27 39.08 70.24 56.45

YaRN 53.41 81.82 78.47 41.06 38.63 74.43 61.30
CLEX 50.60 81.27 76.06 37.54 36.10 64.72 57.72

LongLora 46.67 78.58 67.08 26.29 37.61 55.25 51.91

7.4 EFFICIENCY ANALYSIS

We conduct inference speed comparisons under controlled conditions using the same hardware setup.
As shown in Table 8, we observed that approximate attention methods are indeed faster, achieving a
speedup of approximately 1.5x to 2x compared to LLaMA when the context length is short; however,
when the context length gets longer, we didn’t see a significant margin. We hypothesize that the
discrepancy between the theoretical FLOPs-based comparisons and the observed speedup arises due
to differences in hardware characteristics and CUDA implementations of the respective methods.

7.5 MANY-SHOT IN-CONTEXT LEARNING
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Figure 6: Many-shot ICL on TREC News.

Many-shot In-Context Learning with Trec News
We evaluate TREC News (Li and Roth, 2002) with 1
to 1000 in-context examples. In general, performance
improves with more examples in Figure 6. Exact At-
tention methods show significant gains from 10 to 50
examples (+44.0%), with slower growth from 50 to
100 examples (+5.7%). Approximate Attention meth-
ods consistently underperform. Performance gains
align with model perplexity; NTK-Frozen excels with
fewer examples but underperforms with more.

1https://huggingface.co/spaces/open-llm-leaderboard-old/open_llm_
leaderboard
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Table 8: Efficiency analysis for different sequence lengths (4k, 8k, 16k, 32k). The prefill time(Pre)
cost represents the time required to generate the first token. The decoding speed(Dec) (seconds /
per token) is averaged over 100 token inferences at each sequence length. Memory consumption
corresponds to the peak GPU memory usage during inference. All methods, except for LM-Infinite
and Landmark, utilize Flash-Attention 2 for enhanced computational efficiency.

Method 4k 8k 16k 32k
Pre (s) Dec (s) Mem (GB) Pre (s) Dec (s) Mem (GB) Pre (s) Dec (s) Mem (GB) Pre (s) Dec (s) Mem (GB)

Llama2 1.15 0.03 17.13 1.51 0.06 21.61 2.41 0.11 30.59 4.63 0.21 48.55
NTK-F 1.16 0.04 17.13 1.56 0.05 21.61 2.39 0.06 30.59 4.69 0.09 48.55

PI 1.15 0.03 22.05 1.54 0.03 26.54 2.43 0.05 35.51 4.74 0.08 53.47
NTK-32k 1.17 0.04 17.11 1.56 0.04 21.60 2.42 0.06 30.58 4.75 0.09 48.53

YaRN 1.23 0.03 18.05 1.53 0.03 22.54 2.43 0.05 31.51 4.80 0.08 49.47
CLEX 1.16 0.05 17.16 6.99 0.07 21.74 7.68 0.11 30.92 10.06 0.18 49.28

LM-Infinite 1.56 0.05 17.23 3.34 0.07 25.47 5.82 0.11 38.60 11.58 0.18 65.61
Self-Extend 1.24 0.05 17.23 1.63 0.07 21.81 2.63 0.13 30.98 4.97 0.22 49.32
LongLora 1.16 0.05 17.16 1.65 0.05 21.65 2.60 0.05 30.62 5.07 0.08 48.58
Landmark 8.62 0.08 18.77 17.65 0.08 22.97 36.47 0.09 31.22 77.77 0.09 47.74

7.6 DETAILS OF YARN EXTENSION METHOD

YaRN, another RoPE extension method, uses “NTK-
by-parts" interpolation strategies across different dimensions of the embedding space and introduces
a temperature factor to adjust the attention distribution for long inputs.

αYaRN
j = ((1− γj)

1

t
+ γj)/

√
T (14)

We use a ramp vector γ to determine the interpolation between the 1
t and the original frequency base.

The interpolation gating is set based on the frequency for the dimension j.

γj =


0, if θj < p,

1, if θj > q,
θj−p
q−p , otherwise.

(15)

The values of p, q, T can be tuned as needed.

7.7 LLAMA-3 AND PHI-2 FOR CONTEXT EXTENSION

We use other open-weight models, LLaMA-3-8B (AI@Meta, 2024) base and Phi-2-base (Javaheripi
et al., 2023) as the base point for context extension, to verify whether the trends and analyses we
observed are consistent across different base models. Using an identical training recipe, we re-train
and re-evaluate seven models with Llama-3-8B base and Phi-2-base.

7.7.1 PERPLEXITY ON PROOF-FILE OF LLAMA-3 AND PHI-2

We evaluate the perplexity of LLaMA-3-8B base in Table 9 and Phi-2-base in Table 10. Consistent
with our observations on LLaMA-2-7B, continuous fine-tuning methods like PI and YaRN effectively
maintain low perplexity scores within the pre-training context length. However, perplexity scores
escalate once the context length exceeds the pre-trained window. Notably, only NTK and CLEX
could generalize to unseen sequence lengths during both pre-training and continual fine-tuning.

7.7.2 RULER OF LLAMA-3 AND PHI-2

We test all models on all 13 diverse tasks for LLaMA-3-8B and 12 tasks (except QA-2) for Phi-2
from the four Ruler Hsieh et al. (2024) categories in Table 11 and Table 12. Consistently, NTK-32k
maintains relatively strong performance compared to other methods fine-tuned with a length cap
of 32k and showing a slight drop in performance at 64k. The only exception is Self-Extend on
LLaMA-3-8B, which benefits from a larger pretraining length of 8192. Self-Extend demonstrates
superior performance on LLaMA-3 compared to LLaMA-2 and Phi-2, with performance approaching
that of CLEX and PI.
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Table 9: Perplexity results of different methods on Proof-file with LLaMA-3-8B base. Len refers
to the longest-length examples seen at training or fine-tuning. Ex refers to the exact attention. All
results are produced by our experiments.

Model Details Eval Length
Len Ex Methods 2k 4k 8k 16k 32k 64k

Frozen
8k ✓ LLaMA-3 2.98 2.72 2.54 31.11 318 -
8k ✓ NTK-Frozen 2.98 2.72 2.54 2.48 3.80 8.69
8k Self-Extend 2.98 2.72 2.54 2.43 2.36 2.62

Finetuned
32k ✓ PI 3.13 2.83 2.63 2.49 2.39 38.77
32k ✓ NTK-32K 3.05 2.76 2.57 2.43 2.34 2.28
32k ✓ YaRN 3.16 2.86 2.66 2.52 2.43 4989
32k ✓ CLEX 3.30 2.89 2.64 2.47 2.38 2.39

Table 10: Perplexity results of different methods on Proof-file with Phi-2-base. Len refers to the
longest-length examples seen at training or fine-tuning. Ex refers to the exact attention. All results
are produced by our experiments.

Model Details Eval Length
Len Ex Methods 2k 4k 8k 16k 32k 64k

Frozen
2k ✓ Phi-2-base 4.02 25.72 175.05 - - -
2k ✓ NTK-Frozen 4.02 3.73 4.07 5.49 12.58 36.68
2k Self-Extend 4.08 3.70 3.48 3.42 3.48 3.73

Finetuned
32k ✓ PI 7.53 6.75 6.25 5.97 5.83 45.00
32k ✓ NTK-32K 4.24 3.81 3.51 3.32 3.18 3.20
32k ✓ CLEX 5.53 4.32 3.78 3.51 3.42 3.60
64k ✓ NTK-64K 4.63 4.14 3.82 3.61 3.47 3.38

7.8 IMPLEMENTATION DETAILS

7.8.1 TRAINING

To maintain consistency across all models, we use a fixed training protocol (Chen et al., 2023b). We
adopt standard practices by applying an exponential moving average (EMA) to the model weights
with a constant decay rate. Most training hyperparameters are based on (Fu et al., 2024), including a
learning rate of 2× 10−5. We implement a linear warm-up for the learning rate and set the weight
decay to zero, utilizing 8 NVIDIA A100 GPUs. We present the hyperparameter settings for different
methods on LLaMA-2-7B, LLaMA-3-8B, and Phi-2 during the training stage in Table 13.

LLaMA-2 For LongLora, we fine-tune the LoRA adapter weights along with trainable embeddings
and normalization, subsequently integrating these trained weights into the LLaMA2 base model for
evaluation. For Landmark Attention, the training context length is 512, with a block size of 64. For
YaRN, we set beta fast to 32, beta slow to 1, and α to 8.0. For CLEX, we set the max scale factor
to 32 and use the SiLU activation function. For NTK-RoPE, given the maximum observed length
during training or inference, Ctest, and the scaling hyperparameter s, we follow Fu et al. (2024) in
replacing t with s · max(C′,Ctest)

C − (s− 1), and set the hyperparameter s to C′

2C during both training
and inference. We set s to 4.0 for NTK-32k and s to 8.0 for NTK-64k. For LM-infinite, we set the
global memory G = 10 and the local window M = 4096.

LLaMA-3 For YaRN, we set beta fast to 32, beta slow to 1, and α to 4.0. For CLEX, we set the
max scale factor to 16 and use the SiLU activation function. For NTK-RoPE, we set s to 2.0.

Phi-2 For CLEX, we set the max scale factor to 64 and use the tanh activation function. For
NTK-RoPE, we set s to 8.0 for NTK-32k and 16.0 for NTK-64k.
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Table 11: RULER evaluation on seven methods with LLaMA-3-8B. Performance of models evaluated
at length from 8k to 64k. Each score is computed by averaging the accuracy of 13 tasks. Train Len
refers to the longest-length examples seen at continuous finetuning.

Models Train
Len 4k 8k 16k 32k 64k

Frozen
LLaMA-3 8k 93.63 91.16 0.06 0.01 0.05
NTK-Frozen 8k 93.63 91.15 6.86 1.98 0.02
Self-Extend 8k 92.73 84.11 78.78 71.40 38.79

Finetuned
PI 32k 91.60 88.56 86.99 73.14 0.02
NTK-32K 32k 93.68 91.67 91.12 86.04 65.42
YaRN 32k 92.51 90.59 88.07 68.69 0.06
CLEX 32k 89.65 87.35 87.89 69.27 39.81

Table 12: RULER evaluation on seven methods with Phi-2-base. Performance of models evaluated
at length from 2k to 64k. Each score is computed by averaging the accuracy of 12 tasks. Train Len
refers to the longest-length examples seen at continuous finetuning.

Models Train
Len 2k 4k 8k 16k 32k 64k

Frozen
Phi-2-base 2k 83.73 - - - - -
NTK-Frozen 2k 83.98 52.95 18.09 4.07 0.06 0.00
Self-Extend 2k 68.55 50.82 36.65 22.00 7.83 2.32

Finetuned
PI 32k 25.51 23.19 16.88 14.99 4.78 0.00
NTK-32K 32k 81.18 66.90 52.57 46.53 32.06 12.84
CLEX 32k 75.33 72.66 53.56 46.23 25.46 13.03
NTK-64K 64k 78.73 59.87 47.56 41.87 25.66 17.69

7.8.2 INFERENCE

For all methods on all base models, we show the hyperparameter settings and present the α used for
different length ranges during inference in Table 14.

LLaMA-2 For Landmark Attention, the training context length is set to 512, with a block size of
64. For Self-Extend, we set the local window size M for neighbor tokens to 1024 and the group size
N to 64. For NTK-RoPE, we replace t with s · max(C′,Ctest)

C − (s− 1) and set s to 4.0 for NTK-32k
and 8.0 for NTK-64k.

LLaMA-3 For Self-Extend, we set the local window size M for neighbor tokens to 2048 and the
group size N to 32. For NTK-RoPE, we set s to 2.0 for NTK-frozen and 4.0 NTK-32k.

Phi-2 For Self-Extend, we set the local window size M for neighbor tokens to 512 and the group
size N to 128. For NTK-RoPE, we set s to 2.0 for NTK-frozen, 8.0 for NTK-32k, and 16.0 for
NTK-64k.

7.9 TRAINING DATA CONSTRUCTION

We sample 1B tokens from a long-context data mixture following Fu et al. (2024). We use the
SlimPajama (Soboleva et al., 2023) dataset for continuous finetuning. This dataset serves as an
open-source replication of the LLaMA (Touvron et al., 2023) pretraining data mixture. It comprises
82% web data (sourced 67% from CommonCrawl and 15% from C4), 4.5% code data (Github),
4.5% Wikipedia content, 4.5% books, 2.5% Arxiv papers, and 2.0% StackExchange content. We use
per-source length-upsampling to sample 1B tokens from the datasets, which increases the portion
of long sequences while keeping the domain mixture the same. We packed all sampled data into
chunks of the corresponding training length, regardless of document boundaries, following common
practiceTouvron et al. (2023); Fu et al. (2024).
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Table 13: Hyperparameters for Different Long Sequence Methods in Training.

Models Methods Train
Len

Train
Tokens α bsz lr

LLaMA-2

PI 32k 1B 8.0 32 2e-5
NTK-32K 32k 1B 29.0 32 2e-5
YaRN 32k 1B 8.0 32 2e-5
LongLora 32k 1B 8.0 32 2e-5
Landmark 32k 1B - 32 2e-5
NTK-64K 64k 1B 57.0 32 2e-5
NTK-64K-2B 64k 2B 57.0 32 2e-5

LLaMA-3
PI 32k 1B 4.0 32 2e-5
NTK-32K 32k 1B 7.0 32 2e-5
YaRN 32k 1B 4.0 32 2e-5

Phi-2
PI 32k 1B 16.0 32 2e-5
NTK-32K 32k 1B 121.0 32 2e-5
NTK-64K 64k 1B 497.0 32 2e-5

Table 14: Hyperparameters for the Scale Factor α Different Long-context Methods in Inference.

Models Methods 4k 8k 16k 32k 64k

LLaMA-2

NTK-Frozen 1.0 3.0 7.0 15.0 31.0
PI 8.0 8.0 8.0 8.0 8.0
NTK-32K 29.0 29.0 29.0 29.0 61.0
YaRN 8.0 8.0 8.0 8.0 8.0
LongLora 8.0 8.0 8.0 8.0 8.0
NTK-64K 57.0 57.0 57.0 57.0 57.0

LLaMA-3

NTK-Frozen 1.0 1.0 3.0 7.0 15.0
PI 4.0 4.0 4.0 4.0 4.0
NTK-32K 13.0 13.0 13.0 13.0 29.0
YaRN 4.0 4.0 4.0 4.0 4.0

Phi-2

NTK-Frozen 3.0 7.0 15.0 31.0 63.0
PI 16.0 16.0 16.0 16.0 16.0
NTK-32K 121 121 121 121 249
NTK-64K 497 497 497 497 497

7.10 LONGER MODEL NEEDS MORE TRAINING TOKENS

We observe that the performance of NTK-64K is not as good as NTK-32K. Consequently, we further
sample 2B tokens from a long-context data mixture from Fu et al. (2024) for training and evaluate the
model on the "Needle in A Haystack" task, as shown in Figure 7. Our NTK-64K model demonstrates
a significant performance improvement when trained with more tokens, indicating that longer models
require more tokens for effective training.

7.11 ROPE SCALE FACTOR FOR DYNAMIC NTK

We observe that the scale factor significantly degrades NTK-Dynamic models, particularly causing
performance deterioration in shorter sequences. Therefore, we conduct a grid search to determine a
better scale factor for different input lengths. The scale factor and its relationship with perplexity on
PG19 are reported in Table 15.
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Figure 7: Needle in a Haystack evaluation. “NTK-64-2B” represents the NTK-64K model trained
with 2B tokens. Green squares indicates a high retrieval success rate, the white dashed line denotes
the longest length examples seen at training or finetuning, and the Y-axis represents the distance to
the retrieved target.

Table 15: The scale factor and its relationship with perplexity on PG19. We only use the first 2
documents of PG19 to calculate the perplexity.

Models Scale Factor 4k 8k 16k 32k 64k

NTK-Frozen

1 7.65 118.82 NaN NaN NaN
3 8.19 7.99 57.15 386.02 NaN
7 9.39 9.26 9.61 72.62 486.13
15 11.53 12.04 12.98 20.15 180.59
31 16.18 20.66 26.67 40.06 69.01
63 30.22 48.78 69.89 89.75 118.59

NTK-32K

1 12.64 NaN NaN NaN NaN
5 7.84 7.638 10.36 NaN NaN
13 7.686 7.459 7.25 8.35 NaN
29 7.689 7.457 7.24 6.82 9.11
61 7.8 7.565 7.34 6.91 6.63

125 7.99 7.774 7.57 7.13 6.83

NTK-64K

1 19.16 NaN NaN NaN NaN
9 8.02 7.79 7.63 22.6 NaN
25 7.89 7.65 7.443 7.04 14.02
57 7.922 7.67 7.44 7.01 6.75

121 8.016 7.75 7.51 7.06 6.77

7.12 LONGLORA VALIDATION

To validate our LongLora Chen et al. (2023b) implementation, we reproduce their Llama-2-7b-
longlora-32k model following LongLora’s training data and training recipe. We evaluate the perplexity
for the corresponding length on PG19 and Proof-file in Table 16.

Table 16: Perplexity results of LongLora reported and our reproduction on PG 19 and Proof-file.

Method 2k 4k 8k 16k 32k

PG19
Llama-2-7b-longlora-32k 8.29 7.83 7.54 7.35 7.22
Our Reproduction 8.10 7.69 7.43 7.28 7.32

Proof-file
Llama-2-7b-longlora-32k 3.35 3.01 2.78 2.61 2.50
Our Reproduction 3.33 3.01 2.80 2.67 2.61
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7.13 LONGBENCH RESULTS

The evaluation results of all methods on LongBench are presented in Table 17.

Table 17: LongBench results. N-32 and N-64 refer to NTK finetuned on 32K and 64K context
lengths respectively. Inf refers to LM-Infinite. SE refers to Self-Extend. LLR refers to LongLora.
AvgLen refers to average length of the datasets. Train Len refers to the longest length examples seen
at training or finetuning. Eval Len refers to the maximum length of the input prompt. ✓refers to
whether the method is exact attention.

Exact AvgLen Frozen Finetuned
Base Inf N-F SE PI N-32 YaRN CLEX LLR Land N-64

✓ ✓ ✓ ✓ ✓ ✓

Train Len 4k 4k 4k 4K 32k 32k 32k 32k 32k 32k 64k
Eval Len 4k 32k 32k 32K 32k 32k 32k 32k 32k 32k 32k

NQA 18,409 21.09 10.39 3.88 23.49 23.02 23.73 19.82 24.19 12.07 12.47 24.31
QAPR 3,619 26.94 22.58 26.79 28.75 25.85 27.50 26.98 23.36 20.15 19.06 24.97
MFQA 4,559 32.42 26.19 29.82 32.66 35.10 38.22 37.11 40.83 24.50 21.86 40.60
HPQA 9,151 31.23 16.13 32.10 37.63 36.98 41.56 38.60 35.59 27.41 33.66 41.47
WMQA 4,887 25.75 20.64 22.34 30.70 29.38 31.58 30.63 28.24 21.46 24.94 28.62
MSQ 11,214 10.55 5.26 8.84 15.73 16.80 17.41 22.08 17.12 11.46 11.41 18.24
GR 8,734 17.32 13.43 17.87 13.15 25.61 28.27 20.98 24.68 24.05 17.20 24.37
QMSM 10,614 21.28 6.10 15.35 20.20 21.19 21.52 20.66 21.55 17.66 18.83 21.65
MNWS 2,113 3.44 3.63 9.30 1.50 10.55 22.13 8.91 16.96 21.19 19.43 25.02
TREC 5,177 66.00 61.00 67.50 69.00 71.00 69.00 69.00 67.50 50.00 49.00 69.00
TRVQA 8,209 87.89 81.40 18.69 88.44 88.55 88.86 89.63 89.36 12.28 74.75 88.65
SMSM 6,258 41.70 15.07 32.46 43.76 43.35 42.21 44.25 43.02 13.45 40.38 41.59
PSC 11,141 2.10 1.62 2.67 0.00 1.50 2.68 1.05 2.50 4.57 0.64 2.09
PSR 9,289 9.00 4.00 3.77 4.50 4.50 4.62 3.79 8.50 3.50 2.50 6.50
LCC 1,235 68.22 67.68 63.64 68.47 55.05 56.78 54.06 49.45 57.12 56.70 52.04
REPO 4,206 61.73 58.27 53.69 59.99 47.26 49.09 47.60 42.84 51.92 48.23 39.68

Average 7,425 32.92 25.84 25.54 33.62 33.48 35.32 33.45 33.48 23.30 28.19 34.30

7.14 RULER SUBTASKS RESULT

The performance of models on different lengths and breakdowns by 13 subtasks are reported in Table
18(RULER on 4k), Table 19(RULER on 8k), Table 20(RULER on 16k), Table 21(RULER on 32k)
and Table 22(RULER on 64k).
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Table 18: Ruler results on 4k context length. N-32 and N-64 refer to NTK finetuned on 32K and
64K context lengths respectively. Inf refers to LM-Infinite. SE refers to Self-Extend. LLR refers to
LongLora. Train Len refers to the longest length examples seen at training or finetuning. Eval Len
refers to the maximum length of the input prompt. ✓refers to whether the method is exact attention.

Exact Frozen Finetuned
Base Inf N-F SE PI N-32 YaRN CLEX LLR Land N-64

✓ ✓ ✓ ✓ ✓ ✓ ✓

Train Len 4k 4k 4k 4k 32k 32k 32k 32k 32k 32k 64k
Eval Len 4k 4k 4k 4k 4k 4k 4k 4k 4k 4k 4k

NIAH_S1 100.00 100.00 100.00 100.00 98.00 100.00 99.60 100.00 0.00 49.00 100.00
NIAH_S2 100.00 100.00 100.00 100.00 99.80 100.00 88.60 100.00 0.00 20.60 100.00
NIAH_S3 99.20 95.80 98.80 89.80 99.80 94.20 53.00 89.60 0.00 10.00 97.20
NIAH_M1 99.20 98.80 99.20 79.00 99.20 99.20 62.60 95.80 0.00 10.60 98.00
NIAH_M2 88.00 88.00 88.20 26.00 95.40 97.40 14.00 83.20 0.00 6.80 97.00
NIAH_M3 61.40 62.00 61.60 14.40 78.00 68.20 8.20 53.80 0.00 1.20 84.80
NIAH_MV 83.55 90.45 86.60 82.10 95.45 96.40 50.25 95.10 0.05 10.80 96.15
NIAH_MQ 95.45 96.15 96.00 90.70 96.95 97.00 62.00 96.20 0.00 5.35 98.25
VT 57.72 58.56 56.48 8.92 96.64 98.16 25.68 85.72 0.00 2.92 97.00
CWE 78.20 75.90 78.20 73.56 81.38 80.86 58.78 82.60 64.70 23.16 74.26
FWE 84.33 84.20 84.93 80.07 58.40 85.53 26.20 52.60 18.53 84.93 81.40
QA_1 62.20 60.40 62.40 60.60 57.80 62.40 60.20 55.80 26.20 37.20 55.80
QA_2 43.00 43.40 42.40 40.20 42.40 46.20 43.20 38.20 28.00 28.20 46.00

Avg. 80.94 81.05 81.14 65.03 84.56 86.58 50.18 79.12 10.58 22.37 86.60

Table 19: Ruler results on 8k context length.

Exact Frozen Finetuned
Base Inf N-F SE PI N-32 YaRN CLEX LLR Land N-64

✓ ✓ ✓ ✓ ✓ ✓ ✓

Train Len 4k 4k 4k 4k 32k 32k 32k 32k 32k 32k 64k
Eval Len 4k 4k 4k 4k 4k 4k 4k 4k 4k 4k 4k

NIAH_S1 - 46.00 61.60 100.00 99.00 99.80 100.00 100.00 0.00 46.00 100.00
NIAH_S2 - 36.60 59.40 98.80 100.00 100.00 99.40 100.00 0.00 7.20 100.00
NIAH_S3 - 20.80 51.00 88.60 99.20 94.20 96.00 97.80 0.00 3.80 99.20
NIAH_M1 - 27.80 46.00 69.40 98.00 94.20 86.60 90.20 0.00 7.60 95.20
NIAH_M2 - 4.40 11.00 8.20 91.60 86.20 60.60 66.00 0.00 1.60 86.60
NIAH_M3 - 2.60 4.00 3.20 48.40 52.20 34.60 11.80 0.00 0.00 47.40
NIAH_MV - 30.35 41.35 52.95 65.50 85.95 70.40 61.25 0.00 6.25 84.75
NIAH_MQ - 30.15 50.40 78.70 93.25 95.20 92.45 86.95 0.00 3.35 94.95
VT - 4.88 69.88 1.48 91.20 96.16 77.52 48.16 0.00 3.08 94.36
CWE - 65.08 40.30 30.82 45.66 45.76 44.72 32.72 18.92 22.08 40.80
FWE - 56.73 64.87 59.00 65.07 70.13 10.53 45.40 16.73 76.60 54.13
QA_1 - 35.80 44.40 31.00 50.80 49.20 43.20 48.20 22.80 25.00 50.20
QA_2 - 29.00 33.60 37.40 40.80 41.80 36.80 42.60 24.40 25.20 44.80

Avg. - 30.01 44.45 50.73 76.04 77.75 65.60 63.93 6.37 17.52 76.34
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Table 20: Ruler results on 16k context length.

Exact Frozen Finetuned
Base Inf N-F SE PI N-32 YaRN CLEX LLR Land N-64

✓ ✓ ✓ ✓ ✓ ✓ ✓

Train Len 4k 4k 4k 4k 32k 32k 32k 32k 32k 32k 64k
Eval Len 4k 4k 4k 4k 4k 4k 4k 4k 4k 4k 4k

NIAH_S1 - 21.00 14.20 99.80 97.20 99.40 100.00 99.80 0.00 42.40 99.80
NIAH_S2 - 17.00 17.40 93.40 100.00 100.00 99.20 100.00 0.20 6.80 100.00
NIAH_S3 - 11.60 8.20 77.00 99.60 98.60 89.60 99.60 0.00 3.60 100.00
NIAH_M1 - 15.80 9.20 60.00 97.80 93.20 83.40 89.40 0.00 5.60 90.80
NIAH_M2 - 0.00 0.60 3.80 82.80 79.80 19.60 72.00 0.00 0.80 67.60
NIAH_M3 - 1.00 0.00 1.80 34.20 18.20 7.40 15.00 0.00 0.00 29.60
NIAH_MV - 8.40 6.90 38.85 77.55 81.95 58.75 62.40 0.00 4.80 83.50
NIAH_MQ - 8.85 7.95 59.30 90.95 86.20 85.15 81.60 0.00 2.75 90.35
VT - 6.56 11.28 1.16 68.84 83.56 47.12 48.16 0.00 2.52 88.68
CWE - 19.94 28.36 17.80 27.26 26.32 23.72 28.60 0.62 11.90 21.20
FWE - 77.13 25.80 59.80 47.93 61.73 10.13 57.33 12.93 81.60 51.73
QA_1 - 22.80 36.40 28.00 46.00 45.20 43.20 49.20 13.20 23.00 45.00
QA_2 - 24.20 26.00 31.60 35.20 36.00 37.40 33.40 20.80 26.20 36.00

Avg. - 18.02 14.79 44.02 69.64 70.01 54.21 64.35 3.67 16.31 69.56

Table 21: Ruler results on 32k context length.

Exact Frozen Finetuned
Base Inf N-F SE PI N-32 YaRN CLEX LLR Land N-64

✓ ✓ ✓ ✓ ✓ ✓ ✓

Train Len 4k 4k 4k 4k 32k 32k 32k 32k 32k 32k 64k
Eval Len 4k 4k 4k 4k 4k 4k 4k 4k 4k 4k 4k

NIAH_S1 - 7.80 0.00 83.00 97.20 99.00 85.80 85.60 0.00 33.80 100.00
NIAH_S2 - 7.00 0.00 68.40 99.00 100.00 81.00 94.00 0.00 3.20 99.20
NIAH_S3 - 6.40 0.00 42.80 97.00 99.40 62.40 97.20 0.00 2.60 96.40
NIAH_M1 - 8.80 0.00 29.40 93.40 90.80 63.20 78.40 0.00 5.40 82.60
NIAH_M2 - 0.00 0.00 2.40 48.80 39.40 6.40 40.40 0.00 0.20 36.60
NIAH_M3 - 0.00 0.00 1.40 5.80 8.60 1.20 8.00 0.00 0.00 7.20
NIAH_MV - 3.75 0.00 24.65 61.30 68.20 37.95 60.75 0.00 2.80 82.20
NIAH_MQ - 2.05 0.00 20.35 68.65 78.25 46.95 67.80 0.05 2.35 85.80
VT - 2.08 0.00 2.32 56.68 43.28 22.00 30.08 0.00 2.52 71.28
CWE - 4.48 0.02 17.46 26.72 11.78 11.38 22.70 13.26 3.68 7.34
FWE - 72.67 2.93 46.73 31.00 64.53 15.13 34.67 13.93 72.47 51.53
QA_1 - 20.20 5.20 20.60 33.40 34.40 23.00 28.00 6.00 22.60 27.00
QA_2 - 25.20 1.20 24.00 30.60 34.80 24.00 30.60 12.60 24.60 33.20

Avg. - 12.34 0.72 29.50 57.66 59.42 36.95 52.17 3.53 13.56 60.03
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Table 22: Ruler results on 64k context length.

Exact Frozen Finetuned
Base Inf N-F SE PI N-32 YaRN CLEX LLR Land N-64

✓ ✓ ✓ ✓ ✓ ✓ ✓

Train Len 4k 4k 4k 4k 32k 32k 32k 32k 32k 32k 64k
Eval Len 4k 4k 4k 4k 4k 4k 4k 4k 4k 4k 4k

NIAH_S1 - 3.20 0.00 71.80 0.00 83.60 0.00 40.60 0.00 40.00 98.00
NIAH_S2 - 3.80 0.00 0.20 0.00 95.60 0.00 68.80 0.00 3.00 98.00
NIAH_S3 - 5.40 0.00 0.00 0.00 95.40 0.00 70.40 0.00 3.00 95.80
NIAH_M1 - 5.40 0.00 0.00 0.00 76.80 0.00 55.40 0.00 5.20 67.20
NIAH_M2 - 0.00 0.00 2.60 0.00 15.20 0.00 15.80 0.00 0.00 25.80
NIAH_M3 - 0.00 0.00 0.20 0.00 1.20 0.00 1.00 0.00 0.00 4.00
NIAH_MV - 4.45 0.00 0.20 0.00 51.70 0.00 36.40 0.00 3.70 51.20
NIAH_MQ - 4.45 0.00 0.05 0.00 56.60 0.00 43.50 0.00 2.45 65.40
VT - 1.28 0.00 12.20 0.00 34.28 0.00 0.00 0.00 2.40 41.48
CWE - 0.76 0.00 6.85 0.00 6.58 0.00 9.72 0.00 1.70 7.88
FWE - 72.20 11.47 26.47 0.00 25.27 0.00 11.73 0.00 82.67 27.73
QA_1 - 16.20 0.20 0.80 0.00 30.80 0.00 25.60 0.00 19.60 29.20
QA_2 - 20.20 0.20 0.00 0.00 28.40 0.00 19.00 0.00 20.20 29.40

Avg. - 10.56 0.91 9.34 0.00 46.26 0.00 30.61 0.00 14.15 49.31
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