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Abstract

Deep graph matching techniques have shown
promising results in recent years. In this work, we
cast deep graph matching as a contrastive learn-
ing task and introduce a new objective function
for contrastive mapping to exploit the relationships
between matches and non-matches. To this end,
we develop a hardness attention mechanism to se-
lect negative samples which captures the related-
ness and informativeness of positive and negative
samples. Further, we propose a novel deep graph
matching framework, Stable Graph Matching (Sta-
bleGM), which incorporates Sinkhorn ranking into
a stable marriage algorithm to efficiently compute
one-to-one node correspondences between graphs.
We prove that the proposed objective function for
contrastive matching is both positive and nega-
tive informative, offering theoretical guarantees to
achieve dual-optimality in graph matching. We em-
pirically verify the effectiveness of our proposed
approach by conducting experiments on standard
graph matching benchmarks.

1 INTRODUCTION

Given two graphs, graph matching aims to establish node
correspondences between the graphs. It is fundamental
to many real-world applications, such as computer vision
[Vento and Foggia, 2013], bio-informatics [Sharan and
Ideker, 2006], and social networks [Zhang et al., 2019].
However, due to the intriguing combinatorial nature of
graphs, graph matching has long been known to be an NP-
hard problem [Cordella et al., 2004].

Early studies [Cho et al., 2010, Zaslavskiy et al., 2008]
on graph matching primarily relied on handcrafting affini-
ties of nodes and edges to leverage structural information
from graphs. Graph matching was then formulated as a

quadratic assignment problem (QAP) and solved by apply-
ing combinatorial optimization techniques [Lawler, 1963,
Loiola et al., 2007]. As a result, traditional graph matching
methods often lack flexibility and generalizability, failing
to capture complex interactions in real world applications.
Recently, a number of deep graph matching methods have
been proposed to address the limitations of traditional graph
matching methods and they have achieved state-of-the-art
performance [Wang et al., 2019, Yu et al., 2020, Rolínek
et al., 2020, Gao et al., 2021, Wang et al., 2021].

The main idea behind deep graph matching methods is to
build an end-to-end learning model which can extract affini-
ties from graphs via differentiable optimisation for finding
“soft" node correspondences between graphs. This process
often involves a spectral relaxation or a doubly-stochastic
relaxation [Zanfir and Sminchisescu, 2018, Wang et al.,
2020b]. The learning objectives are usually formulated as
a cross entropy loss to maximize affinities between pairs
of matched nodes as per the ground truth while minimiz-
ing affinities between nodes that do not match as per the
ground truth, e.g. permutation loss [Wang et al., 2019, Yu
et al., 2020] and binary cross entropy loss [Wang et al.,
2021]. However, these methods still suffer from undesired
behaviours, such as class imbalance, overfitting, and numeri-
cal instability [Yu et al., 2020, Gao et al., 2021]. We observe
that these issues are largely due to the inherent limitations
of cross-entropy loss, which penalize classification errors
based on an element-wise comparison between a predicted
matching matrix and a ground truth matrix, while ignoring
the relationships among matches and non-matches.

On the other hand, contrastive loss has demonstrated supe-
rior performance in various self-supervised learning tasks
[Wang and Isola, 2020, Wang and Liu, 2021]. In a con-
trastive learning setting, given an anchor, there is one pos-
itive sample and multiple negative samples. It has been
shown that the quality of negative samples has a significant
impact on learning [Xu et al., 2022]. Moreover, it has been
shown that contrastive learning with explicit hard negative
sampling, which penalizes hard negatives while ignoring
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easy (uninformative) negative samples during the training,
often yields better results [Wang and Liu, 2021].

However, we observe that, not only the informativeness
of negative samples but also the informativeness of posi-
tive samples play an important role in contrastive learning.
Furthermore, for graph matching, the one-to-one mapping
constraint is crucial, which poses the implication that for
each node in a source graph there exists one true match
and the others are all non-matches. Thus, unlike existing
methods which either removed this constraint from their
relaxation or only implicitly considered it in their learning,
we explore the power of contrastive loss to effectively incor-
porate the one-to-one mapping constraint into the learning
objective through the choice of negative samples that are
most informative with respect to each positive sample.

These observations motivate us to leverage contrastive learn-
ing in a supervised graph matching setting. In our work, if
two nodes are matched with each other as per the ground
truth, such a pair of nodes is considered as a positive sam-
ple and a pair of nodes that should not be matched with
each other as per the ground truth is considered a negative
sample. Within our framework, we propose an explicit hard
negative sampling strategy called "hardness attention" to
identify hard negative samples, i.e., negative samples that
have a high chance of being falsely identified as a positive
sample, and propose a new contrastive loss for graph match-
ing. We discuss the theoretical limitations that may occur
when adapting the standard contrastive loss from the self-
supervised literature [Wang and Liu, 2021] to a supervised
graph matching setting, and describe how the proposed con-
trastive loss function possesses theoretical properties that
are suitable for graph matching. Moreover, we extend the
stable marriage algorithm [McVitie and Wilson, 1970, Gale
and Shapley, 1962] to graph matching for computing the
final one-to-one correspondence between two graphs.

Contributions This work perceives supervised graph
matching as a contrastive learning task. The main technical
contributions of this work are summarized as follows.

• We design a novel hard negative sampling strategy
that is well suited for the supervised graph matching
setting. This hard negative sampling strategy captures
the relatedness and informativeness of positive and
negative samples with respect to the corresponding
true-matching node pairs.

• We propose a new contrastive loss function for super-
vised graph matching and theoretically analyze the
properties of the proposed loss function. We show that
the proposed contrastive loss function is both positive
and negative informative.

• We develop a new deep graph matching architecture,
called StableGM, which incorporates two key design
choices: (1) The Sinkhorn algorithm is used to learn a

preference ranking matrix in which each node is asso-
ciated with a preference order of nodes for matching.
(2) We extend the stable marriage algorithm to graph
matching which takes a Sinkhorn ranking matrix as
input and generates a matching under the one-to-one
mapping constraint. We prove that matchings gener-
ated by this algorithm are stable.

• Theoretically, we prove that StableGM guarantees the
dual-optimality of matching solutions, i.e., nodes in
both source and target graphs can achieve an optimal
matching simultaneously based on Sinkhorn ranking.
Empirically, we conduct experiments on real-world
datasets to verify the effectiveness of the proposed
graph matching framework.

2 BACKGROUND

We represent a graph as G = (V,E,A,X), where V =
{1, . . . , |V |} is the set of vertices, E is the set of edges,
A ∈ R|V |×|V | is the adjacency matrix, and X ∈ R|V |×d is
a node feature matrix with feature vectors of dimension d.
Given two graphs, a source graph GS = (VS , ES ,AS ,XS)
and a target graph GT = (VT , ET ,AT ,XT ), let |VS | = m
and |VT | = n, and w.l.o.g. m ≤ n.

Generally speaking, the graph matching problem is to find a
node correspondence matrix M ∈ {0, 1}m×n between GS
and GT which satisfies the one-to-one mapping constraint∑n

j=1 Mi,j = 1 ∀i ∈ VS and
∑m

i=1 Mi,j ≤ 1 ∀j ∈ VT
and is optimal w.r.t. an objective function f(·):

argmin
M

f(M;GS ,GT ). (1)

In the supervised learning setting, f(·) is usually defined
in terms of a loss function L(·). Given two graphs GS and
GT , and the ground truth node correspondence matrix M∗,
a graph matching model is learnt to minimize L(·):

argmin
M

L(M∗,M;GS ,GT ). (2)

To make the model differentiable, M is usually a "soft"
matching matrix, such as a doubly stochastic matrix [Fogel
et al., 2013].

Problem formulation Let G denote a set of graphs on a
finite number of nodes and M be the set of m × n match-
ing matrices, i.e., M = {M ∈ {0, 1}m×n|

∑n
j=1 Mi,j =

1∀i ∈ VS and
∑m

i=1 Mi,j ≤ 1 ∀j ∈ VT . In this work,
our goal is to develop a deep graph matching model fΘ :
G × G → M by end-to-end training through optimizing a
contrastive matching objective.



a

e

b

f

d

c

4
5

1

6

3

2

HS

HT

0.0 0.0 0.0 1.0 0.0 0.0

0.0 1.0 0.0 0.0 0.0 0.0

1.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 1.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 1.0 0.0

0.0 0.0 0.0 0.0 0.0 1.0

Prediction Matrix

Sinkhorn

Stable 
Matching 
Algorithm

1.4 1.7 3.8 3.8 0.8 0.8

1.3 3.6 0.9 0.8 2.1 6.7

2.5 0.4 4.3 1.2 0.7 1.0

0.4 1.8 1.9 1.1 2.7 3.8

1.1 1.5 0.5 0.4 0.6 3.6

0.8 0.7 2.7 2.1 5.5 1.0

Cross-Graph Node-to-Node 
Affinity Matrix 

0.20 0.10 0.20 0.40 0.00 0.10

0.10 0.40 0.10 0.10 0.20 0.10

0.30 0.10 0.11 0.19 0.14 0.16

0.10 0.10 0.35 0.10 0.25 0.10

0.20 0.16 0.08 0.10 0.26 0.20

0.10 0.14 0.16 0.11 0.15 0.34

Sinkhorn Ranking Matrix

a

b

c

d

e

f

a

b

c

d

e

f

a

b

c

d

e

f

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6NN

NN

0.0 0.0 0.0 1.0 0.0 0.0

1.0 0.0 0.0 0.0 0.0 0.0

0.0 1.0 0.0 0.0 0.0 0.0

0.0 0.0 1.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 1.0 0.0

0.0 0.0 0.0 0.0 0.0 1.0

Ground Truth Matrix

a

b

c

d

e

f

1 2 3 4 5 6

0.20 0.0 0.0 0.0 0.0 0.0

0.10 0.40 0.10 0.10 0.20 0.10

0.30 0.0 0.0 0.0 0.0 0.0

0.10 0.0 0.0 0.0 0.0 0.0

0.20 0.00 0.0 0.0 0.0 0.00

0.10 0.0 0.0 0.0 0.0 0.0

Zb,1

a

b

c

d

e

f

1 2 3 4 5 6

0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.20 0.0

0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.25 0.0

0.20 0.16 0.0 0.0 0.26 0.20

0.0 0.0 0.0 0.0 0.0 0.0

Hardness Attention w.r.t  
(e,5), i.e., Ze,5

a

b

c

d

e

f

1 2 3 4 5 6

Hardness 
 Attention

Le

Lb

Figure 1: Overview of the StableGM framework. Given two graphs, their node embeddings are obtained using a neural
network (NN) and a cross-graph node-to-node affinity matrix is computed. Then, Sinkhorn normalization is performed to
obtain a Sinkhorn ranking matrix. In the training phase, the Sinkhorn ranking matrix is compared with the ground truth
matrix and hard negative sampling is performed via "Hardness Attention", e.g., a positive sample is highlighted in green
while the corresponding negative samples are highlighted in red. In the test phase, the Stable Matching algorithm takes the
Sinkhorn ranking matrix as input and yields the node-to-node correspondence between the two graphs.

3 STABLE GRAPH MATCHING

In this section we introduce a novel deep graph matching
architecture, Stable Graph Matching (StableGM).

Overview of StableGM Let C ⊆ Rm×n be a set of m×n
cross-graph node-to-node affinity matrices, S be a set of
m×n rectangular doubly stochastic matrices s.t. S = {S ∈
[0, 1]m×n|S1n = 1m,S

⊺1m ≤ 1n}.

StableGM consists of three main components.

(1) Graph affinity encoding: a permutation-equivariant, dif-
ferentiable function ψencode : G × G → C learns to
encode features of two input graphs into a cross-graph
node-to-node affinity matrix;

(2) Sinkhorn ranking: a permutation-invariant, differen-
tiable function ψrank : C→ S produces a preference
ranking matrix for nodes in the two input graphs, i.e.,
for each node in one graph, ranking the preference
orders in terms of nodes in the other graph;

(3) Stable matching: a matching algorithm ψmatch : S→
M produces a matching matrix (node-to-node corre-
spondences) between two input graphs under the one-
to-one mapping constraint.

3.1 GRAPH AFFINITY ENCODING

Graph affinity encoding involves two steps. First, we apply
a neural network to encode geometric affinities between
nodes, leveraging their features and structural information,
into node embeddings. Then, a cross-graph node-to-node
affinity layer takes the node embedding matrices of two
graphs and constructs a matrix representing affinities be-
tween nodes in GS and GT .

Concretely, a neural network NNθ : G → R|V |×d, param-
eterized by θ, takes a graph G ∈ G as input and returns
its node embeddings NNθ(G) ∈ R|V |×d. Given two graphs
GS and GT , we apply NNθ to obtain the node embedding
matrices of GS and GT , respectively:

NNθ(GS) = HS ∈ Rm×d ; NNθ(GT ) = HT ∈ Rn×d. (3)

Then, the cross-graph node-to-node affinity matrix C ∈
Rm×n between GS and GT is derived s.t. Ci,j denotes the
affinity between the emebdding of node i in GS and the
embedding of node j in GT .

C = fγ(H
S ,HT ) (4)

Here, fγ denotes an affinity layer parameterized by γ that
encodes the cross-graph node-to-node affinities between GS
and GT . Different techniques such as the inner product [Fey
et al., 2020], and the weighted inner product [Rolínek et al.,
2020] can be used within an affinity layer to calculate the
cross-graph node-to-node affinities.



3.2 SINKHORN RANKING

Given a graph affinity matrix that captures node-to-node
affinity scores between two graphs, we apply Sinkhorn
normalization [Sinkhorn, 1964] to compute the ranking of
nodes in terms of their preference orders for matching.

Following [Wang et al., 2020b], a nonnegative matrix S0

is first obtained via S0
i,j = exp(Cij/α), where α > 0 is

a parameter. In the case where the target graph is larger,
i.e., m < n, the matrix S0 is padded into a square matrix
with small positive values (e.g. 1−10). Then, the rows and
columns of S0 are iteratively normalized into a rectangu-
lar doubly-stochastic matrix using an extended Sinkhorn
algorithm [Cour et al., 2007, Fey et al., 2020]. Specifically,
let η(·) be the Sinkhorn operator, ⊘ be the elementwise
Hadamard division, and 1n be a column vector of ones.
Starting with η0(Ŝ) = S0, we have

ηi(Ŝ) = frow(fcol(η
i−1(Ŝ))), (5)

where

frow(Ŝ) =Ŝ⊘ (Ŝ1n1n
⊺) (6)

fcol(Ŝ) =Ŝ⊘ (1n1n
⊺Ŝ). (7)

Padded elements are discarded from the final output to ob-
tain a rectangular doubly stochastic matrix S ∈ S. It should
be noted that Si,j can be viewed as representing the normal-
ized affinity between i ∈ VS and j ∈ VT .

Within our StableGM framework, any node i ∈ VS has a
preference order, in which all the nodes in VT are ranked
based on their normalized affinities. Specifically, given any
two nodes j, k in VT , if Si,j > Si,k, j is ranked higher than
k in i’s preference order. If Si,j = Si,k, the tie is broken
arbitrarily to get a strict ranking order (either j can be ranked
higher to k or k can be ranked higher to j). Any given node
j ∈ VT also has a preference order over all the nodes in VS .
Given any two nodes i, k in VS , if Si,j > Sk,j , i is ranked
higher than k in j’s preference order. If Si,j = Sk,j , the tie
is broken arbitrary. As the preference orders of the nodes
are derived based on S, we term S as a Sinkhorn ranking.

3.3 STABLE MATCHING ALGORITHM

Based on the Sinkhorn ranking that yields preference orders
of nodes for matching, we leverage the known results on the
stable marriage problem [Gale and Shapley, 1962, McVitie
and Wilson, 1970] to efficiently generate graph matching.
We begin with defining the notion of blocking pair.

Definition 1 (Blocking pair). Given a Sinkhorn ranking
S and a matching M, a node pair (i, j) with i ∈ VS and
j ∈ VT is a blocking pair w.r.t. M if the following conditions
are all satisfied:

• Mi,j = 0;

• ∃k ∈ VS\{i} (Mk,j = 1 ∧ Si,j > Sk,j);

• ∃k′ ∈ VT \{j} (Mi,k′ = 1 ∧ Si,j > Si,k′) ∨ ∀k′ ∈
VT \{j}Mi,k′ = 0.

Two non-matched nodes i ∈ VS and j ∈ VT become a
blocking pair if i has a higher rank with j than the node that
is matched with j, and j has a higher rank with i than the
node (if any) that is matched with i. If there is at least one
blocking pair w.r.t. M, M is considered as being unstable.

Definition 2 (Stable matching). A matching M is stable
w.r.t. a Sinkhorn ranking S iff M has no blocking pair.

Algorithm 1 describes our stable matching algorithm, which
extends the Male Optimal Stable Marriage (MOSM) algo-
rithm proposed in [McVitie and Wilson, 1970] to the graph
matching setting. Taking a Sinkhorn ranking S as input, VS
and VT are assumed to correspond to the male and female
parties in the stable marriage problem, respectively. Then,
the stable matching algorithm returns a predicted matching
matrix M ∈ {0, 1}m×n that contains one-to-one node cor-
respondences from VS to VT . Here, Mi,j = 1 means node
i ∈ VS is predicted to match with j ∈ VT and vice versa.

The following lemma and theorem can be obtained. The
proofs are available in the supplementary material.

Lemma 1. Given a Sinkhorn ranking S, Algorithm 1 can
always return a matching M that satisfies the one-to-
one mapping constraint:

∑n
j=1 Mi,j = 1 ∀i ∈ VS and∑m

i=1 Mi,j ≤ 1 ∀j ∈ VT .

Theorem 1. Let M be a matching returned by Algorithm 1
over a Sinkhorn ranking S. Then M is stable w.r.t. S.

Time complexity analysis In the implementation, the
preference order of a node i ∈ VS can be obtained by
sorting (i.e., argsort) the ith row of S. Similarly, the pref-
erence order of a node j ∈ VT can be obtained by perform-
ing argsort operation on the jth column of S. Thus, the
time complexity of obtaining the preference order of each
node in VS and VT is O(|VS ||VT |log(|VT |)). After deriv-
ing the preference orders, the remaining steps in the stable
matching algorithm are performed with a time complexity
of O(|VS |2). As a result, the time complexity of Algorithm
1 is O(|VS ||VT |log(|VT |)). In contrast, the Hungarian algo-
rithm [Kuhn, 1955], which is commonly used to compute
the final node correspondence between two graphs [Wang
et al., 2021, Gao et al., 2021, Yu et al., 2020, Saad-Eldin
et al., 2021], has a time complexity of O(|VT |3).

It is worth noting that, in our stable matching algorithm,
the column-wise and row-wise sorting operations can be
parallelized when computing the preference orders of nodes.
Therefore, in a parallelized setting, the time complexity of
the stable matching algorithm can be further reduced.



Algorithm 1: Stable Matching algorithm
Input: A Sinkhorn Ranking S
Output: M

1 Obtain preference order for each node in VS
2 Obtain preference order for each node in VT
3 while ∃i ∈ VS that is not-matched (Mi,k = 0
∀k ∈ VT ) do

4 j = the highest ranked node in i’s preference order
5 if j is not-matched (Mk,j = 0 ∀k ∈ VS) then
6 Mi,j ← 1

7 else
8 i′ = node that is currently matched with j
9 if i is ranked higher than i′ in the preference

order of j then
10 Mi′,j ← 0
11 Mi,j ← 1

12 remove j from the preference order of i

13 Return M

4 CONTRASTIVE MATCHING

In this section, we formulate a contrastive objective for
graph matching. The key idea is to minimize a contrastive
loss between positive samples (i.e., nodes that should be
matched) and negative samples (i.e., nodes that should not
be matched) of graph matching. However, despite the suc-
cess of contrastive learning in many other domains, graph
matching raises new challenges:

(1) Although it is natural to regard each true-matching
pair as a positive sample and each non-matching pair
as a negative sample, it is unclear how to capture the
relationship between positive samples and negative
samples into a contrastive loss.

(2) It is important to come up with a strategy to identify
hard negative samples, as contrastive learning with
an explicit hard negative sampling strategy has often
shown to produce better results [Wang and Liu, 2021].

We address these challenges in this section.

4.1 HARDNESS ATTENTION

We first design a hard negative sampling strategy to select
hard negative samples according to their relatedness and
informativeness to true matches.

Let π : VS → VT denote an injective function that maps
every node i ∈ VS to a node π(i) ∈ VT as per the ground
truth, i.e. π(i) is the true match of i. We ground our design
of a hard negative sampling strategy on two observations:
(1) Relatedness: Randomly selecting negative samples is
hardly effective for graph matching. This is because, for

a true match (i, π(i)), its corresponding Si,π(i) has little
correlation with other Si′,j′ if i′ ̸= i and j′ ̸= π(i). How-
ever, if considering Sij′ with j′ ̸= π(i) or Si′π(i) with
i′ ̸= i, they are closely correlated with Si,π(i) due to the
constraints S1n = 1m and S⊺1m ≤ 1n imposed on rect-
angular doubly-stochastic matrices in S. Thus, node pairs
corresponding to Sij′ with j′ ̸= π(i) or Si′π(i) with i′ ̸= i
may serve as negative samples of Si,π(i). (2) Informative-
ness: Negative samples are often not equally informative.
Specifically, among node pairs corresponding to Sij′ with
j′ ̸= π(i) or Si′π(i) with i′ ̸= i, some may be more infor-
mative than the others with respect to Si,π(i).

For each node i ∈ VS , we define a hardness attention matrix
Z(i) ∈ {0, 1}m×n as

Z
(i)
k,j =


1, if k = i, j ̸= π(i) and Sk,j ≥ Si,π(i) − β
1, if k ̸= i, j = π(i) and Sk,j ≥ Si,π(i) − β
0, otherwise

Here, β ∈ [0, 1] is a parameter that regulates the degree of
hardness of negative samples to be selected. Z(i)

k,j determines
whether the k-th node in GS and the j-th node in GT should
be selected as a hard negative sample with respect to the
positive pair (i, π(i)) for training.

4.2 CONTRASTIVE MATCHING LOSS

Given a Sinkhorn ranking S and a set of hardness atten-
tion matrices Z = {Z(i)}i∈VS

, we formulate a contrastive
matching loss as:

L =
1

m

m∑
i=1

−1

2
ln

(
f+(i)

1 + f−(i)

)
(8)

where

f+(i) =S2
i,π(i);

f−(i) =

m∑
k=1

n∑
j=1

Z
(i)
k,jS

2
k,j .

In these equations, f+(i) is the affinity of a positive sample
associated with i ∈ VS and f−(i) is the sum of the affinities
of corresponding hard negative samples, determined by the
hardness attentions in Z(i). For clarity, we use Li to denote
the contrastive loss for each i ∈ VS :

Li = −
1

2
ln

(
f+(i)

1 + f−(i)

)
(9)

This contrastive loss exhibits the following properties:

• For two nodes {i, i′} ⊆ VS , if their sums of the affini-
ties of the corresponding negative samples are the same,
i.e. f−(i) = f−(i′), their losses are negatively corre-
lated to the affinities of their positive samples.



Property 1 (Informativeness of positive samples). Let
{i, i′} ⊆ VS with f−(i) = f−(i′). If f+(i) > f+(i′),
then Li < Li′ .

• For two nodes {i, i′} ⊆ VS , if the affinities of their
positive samples are the same, i.e. f+(i) = f+(i′),
their losses are positively correlated to the sums of the
affinities of their negative samples.

Property 2 (Informativeness of negative samples). Let
{i, i′} ⊆ VS with f+(i) = f+(i′). If f−(i) > f−(i′),
then Li > Li′ .

A loss function L(·) is said to be positive-informative or
negative-informative if it satisfies Property 1 and Property 2,
respectively. The following theorem can be easily proven.
The proof is included in the supplementary material.

Theorem 2. The contrastive loss of Eq. 9 is both positive-
informative and negative-informative.

It should be noted that given a positive sample (i, π(i)) s.t.
i ∈ VS , it is possible that the sum of affinities of the related
negative samples f−(i) reaches 0 when Z

(i)
k,j = 0 ∀k ∈ VS

and ∀j ∈ VT . In such a situation, the standard InfoNCE
contrastive loss [Wang and Liu, 2021] is not positive infor-
mative, which is undesirable for graph matching.

4.3 GRADIENT ANALYSIS

We first analyze the gradients of our contrastive loss function
defined in Eq. 9.

Given any i ∈ VS , the gradient of the contrastive matching
loss with respect to its positive sample is,

∂Li

∂Si,π(i)

= − 1

Si,π(i)
. (10)

Accordingly, for a negative sample of i ∈ VS , the gradient
of the contrastive matching loss with respect to Si,q , where
q ̸= π(i), is

∂Li

∂Si,q

=
Z

(i)
iq Si,q

1 +
∑m

k=1

∑n
j=1 Z

(i)
k,jS

2
k,j

. (11)

Let {i, i′} ⊆ VS and {q, q′} ⊆ VT . From Eq. 10 and Eq. 11,
we have the following results:

• If Si,π(i) < Si′,π(i′), then

| ∂Li

∂Si,π(i)

| > | ∂Li′

∂Si′,π(i′)

| (12)

• If Z(i)
iq Si,q > Z

(i)
iq′Si,q′ , then

| ∂Li

∂Si,q

| > | ∂Li

∂Si,q′
| (13)

Eq. 10 and Eq. 12 show that a higher penalty is given to a
positive sample with a lower affinity. Further, Eq. 11 and
Eq. 13 show that the gradient w.r.t. a negative sample is
hardness aware as hard negatives with higher affinities are
penalized more than negative samples with lower affinities.

Remark 1. From the gradient analysis perspective, the
standard contrastive loss function defined in [Wang and
Liu, 2021] has some undesirable behaviors in the graph
matching setting. Specifically, because the magnitude of its
gradients with respect to a positive sample is equal to the
sum of the gradients of all the negative samples that are
considered, a gradient will not be propagated if the total
gradients from negative samples reach 0, even though the
affinity of a positive sample may be further increased.

5 FURTHER DISCUSSION

Below, we discuss the optimality of matching achieved by
our proposed method StableGM.

Definition 3 (Optimal matching). Let S be a Sinkhorn rank-
ing. A matching M is GS-optimal w.r.t. S if Mi,j = 1 im-
plies Si,j > Si,k for ∀k ∈ VT \{j}. Similarly, a matching
M is GT -optimal w.r.t. S if Mi,j = 1 implies Si,j > Sk,j

for ∀k ∈ VS\{i}.

Definition 4 (Dual-optimal matching). A matching M is
dual-optimal w.r.t. S if and only if M is both GS-optimal
and GT -optimal w.r.t. S.

Definition 5 (R1-symmetry). A Sinkhorn ranking S is R1-
symmetric if following conditions are both satisfied,

• for any i ∈ VS there exists some j ∈ VT such that
Si,j > Si,k holds for all k ∈ VT \{j};

• if Si,j > Si,k holds for all k ∈ VT \{j}, then Si,j >
Sk,j also holds for all k ∈ VS\{i}.

Based on the definition of R1-symmetry of S, we can prove
the following theorem and proposition. The proof details
are included in the supplementary material.

Theorem 3. Let M be a matching produced by StableGM.
Then M is dual-optimal if S is R1-symmetric.

Proposition 1. Let M be a matching produced by Sta-
bleGM. Then M is dual-optimal when the contrastive loss
function L(·) is minimized.

It should be noted that, in its original setting, the MOSM
algorithm for stable marriage assignment [McVitie and Wil-
son, 1970] can only guarantee the optimality of solutions
for one side, which is well known as the male optimality of
stable marriage solutions [Gusfield and Irving, 1989]. This
is an undesired property for the graph matching problem
since the optimality of a graph matching should be dual in



relation to both source and target graphs. Nonetheless, as
shown in Proposition 1, in a contrastive learning setting with
a properly designed loss function, a model can be learned to
achieve dual-optimality of graph matching using the Stable
Matching algorithm.

6 EXPERIMENTS

6.1 IMAGE KEYPOINTS MATCHING

Datasets We conduct experiments on three image key-
point matching benchmarks widely used for learning-based
graph matching: 1) Pascal VOC Keypoint with Berkeley
annotations [Everingham et al., 2010], which consists of
images belonging to 20 classes with keypoints annotated. 2)
SPair-71k [Min et al., 2019], which contains 70958 image
pairs from Pascal VOC 2012 and Pascal 3D+ belonging to
18 classes. 3) Willow ObjectClass [Cho et al., 2013] con-
tains images that belong to 5 classes and images belonging
to a class contain the same number of keypoints annotated.

Baselines We considered the following baselines: GMN
[Zanfir and Sminchisescu, 2018], PCA-GM [Wang et al.,
2019], IPCA-GM [Wang et al., 2020a], CIE [Yu et al., 2020],
qc-DGM2 [Gao et al., 2021], BBGM [Rolínek et al., 2020],
NGM-v2 [Wang et al., 2020b], NHGM-v2 [Wang et al.,
2020b], and GCAN [Jiang et al., 2022].

Experimental setup For Pascal VOC Keypoint dataset,
Willow ObjectClass dataset, and SPair-71k dataset, we fol-
lowed the experimental setup in [Wang et al., 2021]1. It
is worth noting that GCAN [Jiang et al., 2022] followed
the same experimental protocols as [Wang et al., 2021]
for Pascal VOC Keypoint dataset and Willow ObjectClass
dataset. However, for the SPair-71k dataset, GCAN Jiang
et al. [2022] followed the experimental setup of [Rolínek
et al., 2020], which filters out keypoints that are outside
of the bounding box of an image [Wang et al., 2021]. To
consider keypoints that are outside of the bounding box of
an image, we thus followed the experimental setup in [Wang
et al., 2021].

In order to extract visual features of annotated keypoints, we
followed the same feature extraction method as suggested
in [Wang et al., 2021, Jiang et al., 2022] where the feature
vectors corresponding to each keypoint were obtained by
concatenating the outputs of relu42 and relu51 operations
of a pre-trained VGG16 model [Simonyan and Zisserman,
2014]. Then, for the input image pair, a graph corresponding
to one annotated image was created by performing Delaunay
triangulation [Delaunay et al., 1934] on keypoints and the
graph corresponding to the other annotated image is fully
connected on keypoints, following the same protocols as in
[Wang et al., 2021]. In evaluations, matching accuracy is

1https://github.com/Thinklab-SJTU/ThinkMatch

computed as the percentage of correct matchings among all
true matchings [Wang et al., 2021].

StableGM models We evaluate two variants of StableGM:
StableGM-v1 and StableGM-v2. Both variants are trained
using the StableGM framework described in Section 3 Sec-
tion 4. They only differ in using techniques to learn node
embeddings and to derive cross-graph node-to-node affini-
ties.

In StableGM-v1, the neural architecture proposed in BBGM
[Rolínek et al., 2020] is used as the neural network NNθ

to learn node embeddings, where node embeddings of the
key points are obtained using a two-layer SplineCNN [Fey
et al., 2018]. Moreover, in StableGM-v1, we use the affinity
layer proposed in BBGM [Rolínek et al., 2020] to derive
the cross-graph node-to-node affinity matrix C, where node
affinities are obtained using a weighted inner product.

In StableGM-v2, we adapt the Graph Context Attention
(GCA) mechanism proposed in GCAN [Jiang et al., 2022] to
learn node embeddings and to obtain the cross-graph node-
to-node affinity matrix. More specifically, after extracting
the keypoint features of images, the self attention layer
proposed in GCAN is used to learn node embeddings that
encode graph structural and positional information. Then,
the cross attention layer proposed in GCAN [Jiang et al.,
2022] is used as the affinity layer to obtain cross-graph
node-to-node affinities.

6.2 PPI NETWORK MATCHING

Datasets We further considered a dataset of protein-
protein interaction (PPI) network of yeasts with its noisy
versions. This PPI network consists of 1004 proteins and
4920 high-confidence interactions among proteins [Liu et al.,
2021]. We match the PPI network with its three noisy ver-
sions, which contain 5%, 15%, and 25% low-confidence
interactions, respectively, in addition to high-confidence in-
teractions [Saraph and Milenković, 2014]. This dataset has
been used by previous studies [Xu et al., 2019b, Liu et al.,
2021] in evaluating graph matching approaches.

Baselines We considered the following baselines: PISwap
[Chindelevitch et al., 2013], GHOST [Patro and Kings-
ford, 2012], MI-GRAAL [Kuchaiev and Pržulj, 2011],
MAGNA++ [Vijayan et al., 2015], HubAlign [Hashemifar
and Xu, 2014], NETAL [Neyshabur et al., 2013], CPD+Emb
[Grover and Leskovec, 2016, Myronenko and Song, 2010],
GWL+Emb [Xu et al., 2019b], GWL [Xu et al., 2019a],
S-GWL [Xu et al., 2019a], and SIGMA [Liu et al., 2021].

Experimental setup To conduct a fair comparison, we
follow the setup proposed in SIGMA [Liu et al., 2021] and
S-GWL [Xu et al., 2019a]. Following the setup of SIGMA,
the input feature of each node is assigned based on its node



Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mean

GMN 41.6 59.6 60.3 48.0 79.2 70.2 67.4 64.9 39.2 61.3 66.9 59.8 61.1 59.8 37.2 78.2 68.0 49.9 84.2 91.4 62.4
PCA-GM 49.8 61.9 65.3 57.2 78.8 75.6 64.7 69.7 41.6 63.4 50.7 67.1 66.7 61.6 44.5 81.2 67.8 59.2 78.5 90.4 64.8
IPCA-GM 53.8 66.2 67.1 61.2 80.4 75.3 72.6 72.5 44.6 65.2 54.3 67.2 67.9 64.2 47.9 84.4 70.8 64.0 83.8 90.8 67.7
CIE-H 52.5 68.6 70.2 57.1 82.1 77 70.7 73.1 43.8 69.9 62.4 70.2 70.3 66.4 47.6 85.3 71.7 64 83.9 91.7 68.9
qc-DGM2 49.6 64.6 67.1 62.4 82.1 79.9 74.8 73.5 43.0 68.4 66.5 67.2 71.4 70.1 48.6 92.4 69.2 70.9 90.9 92.0 70.3
BBGM 61.9 71.1 79.7 79.0 87.4 94.0 89.5 80.2 56.8 79.1 64.6 78.9 76.2 75.1 65.2 98.2 77.3 77.0 94.9 93.9 79.0
NGM-v2 61.8 71.2 77.6 78.8 87.3 93.6 87.7 79.8 55.4 77.8 89.5 78.8 80.1 79.2 62.6 97.7 77.7 75.7 96.7 93.2 80.1
NHGM-v2 59.9 71.5 77.2 79.0 87.7 94.6 89.0 81.8 60.0 81.3 87.0 78.1 76.5 77.5 64.4 98.7 77.8 75.4 97.9 92.8 80.4
GCAN 63.4 71.2 80.1 81.1 90.4 95.5 89.5 80.4 65.3 80.8 89.9 81.4 80.6 78.1 67.7 98.2 77.5 82.6 98.4 93.4 82.3
StableGM-v1 63.57 72.85 79.66 81.02 88.73 94.71 88.81 78.41 59.96 79.14 84.33 80.48 78.43 78.45 63.90 97.90 77.77 78.25 98.00 93.24 80.88
StableGM-v2 65.07 72.51 79.36 79.28 88.22 94.42 89.98 81.3 65.05 81.34 82.38 82.25 81.24 77.53 66.11 98.36 79.44 74.33 98.47 93.71 81.52

Table 1: Matching accuracy (%) results on Pascal VOC Keypoint. Best results are in bold. Second best results are underlined.

Method aero bike bird boat bottle bus car cat chair cow dog horse mbike person plant sheep train tv mean

GMN 59.9 51 74.3 46.7 63.3 75.5 69.5 64.6 57.5 73 58.7 59.1 63.2 51.2 86.9 57.9 70 92.4 65.3
PCA-GM 64.7 45.7 78.1 51.3 63.8 72.7 61.2 62.8 62.6 68.2 59.1 61.2 64.9 57.7 87.4 60.4 72.5 92.8 66
IPCA-GM 69 52.9 80.4 54.3 66.5 80 68.5 71.4 61.4 74.8 66.3 65.1 69.6 63.9 91.1 65.4 82.9 97.5 71.2
CIE-H 71.5 57.1 81.7 56.7 67.9 82.5 73.4 74.5 62.6 78 68.7 66.3 73.7 66 92.5 67.2 82.3 97.5 73.3
BBGM 72.50 64.55 87.80 75.81 69.27 93.95 88.59 79.92 74.56 83.15 78.78 77.10 76.50 76.34 98.20 85.54 96.78 99.31 82.15
NGM-v2 68.8 63.3 86.8 70.1 69.7 94.7 87.4 77.4 72.1 80.7 74.3 72.5 79.5 73.4 98.9 81.2 94.3 98.7 80.2
NHGM-v2 62 57.8 86.4 68.5 68.7 93.4 80.8 76.6 69.2 79.9 66.2 71.7 78.1 69.5 98.2 84.4 93.2 99.3 78
GCAN 69.56 61.88 89.85 75.21 70.41 97.22 87.55 80.39 70.37 83.77 75.48 72.26 81.17 75.52 99.71 86.07 97.75 99.94 81.90
StableGM-v1 74.20 65.78 88.05 76.46 69.60 97.70 90.18 80.99 71.53 85.18 78.13 74.61 79.58 79.13 99.7 87.09 97.53 99.47 83.05
StableGM-v2 75.08 68.65 89.50 76.86 70.14 97.16 91.74 79.15 72.58 84.56 81.58 74.06 80.85 78.93 99.04 86.81 96.10 99.76 83.48

Table 2: Matching accuracy (%) results on SPair-71K. Best results are in bold. Second best results are underlined.

Method car duck face mbike w-bottle mean

GMN 67.9 76.7 99.8 69.2 83.1 79.3
PCA-GM 87.6 83.6 100.0 77.6 88.4 87.4
IPCA-GM 90.4 88.6 100.0 83.0 88.3 90.1
qc-DGM2 100.0 98.8 98.0 92.8 99.0 97.7
BBGM 96.8 89.9 100.0 99.8 99.4 97.2
NGM-v2 97.4 93.4 100.0 98.6 98.3 97.5
NHGM-v2 97.4 93.9 100.0 98.6 98.9 97.8
GCAN 98.8 94.1 100.0 100.0 100 98.6
StableGM-v1 98.85 94.23 100.0 100.0 99.23 98.46
StableGM-v2 98.85 94.62 100.0 99.81 99.31 98.52

Table 3: Matching accuracy (%) results on Willow Object-
Class. Best results are in bold. Second best results are un-
derlined.

degree. We use node correctness as the evaluation metric,
calculated as the percentage of nodes that have the same
matching as the ground truth [Liu et al., 2021, Xu et al.,
2019a].

StableGM model To evaluate our approach on the PPI
network, the StableGM model was initialized as follows.
A 5-layer Graph Isomorphism Network (GIN) was used as
NNθ to learn node embeddings. It should be noted that the
same graph neural network architecture was used in SIGMA
[Liu et al., 2021] to learn node embeddings. In the affinity
layer of the StableGM model, we employ the same tech-
nique used in SIGMA for a fair comparison, which calcu-
lates the affinity between two nodes as the cosine similarity
between the embeddings of the two nodes.

6.3 RESULTS AND DISCUSSION

As shown in Table 1, StableGM-v2 outperforms all other
baselines in seven out of twenty classes of the Pascal VOC
Keypoint dataset. Specifically, while our approach outper-
forms baselines for some classes (e.g., aero, sheep, bike), it
performs under par for some other classes. When observ-
ing the results on the SPair-71k dataset in Table 2, both
StableGM-v1 and StableGM-v2 outperform all other base-
lines when it comes to mean accuracy over all the classes.
It should be noted that, compared with the Pascal VOC
Keypoint dataset, the SPair-71k dataset possesses several
advantages, such as higher image quality, more reliable key-
point annotations, and removal of sofa and table class which
are ambiguous and poorly annotated [Rolínek et al., 2020].
Indeed, it can be seen from Table 1 that the mean accu-
racy of StableGM-v2 is less than GCAN primarily because
StableGM-v2 performs poorly for sofa and table classes.

For the Willow ObjectClass dataset, Table 3 shows that
the mean accuracy results of StableGM models and GCAN
are both high, close to 100. Their performance is gener-
ally comparable. The mean accuracy of GCAN is slightly
higher than our models. However, StableGM-v2 outper-
forms GCAN in 2 classes while performing equally well in
1 class; StableGM-v1 outperforms GCAN in 2 classes while
performing equally well in 2 classes.

Table 4 shows that our StableGM model achieves superior
performance compared to other baselines when matching
the PPI network with its 5% and 15% noisy versions. How-
ever, when the noise level increases to 25%, the model’s
performance becomes inferior to GWL+Emb [Xu et al.,
2019b] and GWL [Xu et al., 2019a]. These empirical find-



Method Yeast 5% Yeast 15% Yeast 25%

PISwap 0.1 0.1 0.0
GHOST 11.1 0.4 0.3
MI-GRAAL 18.0 6.9 5.2
MAGNA++ 48.1 25.0 13.6
HubAlign 50.0 35.2 12.9
NETAL 6.9 0.9 1.0
CPD+Emb 3.6 2.1 2.0
GWL+Emb 83.7 66.6 58.0
GWL 82.4 65.34 58.8
S-GWL 81.1 61.85 56.27
SIGMA 84.7±0.4 57.4±1.1 41.4 ±1.7
StableGM 86.1 ± 0.9 67.9 ± 1.1 57 ± 0.6

Table 4: Node correctness (%) results on the PPI dataset.
The best results are in bold. The second best results are
underlined.

ings suggest that our method performs well under low noise
settings but struggles with higher levels of noise. Similarly,
when it comes to the image datasets, our method shows
superior or comparable performance for most classes, but
its performance on poorly annotated classes of Pascal VOC
Keypoint (sofa and table) is considerably worse than some
of the baselines. Thus, improving the proposed method’s
performance in settings with high noise or poor/ambiguous
annotations could be an area for future research.

We have further carried out experiments to demonstrate the
effect of selecting the hardness attention parameter β and
the results are included in the supplementary material.

7 RELATED WORK

Deep Graph Matching In the literature of deep graph
matching, the problem of graph matching has been primarily
formulated in several ways: 1) Quadratic Assignment prob-
lem [Wang et al., 2019, Yu et al., 2020, Rolínek et al., 2020,
Wang et al., 2021], 2) Stochastic Optimization Problem [Liu
et al., 2021], 3) Optimal Transport Problem [Yu et al., 2020],
and 4) Integer Linear Programming Problem [Jiang et al.,
2022]. The study in [Zanfir and Sminchisescu, 2018] is
considered the first attempt to use deep learning to solve
graph matching. Graph Neural Networks (GNNs) were first
employed for graph matching in the seminal work [Wang
et al., 2019]. The use of GNNs enables the formulation of
graph matching as a linear assignment problem which is
then solved using the Hungarian algorithm. BBGM [Rolínek
et al., 2020] considered graph matching as a Quadratic As-
signment Problem and adapted the technique of black box
differentiation of combinatorial solvers [Vlastelica et al.,
2019] to obtain the final node correspondence. The represen-
tation learning technique proposed in [Rolínek et al., 2020]
for graph matching in keypoint annotated image datasets
have been used in [Wang et al., 2021] to achieve the state-
of-the-art results while considering graph matching as a
constrained vertex classification task.

Contrastive Learning A contrastive loss function was in-
troduced in [Chopra et al., 2005], in which the objective is to
minimize the Euclidean distance between the feature vectors
of positive samples as much as possible while increasing
that of the negative samples more than a pre-defined dis-
tance. Subsequently, the concept of contrastive learning has
been extended to different applications and various con-
trastive loss functions such as Triplet loss [Schroff et al.,
2015], N-pair loss [Sohn, 2016] and InfoNCE loss [Oord
et al., 2018] have been introduced.

Recently, contrastive learning has attracted significant at-
tention due to its success in self-supervised learning [Wu
et al., 2018, He et al., 2020, Wang and Liu, 2021]. It has
been shown that the performance of contrastive losses is
enhanced when selecting explicit hard negative sampling
[Xu et al., 2022]. In [Khosla et al., 2020], the standard con-
trastive loss function has been adapted to the supervised
classification setting by incorporating the information re-
lated to class labels. The main difference of this setting,
when compared with self-supervised contrastive learning,
is the availability of many positive samples per anchor (in
addition o the many negative samples), because the data
instances from the same class are considered as positives.

8 CONCLUSION

In this work, we introduced a new contrastive learning frame-
work for graph matching, named StableGM. Within our
contrastive learning framework, we proposed a novel hard
negative sampling strategy and a new contrastive loss func-
tion that suits the graph matching setting. We provide a
theoretical analysis of the proposed contrastive matching
loss and showed that the proposed loss function possesses
properties that can overcome the limitations that can occur
when adapting standard contrastive loss function to our set-
ting. Additionally, we described how our StableGM frame-
work provides theoretical guarantees for optimal matching.
We conducted experiments on benchmark datasets that are
widely used for deep graph matching, and our empirical
evaluation demonstrates the effectiveness of our approach.
This work opens the direction to consider supervised graph
matching as a contrastive learning problem and thereby
adapt the concepts discussed in contrastive learning litera-
ture to the graph matching domain.

Our code is available at GitHub: https://github.
com/Gathika94/StableGM.git
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